数学物理方法第十章球函数
- 格式:ppt
- 大小:279.00 KB
- 文档页数:49
第十章球函数1000)(',)(0)()()(')()(''c z w c z w z w z q z w z p z w 级数解法一、二阶常微分方程的二阶常微分方程:数。
定解条件,逐个确定系幂级数,并代入方程和的为中心,带有待定系数表示为以级数解法:将方程的解0z ,sin cos 0'"x B x A y y y 的通解为例如:都可展为幂级数。
、处,在x x x sin cos 0 、方程的常点和奇点1为方程的常点。
点解析,则在和)常点:如果(00)()(1z z z q z p 为方程的奇点。
的非解析点,则和是)奇点:如果(00)()(2z z q z p z 否则,为非正则奇点。
为正则奇点;的二阶极点,则的一阶极点,最多是若00)()(z z q z p z00)()(k kk z z c z w 条件确定系数。
递推关系,再根据定解为零,找出系数之间的,令合并后各系数分别代入方程,合并同幂项将00)()(k kk z z c z w 法、常点邻域内的级数解2域内单值解析。
件的解存在,并在此区这个区域中满足定解条内单值解析,则方程在在、)定理:若(R z z z q z p ||)()(10)确定系数(2)0()ln()()()()()0()()()(00,1002000012121b z z z Aw z z b z z z w a z z a z z z w n s s k kks k kks 数解、正则奇点邻域中的级3两个线性无关解为:002010001)()()()()()()()(k kk k kk z z q z q z z z q z z p z p z z z p0)()(k sk k z z c z w 设解的形式为:20)(0)()()(')()(''z z z w z q z w z p z w 两边方程0)()()()(')()()('')(202020 z w z q z z z w z p z z z w z z 0)()()(')()()('')(11020 z w z q z w z p z z z w z z)()()()()()()1)((00000000k sk kk kk k s k k k kk k sk kz z c z z q z z c s k z z p z z c s k s k 零,可得判定方程:令最低次幂项的系数为0)1(00 q sp s s 是较小的根。
《数学物理方法》课程考试大纲2022-2023山东大学物理学院 数学物理方法期末试题一、 填空题(每题3分,共27分)1. 已知zz =cos (aa +iibb ),z 的代数表达式为________________2. 指出多值函数�(zz −aa )(zz −bb )的支点和阶数___________3. 已知级数∑aa nn xx nn ∞nn=0的收敛半径为A ,试问级数∑aa nn √1+bb nn nnxx nn ∞nn=0(|bb |<1)的收敛半径为_____________4.ssss nn 2zz zz 3的极点为_____,且为______ 阶极点5. 利用柯西公式计算∮zz 2−zz+1zz 2(zz−1)ddzz |zz |=2_______________6. 连带勒让德多项式的正交代数表达式为_______________7. 计算留数1(zz 2+1)2_________________________8. 从t=a 持续作用到t=b 的作用力ff (tt ),可以看作许多前后相继的瞬时力的总和,其数学表达形式为__________9. ∫3δδ(xx −ππ)[ee 2xx +cccccc xx ]ddxx 10−10=_________________ 二、 简算题(每题5分,共15分)1. 将函数ff (zz )=1zz 2−3zz+2,在区域0<|zz −1|<1上展开为洛朗级数 2. �cos mmxx(xx 2+aa 2)2d xx ∞−∞,m>03. 已知解析函数ff =uu +iiνν,而uu =xx 3−3xxyy 2,试求ff三、 (8分)用级数法解微分方程yy ′′+xxyy ′+yy =0四、 (10分)在圆域ρρ<ρρ0上求解泊松方程的边值问题�ΔΔuu =aa +bb (xx 2−yy 2)uu ρρ=pp 0=cc五、 (15分)设有一均匀球体,在球面上的温度为cos 2θθ,试在稳定状态下求球内的温度分布(已知,PP 0(xx )=1,PP 1(xx )=xx , PP 2(xx )=12(3xx 2−1))六、 (10分)利用拉普拉斯变换解RC 电路方程:�RRRR +1CC �RR dd tt tt=EE 0sin ωωttRR (0)=0七、 (15分)计算:⎩⎨⎧ðð2uu ððtt 2−aa 2ðð2uuððxx2=AA cos ππxx ll sin ωωttuu |xx=0=0, uu |xx=ll =0uu |tt=0=φφ(xx ), uu tt |tt=0=ψψ(xx )2022-2023 数学物理方法期末试题 参考答案一、 填空题(每题3分,共27分)1.【正解】 12(ee bb +ee −bb )cos aa +i2(ee −bb −ee bb )sin aa 【解析】cos (aa +i bb )=ee ss (aa+ss bb )+ee −ss (aa+ss bb )2=12(ee −bb ee ss aa+ee bb ee −ss aa )=12[e −bb(cos aa +isin aa )+e bb (cos aa −isin aa )]=12[(e bb+e −bb )cos aa +i(e −bb −e bb )sin aa ]=12(ee bb +ee −bb)cos aa +i 2(ee −bb−ee bb )sin aa 2.【正解】支点:z=a 、b 、∞;皆为一阶支点【解析】注意到函数为12次,且当z=a 、b 时函数置零,z=∞为熟知的支点,阶数皆为2−1=1 3.【正解】A【解析】由根值判别法,幂级数的收敛区间为ll ii ll nn→∞�aa nn ⋅(1+bb nn )nn⋅xxxx (−1,1)而|bb |<1⇒ll ii ll nn→∞√1+bb nn nn=1故收敛半径保持不变,仍为A 4.【正解】zz =0;一阶 【解析】ll ii llzz→0ssss nn 2zz zz 3→∞,且ll ii ll zz→0zz ⋅ssss nn 2zz zz 3=1故zz =0为一阶极点5.【正解】2πi注意到原函数的极点为zz =0和zz =1,且分别为2阶与一阶极点,故上述积分即为II =2ππii �Re cc�ff (zz ),0]+Re cc [ff (zz ),1]��而Re cc [ff (zz ),0]=ll ii ll zz→0dd �zz 2−zz +1zz −1�ddzz=0Re cc [ff (zz ),1]=ll ii ll zz→1zz 2−zz +1zz 2=1因此II =2ππii6.【正解】�PP ll mm (xx )⋅PP kk mm (xx )ddxx =01−1(ll ≠kk ) 7. 【正解】Re cc [ff (zz ),ii ]=ll ii ll zz→ss dd �1(zz +ii )2�ddzz=−2[2ii ]−3Re cc [ff (zz ),−ii ]=ll ii ll zz→−ss dd �1(zz −ii )2�ddzz=−2[−2ii ]−38.【正解】∫ff (ττ)1−1δδ(tt −ττ)ddττ 9.【正解】ee 2ππ−1【解析】由δδ函数的挑选性,上述积分即为 (ee 2xx +cccccc xx )|xx=ππ=ee 2ππ−1 二、 简算题(每题5分,共15分)1.【解析】在区域0<|zz −1|<1内ff (zz )=1zz 2−3zz +2=−12⋅11−zz 2−1zz −1=−12⋅11−zz 2−1zz ⋅11−1zzff (zz )=−�12kk+1zz kk ∞kk=0−�zz −(kk+1)∞kk=0 =−�zz kk−1kk=−∞−�12kk+1zz kk∞kk=02.【解析】由约旦引理,从上半平面的半圆弧补全围道,上半平面有一个二阶极点zz 0=iiaa ,该点的留数为RReeccff (zz 0) =limzz→zz 0d d zz e immzz(zz +aa i)2=lim zz→zz 0[i ll e immzz (zz +aa i)2−2e ss nn zz (zz +aa i)3] =−llaa +14aa 3ie −mmaaII =ππi ⋅(−llaa +14aa 3ie −mmaa )=llaa +14aa3ππe −mmaa 3.【解析】根据C-R 条件,有∂uu ∂xx =3xx 2−3yy 2=∂νν∂yy−∂uu ∂yy =6xxyy =∂νν∂xxddνν=−(−6xxyy )d xx +3(xx 2−yy 2)d yy =d(3xx 2yy −yy 3) 有νν=3xx 2yy −yy 3+CC ,代入得ff (zz )=xx 3−3xxyy 2+i(3xx 2yy −yy 3+CC ) =(xx +i yy )3+i CC =zz 3+i CC 0三、(8分)【解析】设 yy =�aa nn xx nn ∞nn=0 是方程的解,其中 aa 0,aa 1 是任意常数,则yy ′=�nnaa nn xx nn−1∞nn=1yy ′′=�nn (nn −1)aa nn xx nn−2∞nn=2=�(nn +2)(nn +1)aa nn+2xx nn ∞nn=0方程 yy ′′+xxyy ′+yy =0,得�[(nn +2)(nn +1)aa nn+2+nnaa nn +aa nn ]xx nn ∞nn=0=0故必有(nn +2)(nn +1)aa nn+2+(nn +1)aa nn =0即aa nn+2=−aa nnnn +2(nn =0,1,2,⋯ ) 可见,当 nn =2(kk −1) 时aa 2kk=(−12kk )aa 2kk−2=(−12kk )(−12kk −2)⋯(−12)aa 0=aa 0(−1)kkkk !2kk当nn =2kk −1时aa 2kk+1=(−12kk +1)aa 2kk−1=(−12kk +1)(−12kk −1)⋯(−13)aa 1=aa 1(−1)kk (2kk +1)!�aa 2nn xx 2nn ∞nn=0与�aa 2nn+1xx 2nn+1∞nn=0的收敛域均为(−∞,+∞) 故yy =�aa κκxx κκ∞κκ=0=�aa 2κκxx 2κκ∞κκ=0+�aa 2κκ+1xx 2κκ+1∞κκ=0=�aa 0(−1)nn nn !2nn xx 2nn∞nn=0+�aa 1(−1)nn (2nn +1)!xx 2nn+1∞ss=0即yy =aa 0e −xx 22+aa 1�(−1)nn (2nn +1)!xx 2nn+1∞nn=0,xx ∈(−∞,+∞)四、 (10分)【解析】 首先找到满足方程的特解vv =aa 4(xx 2+yy 2)+bb 12(xx 4−yy 4)=aa 4ρρ2+bb 12(xx 2+yy 2)(xx 2−yy 2) =aa 4ρρ2+bb 12ρρ4cos 2φφ 令uu =vv +ww =aa 4ρρ2+bb 12ρρ4cos 2φφ+ww对于齐次方程,且满足球心为有限值的泊松方程通解为ww (ρρ,φφ)=�ρρnn (AA mm cos ll φφ+BB nn sin llφφ)∞mm=0代入边界条件,有 �ρρ0nn (AA mmcos ll φφ+BB nn sin llφφ)∞mm=0=cc −aa 4ρρ02−bb 12ρρ04cos 2φφ比较系数解得uu =vv +ww =cc +aa 4(ρρ2−ρρ02)+bb 12ρρ2(ρρ2−ρρ02)cos 2φφ 五、(15分)【解析】对于满足球心处为有限值的拉普拉斯方程通解为uu (rr ,θθ)=�AA ll rr l P ll (cos θθ)∞ll=0代入边界条件有�AA ll rr 0l P ll (cos θθ)∞ll=0=cos 2θθ=xx 2由于P 2(xx ) =12(3xx 2−1) ,有xx 2=13[1+2P 2(xx )]=13P 0(xx )+23P 2(xx )即�AA ll rr 0lP ll (cos θθ)∞ll=0=cos 2θθ=xx 2=13P 0(xx )+23P 2(xx )对比系数可得uu (rr ,θθ)=13+23⋅1rr 02⋅rr 2P 2(cos θθ)六、(10分)【解析】对方程进行拉普拉斯变换,有jj ‾RR +jj ‾ppCC =EE 0ωωpp 2+ωω2 解得jj ‾=ωωEE 0(RR +1ppCC )(pp 2+ωω2)再进行反演RR (tt )=EE 0ωωRR (−RRCC e llRRRRωω2RR 2CC 2+1+RRCC cos ωωtt +ωωRR 2CC 2sin ωωtt ωω2RR 2CC 2+1) =EE 0RR 2+1/CC 2ωω2(RR sin ωωtt +1CCωωcos ωωtt )−EE 0/CCωωRR 2+1/CC 2ωω2e −tt /RRRR七、(15分)【解析】应用冲量定理法,先求解vv uu −aa 2vv xxxx =0ννxx ∣x=0=0,vv x ∣x=l =0vv ∣tt=ττ+0=0,vv t ∣t=ττ+0=AA cos ππxxllsin ωωττ根据通解的一般形式并代入边界条件,可得vv (xx ,tt ;ττ)=AAllππaasin ωωττsin ππaa (tt −ττ)ll cos ππxx ll uu (xx ,tt )=�vv (xx ,tt ;ττ)tt=AAll ππaa cos ππxx ll �sin ωωττsin ππaa (tt −ττ)ll d ττtt 0=AAll ππaa 1ωω2−ππ2aa 2/ll 2(ωωsin ππaa ll tt −ππaa ll sin ωωtt )cos ππxx ll。
数学物理方法球坐标球坐标是描述三维空间中点位置的一种坐标系统,它由半径r、极角θ和方位角φ三个参数组成。
球坐标系通常用于描述天体运动、物理问题中的旋转和对称性等情况,同时也广泛应用于数学、物理和工程领域。
首先,我们来看一下球坐标和直角坐标之间的转换关系。
给定一个点在球坐标系下的坐标(r,θ,φ),其中r表示点到坐标原点的距离,θ表示点与正半轴的夹角,φ表示点在横截面上的投影与x轴的夹角。
转换到直角坐标系下,球坐标(r,θ,φ)对应的直角坐标可以通过以下公式计算:x = r * sinθ * cosφy = r * sinθ * sinφz = r * cosθ转换到球坐标系下,直角坐标(x,y,z)对应的球坐标可以通过以下公式计算:r = √(x² + y² + z²)θ = arccos(z / r)φ = arctan(y / x)当我们在解决一些数学和物理问题时,球坐标系的使用可以带来一些优势。
首先,球坐标系在描述对称性问题时非常有用。
对于某些物理系统,其性质在不同方向上是对称的。
在球坐标系下,这种对称性往往能够得到简化的描述。
例如,球对称体的物理问题在球坐标系下具有简洁的形式,使得解决问题更加方便。
其次,球坐标系在处理旋转问题时是非常自然的。
在球坐标系下,物体的旋转可以通过改变方位角φ来实现,这种形式更加直观和便于研究。
例如,在量子力学中,自旋的角动量通常以球坐标系的形式进行描述。
此外,球坐标系在描述天体运动时也是非常常用的。
对于行星、星系等天体的运动,球坐标系可以提供简洁的描述。
例如,行星的轨道通常可以用球坐标系中的离心率和升交点来表示,这使得天文学家能够更好地研究和预测行星运动。
最后,球坐标系在解决某些物理问题时能够简化计算过程。
在某些物理问题中,球坐标系下的方程形式可能更简单,从而使得求解过程变得更加容易。
例如,在求解球对称体的拉普拉斯方程时,球坐标系比直角坐标系更加方便。
球函数Legendre 多项式Helmholtz 方程球坐标下分离变量得到连带Legendre 方程21d d sin 0sin d d sin μθλθθθθΘ⎛⎫⎡⎤+-Θ= ⎪⎢⎥⎝⎭⎣⎦作变换cos x θ=,()y θ=Θ改写为()22101d dy x y dx dx x μλ⎡⎤⎡⎤-+-=⎢⎥⎢⎥-⎣⎦⎣⎦讨论0μ=情况:1. 三个正则奇点:1,z =±∞,其余全平面解析 z=0邻域内两个线性无关解()2210122212!22n n n n n w z n νννν∞=+⎛⎫⎛⎫Γ-Γ+ ⎪ ⎪⎝⎭⎝⎭=+⎛⎫⎛⎫Γ-Γ ⎪ ⎪⎝⎭⎝⎭∑21n w +n 1,-1对数发散:21ln 1z-,在设()()()11nn n w z z c z ρ∞==--∑。
得到指标方程解120ρρ==得到两个线性无关解()()()()2011112!nn n z P z n n ννν∞=Γ++-⎛⎫= ⎪Γ-+⎝⎭∑()()()()()()2211ln 22121111111 (12)2!z Q z P z z n z n n n ννγψννν+⎡⎤=--+⎢⎥-⎣⎦Γ++-⎛⎫⎛⎫++++ ⎪⎪Γ-+⎝⎭⎝⎭∑2. 方程条件改变球内区域Laplace 方程轴对称边值问题20|u u f ∇==∑其中∑代表球面上的变点i ii令最下两个构成本征值问题,作变换()cos ,x y θθ==Θ,()1λνν=+变为同之前的两个结果,可以得到在0或1的邻域出发求解由于0出的解对数发散,要求ν取特殊值在1邻域得到()()()12y x c P x c Q x νν=+由于Q 发散,其系数为0,令1c 为1。
P 在1收敛,在-1对数发散3. ✧ ()11l P =✧2()()33532P x x x =- ✧ ✧✧✧✧ 由此得到的Legendre 多项式在0点的值:()()()()222!02!ll ll P l =-()2100l P +=✧ Legendre 多项式为l 次多项式,最高项系数为()22!2!l l l c l =4. Legendre 多项式的正交性Legendre 多项式为前述本征值问题的解 作为本征函数有正交性:()()110lkP x P x dx -=⎰证1:由本征值问题直接证明(仿照14.1,写出两个微分方程l 和k ,交叉相乘相减,分部积分得到相似的结果,由边界条件得到为0) 证2:求解积分()11k l x P x dx -=⎰当k l ±()(()111111121112!112!l kk l l l l l k l l d x P x dx x l dxd x x l dx ------=⎡=--⎢⎢⎣⎰⎰⎰前一项为0,继续分部积分l()12211ln x x dx --⎰ ()()()p q p q ΓΓΓ+得到结果为()!221!n l n ++5. Legendre 多项式的模方由之前的结论得到乘方求积分后,低次项全部为0,得到()()()11212!!!222!21!21l l l l l l l l c x P x dx l l l +-==++⎰6. Legendre 多项式的完备性任意在区间[-1,1]分段连续的函数f(x),在平均收敛的意义下,可以展开为级数7. Legendre 多项式生成函数将生成函数函数在0()0l l l P x t ∞==∑由此得到多项式递推关系 8. Legendre 多项式递推关系 ✧ ()()()1121()1l l l l xP x l P x lP +-+=++✧()()()()11'2''l l l l P x P x xP x P x +-=-+Laplace 方程在球坐标下求解1. 一般的Laplace 方程设在电场强度为E 0的均匀电场中放进一个接地导体球,球的半径为a 。