运用完全平方公式因式分解教学设计
- 格式:doc
- 大小:157.00 KB
- 文档页数:4
4.3 运用完全平方公式因式分解【设计理念】因式分解是学生进一步学习数学不可或缺的基础知识和基本技能。
本节课以培养学生熟练运用完全平方公式因式分解,以反复练习促进此方法的熟练掌握,以老师讲解例题与方法,学生多多练习为具体的教学指导思想。
一、教材分析本节内容是浙教版《数学》七年级下的第四章的第三节。
本节的内容主要是用完全平方公式来因式分解。
因式分解是整式的一种重要的恒等变形,它和整式的乘法,尤其是多项式的乘法关系十分密切。
因式分解的几种基本方法都是直接依据整式乘法的各个法则和乘法公式。
完全平方公式是一种重要的因式分解的方法,学好用完全平方公式因式分解,是学生进一步学习数学不可或缺的工具。
二、学情分析在知识上:学生在学习用完全平方公式因式分解之前,已经学习了用平方差公式因式分解。
这两种方法都是整式乘法的逆运用,所以应先复习整式乘法内容,再学习用公式法分解因式,可以加强学生对公式的熟练使用。
在思想上:学生个体有所差异,所以应准备一些难度大的题目,以便一些做得快的学生做。
另外,平方差公式与完全平方公式都有平方项,容易混淆,讲解时应加以区分。
三、教学目标1、知识目标:要求学生掌握完全平方公式,并能熟练运用完全平方公式分解因式,并能区分完全平方公式以及平方差公式。
2、能力目标:要求学生通过综合运用提公因式法、完全平方公式分解因式,进一步培养学生的观察和联想能力。
通过对完全平方公式的逆向变形及将一个整式看做“元”进行分解,发展学生的观察、类比、归纳、预见等能力,进一步体会换元思想,提高处理数学问题的技能。
3、情感目标:让学生品尝成功的喜悦,从而激发其求知的热情。
四、教学重难点1、重点:用完全平方公式因式分解。
2、难点:例4的分解和化简过程较为复杂,要求用换元的思想;能否很好区分平方差公式和完全平方公式。
五、教学方法教法:讲授法学法:探究学习法六、教学过程(1)复习提问:我们已经学了哪些因式分解的方法?练一练:1. 2.3. 4.提问:除了平方差公式,还学过哪些乘法公式?(2)新课我们已经学了完全平方公式:把完全平方公式反过来:即两数的平方和,加上(或者减去)这两数的积的2倍,等于这两数和(或者差)的平方。
《完全平方公式》教案【通用七篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、致辞讲话、短语口号、心得感想、条据书信、合同协议、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as summary reports, speeches, phrases and slogans, thoughts and feelings, evidence letters, contracts and agreements, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《完全平方公式》教案【通用七篇】《完全平方公式》教案篇1一、教学目标:经历探索完全平方公式的过程,进一步发展符号感和推理能力;在变式中,拓展提高;通过积极参与数学学习活动,培养学生自主探究能力,勇于创新的精神和合作学习的习惯;重点是正确理解完全平方公式(a±b)2=a2±2ab+b2.并初步运用;难点是完全平方公式的运用。
初中数学《完全平方公式》教学设计初中数学《完全平方公式》教学设计范文(精选7篇)作为一名教师,编写教学设计是必不可少的,借助教学设计可以提高教学效率和教学质量。
那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的初中数学《完全平方公式》教学设计范文,欢迎阅读,希望大家能够喜欢。
初中数学《完全平方公式》教学设计篇1学习目标:1、经历探索完全平方公式的过程,发展学生观察、交流、归纳、猜测、验证等能力。
2、会推导完全平方公式,了解公式的几何背景,会用公式计算。
3、数形结合的数学思想和方法。
学习重点:会推导完全平方公式,并能运用公式进行简单的计算。
学习难点:掌握完全平方公式的结构特征,理解公式中a、b的广泛含义。
学习过程:一、学习准备1、利用多项式乘以多项式计算:(a+b)2 (a—b)22、这两个特殊形式的多项式乘法结果称为完全平方公式。
尝试用自己的语言叙述完全平方公式:3、完全平方公式的几何意义:阅读课本64页,完成填空。
4、完全平方公式的结构特征:(a+b)2=a2+2ab+b2(a—b)2=a2—2ab+b2左边是形式,右边有三项,其中两项是形式,另一项是()注意:公式中字母的含义广泛,可以是,只要题目符合公式的结构特征,就可以运用这一公式,可用符号表示为:(□±△)=□2±2□△+△25、两个完全平方公式的转化:(a—b)2= 2=()2+2()+()2=()二、合作探究1、利用乘法公式计算:(3a+2b)2 (2)(—4x2—1)2分析:要分清题目中哪个式子相当于公式中的a ,哪个式子相当于公式中的b2、利用乘法公式计算:992 (2)()2分析:要利用完全平方公式,需具备完全平方公式的结构,所以992可以转化()2,()2可以转化为()2。
3、利用完全平方公式计算:(a+b+c)2 (2)(a—b)3三、学习对照学习目标,通过预习,你觉得自己有哪些方面的收获?又存在哪些方面的疑惑?四、自我测试1、下列计算是否正确,若不正确,请订正;(1)(—1+3a)2=9a2—6a+1(2)(3x2—)2=9x4—(3)(xy+4)2=x2y2+16(4)(a2b—2)2=a2b2—2a2b+42、利用乘法公式计算:(1)(3x+1)2(2)(a—3b)2(3)(—2x+ )2(4)(—3m—4n)23、利用乘法公式计算:99924、先化简,再求值;( m—3n)2—( m+3n)2+2,其中m=2,n=3五、思维拓展1、如果x2—kx+81是一个完全平方公式,则k的值是()2、多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是()3、已知(x+y)2=9,(x—y)2=5 ,求xy的值4、x+y=4 ,x—y=10 ,那么xy=()5、已知x— =4,则x2+ =()初中数学《完全平方公式》教学设计篇2一、教材分析:(一)教材的地位与作用本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用。
苏科版数学七年级下册《用完全平方公式因式分解》说课稿一. 教材分析《苏科版数学七年级下册》中的《用完全平方公式因式分解》一节,是在学生已经掌握了有理数的乘方、平方差公式和完全平方公式的知识基础上进行讲解的。
本节内容主要让学生掌握利用完全平方公式进行因式分解的方法,培养学生解决实际问题的能力。
教材通过例题和练习题的安排,使学生能够逐步理解和掌握完全平方公式因式分解的应用。
二. 学情分析面对七年级的学生,他们在数学学习方面已经有了一定的基础,对于平方差公式和完全平方公式已经有了一定的了解。
但是,学生在运用完全平方公式进行因式分解时,可能会出现对公式记忆不牢、理解不透彻、应用不熟练的问题。
因此,在教学过程中,我需要关注学生的学习需求,针对性地进行教学,帮助学生巩固知识,提高解题能力。
三. 说教学目标1.知识与技能目标:使学生掌握完全平方公式,并能运用完全平方公式进行因式分解。
2.过程与方法目标:通过合作交流、探索发现,培养学生运用完全平方公式解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力。
四. 说教学重难点1.教学重点:完全平方公式的记忆和应用。
2.教学难点:如何引导学生发现完全平方公式的内涵,以及如何灵活运用完全平方公式解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作交流法、探究发现法等,引导学生主动参与学习,提高学生的学习效果。
2.教学手段:利用多媒体课件、黑板等教学工具,直观展示教学内容,帮助学生理解和记忆。
六. 说教学过程1.导入新课:通过复习平方差公式,引出完全平方公式,激发学生的学习兴趣。
2.讲解新课:讲解完全平方公式的推导过程,让学生理解并记忆完全平方公式。
3.例题讲解:通过典型例题,讲解如何利用完全平方公式进行因式分解,引导学生掌握解题方法。
4.练习巩固:安排练习题,让学生运用完全平方公式进行因式分解,巩固所学知识。
5.拓展提高:引导学生发现完全平方公式的内涵,探讨如何灵活运用完全平方公式解决实际问题。
用完全平方公式因式分解教案一、教学目标1、学生能正确理解并使用完全平方公式因式分解原理;2、能熟练掌握并使用完全平方公式因式分解;3、能够正确使用完全平方公式因式分解解决实际问题。
二、教学重点1、教育学生正确理解并使用完全平方公式因式分解原理;2、让学生熟练掌握并使用完全平方公式因式分解;3、让学生能够正确使用完全平方公式因式分解解决实际问题。
三、教学内容1、完全平方公式因式分解的概念:完全平方公式因式分解是指把已知的式子按照公式的形式进行因式分解,它将一个多项式分解成多个完全平方式,可以利用此方法减少复杂的运算,求出更简单的表达式,便于解题。
2、完全平方公式因式分解的原理:完全平方公式因式分解的原理是把一个多项式按完全平方的方式分解,因为是平方的变化,所以可以得到输出的式子乘积比输入的式子中的幂次(未分解之前的)总数要少,因而也能得到不那么复杂的结果,更便于进行解答。
3、完全平方公式因式分解的步骤:(1)将多项式分开化简;(2)查看乘积中对称的字母数量;(3)如果有两个就可以分解出平方根;(4)如果只有一个就可以把它们包装成一个平方;(5)将结果拆分成平方根;(6)最后将项按照完全平方的左右结构组合,即完成完全平方公式因式分解。
四、教学方法主要采用讲授法、示范法、讨论法等,使学生运用完全平方公式因式分解解决实际问题,即“先上一道习题,把学生教会讲解,通过几道练习让学生自己解决,通过交流方式归纳总结,使得学生由解答变为分析,从而更好的掌握完全平方公式因式分解的知识。
五、教学设计(1)课前准备:准备若干相关的实际问题供学生讨论解答;(2)课前检测:通过一些随机出的习题,检测学生对完全平方公式因式分解的现有知识水平;(3)概念讲解:讲解完全平方公式因式分解的定义、特征及原理;(4)实例讲解:以实例分析演示完全平方公式因式分解的步骤和思想;(5)讨论练习:准备一些重难点习题,学生分组分析,练习完全平方公式因式分解;(6)总结归纳:学生就讨论的情况发表自己的看法,总结归纳完全平方公式因式分解的方法。
用完全平方公式因式分解学案设计人:高瑞霞 审核人:隋爱华 时间:2009.9一、导学目标:1、会用完全平方公式分解因式。
2、会综合运用提取公因式法、公式法分解因式。
3、通过对完全平方公式的逆向变形及将一个整式看做“元”进行分解,发展学生的观察、类比、归纳、预见等能力,进一步体会换元思想,提高处理数学问题的技能。
二、重点和难点:重点:用完全平方公式因式分解。
难点:由于用完全平方公式因式分解的关键是能否判断一个多项式是否为完全平方式,因此准确判断一个多项式是否为完全平方式是本课的一个难点。
而例4分解和化简过程比较复杂,并要求用换元的思想来因式分解,是本节教学的另一个难点。
三、导学过程:(一)、用完全平方公式因式分解之引入篇你能根据下列图形的面积写出一个等式吗?(a ±b)2 a 2±2ab+b 2(a ±b)2=a 2±2ab+b 2反过来,可得a 2±2ab+b 2=(a ±b)2两数的平方和,加上(或减去)这两数的积的两倍,等于这两数和(或者差)的平方。
形如a 2±2ab+b 2的多项式称为完全平方式.实质为:两数的平方和,加上(或减去)这两个数的积的两倍.给出完全平方式的概念。
(二)、用完全平方公式因式分解之辨析篇判别下列各式是不是完全平方式:(1)x 2+y 2; (2)a 2-6a+9;(3)△2-2×△×□+□2; (4)m 2+2mn-n 2.(三)、用完全平方公式因式分解之归纳篇a 2±2ab+b 2完全平方式的特点:1.有三项组成.2.其中有两项分别是某两个数(或式)的平方.3. 另一项是上述两数(或式)的乘积的2倍,符号可正可负.(四)、用完全平方公式因式分解之探索篇对照a2±2ab+b2=(a±b)2,你会吗?1、x2+4x+4= ( )2+2( )( )+( )2 =( + )22、m2-6m+9=( )2- 2( )( )+( )2 =( - )2注意:公式中的a、b可以表示单项式甚至是多项式。
完全平方公式教案优秀8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!完全平方公式教案优秀8篇作为一名专为他人授业解惑的人·民教师,可能需要进行教案编写工作,教案是教学活动的依据,有着重要的地位。
第2课时用完全平方公式因式分解【知识与技能】使学生了解运用公式法分解因式的意义;会用公式法(直接用公式不超过两次)分解因式(指数是正整数);使学生清楚地知道提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式或完全平方公式进行分解因式。
【过程与方法】经历通过整式乘法的完全平方公式逆向得出运用公式法分解因式的方法的过程,发展学生的逆向思维和推理能力.【情感态度】培养学生灵活的运用知识的能力和积极思考的良好行为,体会因式分解在数学学科中的地位和价值.【教学重点】掌握公式法中利用完全平方公式进行分解因式.【教学难点】灵活地运用公式法或已学过的提公因式法进行分解因式,正确判断因式分解的彻底性问题.一、情景导入,初步认知1.把下列各式分解因式(学生上台板演):(1)ax4-ax2;(2)16m4-n4.解:(1)ax4-ax2=ax2(x+1)(x-1)(2)16m4-n4=(4m2)2-(n2)2=(4m2+n2)(4m2-n2)=(4m2+n2)(2m+n)(2m-n)2.除了平方差公式外,还有哪些公式?如何表示?3.怎样用语言表述?(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2【教学说明】复习铺垫对学习新知识是必要的,它可以扫清学习新知识的障碍,顺利进入新的知识学习之中。
二、思考探究,获取新知1。
由因式分解和整式乘法的关系,大家能否猜想出用完全平方公式分解因式的公式呢?将完全平方公式倒写:a2+2ab+b2=(a+b)2;a2-2ab+b2=(a -b)2。
左边的特点有:(1)多项式是三项式;(2)其中有两项同号,且此两项能写成两数或两式的平方和的形式;(3)另一项是这两数或两式乘积的2倍.右边的特点:这两数或两式和(差)的平方.如何利用完全平方公式进行因式分解呢?2.把9x2-3x+14分解因式。
分析:9x2=(3x)2,14=(12)2,3x=2·3x·12,原式即可用完全平方公式进行因式分解.解:9x2-3x+14=(3x)2-2·3x·12+(12)2=(3x-14)2【教学说明】在进一步引导学生掌握完全平方式的特征的同时,能让学生对公式的特征有足够的理解,并在此的基础上,让学生用自己的语言来阐述思考过程,这是符合学生的认知规律的,也体现了新课程标准下的理念。
《用完全平方公式因式分解》的教学设计及反思一、教学目标:1、会用完全平方公式分解因式。
2、会综合运用提取公因式法、公式法分解因式。
3、通过对完全平方公式的逆向变形及将一个整式看做“元”进行分解,发展学生的观察、类比、归纳、预见等能力,进一步体会换元思想,提高处理数学问题的技能。
二、重点和难点:重点:用完全平方公式因式分解。
难点:由于用完全平方公式因式分解的关键是能否判断一个多项式是否为完全平方式,因此准确判断一个多项式是否为完全平方式是本课的一个难点。
而例4分解和化简过程比较复杂,并要求用换元的思想来因式分解,是本节教学的另一个难点。
三、教学过程:(一)、用完全平方公式因式分解之引入篇(1)做一做:把下列各式分解因式(学生上台板演)(1)ax4-ax2(2)16m4-n4估计有部分学生只是把多项式16m4-n4分解到(4m2+ n2)(4m2- n2)的形式,教师予以强调指出必须分解到每个因式不能分解为止。
(2)考一考a、除了平方差公式外,还有那些公式?b、如何表示?(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2c、怎样用语言表述?d、公式应该怎么写?(a±b)2=a2±2ab+b2反过来,可得a2±2ab+b2=(a±b)2两数的平方和,加上(或减去)这两数的积的两倍,等于这两数和(或者差)的平方。
形如a2±2ab+b2的多项式称为完全平方式.实质为:两数的平方和,加上(或减去)这两个数的积的两倍.给出完全平方式的概念。
(二)、用完全平方公式因式分解之辨析篇判别下列各式是不是完全平方式:(1)x2+y2; (2)a2-6a+9;(3)△2-2×△×□+□2; (4)m2+2mn-n2.(三)、用完全平方公式因式分解之归纳篇a2±2ab+b2完全平方式的特点:1.有三项组成.2.其中有两项分别是某两个数(或式)的平方.3. 另一项是上述两数(或式)的乘积的2倍,符号可正可负.(四)、用完全平方公式因式分解之探索篇对照a2±2ab+b2=(a±b)2,你会吗?1、x2+4x+4= ( )2+2( )( )+( )2 =( + )22、m2-6m+9=( )2- 2( )( )+( )2 =( - )2注意:公式中的a、b可以表示单项式甚至是多项式。
第1课时运用完全平方公式因式分解1.理解完全平方公式,弄清完全平方公式的形式和特点.(重点)2.掌握运用完全平方公式分解因式的方法,能正确运用完全平方公式把多项式分解因式.(难点)一、情境导入1.分解因式:(1)A2—4/;(2)3/-3/;(3)√-l; (4) (x÷3^)2-(χ-3y)2.2.根据学习用平方差公式分解因式的经验和方法,你能将形如“才+2助+从Iab + 4”的式子分解因式吗?二、合作探究探究点:运用完全平方公式分解因式[类型一]判断能否用完全平方公式分解因式(≡1下列多项式能用完全平方公式分解因式的有()(1)a-∖-abΛ^β; (2)-一a+;; (3)9a j-24aZ?+4Z?2; (4) —a ÷8a-16.A. 1个B. 2个C. 3个D. 4个解析:(1)/+μ+人乘积项不是两数积的2倍,不能运用完全平方公式;(2)才一a+ J= (a-1)2;(3)9才-24勖+4次乘积项是这两数积的4倍,不能用完全平方公式;(4) — a2+8a-16= 一(/-8a+16)= - U-4)2.所以(2) (4)能用完全平方公式分解.故选B.方法总结:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.[类型二]运用完全平方公式分解因式≡3因式分解:(1)—3a2—+24,才一48 才;(2)(才+4) 2 —16 才.解析:(1)有公因式,因此要先提取公因式一3才,再把另一个因式(V-8x+16)用完全平方公式分解;(2)先用平方差公式,再用完全平方公式分解.解:(1)原式=-3/(V—8x+16) ——3∕(x—4)2;(2)原式=(才+4)2- (4a)2= (a2+4+4a) (a2+4-4a) = U+2)2U-2)2.方法总结:分解因式的步骤是一提、二用、三查,即有公因式的首先提公因式,没有公因式的用公式,最后检查每一个多项式的因式,看能否继续分解.【类型三】利用完全平方公式求值(SB 已知4x+y2-10y+29=0,求f∕+2χy+1 的值.解析:首先配方,借助非负数的性质求出x、y的值,问题即可解决.解:*.*X —4,γ÷y-↑,Oy+ 29 = 0, Λ (χ-2)2+ (y—5)2=0. V (A,-2)2^0, (y—5)2>0, .∙.χ-2=0, y—5=0, .∙.x=2, y=5, ∙∖xy-^-2xy+l = (Λ,∕÷I)2= H2= 121.方法总结:几个非负数的和为0,则这几个非负数都为0.[类型四]运用因式分解进行简便运算利用因式分解计算:(1)342÷34×32 + 162;(2)38. 92-2×38. 9X48. 9+48. 92.解析:利用完全平方公式转化为(a±力2的形式后计算即可.解:(1) 342 + 34 X 32 +162 = (34 +16)2 = 2500 ;(2)38. 92-2×38. 9X48. 9+48. 92= (38. 9-48. 9)2= 100.方法总结:此题主要考查了运用公式法分解因式,正确掌握完全平方公式是解题关键.[类型五]利用因式分解判定三角形的形状(SB已知a, A C分别是A4¾7三边的长,且才+2〃+02-26(&+©=0,请判断△力回的形状,并说明理由.解析:首先利用完全平方公式分组进行因式分解,进一步分析探讨三边关系得出结论即可.解:由/+2//+——28(a+c)=0,得 a'—2aZ?+1} +1/-2bc-∖- c2=0,即(a—Z?)2+ {b- c)2=0, .∙.a-b=0, b-c=O f .*.a= b= c f Z∖4%7是等边三角形.方法总结:通过配方将原式转化为非负数的和的形式,然后利用非负数性质解答,这是解决此类问题一般的思路.[类型六]整体代入求值[例❺已知a+6=5, ab=10,求*6+才炉+Ja6的值.解析:将*6+4武昂3分解碌6与(叶犷的乘积,因此可以运用整体代入的数学思想来解答.解:3才6+才62+56=$仇才+246+62)=56(4+6)2.当西+6=5,仍=]。
运用完全平方公式分解因式导学案章节与课题§9.6.2 运用完全平方公式分解因式课时安排 2 课时使用人使用日期或周次本课时学习目标或学习任务 1、了解完全平方公式的特征,会用完全平方公式进行因式分解. 2、通过整式乘法逆向得出因式分解方法的过程,发展学生逆向思维能力和推理能力.3、通过猜想、观察、讨论、归纳等活动,培养学生观察能力,实践能力和创新能力. 本课时重点难点或学习建议教学重点:运用完全平方公式分解因式. 教学难点:掌握完全平方公式的特点. 本课时教学资源的使用电脑、投影仪. 学习过程学习要求或学法指导教师二次备课栏自学准备与知识导学: 1、计算下列各式: ⑴(a+4)2=__________________ ⑵ (a-4)2=__________________ ⑶ (2x+1)2=__________________ ⑷ (2x-1)2=__________________ 下面请你根据上面的等式填空: ⑴ a2+8a +16=_____________ ⑵ a2-8a +16=_____________ ⑶ 4x2+4x+1=_____________ ⑷4x2-4x+1=_____________ 问题:对比以上两题,你有什么发现? 2、把乘法公式(a+b)2= a2+2ab+b2和(a-b)2= a2-2ab+b2反过来就得到__________________和__________________,这两个等式就是因式分解中的完全平方公式.它们有什么特征?若用△代表a,○代表b,两式可表示为△2+2△×○+○2=(△+○)2,△2-2△×○+○2=(△-○)2 . 3、a2-4a-4符合公式左边的特征吗?为什么?4、填空:a2+6a+9符合吗?______相当于a,______相当于b. a2+6a+9=a2+2•( ) •( )+( )2=( )2 a2-6a+9=a2-2•( ) •( )+( )2=( )2可以把形如a2+2ab+b2与a2-2ab+b2的多项式通过完全平方公式进行因式分解.学习交流与问题研讨: 1、例题一(准备好,跟着老师一起做!) 把下列各式分解因式:⑴ x2+10x+25 ⑵ 4a2-36ab+81b22、例题二(有困难,大家一起讨论吧!) 把下列各式分解因式:⑴ 16a4+8a2+1 ⑵ (m+n)2-4(m+n)+43、变式训练:若把16a4+8a2+1变形为16a4-8a2+1会怎么样呢?4、运用平方差公式、完全平方公式,把一个多项式分解因式的方法叫做运用公式法. 分析:重点是指出什么相当于公式中的a、b,并适当的改写为公式的形式.分析:许多情况下,不一定能直接使用公式,需要经过适当的组合,变形成公式的形式.强调:分解因式必须分解到每一个因式都不能再分为止.练习检测与拓展延伸: 1、巩固练习⑴ 下列能直接用完全平方公式分解的是( ) A、x2+2xy-y2 B、-x2+2xy+y2 C、x2+xy+y2 D、x2-xy+y2 ⑵ 分解因式:-a2+2ab-b2=_________,-a2-2ab -b2=_________. ⑶ 课本P75练一练1、2. 2、提升训练⑴ 简便计算:20042-4008×2005+20052⑵ 已知a2-2a+b2+4b+5=0,求(a+b)2005的值.⑶ 若把a2+6a+9误写为a2+6a+9-1即a2+6a+8如何分解?3、当堂测试补充习题P42-43 1、2、3、4.分析:许多情况下,不一定能直接使用公式,需要经过适当的组合,变形成公式的形式.课后反思或经验总结: 1、本节课是在学生已经了解因式分解的意义,掌握了提公因式法、平方差公式的基础上进行教学的,是运用类比的方法,引导学生借助上一节课学习平方差公式分解因式的经验,探索因式分解的完全平方公式法,即先观察公式的特点,再直接根据公式因式分解.优品课件,意犹未尽,知识共享,共创未来!!!。
运用完全平方公式分解因式下面我将从教材分析、教法、学法、教学过程四方面来说明。
一、教材分析:(一)地位与作用:分解因式与数系中分解质因数类似,是代数中一种重要的恒等变形,它是在学生学习了整式运算的基础上提出来的,是整式乘法的逆向变形。
在后面的学习过程中应用广泛,如:将分式通分和约分,二次根式的计算与化简,以及解方程都将以它为基础。
因此分解因式这一章在整个教材中起到了承上启下的作用。
同时,在因式分解中体现了数学的众多思想,如:“化归”思想、“类比”思想、“整体”思想等。
因此,因式分解的学习是数学学习的重要内容。
根据《课标》的要求,本章介绍了最基本的两种分解因式的方法:提公因式法和运用公式法(平方差、完全平方公式)。
运用完全平方公式分解因式不仅是现阶段的学习重点,而且为学生以后分解二次三项式奠定了一定的基础。
(二)教学目标课时教学目标对课堂教学起着导向作用、激励作用和标准作用,研究教材的一个重要内容是为了制定明确、具体、可行的教学目标。
根据大纲和教材的要求,结合目标分类理论和学生实际,制定目标如下:1、知识目标⑴能记住完全平方公式;⑵能辨认完全平方式;⑶能灵活运用完全平方公式进行因式分解。
2、能力目标⑴提高学生的运算能力;⑵培养学生的观察分析能力;⑶渗透换元与整体的思想。
3、情感目标培养科学的质疑精神与积极地将新旧知识进行关联的倾向,以及学习数学的兴趣。
(三)教学的重点和难点本节课的重点是灵活运用完全平方公式分解因式,特别是对完全平方式的判断,对学生的观察分析能力有较高的要求,本节课的难点是整体、换元思想的掌握。
换元与整体的思想是数学中的一个重要思想方法,要启发学生注意不断总结规律和积累解体经验。
二、说教法(一)本节课采用的教学方法主要是启发诱导法和练习法,并辅以讲解法、分析法,采用这一教法是基于以下的考虑:认知心理学家奥苏伯尔的研究表明,有意义的学习的发生必须满足下列条件:第一,学习者认知结构中同化新材料的适当知识基础,也就是具有必要的起点能力;第二,学习者还应具有积极地将新旧知识关联的倾向。
因式分解学案:用完全平方公式分解学案
一、学习目标:
1. 理解完全平方公式的概念和用途;
2. 掌握用完全平方公式分解二次多项式的方法;
3. 能够灵活运用完全平方公式分解解决相关问题。
二、知识回顾:
在代数学中,因式分解是一个重要的概念。
通过因式分解,我
们可以将一个多项式表达式写成乘法形式,从而更容易处理和求解。
三、引入完全平方公式:
完全平方公式是因式分解中常用的一种方法。
它的形式如下:
(a + b)^2 = a^2 + 2ab + b^2
其中,a和b可以是任意实数。
完全平方公式的应用可以大大
简化因式分解的过程。
四、用完全平方公式分解二次多项式的一般步骤:
1. 确定二次多项式的形式为(ax^2 + bx + c);
2. 判断二次多项式是否满足完全平方公式,即判断一次项系数是否为奇数;
3. 如果是完全平方公式,应用完全平方公式进行分解;
4. 如果不是完全平方公式,需要进行其他因式分解方法。
五、例题解析:
1. 分解x^2 + 6x + 9:
这是一个完全平方公式,可以直接应用完全平方公式进行分解:
= (x + 3)^2
2. 分解x^2 - 10x + 25:
这也是一个完全平方公式,可以直接应用完全平方公式进行分解:
= (x - 5)^2
3. 分解x^2 + x + 1:。
因式分解第4课时教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力. 2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.重点难点1.重点:理解完全平方公式因式分解,并学会应用. 2.难点:灵活地应用公式法进行因式分解. 应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的.教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知 【问题牵引】 1.分解因式:(1)-9x 2+4y 2; (2)(x+3y )2-(x -3y )2;(3)x 22. 【知识迁移】2.计算下列各式:(1)(m -4n )2; (2)(m+4n )2;(3)(a+b )2; (4)(a -b )2.【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律.3.分解因式:(1)m 2-8mn+16n 2 (2)m 2+8mn+16n 2;(3)a 2+2ab+b 2; (4)a 2-2ab+b 2.【学生活动】从逆向思维的角度入手,很快得到下面答案:解:(1)m 2-8mn+16n 2=(m -4n )2; (2)m 2+8mn+16n 2=(m+4n )2;(3)a 2+2ab+b 2=(a+b )2; (4)a 2-2ab+b 2=(a -b )2.【归纳公式】完全平方公式a 2±2ab+b 2=(a ±b )2. 二、范例学习,应用所学949【例1】把下列各式分解因式:(1)-4a 2b+12ab 2-9b 3; (2)8a -4a 2-4;(3)(x+y )2-14(x+y )+49; (4)+n 4. 【例2】如果x 2+axy+16y 2是完全平方,求a 的值.【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a 的值,即可求出a 3. 三、随堂练习,巩固深化 课本P119练习第1、2题. 【探研时空】1.已知x+y=7,xy=10,求下列各式的值.(1)x 2+y 2; (2)(x -y )22.已知x+=-3,求x 4+的值. 四、课堂总结,发展潜能由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:a 2-b 2=(a+b )(a -b ); a 2±ab+b 2=(a ±b )2.在运用公式因式分解时,要注意:(1)每个公式的形式与特点,通过对多项式的项数、•次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)•在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,•然后再运用公式分解. 五、布置作业,专题突破课本P119习题14.3第3、5、7、8题. 板书设计公式法(二)1、完全平方公式: 例: a 2±2ab+b 2=(a ±b )2练习:第3课时 二次函数y =a (x -h )2+k 的图象和性质223293m n mn 1x 41x1.会用描点法画出y=a(x-h)2+k的图象.2.掌握形如y=a(x-h)2+k的二次函数图象的性质,并会应用.3.理解二次函数y=a(x-h)2+k与y=ax2之间的联系.一、情境导入对于二次函数y=(x-1)2+2的图象,你能说出它的顶点坐标、对称轴和开口方向吗?你能再说出一个和这个函数图象的顶点坐标、对称轴和开口方向一致的二次函数吗?二、合作探究探究点一:二次函数y=a(x-h)2+k的图象和性质【类型一】二次函数y=a(x-h)2+k的图象求二次函数y=x2-2x-1的顶点坐标、对称轴及其最值.解析:把二次函数y=x2-2x-1化为y=a(x-h)2+k(a≠0)的形式,就会很快求出二次函数y=x2-2x-1的顶点坐标及对称轴.解:y=x2-2x-1=x2-2x+1-2=(x-1)2-2,∴顶点坐标为(1,-2),对称轴是直线xx=1时,y最小值=-2.方法总结:把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)形式常用的方法是配方法和公式法.【类型二】二次函数y=a(x-h)2+k的性质如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,x =-1是对称轴,有下列判断:①b -2a =0;②4a -2b +c <0;③a -b +c =-9a ;④若(-3,y 1),(32,y 2)是抛物线上两点,则y 1>y 2.其中正确的是( )A .①②③B .①③④C .①②④D .②③④解析:∵-b2a =-1,∴b =2a ,即b -2a =0,∴①正确;∵当x =-2时点在x 轴的上方,即4a -2b +c >0,②不正确;∵4a +2b +c =0,∴c =-4a -2b ,∵b =2a ,∴a -b +c =a -b -4a -2b =-3a -3b =-9a ,∴③正确;∵抛物线是轴对称图形,点(-3,y 1)到对称轴x =-1的距离小于点(32,y 2)到对称轴的距离,即y 1>y 2,∴④正确.综上所述,选B.方法总结:抛物线在直角坐标系中的位置,由a 、b 、c 的符号确定:抛物线开口方向决定了a 的符号,当开口向上时,a >0,当开口向下时,a <0;抛物线的对称轴是x =-b2a ;当x =2时,二次函数的函数值为y =4a +2b +c ;函数的图象在x 轴上方时,y >0,函数的图象在x 轴下方时,y <0.【类型三】利用平移确定y =a (x -h )2+k 的解析式将抛物线y =13x 2向右平移2个单位,再向下平移1个单位,所得的抛物线是( )A .y =13(x -2)2-1B .y =13(x -2)2+1C .y =13(x +2)2+1D .y =13(x +2)2-1解析:由“上加下减”的平移规律可知,将抛物线y =13x 2向下平移1个单位所得抛物线的解析式为:y =13x 2-1;由“左加右减”的平移规律可知,将抛物线y =13x 2-1向右平移2个单位所得抛物线的解析式为y =13(x -2)2-1,故选A.探究点二:二次函数y =a (x -h )2+k 的应用【类型一】y =a (x -h )2+k 的图象与几何图形的综合如图,在平面直角坐标系中,点A 在第二象限,以A 为顶点的抛物线经过原点,与x 轴负半轴交于点B ,对称轴为直线x =-2,点C 在抛物线上,且位于点A 、B 之间(C 不与A 、B 重合).若△ABC 的周长为a ,则四边形AOBC 的周长为________.(用含a 的式子表示)解析:如图,∵对称轴为直线x =-2,抛物线经过原点,与x 轴负半轴交于点B ,∴OB =4,∵由抛物线的对称性知AB =AO ,∴四边形AOBC 的周长为AO +AC +BC +OB =△ABC 的周长+OB =a +4.故答案是:a +4.方法总结:二次函数的图象关于对称轴对称,本题利用抛物线的这一性质,将四边形的周长转化到已知的线段上去,在这里注意转化思想的应用.【类型二】二次函数y =a (x -h )2+k 的实际应用心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (分钟)之间满足函数y =-110(x -13)2+59.9(0≤x ≤30),y 值越大,表示接受能力越强.(1)x 在什么范围内,学生的接受能力逐步增强?x 在什么范围内,学生的接受能力逐步降低?(2)第10分钟时,学生的接受能力是多少?(3)第几分钟时,学生的接受能力最强?解:(1)0≤x≤13时,学生的接受能力逐步增强;13≤x≤30时,学生的接受能力逐步降低.(2)当x=10时,y=-110(10-13)2+59.9=59.故第10分钟时,学生的接受能力是59.(3)当x=13时,y值最大,,故第13分钟时,学生的接受能力最强.三、板书设计教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y=a(x-h)2+k的图象与性质,体会数学建模的数形结合思想方法.角的平分线的性质(一)教学目标(一)教学知识点角平分线的画法、角平分线的性质1.(二)能力训练要求1.掌握角平分线的性质1 2.会用尺规作一个已知角的平分线.(三)情感与价值观要求在利用尺规作图的过程中,培养学生动手操作能力与探索精神.教学重点利用尺规作已知角的平分线.角平分线的性质1.教学难点角的平分线的性质1教学方法引导发现、讲练结合法.教具准备多媒体课件教学过程一.提出问题,创设情境问题:图中哪条线段的长可以表示点P到直线l的距离?导入新课,明确学习目标如果老师手里只有直尺和圆规,你能帮忙设计一个作角的平分线的操作方案吗?二.合作交流探究新知探究1想一想:下图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB 和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?教师活动:播放多媒体课件,演示角平分仪器的操作过程,使学生直观了解得到射线AC的方法.学生活动:观看多媒体课件,讨论操作原理.[生1]要说明AC 是∠DAC 的平分线,其实就是证明∠CAD=∠CAB .[生2]∠CAD 和∠CAB 分别在△CAD 和△CAB 中,那么证明这两个三角形全等就可以了. [生3]我们看看条件够不够.AB ADBC DC AC AC =⎧⎪=⎨⎪=⎩所以△ABC ≌△ADC (SSS ). 所以∠CAD=∠CAB .即射线AC 就是∠DAB 的平分线.[生4]原来用三角形全等,就可以解决角相等.线段相等的一些问题.看来温故是可以知新的.试一试:老师再提出问题:通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.(分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性) 讨论结果展示:作已知角的平分线的方法: 已知:∠AOB .求作:∠AOB 的平分线. 作法:(1)以O 为圆心,适当长为半径作弧,分别交OA 、OB 于M 、N . (2)分别以M 、N 为圆心,大于12MN 的长为半径作弧.两弧在∠AOB 内部交于点C . (3)作射线OC ,射线OC 即为所求.(教师根据学生的叙述,作多媒体课件演示,使学生能更直观地理解画法,提高学习数学的兴趣).点拨:1.在上面作法的第二步中,去掉“大于12MN的长”这个条件行吗?2.第二步中所作的两弧交点一定在∠AOB的内部吗?(设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯)学生讨论结果总结:1.去掉“大于12MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.2.若分别以M、N为圆心,大于12MN的长为半径画两弧,两弧的交点可能在∠AOB•的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.探究2:做一做1[师]请同学们拿出准备好的折纸与剪刀,自己动手,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,你看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么?[生]我发现第一次对折后的折痕是这个角的平分线;再折一次,又会出现两条折痕,而且这两条折痕是等长的.这种方法可以做无数次,所以这种等长的折痕可以折出无数对.[师]你的叙述太精彩了.这说明角的平分线除了有平分角的性质,还有其他性质,今天我们就来研究这个问题.做一做2角平分线的性质即已知角的平分线,能推出什么样的结论.操作:1.折出如图所示的折痕PD、PE.2.你与同伴用三角板检测你们所折的折痕是否符合图示要求.画一画:按照折纸的顺序画出一个角的三条折痕,并度量所画PD、PE是否等长?拿出两名同学的画图,请大家评一评,以达明确概念的目的.[生]同学乙的画法是正确的.同学甲画的是过角平分线上一点画角平分线的垂线,而不是过角平分线上一点画两边的垂线段,所以同学甲的画法不符合要求.[生甲]噢,对,我知道了.[师]同学甲,你再做一遍加深一下印象.教师提出问题:你能叙述所画图形的性质吗?生回答后,教师进一步引导:观察操作得到的结论有时并不可靠,你能否用推理的方法验证你的结论呢?证一证:引导学生证明角平分线的性质 1,分清题设、结论,将文字变成符号并加以证明(一生板演)说一说: 引导学生结合图形从文字和符号的角度分别叙述问题1:你能用文字语言叙述所画图形的性质吗?[生]角平分线上的点到角的两边的距离相等.问题2:(出示)能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话.学生通过讨论作出下列概括:∵ OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE.于是我们得角的平分线的性质:在角的平分线上的点到角的两边的距离相等.三、用一用:1、如图,△ABC的角平分线BM、CN相交于点P.此例放到第二课时讲求证:点P到三边AB、BC、CA的距离相等.[师生共析]点P到AB、BC、CA的垂线段PD、PE、PF的长就是P点到三边的距离,•也就是说要证:PD=PE=PF.而BM、CN分别是∠B、∠C的平分线,•根据角平分线性质和等式的传递性可以解决这个问题.证明:过点P作PD⊥AB,PE⊥BC,PF⊥AC,垂足为D、E、F.因为BM是△ABC的角平分线,点P在BM上.所以PD=PE.同理PE=PF.所以PD=PE=PF.即点P到三边AB、BC、CA的距离相等.巩固所学及时点拨四.丰收乐园学生充分交流、各抒己见教后反思:本节知识的应用主要存在以下问题:1、对距离把握不到位,点到直线的垂线段长才叫距离2、不会直接使用角平分线的性质,而是使用全等将性质再证一3、采用角平分线性质解题强调三个条件。
8.4运用公式法――完全平方公式教学目标1.使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法;2.理解完全平方式的意义和特点,培养学生的判断能力.3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力.4.通过运用公式法分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想。
教学重点和难点重点:运用完全平方式分解因式.难点:灵活运用完全平方公式公解因式.教学过程设计一、复习1.问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法?答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解.我们学过的因式分解的方法有提取公因式法及运用平方差公式法.2.把下列各式分解因式:(1)ax4-ax2 (2)16m4-n4.解 (1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)(2) 16m4-n4=(4m2)2-(n2)2=(4m2+n2)(4m2-n2)=(4m2+n2)(2m+n)(2m-n).问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?答:有完全平方公式.请写出完全平方公式.完全平方公式是:(a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2.这节课我们就来讨论如何运用完全平方公式把多项式因式分解.二、新课和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2.这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式.运用这两个式子,可以把形式是完全平方式的多项式分解因式.问:具备什么特征的多项是完全平方式?答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式.问:下列多项式是否为完全平方式?为什么?(1)x2+6x+9; (2)x2+xy+y2;(3)25x4-10x2+1; (4)16a2+1.答:(1)式是完全平方式.因为x2与9分别是x的平方与3的平方,6x=2·x·3,所以x2+6x+9=(x+3)2.(2)不是完全平方式.因为第三部分必须是2xy.(3)是完全平方式.25x4=(5x)2,1=1 ,10x2=2·5x2·1,所以25x4-10x2+1=(5x-1)2.(4)不是完全平方式.因为缺第三部分.请同学们用箭头表示完全平方公式中的a,b与多项式9x2+6xy+y2中的对应项,其中a=?b=?2ab=?答:完全平方公式为:其中a=3x,b=y,2ab=2·(3x)·y.例1 把25x4+10x2+1分解因式.分析:这个多项式是由三部分组成,第一项“25x4”是(5x2)的平方,第三项“1”是1的平方,第二项“10x2”是5x2与1的积的2倍.所以多项式25x4+10x2+1是完全平方式,可以运用完全平方公式分解因式.解 25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2.例2 把1-12m+116m2分解因式.问:请同学分析这个多项式的特点,是否可以用完全平方公式分解因式?有几种解法?答:这个多项式由三部分组成,第一项“1”是1的平方,第三项“116m2”是m4的平方,第二项“-12m”是1与m/4的积的2倍的相反数,因此这个多项式是完全平方式,可以用完全平方公式分解因式.解法1 1-12m+116m2=1-2·1·m4+(m4)2=(1-m4)2.解法2 先提出,则1-12m+116m2=116(16-8m+m2)=116(42-2·4·m+m2)=116(4-m)2.三、课堂练习(投影)1.填空:(1)x2-10x+()2=()2;(2)9x2+()+4y2=()2;(3)1-()+m2/9=()2.2.下列各多项式是不是完全平方式?如果是,可以分解成什么式子?如果不是,请把多项式改变为完全平方式.(1)x2-2x+4; (2)9x2+4x+1; (3)a2-4ab+4b2;(4)9m2+12m+4; (5)1-a+a2/4.3.把下列各式分解因式:(1)a2-24a+144; (2)4a2b2+4ab+1;(3)19x2+2xy+9y2; (4)14a2-ab+b2.答案:1.(1)25,(x-5) 2; (2)12xy,(3x+2y) 2; (3)2m/3,(1-m3)2.2.(1)不是完全平方式,如果把第二项的“-2x”改为“-4x”,原式就变为x2-4x+4,它是完全平方式;或把第三项的“4”改为1,原式就变为x2-2x+1,它是完全平方式.(2)不是完全平方式,如果把第二项“4x”改为“6x”,原式变为9x2+6x+1,它是完全平方式.(3)是完全平方式,a2-4ab+4b2=(a-2b)2.(4)是完全平方式,9m2+12m+4=(3m+2) 2.(5)是完全平方式,1-a+a2/4=(1-a2)2.3.(1)(a-12) 2; (2)(2ab+1) 2;(3)(13x+3y) 2; (4)(12a-b)2.四、小结运用完全平方公式把一个多项式分解因式的主要思路与方法是:1.首先要观察、分析和判断所给出的多项式是否为一个完全平方式,如果这个多项式是一个完全平方式,再运用完全平方公式把它进行因式分解.有时需要先把多项式经过适当变形,得到一个完全平方式,然后再把它因式分解.2.在选用完全平方公式时,关键是看多项式中的第二项的符号,如果是正号,则用公式a2+2ab+b2=(a+b) 2;如果是负号,则用公式a2-2ab+b2=(a-b) 2.五、作业把下列各式分解因式:1.(1)a2+8a+16; (2)1-4t+4t2;(3)m2-14m+49; (4)y2+y+1/4.2.(1)25m2-80m+64; (2)4a2+36a+81;(3)4p2-20pq+25q2; (4)16-8xy+x2y2;(5)a2b2-4ab+4; (6)25a4-40a2b2+16b4.3.(1)m2n-2mn+1; (2)7am+1-14am+7am-1;4.(1) x -4x; (2)a5+a4+ a3.答案:1.(1)(a+4)2; (2)(1-2t)2;(3)(m-7) 2; (4)(y+12)2.2.(1)(5m-8) 2; (2)(2a+9) 2;(3)(2p-5q) 2; (4)(4-xy) 2;(5)(ab-2) 2; (6)(5a2-4b2) 2.3.(1)(mn-1) 2; (2)7am-1(a-1) 2.4.(1) x(x+4)(x-4); (2)14a3 (2a+1) 2.课堂教学设计说明1.利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质.2.本节课要求学生掌握完全平方公式的特点和灵活运用公式把多项式进行因式分解的方法.在教学设计中安排了形式多样的课堂练习,让学生从不同侧面理解完全平方公式的特点.例1和例2的讲解可以在老师的引导下,师生共同分析和解答,使学生当堂能够掌握运用平方公式进行完全因式分解的方法.。
因式分解(完全平方公式)教案14.3.2因式分解(公式法)——完全平方公式》教案教学目标】一、知识技能:掌握完全平方式的特征,运用完全平方公式进行简单的因式分解。
二、过程方法:通过对完全平方公式的逆向变形进行分解,发展学生的观察、类比、归纳等能力,提高处理数学问题的技能。
三、情感态度:培养学生严谨的思维,激发学生求知的欲望与对数学的研究兴趣。
教学重难点】重点:运用完全平方式分解因式。
难点:识别一个多项式是否适合完全平方公式。
教学过程】一、复回顾:1.因式分解就是把多项式分解为几个整式的乘积的形式,如:2x²-x= x (2x-1)。
例子中的变形利用了我们上一节课所学的因式分解中的法则。
2.把下列的式子进行因式分解:1)4y + 8=4(y+2)(2)3a-ab=a(3-b)3)5b²-10b=5b(b-2)(4)2ab²-4a²b=2ab(ab-2a)二、探究新知一)完全平方式的概念:形如a²+2ab+b²、a²-2ab+b²这样的式子叫做完全平方式,例如:1)a²+4a+4=a²+2·a·2 + 2²2)a²+6a+9=a²+2·3a·3a+3²3)a²-10a+25=a²-2·5a·5a+5²4)a²+64-16a=a²-2·8a·8+a²跟踪练:判断下列各式是完全平方式吗?1)a²+b²不是完全平方式2)a²-4a +4 是完全平方式3)a²-ab +b²是完全平方式4)x²-6x-9 不是完全平方式5)x²+x+1 是完全平方式6)a²+16-8a 不是完全平方式完全平方式的特点:1、必须是三项式;2、有两个项的平方;3、有这两项的积的2倍。