分数指数幂及其运算
- 格式:ppt
- 大小:1.09 MB
- 文档页数:18
数学指数幂运算公式大全
在数学中,指数幂运算是一种常见且重要的数学运算方式。
以下是一些常见的指数幂运算公式:
1.正整数指数幂:
对于任意实数a和正整数n,有a^n = a × a × ... × a (n个a相乘)
2.负整数指数幂:
对于任意非零实数a和负整数n,有a^(-n) = 1 / (a^n)
3.零指数幂:
对于任意非零实数a,有a^0 = 1
4.幂运算的乘法:
对于任意实数a和正整数m、n,有a^m × a^n = a^(m+n)
5.幂运算的除法:
对于任意非零实数a和正整数m、n,有a^m ÷ a^n = a^(m-n)
6.幂运算的乘方:
对于任意实数a和正整数m、n,有(a^m)^n = a^(m×n)
7.幂运算的倒数:
对于任意非零实数a和正整数n,有(1/a)^n = 1 / (a^n)
8.幂运算的分数指数:
对于任意非负实数a、正整数m、n,有(a^m)^(1/n) = a^(m/n)
9.幂运算的乘方根:
对于任意非负实数a、正整数m、n,有(a^m)^(1/n) = a^(m/n)
除了以上基本的指数幂运算公式,还存在更多的特殊公式和拓展,如指数规律、对数运算等。
这些公式和规律在数学的各个领域都有广
泛的应用,包括代数、几何、微积分等。
指数幂的运算法则
1、指数加始篇减底不变,同底数幂相乘除。
2、指数相乘底不变,幂的乘方要清畜川楚。
3、积商乘方原指数,换底乘方再乘除。
4、非零数的零次幂,常值为1不糊涂。
5、负整数的指数幂,指数转正求倒数。
6、看到分数指数幂,想到底数必非负。
7、乘方指数是分子,根指数要当分母。
在数学上我们把n个相同的因数a相乘的积记做a^n。
这种求几个相同因数的积的运算叫做乘方,乘方的结果叫做幂。
在a^n中,a叫做底数,n叫做指数。
a^n读作“a的n次方”或“a的n次幂“。
一个数可以看做这个数本身的一次方。
例如,5就是5^1,指数1通常省略不写。
二次方也叫做平方,如5^2通常读做”5的平方“;三次方也叫做立方,如5^3可读做”5的立方“。
正整数指数幂的运算性质如下:
1、am·an=am+n(m,n是正整数)。
2、(am)n=amn(m,n是正整数)。
3、(ab)n=anbn(n是正整数)。
4、am÷an=am-n(a≠0,m,n是正整数,m>n)。
5、a0=1(a≠0)。