精密仪器设计-误差理论
- 格式:ppt
- 大小:2.28 MB
- 文档页数:106
测量仪器的精度误差一、测量误差的定义误差常见的表示方法有:绝对误差、相对误差、引用误差。
1)绝对误差:测量值x*与其被测真值x之差称为近似值x*的绝对误差,简称ε。
计算公式:绝对误差= 测量值- 真实值;2)相对误差:测量所造成的绝对误差与被测量(约定)真值之比乘以100%所得的数值,以百分数表示。
计算公式:相对误差=(测量值- 真实值)/真实值×100%(即绝对误差占真实值的百分比);3)测量的绝对误差与仪表的满量程值之比,称为仪表的引用误差,它常以百分数表示。
引用误差=(绝对误差的最大值/仪表量程)×100%引用误差越小,仪表的准确度越高,而引用误差与仪表的量程范围有关,所以在使用同一准确度的仪表时,往往采取压缩量程范围,以减小测量误差举个例子,使用万用表测得电压1.005V,假定电压真实值为1V,万用表量程10V,精度(引用误差)0.1%F.S,此时万用表测试误差是否在允许范围内?分析过程如下:绝对误差:E = 1.005V - 1V = +0.005V;相对误差:δ=0.005V/1V×100%=0.5%;万用表引用误差:10V×0.1%F.S=0.1V;因为绝对误差0.005V<0.1V,所以10V量程引用误差0.1%F.S的万用表,测量1V相对误差为0.5%,仍在误差允许范围内。
二、测量误差的产生绝对误差客观存在但人们无法确定得到,且绝对误差不可避免,相对误差可以尽量减少。
误差组成成分可分为随机误差与系统误差,即:误差=测量结果-真值=随机误差+系统误差因此任意一个误差均可分解为系统误差和随机误差的代数和系统误差:1)系统误差(Systematic error)定义:在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量的真值之差。
产生原因:由于测量工具(或测量仪器)本身固有误差、测量原理或测量方法本身理论的缺陷、实验操作及实验人员本身心理生理条件的制约而带来的测量误差。
第二章仪器精度理论第一节概念辨析1、分辨力:显示装置能有效辨别的最小示值;分辨率:最小分辨力与量程的比值大小2、示值误差:测量仪器的示值与对应输入量真值之差3、重复性:相同测量条件下,短时间内重复测量同一个被测量,仪器示值的分散程度4、复现性:在变化的测量条件下,同一被测量的测量结果的稳定程度5、鉴别力:仪器感受微小量的敏感程度6、灵敏度:仪器输出的变化与对应输入变化之比7、稳定性和漂移:稳定性是指仪器保持其计量特性随时间恒定的能力;漂移是指仪器计量特性的慢变化8、测量误差:(1)随机误差:数值的大小和方向没有一定的规律,但总体服从统计规律;(2)系统误差:数值大小和方向恒定不变或随一定的规律变化;(3)粗大误差:超出规定条件所产生的误差,应剔除误差的表示方法:(1)绝对误差:测量值与真值之差;(2)相对误差:绝对误差与被测量真值的比值;1.引用误差:绝对误差的最大值与仪器示值范围的比值;②额定相对误差:示值绝对误差与示值的比值9、精度:精度是误差的反义词,精度的高低是用误差来衡量的。
误差越大,精度越低,反之越高(1)正确度:系统误差大小的反映,表征测量结果稳定接近真值的程度(2)精密度:随机误差大小的反映,表征测量结果的一致性或误差的分散系(3)准确度:系统误差和随机误差两者的综合反映,即正确度和精密度的结合10、示值范围(量程)和测量范围11、通常希望仪器的输入输出为一种特定的线性关系,如果仪器实际特性与规定特性不一致,就会产生非线性误差第二节仪器误差的来源与性质一、原理误差:采用近似的理论、数学模型、机构等近似处理所造成,只与仪器的设计有关,与制造使用无关例1、激光光束在传播中是高斯光束,不是球面波。
在用应用光学理论设计时,按球面波计算,带来原理误差例2、A/D 转换器的产生了量化误差(1)原理误差的分类:理论误差、方案误差、技术原理误差、机构原理误差、零件原理误差、电路系统原理误差原理误差的特点:它是产生在仪器设计过程中,是固有误差,从数学特征看,它是系统误差(2)减小原理误差的原则为:把原理误差控制在允许的范围内,简化结构、简化工艺、简化计算、降低成本(3)减小或消除原理误差影响:①补偿法:建立原理误差的数学模型,用微机在测量中加以补偿②调整法:正弦误差、正切误差,如有机构的情况下,可以通过调整机构的某些环节来减小原理误差。
名词解释:1. 测量范围:所谓测量范围只在允许误差范围内一起的被测量值的范围。
2. 滞差:在输入量由小逐渐增大再由大逐渐减小的过程中,对用一大小的输入量出现不同大小的输出量,这种由于测量行程方向的不同,对应于同一出入量产生输出的差异统称为滞差。
3. 零值误差:指当测量为零值时,测量仪器示值相对于零的差值,也可说是测量仪器的零位误差。
4. 示值误差:指测量仪器的示值与被测量的真值之差。
5. 齿轮空会:齿轮机构在工作状态下,输入轴方向回转时,输出轴产生的滞后量。
6. 准确度:测量仪器给出接近于真值的响应能力。
7. 等效节点:将一对共轭点A 和A ’用虚线连起来,次虚线和光轴的交点为J 0,则透镜绕点J 0微量转动,像点不懂,称为J 0透镜的等效节点,称过点J 0作光轴的垂面为等效接平面。
8. 螺旋线误差:螺杆旋转一个螺距周期,在同一半径的圆柱截面内,加工形成的螺旋线轨迹与理论螺旋线轨迹之差。
9. 灵敏度:即仪器对被测量变化的反应能力。
S=xL 10. 阿贝原则:所谓阿贝原则,即被测尺寸与标准尺寸在测量方向的同一直线上,或者说,被测量轴线只有在基准轴线的延长线上,才能得到精确的测量结果。
11. 螺距积累误差:在给定长度范围内,任意两牙间的距离对公称尺寸偏差的最大代数和。
12. 视差:指示器与标尺表面不在同一平面时,观察者偏离正确观测方向进行读数或瞄准时所引起的误差。
13. 漂移:指仪器特性随时间的缓慢变化,通常表现为零位或灵敏度随时间的缓慢变化,风别称为零点漂移和灵敏度漂移。
14. 等效节平面:将一对共轭点A 和A ’用虚线连起来,次虚线和光轴的交点为J 0,则透镜绕点J 0微量转动,像点不懂,称为J 0透镜的等效节点,称过点J 0作光轴的垂面为等效接平面。
15. 量化误差:由于脉冲数字系统中,用脉冲或数码表示连续变化的物理量,因此介于两个脉冲或两个数码之间的值只能用与它相接近的脉冲或数码表示,这样便产生了误差。
误差理论与数据处理开课学院:主讲教师:联系电话:E-mail:关于任课教师秦岚, 1983年9月-1994年6月在重庆大学获精密仪器及机械专业学士、硕士和博士学位,长期从事精密仪器及机械学科的科研和教学工作。
2001年12月晋升教授,2004年7月任博导,2011年晋三级教授。
现为重庆市“322重点人才”工程人选、重庆市学术技术带头人。
先后担任重庆大学光电工程学院副院长(1996-1999)、党委书记(1999-2010)、重庆市发改委副主任(2001-2003,挂职)、重庆大学数学与统计学院党委书记(2010—)、大连理工大学校长助理(201204-201207,挂职)。
先后兼任全国高等学校机电类专业教学指导委员会委员,中国仪器仪表学会机械量测试仪器分会第四届理事会副理事长,全国测量误差与不确定度研究会副理事长,中国计量测试学会第五届理事会理事,全国互换性与测量技术研究会常务理事、副秘书长等。
1994年至今担任本课程主讲教师。
本课程的意义20042006我和费先生的特殊友谊20132009费业泰: 误差理论是仪器科学特有的基础理论1、误差理论贯穿仪器及测试系统的始末。
在仪器设计、制造、使用及测试结果处理与评定等五大环节,误差理论均起着指导与保证作用。
2、误差理论在仪器科学人才培养中是必不可少重要内容。
过去的教学计划中测试技术课程为主要课程,而有关误差理论内容则占全课程约1/3 学时。
根据国外高校相关专业很早巳开设有关误差理论课程,我国高校1978年首次设置该课程. 30年来讲授误差课程高校专业已很普遍,但仪器学科专业该课程体系、内容最为全面系统。
3、误差理论在科学技术与工程实践中具有重要作用。
任何科学与工程对可靠性、准确度具有要求,这是普遍性问题.不仅其实验和实践过程需要测试,而本身在系统设计、建造和运行控制也需要一定的误差理论作指导。
结论:误差理论是仪器科学的重要基础理论,也是科学与工程技术具有遍普意义的必不可少基础理论之一,而仪器科学领域学术研究所建立误差理论的严谨学术体系与全面系统内容,则是其他科学与工程技术应用误差理论的依据,充分表明误差理论是仪器科学特有的基础理论。
仪器误差0.007 -回复仪器误差是指仪器在测量过程中由于种种原因造成的测量结果与真实值之间的差异。
它能够影响到各个领域的测量工作,从科学研究到工程设计都需要对仪器误差进行合理的评估和处理。
本文将以仪器误差0.007为主题,分步骤详细介绍仪器误差的定义、分类、原因、评估和处理方法。
第一步:仪器误差的定义和分类首先,我们需要明确仪器误差的定义。
仪器误差是指在测量过程中由于仪器自身的特点或者外界环境等因素导致的测量结果与真实值之间的差异。
仪器误差可以分为两大类:系统误差和随机误差。
系统误差是由于仪器本身存在的缺陷或者不完善导致的测量结果偏离真实值。
系统误差通常是一种相对持续或重复出现的误差,可以通过校准或者调整仪器来减小。
常见的系统误差包括零偏误差、线性误差和标度误差等。
随机误差是指由于外界环境等不可控因素导致的测量结果的随机波动。
随机误差通常是一种不可预测的、随机分布的误差,无法通过校准或者调整仪器来完全消除。
常见的随机误差包括环境噪声、人为误差和读数误差等。
第二步:仪器误差的原因仪器误差的产生原因多种多样。
首先,仪器本身的设计和制造过程中存在的缺陷或者不完善会导致系统误差的产生。
其次,外界环境的变化如温度、湿度等因素会引起仪器的漂移,进而产生随机误差。
此外,操作人员的技术能力和操作规范也会对测量结果产生影响,比如读数不准确、操作不规范等。
第三步:评估仪器误差的方法为了评估仪器的误差情况,人们通常需要采取一系列的措施。
首先,常用的方法是进行校准和调整。
校准是指通过与已知真值进行比对,确定仪器的误差大小并进行修正的过程。
调整是指对仪器参数进行变更以减小误差的过程。
其次,测量重复性和稳定性也是评估仪器误差的重要方法。
通过多次重复测量同一样本,可以分析数据的变异情况,进而评估仪器的误差范围。
此外,还可以进行可靠性和精确度等指标的评估,来确定仪器误差的可接受范围。
第四步:处理仪器误差的方法当仪器误差得到评估后,我们需要根据实际需求来进行仪器误差的处理。