水下不分散混凝土配合比设计
- 格式:docx
- 大小:21.04 KB
- 文档页数:9
一、混凝土技术指标1、强度等级:C35;2、施工坍落度要求:180mm~220mm;3、使用年限级别:100年;4、抗渗等级:/二、设计依据1、GB/T 50476-2008《混凝土结构耐久性设计规范》;2、JGJ55-2011《普通混凝土配合比设计规程》;3、GB50208-2011《地下防水工程质量验收规范》。
三、混凝土配合比设计参数要求1、最大水胶比:C35≤0.50;2、最小胶凝材料用量:300kg/m3;3、设计坍落度: 180mm~220mm。
四、试验所选用原材料1、水泥:P.O42.5,符合GB175-2007《通用硅酸盐水泥》规定的技术指标要求,经长期统计28d抗压强度为48MPa;2、粉煤灰:F类II级,符合GB/T 1596-2017《用于水泥和混凝土中的粉煤灰》的技术指标要求,粉煤灰掺量20%;3、砂:Ⅱ区中砂,细度模数2.6,符合JGJ52-2006《普通混凝土用砂、石质量及验收方法标准》技术指标要求;4、碎石:采用5~16.0mm和16~31.5mm二级配碎石按5~16.0mm:16~31.5mm=40:60 的比例复配成5~31.5mm碎石,其质量满足JGJ52-2006《普通混凝土用砂、石质量及验收方法标准》技术指标要求;5、水:自来水;6、减水剂:PCA-I聚羧酸高性能减水剂,推荐掺量2.0%,减水率25%,其他技术指标满足GB8076-2008《混凝土外加剂》的技术要求。
水下C35混凝土配合比计算一、混凝土配合比设计计算1.1计算配制强度(1)选用JGJ55-2011中4.0.1计算公式fCU,O≥fCU,K+1.645σ考虑水下混凝土的复杂水文环境,配制混凝土时应提高一个强度等级,即C35水下混凝土按照C40混凝土强度等级进行设计,其标准差依据JGJ55-2011中表4.0.2取σ=5.0MPɑ,即:fCU,O≥40+1.645×5=48.2MPɑ(2)粗骨料采用碎石时,其回归系数按照JGJ55-2011表5.1.2中的要求选用:ɑa=0.53,ɑb=0.20(3)使用的P.O42.5水泥经长期统计28d抗压强度为fce=48.0MPɑ。
水下不分散混凝土的配制和应用 吴 能 陈 勇(阜新市公路处,阜新123000) (大连开发区市政公司,大连116000) 摘 要 本文介绍水下不分散混凝土的技术性能,对原材料的要求,搅拌工艺及应用。
关键词 水下不分散混凝土1 引言水下不分散混凝土又称作增粘混凝土,就是掺有纤维系列或丙烯系列等高分子物质为主要成份的水溶液絮凝剂的混凝土。
这种混凝土具有较强的粘稠性。
在水下施工时拌合物组分不分散,同时掺混凝土泵送剂使之在不振捣的情况下流动性能极佳,能自动充满模板,而且硬化后能满足设计所需要求的强度和耐久性指标,因此这种混凝土被广泛应用于地下工程、桥涵基础、水下钻孔灌注桩等。
2 水下不分散混凝土的技术性能①混凝土拌合物具有良好的可泵性,并且在不振捣的情况下能自动流平且充满模板。
②在水下施工过程中拌合物组成材料不分散,能保持粘稠性。
③水下不分散混凝土是靠自重排开环境水,在水下自动流平和密实的。
④水下不分散混凝土硬化后能满足设计要求的强度和耐久性指标。
3 增粘混凝土对原材料的要求与泵送混凝土相似,所不同的是引进了增粘剂。
其组成如下:①水泥:水泥标号≥425#,强度等级≥C20,水泥最小掺量每立米≥370kg,比陆上混凝土每个强度等级多掺50kg m3。
②细骨料:宜采用中砂,砂率应控制在40-45%。
③粗骨料:宜采用卵石,连续及配,针片状及含泥量按一般混凝土要求。
④水:一般可用饮用水。
⑤外加剂:增粘混凝土是除了掺增粘剂和泵送剂外,还掺膨胀剂增加密度,掺量为水泥量的8-12%,掺粉煤灰增加和易性溶重,掺量为10-15%。
4 增粘混凝土投料顺序及搅拌工艺搅拌工艺是增粘混凝土在施工时能否抵抗水的作用的关键。
投料顺序为:首先将砂石投入搅拌机,随后投入增粘剂进行搅拌,待骨料表面均匀裹敷后,随即投入水泥搅拌,使骨料表面形成水泥增粘液膜,然后加水搅拌,坍落度控制在7-9c m左右。
5 增粘混凝土配合比及试验结果①以阜新长营子大桥钻孔灌注桩为例,桥址位于细河之上,为平原微丘区季节性河流。
C25水下混凝土配合比设计说明一、设计所依据的试验规程及规范:《普通混凝土配合比设计规程》JGJ55-2011《公路工程水泥及水泥混凝土试验规程》JTG E30-2005《公路工程集料试验规程》JTG E42-2005《公路工程岩石试验规程》JTG E41-2005《通用硅酸盐水泥》GB175-2007《混凝土外加剂》GB8076-2008《公路桥涵施工技术规范》JTG/T F50-2011二、设计要求:砼拌合物和易性良好,能满足施工要求,坍落度180-220mm;能满足设计强度要求。
主要应用桩基等。
三、原材料情况:1.碎石:采用全州县石塘镇贤宅采石场生产的5-10mm:10-20mm:16-31.5mm组成5-31.5mm连续级配,掺配比例为(25%:50%:25%)。
2.河砂:采用白莲砂场生产的Ⅱ级中砂。
3.水泥:兴安海螺有限水泥责任公司生产的海螺牌P.O42.5。
4.外加剂:采用山西黄河化工有限公司生产的HL-HPC聚羧酸高性能减水剂,掺量为胶凝材料用量的0.8%;其减水率为20.0%。
5.粉煤灰:采用桂林国电永福电厂‖级,掺量为胶凝材料的12.0%。
6.水:饮用水。
四.初步配合比确定1.确定砼配制强度:已知设计强度等级为25Mpa,无历史统计资料,查《公路桥涵施工技术规范》JTG/T F50-2011附录表B2.0.2查得:标准差σ=5.0 Mpaƒcu,0= 25+1.645×5.0 = 33.2MPa2.计算水泥实际强度(ƒce)已知采用P.O42.5,水泥强度富裕系数γc=1.03ƒce =42.5×1.03=43.8(Mpa)2.计算水灰比(W/C):查《普通混凝土配合比设计规程》JGJ55-2000表5.0.4回归系数a α=0.46, b α=0.0758.0)5.4203.107.0(46.02.33)5.4203.1(46.0)()(/,0,,=⨯⨯⨯+⨯⨯=⨯⨯⨯+⨯⨯=g ce c b a cu g ce c a f f f C W γααγα混凝土所处潮湿环境,无冻害地区,查《普通混凝土配合比设计规程》JGJ55-2011表4.0.4允许最大水灰比为0.60符合耐久性要求,采用经验水灰比0.47。
水下浇注不分散砼施工方案在水下进行不分散砼施工是一项挑战性工程,需要经过精心的设计和准备方案。
本文将介绍水下浇注不分散砼的施工方案,包括准备工作、施工流程、施工注意事项和质量控制等内容。
准备工作在进行水下浇注不分散砼施工前,首先需要进行充分的准备工作。
主要包括以下几个方面:1.工作区域清理:清理水下施工区域,确保没有杂物和障碍物。
2.水下模板安装:根据设计要求安装水下模板,确保砼浇注时能够得到准确的形状和尺寸。
3.混凝土配制:按照设计配方要求,准备好需要使用的混凝土原材料。
4.施工人员培训:对施工人员进行培训,使其熟悉水下施工流程和安全注意事项。
施工流程水下浇注不分散砼的施工流程可以分为以下几个步骤:1.准备工作:检查施工区域和模板,确保一切准备就绪。
2.混凝土输送:通过泵送设备将混凝土输送至水下施工区域。
3.砼浇注:将混凝土从管道中注入到水下模板中,逐步填满整个浇注区域。
4.振捣和养护:在砼浇注完成后,使用振捣器对混凝土进行振实处理,然后进行养护。
施工注意事项在进行水下浇注不分散砼施工时,需要注意以下几点:1.施工环境:确保施工现场环境安全,防止砼浇注过程中发生意外。
2.混凝土质量:保证混凝土的质量符合设计要求,避免出现强度不足等问题。
3.模板密封:确保水下模板的密封性良好,避免砼分散和漏浆现象。
4.养护措施:施工完成后,对砼进行必要的养护,以确保其正常硬化和强度发展。
质量控制为确保水下浇注不分散砼的质量,需要进行严格的质量控制措施,主要包括:1.混凝土试块取样:定期取样进行试块试验,检验混凝土强度是否符合设计要求。
2.砼浇注监测:对砼浇注过程进行监测,确保砼的均匀性和质量。
3.养护监控:对养护过程进行监测,确保砼养护的有效性和及时性。
4.质量检验:定期对施工过程和成品进行质量检验,发现问题及时整改。
通过以上施工方案、注意事项和质量控制措施,可以有效保证水下浇注不分散砼的施工质量和施工效率,确保工程顺利进行。
渠道水下不分散混凝土配合比设计与应用摘要:渠道常水位下混凝土衬砌面板损坏、地板塌陷坑洞等缺陷导致涌水现象时有发生,使用常规的应急抢险措施给优质的水源造成了一定程度的污染,UWB-II型絮凝剂从根本上解决了水下混凝土的抗分散性能、施工性能和力学性能三者之间的矛盾,真正实现了水下混凝土的自流平和自密实。
关键词:水下不分散混凝土配合比1.配合比设计原材料及试验方法通过分别掺入UWB-II水下不分散混凝土絮凝剂、和RHEOPLUS420巴斯夫粘度改性剂,比选出更加符合设计和施工要求的水下不分散混凝土配合比。
2.1原材料水泥:普通硅酸盐P·O42.5水泥。
粉煤灰:F类II级粉煤灰。
细骨料:人工砂。
粗骨料:5~25mm破碎卵石。
外加剂A:UWB-II高性能型絮凝剂。
外加剂B:RHEOPLUS420巴斯夫粘度改性剂。
混凝土拌和用水:饮用水。
3、试验方案依据《水工混凝土试验规程》SL352-2006及《水下不分散混凝土试验规程》DL/T5117-2000进行水下不分散混凝土配合比选择试验。
混凝土配合比计算采用绝对体积法,骨料以饱和面干状态为基准。
掺入UWB-II高性能型絮凝剂为试验方案H-1、掺入RHEOPLUS420巴斯夫粘度改性剂为试验方案H-2。
3.1配合比参数确定依据《水工混凝土试验规程》SL352-2006,混凝土配制强度按下式计算:=设/tt—水陆强度比系数。
由于水下不分散混凝土施工采用水下封闭钢模板内无水中自由落差的施工方法,t可取值为0.85~0.95,按施工经验选t = 0.85。
依据《水工混凝土试验规程》SL352-2006附录A中标准差选用值查的C25混凝土强度等级的标准差选用4.0MPa。
根据上述公式计算水下不分散混凝土空气中成型混凝土配制强度。
根据《水工混凝土试验规程》SL352-2006附录A,考虑到工程所在地为严寒地区,且混凝土施工部位为最低水位以下,常年受水流冲刷,选择0.45作为基准水胶比,粉煤灰掺量10%,根据混凝土拌和物坍落度230±20的要求,以及砂石骨料的特性,初步选择用水量,砂率,减水剂的掺量,通过试拌、调整,使混凝土拌和物的和易性、含气量符合要求。
C30水下混凝土配合比设计
水下混凝土配合比设计是指根据具体工程要求和材料性能要求,确定
混凝土中水泥、砂、骨料、水和掺合料的合理配合比例,以达到设计强度
和耐久性的要求。
水下混凝土配合比设计的目标是通过优化配合比,保证
混凝土的施工性能和力学性能,同时确保混凝土的抗水侵蚀和抗冲刷性能,以适应水下工程作业的特殊环境。
水下混凝土配合比设计需要考虑以下几个方面:
1.施工性能要求:混凝土在水下施工时需要具备一定的流动性和可塑性,以便于泥浆泵输送和均匀浇筑。
此外,由于施工条件复杂,施工时的
自制坍落度需要有较好的保持性能。
2.强度要求:根据水下工程的具体要求,确定混凝土的设计强度。
一
般情况下,水泥的掺量应该适当较高,同时掺入一定量的矿物掺合料,以
提高混凝土的力学性能。
3.耐久性要求:考虑水下环境对混凝土的侵蚀和冲刷,需要采取一些
措施来提高混凝土的耐久性,如适当增加配筋率、使用高性能掺合料和加
入耐磨材料等。
4.海洋环境的特殊性:海水中的盐分、潮湿气候等因素对混凝土结构
的长期耐久性产生较大影响,需要针对这些特殊因素进行合理的设计。
在进行水下混凝土配合比设计时,可以采用试验室试验和实际工程试
验相结合的方法,通过控制水胶比、选择合适的砂料级配、优化骨料和添
加剂的配比等方式来进行调整。
总之,水下混凝土配合比设计需要根据具体工程要求和环境特点进行综合考虑,以达到既满足工程建设要求,又能提高施工效率和保证长期耐久性的目标。
C30水下混凝土配合比设计计划一、配合比设计依据1、《普通混凝土配合比设计规程》(JGJ55—2000)2、《公路桥涵施工技术规范》(JTG T F50-2011)二、设计要求1、设计砼强度等级:30Mpa;2、设计砼坍落度要求:180-220mm三、拟使用工程项目和部位桥梁桩基四、原材料技术要求1、碎石产地:漳平南峰石料厂,粒径:5-31.5mm连续级配;2、砂产地:漳州砂;中砂II区;3、水泥厂家:红狮水泥厂,品种标号:红狮水泥P .042.5级;4、外加剂:TK-3高效减水剂(福州宏顺)5、水:符合饮用水标准。
五、配合比设计过程:(一) 初步确定混凝土各组成材料用量:1、计算配制强度fcu,ofcu,o≥fcu,k+1.645×δ=30+1.645×5 =38.2(Mpa)式中:fcu,k—砼设计强度δ—强度标准差(δ=5)2、计算水灰比W/Cfce =r c×fce,g =1.0×42.5 =42.5(Mpa)w/c =(Aa×fce)/(fcu,o+Aa×Ab×fce)=(0.46×42.5)/(38.2+0.46×0.07×42.5)=0.494式中:fce,g—水泥强度等级值fce—水泥实际强度值r c—水泥强度的富余系数,取1.0水灰比取W/C=0.493、确定用水量m wa通过查表4.0.1.2未掺加减水剂时,坍落度取190mm时用水量为:205+25=230(kg/m3)。
TK-3减水率β=18%,计算掺入减水剂后的砼的用水量:m wa=m wo(1-β)=230×(1-0.18)=188 (kg/m3)4、确定水泥用量m com co= m wa/ (w/c)=188/0.49=384 (kg/m3)5、确定砂率βs根据水下砼的要求,取βs=41%6、计算粗、细集料用量(采用质量法:假设砼的湿表观密度为2350kg/m3)m so+ m go+m co+ m wa=2350 (kg/m3);m so/( m so+ m go)=41%计算得细集料重:m so=729 (kg/m3)粗集料重:m go=1049 (kg/m3)7、确定外加剂用量(高效减水剂TK-3型)减水剂用量:2.3%×m co =2.3%×384 =8.83(kg/m3)7-1,粉煤灰掺量 13% 得384×13% =50(kg/m3)8、确定初步试验配合比:(水泥+粉煤灰):水:砂:碎石:外加剂: =334+50:188:729:1049:8.83(kg/m3)=1:0.49:1.90:2.73:0.23试配配合比:试配比例 0.015水泥 : 粉煤灰 : 水 : 砂 : 碎石 0-5 1-2 1-3: 外加剂334 50 188 729 1049( 314 524 211)8.835.01 0.75 1.77 10.935 4.71 7.86 3.165 0.132459、砼试配记录:坍落度T= 容重: kg/m3粘聚性:保水性:10,试配调整计划:。
水下不分散混凝土的配合比设计配制要求1.原材料水下不分散混凝土所采用的原材料除絮凝剂外,一般的施工可以使用与普通混凝土所用的水泥、水、粗骨料、细骨料等一样的原材料。
2.配合比水下不分散混凝土的配合比设计,一般指决定水泥、水、粗骨料、细骨料、絮凝剂及其他外加剂的组成比例。
其配合比除满足设计所提出的强度要求外,由于水下不分散混凝土的施工质量在很大程度上取决于其粘稠性和流动性,所以在配合比设计时更为重要的是满足水下施工的抗分散性和流动性的要求。
(1)施工流动性确实定水下不分散混凝土在水下浇筑施工不可能开展捣固作业,靠其本身良好的流动性到达自流平、自密实。
为此,水下不分散混凝土的流动性在很大程度上决定了水下混凝土浇筑质量。
(2)混凝土强度的配制对水下不分散混凝土的配置强度与陆上混凝土的配置强度的规律相近。
一般水下不分散混凝土的强度设计要求为20~40MPa。
其强度设计基本上遵循水灰比定则。
(3)水灰比水灰比主要根据水下不分散混凝土的强度来确定的,同时考虑混凝土耐久性的要求。
其水灰比大小应统一综合考虑,并应采用其较小者作为设计水灰比。
这与普通混凝土水灰比设计相近。
(4)单位用水量由于絮凝剂的掺入,水下不分散混凝土粘性大大提高,要使水下不分散混凝土到达自流平、自密实,得到流动性好的水下不分散混凝土,其单位用水量比普通混凝土要大得多。
一般坍落扩展度要到达45cm左右,水下不分散混凝土的单位用水量约为230kg/m3。
试配时还可参加减水剂、引气剂等并辅以调整砂率、选择粗骨料的最大粒径等方法,尽可能降低单位用水量。
(5)单位水泥用量单位水泥用量是根据单位用水量和水灰比确定的。
水下不分散混凝土单位用水量大,因此单位水泥用量也大。
一般水下不分散混凝土强度≥20MPa时,单位水泥用量≥400kg/m3。
(6)砂率与水下不分散混凝土的流动性有一定关系,其砂率大小应使水下不分散混凝土有适宜的流动性,以单位用水量最小来确定。
水下不分散混凝土施工技术水下不分散混凝土施工技术1.概述众所周知,水泥虽然是水硬性材料,但若将混凝土拌合物直接倾倒于水中,当其在水中下落时,由于水的冲洗作用,骨料将与水泥分离,部分被水带走,部分长期处于悬浮状态。
当水泥下沉时,已呈凝固状态,失去胶结骨料的能力。
这样在水中直接浇筑的混凝土拌合物一般分为一层砂、砾石骨料,一层薄而强度很低的水泥絮凝体或水泥渣,不能满足工程要求。
因此,水下混凝土过去都要求在与环境水隔离的条件下浇筑,而且浇筑过程不能中断,以减少水的不利影响,在其硬化后还要清除一定数量的强度不符合要求的混凝土。
传统的水下混凝土施工方法通常有两类:一类是先围堰后排水,混凝土的施工与陆地相同,存在先期工程量大、工程造价高、工期长等缺点;另一类是利用专用施工机具把混凝土和环境水隔开,将混凝土拌合物直接送至水下工程部位,主要有导管法、预填骨料灌浆法、模袋法、开底容器法等。
这些施工方法使混凝土拌合物容易受到水的冲刷造成材料严重离析,水泥流失,混凝土质量下降,同时造成环境污染。
按常规浇筑水下混凝土的关键是尽量隔断混凝土与水的接触,但这将使施工工艺变得复杂,工期变长,工程成本大大增加,况且也难以保证水中混凝土的质量。
随着近海开发及大量水下结构工程的建设,尤其是在海洋深水区的开发利用,对混凝土水下浇筑、施工的质量要求越来越高。
因此,对传统混凝土进行改性使之能克服上述缺陷,是十分必要的。
在这一背景下,出现了水下不分散混凝土。
水下不分散混凝土是原西德Sibo公司于1974年研制、1977年推广的一项新的水下混凝土施工技术。
1980年日本在引进西德专利技术的基础上研制成功首例絮凝剂并开始推广使用,我国则在1986年研制成功首例絮凝剂,1987年开始推广应用以来,迄今为止,已经开发出十余种具有一定水平的水下不分散剂产品,并在交通、水利水电、石油、核电站及民用建筑工程中获得了广泛的应用,如三峡右岸重件码头工程、大连港码头修复、湖北黄石长江大桥、武汉二桥、洛阳黄河桥、胜利油田、辽河油田、钱塘江大堤加固、长江取水工程、秦山核电站取水口、以及海军的某些工程等,这些工程都因水下不分散混凝土的使用创出了质量好、速度快、造价低的经济效益。
.. 水下不分散混凝土配合比设计编制单位:第五项目部编制人:德政邵亮编制日期:2007年11月25日水下不分散混凝土配合比设计摘要:本文以妃甸原油码头靠船墩、系缆墩水下封底混凝土为例,介绍了水下不分散混凝土配合比设计的过程。
关键词:水下不分散混凝土;配合比设计1工程概况妃甸原油码头建设规模为新建30万吨级原油码头1座,兼顾15万吨和45万吨油轮靠泊作业。
码头长度522m,采用蝶型布置,由一个工作平台、2个靠船墩和6个系缆墩组成。
靠船墩和系缆墩设计将抗冰墩和码头墩台合为一体,采用半水下圆锥台结构,墩台底标高在设计低水位以下3.5m。
为使靠船墩、系缆墩结构混凝土能够形成干施工条件,采用了钢套箱结构并在结构混凝土下增设了2m封底混凝土。
封底混凝土采用水下不分散混凝土,其作用为在水下浇筑凝结硬化后形成混凝土底板,抽水后与钢套箱一起作为挡水和模板结构,为结构混凝土提供干施工条件。
妃甸原油码头地处外海,海况恶劣突风较多。
水下不分散混凝土受风浪影响较大,所以除了添加必要的絮凝剂,在配合比设计时考虑到混凝土可能会产生裂缝和隙,同时为了让混凝土能够更快的凝结硬化、提高早期强度以抵御风浪影响和缩短工期,还需添加膨胀剂和调凝剂。
2原材料情况2.1水泥:采用冀东水泥厂生产的强度等级为42.5R的普通硅酸盐水泥。
技术指标如下表(表一):2.2细骨料:采用产自卢龙的河砂。
该砂为Ⅱ区中砂,细度模数一般在2.4~2.8之间,其中含有部分卵,10mm以上颗粒含量在20%~25%之间,这部分卵可以改善混凝土的流动性,提高混凝土的泵送性能。
技术指标如下表(表二):2.3粗骨料:采用产自丰润的碎。
该碎为级配良好的连续粒级,公称粒径为,适用于泵送混凝土。
技术指标如下表(表三):5~25mm油集团工程技术研究院研制的UWB-Ⅱ型絮凝剂、天津豹鸣集团有限公司生产的UEA型膨胀剂、天津市雍阳减水剂厂生产UNF-5AST型聚羧酸减水剂、宝源化工有限公司生产的调凝剂。
61 /年限45年,码头后方以海砂做为回填料,重力式码头存在最主要的风险就是防渗漏处理。
为了保证码头的施工质量,保证码头的使用寿命,码头后方回填料的防渗漏处理是非常关键的。
码头扶壁安装后,扶壁与扶壁之间存在一条通长的安装缝,为了保证扶壁间安装缝不漏砂,因此在扶壁安装缝处设计双重保险防渗漏处理。
扶壁安装完毕后先在安装缝内侧面铺设整条通长的400kg/m 2土工布,等后方回填完毕后对安装缝进行灌筑水下不分散砼的施工工艺。
3.水下不分散砼的配制3.1试验用原材料水泥为中国龙口P .O 425R水泥,抗压强度为56.5MPa。
砂为中砂,碎石为5~25m m石灰岩碎石,水为饮用水,外加剂为JY-N型高效减水剂及UWB-II型絮凝剂。
3.2配合比如表1。
3.3水下不分散混凝土的配制流程如图2。
4.扶壁安装缝水下不分散砼施工4.1施工结构图如图3。
4.2施工流程如图4。
4.3施工工艺扶壁高14.5m,灌筑水下不分散砼深度为13m,1.5m为水位变动段,为保证水下不分散砼的施工质量,避免过深而产生砼离析,水下不分散砼施工采用导管注入法。
在扶壁后方回填砂回填到标高以后,先对扶壁安装缝内的垃圾杂物进行清理,利用空压机的气压,从胶管直接伸入灌浆槽内,由气压吹洗孔槽内的垃圾杂物。
清洗孔深达到设计标高后,把550kg/m 2土工布模袋沉放进槽口内,土工布袋沉放到设计标高时,再图2 配制流程扶壁水下不分散砼灌浆槽图3 施工结构图图4 施工流程62/ 珠江水运·2020·04 ACADEMIC分散砼为施工解决一些技术难题,证结构质量。
63 /。
62科技资讯 SC I EN C E & TE C HN O LO G Y I NF O R MA T IO N建 筑 科 学水利建筑工程施工过程中,采用水下不分散混凝土的作用是在水下浇筑凝结硬化后能够形成混凝土底板,在抽水以后,它与钢套箱一起共同作为挡水和模板结构,能够较好地为混凝土的浇筑工作提供干施工的条件。
在进行水下不分散混凝土配合比设计时,除了要添加絮凝剂外,还应考虑掺加调凝剂和膨胀剂,以防止混凝土产生裂缝,促使其快速凝结硬化。
本文就水下不分散混凝土配合比设计问题主要介绍了以下几个方面的内容。
浅谈水下不分散混凝土配合比设计关俊(葛洲坝集团试验检测有限公司 湖北葛洲坝 443002)摘 要:对于不分散混凝土而言,其质量的好坏往往取决于混凝土的流动性和抗分散性。
在工程实际中应用水下混凝土时一般是不允许振捣的,所以,在对水下不分散混凝土进行配合比设计时要充分考虑混凝土的流动性和抗分散性这两大因素。
本文就水下不分散混凝土配合比设计问题对原材料技术指标进行了探讨,对其配合比设计进行了介绍,并就水下不分散混凝土配合比试拌结果进行了分析。
关键词:水下不分散混凝土配合比设计中图分类号:TU 528文献标识码:A 文章编号:1672-3791(2013)01(c)-0062-02表1 水泥技术指标表2 细骨料技术指标表3 絮凝剂的混凝土技术指标表4 减水剂的混凝土技术指标表5 膨胀剂的混凝土技术指标表6 初步设计试样配合比1 水下不分散混凝土原材料技术指标探讨(1)主要原材料介绍。
在水下不分散混凝土配制过程中,其主要的原材料是水泥和骨料。
水泥通常采用的普通硅酸盐水泥,其强度等级要求为42.5R;骨料是细骨料,主要由河砂组成,且是Ⅱ区中砂,直径一般在10mm以上,细度模数基本在2.4~2.8范围之间,颗粒含量约为20%~25%,通常会有部分卵石在里面,这样能够使混凝土的流动性得到改善,从而提高水下不分散混凝土的泵送性能。
..水下不分散混凝土配合比设计编制单位:第五项目部编制人:德政邵亮编制日期:2007 年11月25日水下不分散混凝土配合比设计摘要:本文以妃甸原油码头靠船墩、系缆墩水下封底混凝土为例,介绍了水下不分散混凝土配合比设计的过程。
关键词:水下不分散混凝土;配合比设计1工程概况妃甸原油码头建设规模为新建30 万吨级原油码头 1 座,兼顾 15 万吨和45 万吨油轮靠泊作业。
码头长度522m ,采用蝶型布置,由一个工作平台、2个靠船墩和 6 个系缆墩组成。
靠船墩和系缆墩设计将抗冰墩和码头墩台合为一体,采用半水下圆锥台结构,墩台底标高在设计低水位以下 3.5m 。
为使靠船墩、系缆墩结构混凝土能够形成干施工条件,采用了钢套箱结构并在结构混凝土下增设了2m 封底混凝土。
封底混凝土采用水下不分散混凝土,其作用为在水下浇筑凝结硬化后形成混凝土底板,抽水后与钢套箱一起作为挡水和模板结构,为结构混凝土提供干施工条件。
妃甸原油码头地处外海,海况恶劣突风较多。
水下不分散混凝土受风浪影响较大,所以除了添加必要的絮凝剂,在配合比设计时考虑到混凝土可能会产生裂缝和隙,同时为了让混凝土能够更快的凝结硬化、提高早期强度以抵御风浪影响和缩短工期,还需添加膨胀剂和调凝剂。
2原材料情况2.1 水泥:采用冀东水泥厂生产的强度等级为42.5R 的普通硅酸盐水泥。
技术指标如下表(表一):检验项标准稠度细度抗压强度抗折强度凝结时间安定性目(%)(%)(MPa)(MPa)初凝终凝3d28d3d28d检验结 2 h 28 4 h3028.40.9合格26.253.2 6.28.9果min min2.2 细骨料:采用产自卢龙的河砂。
该砂为Ⅱ区中砂,细度模数一般在2.4~2.8之间,其中含有部分卵, 10mm 以上颗粒含量在20%~25%之间,这部分卵可以改善混凝土的流动性,提高混凝土的泵送性能。
技术指标如下表(表二):表观密堆积密级配情况检验项含泥量泥块含度度目(%) 量(%) 5.0 2.5 1.25 0.63 0.315 0.16 (kg/m3) (kg/m3)检验结0.80.02650155061524568397果2.3 粗骨料:采用产自丰润的碎。
水下浇筑混凝土的配合比设计【摘要】:水下浇筑混凝土因浇筑环境、浇筑方法的特殊性,其配合比设计也具有不同于普通混凝土配合比设计的一些方面。
通过了解水下浇筑混凝土的特性,介绍水下浇筑混凝土配合比设计的方法,探讨配合比设计过程中需要注意的几个问题。
【关键词】:水下;混凝土;配合比引言在陆地拌制而在水中浇筑和硬化的混凝土,叫做水下浇筑混凝土,简称水下混凝土。
它广泛应用于钻孔灌注桩浇筑、沉井封底、地下连续墙浇筑、水中浇筑基础结构等。
用这种方法施工,可以省去因造成陆地施工条件所必须进行的一系列工作,如基坑排水、基础防渗和施工围堰等,在某些情况下,甚至可能是能够采用的唯一施工方法。
在水下浇筑混凝土,施工条件比较复杂,会受到环境水的浸渍、扰动和稀释,需要克服水环境带来的水压、流速、黑暗,缺氧、涌浪等一系列困难。
为了减少和避免这些不利因素,不仅要求采用特殊的施工方法,对水下浇筑的混凝土拌合物也有特殊要求,用普通混凝土配合比设计的方法是不能完全满足要求的。
本文拟在简要介绍水下浇筑混凝土配合比设计方法的同时,就其中的一些问题进行探讨。
1 水下浇筑混凝土拌合物的要求由于浇筑环境的特殊性,水下混凝土易产生下列问题:(1)混凝土拌合物在水中浇筑时易离析,使水泥和骨料分离,造成混凝土不匀质,并使砂浆沫成层。
(2)浇筑工程不能直接观察,控制和调整混凝土质量有难度,不稳定因素较多。
(3)钢筋混凝土中,钢筋与混凝土粘结力降低。
针对上述问题,在配合比设计时,应注意解决未凝结混凝土中水泥颗粒被水带走的问题。
这就要求水下浇筑的混凝土拌合物具有以下特性:①具有较好的和易性。
在水下浇筑混凝土,多通过各种管道进行输送和浇筑,依靠自重(或压力)和流动性进行摊平和密实。
若流动性差,会造成堵管,混凝土也容易形成蜂窝和空洞。
但若流动性过大,不仅浪费水泥和增加砂浆量,且易造成开浇阶段下注过快而形成管口脱空和返水事故。
根据水下混凝土浇筑方法的不同,对混凝土拌合物的流动性要求见表1水下混凝土浇筑方法对混凝土拌合物流动性的要求表1在钢筋密集部位,其坍落度应比上表增加20~30mm,在泥浆中浇筑宜增加10~20mm。
双壁钢围堰水下封底混凝土配合比设计中铁三局五公司***(二O一O年五月二十八日)一、工程概况新建南宁至广州铁路工程郁江双线特大桥,全桥总长11.3公里,跨郁江主桥为钢桁梁斜拉桥,主桥全长492米,主跨度282米,主塔高503.5米。
承台顶标高接近河床顶面,承台采用双壁钢围堰施工,总面积达704平方米,浇筑总量2800立方米。
二、施工组织设计双壁钢围堰水下封底混凝土,采用不分仓一次性浇筑完成施工工艺。
水下封底采用导管法(封底混凝土导管布臵见示意图),从下游至上游依次逐个灌注混凝土,待下一排的导管被混凝土埋臵一定二、混凝土配合比技术参数的选择1、双壁钢围堰水下封底混凝土28天龄期设计强度等级为C20,考虑水下混凝土诸多不利因数的影响,工程施工进度等需要,为保证7天之内达到抽水要求,混凝土强度等级提高到C40。
2、由于采用不分仓混凝土施工,混凝土流动距离较长,这就要求混凝土必须具有极好地流动性,由此确定混凝土坍落度为220mm~240mm,扩展值≥500mm。
3、由于采用不分仓混凝土施工,考虑在浇筑完第一层混凝土后,返回来浇筑第二层混凝土时,混凝土还必须具有流动性,从整个浇筑循环时间上计算,确定混凝土的初凝不小于30个小时,15个小时后还要具有一定的流动性。
三、混凝土配合比原材料的选择1、砂:采用天然河砂,细度模数2.7;2、碎石:碎石为5~16mm、16~31.5mm双掺连续级配;3、水泥:考虑混凝土对早期的强度要求,选择P.O42.5R型水泥;4、粉煤灰:掺加粉煤灰虽然可降低混凝土早期强度和抗分散性,但同时可延长凝结时间,单个承台水下封底混凝土浇筑总量为2800立方米,如此大体积的混凝土浇筑量,适量掺加粉煤灰可降低水化热,减少混凝土裂缝。
5、外加剂:由于采用不分仓水下混凝土封底施工,混凝土流动距离较长,为有效抵抗水流对混凝土的冲刷,外加剂选用四川巨鑫牌JX-RSF型混凝土水下不分散剂(聚羧酸盐型)。
水下不分散混凝土配合比设计
编制单位:第五项目咅E ______ 编制人:德政邵亮
编制日期:2007年11月25日
水下不分散混凝土配合比设计
摘要:本文以妃甸原油码头靠船墩、系缆墩水下封底混凝土为例,介绍了水下不分散混凝土配合比设计的过程。
关键词:水下不分散混凝土;配合比设计
1工程概况
妃甸原油码头建设规模为新建30万吨级原油码头1座,兼顾15万吨和45万吨油轮靠泊作业。
码头长度522m,采用蝶型布置,由一个工作平台、2 个靠船墩和6个系缆墩组成。
靠船墩和系缆墩设计将抗冰墩和码头墩台合为一体,采用半水下圆锥台结构,墩台底标高在设计低水位以下 3.5m。
为使靠船墩、系缆墩结构混凝土能够形成干施工条件,采用了钢套箱结构并在结构混凝土下增设了2m封底混凝土。
封底混凝土采用水下不分散混凝土,其作用为在水下浇筑凝结硬化后形成混凝土底板,抽水后与钢套箱一起作为挡水和模板结构,为结构混凝土提供干施工条件。
妃甸原油码头地处外海,海况恶劣突风较多。
水下不分散混凝土受风浪影响较大,所以除了添加必要的絮凝剂,在配合比设计时考虑到混凝土可能会产生裂缝和隙,同时为了让混凝土能够更快的凝结硬化、提高早期强度以抵御风浪影响和缩短工期,还需添加膨胀剂和调凝剂。
2原材料情况
2.1水泥:采用冀东水泥厂生产的强度等级为42.5R的普通硅酸盐水泥。
技术指标如下表(表一):
22细骨料:采用产自卢龙的河砂。
该砂为区中砂,细度模数一般在2.4~2.8
之间,其中含有部分卵,10mm以上颗粒含量在20%~25%之间,这部分卵可
以改善混凝土的流动性,提高混凝土的泵送性能。
技术指标如下表(表二)
粗骨料:采用产自丰润的碎。
该碎为级配良好的连续粒级,公称粒径为
外加剂:在配合比的试拌过程中分别掺加了种外加剂。
分别为:中国
油集团工程技术研究院研制的UWB 型絮凝剂、天津豹鸣集团有限公司生产的UEA型膨胀剂、天津市雍阳减水剂厂生产UNF-5AST型聚羧酸减水剂、宝源化工有限公司生产的调凝剂。
①UWB-H型絮凝剂能够赋予普通混凝土超强的抗分散性、适宜的流动性和施工性能;解决水下混凝土的抗分散性能,实现水下混凝土的自流平和自密实。
UWB —II型絮凝剂掺量为水泥重量的1.5 %〜3.0%。
技术指标如下表(表
四):
②掺加型膨胀剂后混凝土中形成水化硫铝酸钙产生适度膨胀力,在结构
中建立0.2〜0.7MPa预压应力,可抵消混凝土硬化过程中形成的收缩力,因而减少干缩裂缝,提高抗裂和抗渗性能。
UEA型膨胀剂掺量为水泥重量的
③聚羧酸减水剂是一种新型的高效减水剂,它具有强度高和耐热性、耐久性
好等性能。
其特点是在咼温下坍落度损失小,具有良好的流动性,降低水灰比提高混凝土强度,改善混凝土和易性和密实性。
UNF-5AST型聚羧酸减水剂掺量为水泥重量的0.5 %〜1.5 %。
技术指标如下表(表六):
④调凝剂是用于混凝土中的快速凝固早强剂。
用于建筑砂浆与各种混凝土中,加快水泥的硬化速度,缩短凝结时间,特别在冬季施工中,避免低温下
凝结速度过慢。
脱模快使混凝土能够尽早提高强度投入使用。
调凝剂掺量为
水泥重量的0.5%〜1.5 %。
3配合比设计与试拌结果
3.1配合比设计:依据《水下不分散混凝土施工技术规》设计。
3.1.1配制强度:水下不分散混凝土的配制强度为R配二R设/t+1.645 °,本工
程的水下不分散混凝土设计强度为C30,由于水下不分散混凝土在施工中有
自由落差,所以t取值为0.7,c取值为4.5。
R配=50.2MPa。
3.1.2坍落度与坍扩度:本工程的水下不分散混凝土施工是由混凝土搅拌船搅拌后,通过混凝土输送泵浇筑到钢套箱,考虑到混凝土的自流平性和自密实性,坍落度控制在
180~220mm,坍扩度控制在400~500mm。
3.1.3单位水泥用量:由于混凝土有自流平和自密实的要求,为了保证水下不分散混凝土的质量,单位水泥用量控制在400kg/m 3以上。
配合比试拌结果:依据《水下不分散混凝土试验规程》进行
321试拌:按配合比比例称取原材料,称好后进行搅拌,搅拌结束后取样进
行坍落度和坍扩度试验(本文中坍扩度值为t=30s )。
322抗分散性:不分散混凝土的质量很大程度上取决于混凝土的抗分散性和流动性。
毋庸置疑,抗分散性是不分散混凝土的核心,其它的性能必须在此基础上进行。
操作法:将一容积约1500ml的容器放置在水箱,向水箱注水至50cm。
拌制2kg水下不分散混凝土,从水面自由落下倒入水中的容器,使之全部进入容器,不得洒漏,静置5min。
将容器从水中提起,排掉混凝土上面积留的水称其重量。
重复进行上述操作3次,取其平均值精确到0.1%。
流失量=(a-b)/(a-c)x 100% (a :浸水前混凝土和容器的总重;b :浸水后混凝土和容器的总重;c :容器的重量。
)以水泥流失量来评价水下不分散混凝土的抗分散性。
但在实际应用中,特别在施工现场,一般采用经验性判断。
取一1000ml量筒,注满清水,将拌合好的混凝土取约200g左右的一块,从量筒口放入,如果量筒水质仍能保持基本清澈,则认为抗分散能满足施工的要求。
3.2.3成型:标养试件成型与普通混凝土相同,同条件试件成型步骤:①将水下成型用的试模置于水箱中,将水(视环境水定)加至试模上限以上150mm处。
②用铁锹将混凝土拌合物从水面处向水中落下,浇入试模。
投料应连续进行,投料量应超出试模表面,投料时间为0.5 min ~1.0min 。
③将试模从水中取出,静置5 min~10.0min,使混凝土自流、自密。
④用木锤轻敲试模两侧以促进排水,然后将其放回水中。
⑤试件表面处理,超
量浇注的混凝土在初凝前用抹刀抹平,两天后拆模,在水中继续进行养护。
⑥在达到预定龄期时,将试件从水中取出,进行测试。
324抗压强度:将试件置于压力试验机下压板的中心位置,使上压板与试件表面轻轻接触,开启试验机,控制加荷速度为每秒0.2N/mm2~0.3 N/mm2
均匀加荷不得冲击,直至试件破坏,记录试件破坏荷载值。
抗压强度fn=P/A
3.3配合比的选取:从7个配合比的试验结果可以看出,PHB1的同条件早期强度偏低,抗分散性较差。
PHB2~ PHB5的坍扩度偏小,同条件早期强度偏低;PHB6的试验结果较好,只是同条件早期强度偏低;PHB7的试验结果最
好,坍落度、坍扩度、抗分散性和强度都符合水下不分散混凝土的要求,最终选取了
PHB7做为施工配合比。
4 结语
本工程共浇筑了水下不分散混凝土5774m 3,在实际使用中混凝土的泵送效果良好,凝结硬化抽水后混凝土表面基本平整,没有一个钢套箱的封底混凝土出现开裂和透水
现象,达到了预期效果,保证了墩台结构混凝土干法施工的顺利进行。