链轮的基础知识
- 格式:ppt
- 大小:2.73 MB
- 文档页数:19
链轮机械手册
链轮是机械传动系统中的一种重要组成部分,主要用于传递动力和运动。
在机械手册中,关于链轮的内容主要包括链轮的类型、结构、材料、设计计算、制造和安装等方面。
以下是一些关于链轮的主要信息:
1. 链轮的类型:链轮分为齿轮链轮和滚子链轮两种。
齿轮链轮的齿部形状有圆弧齿、直齿、斜齿等,滚子链轮分为单排链轮和双排链轮。
2. 链轮的结构:链轮通常由轮齿、轮缘、轮辐和中心孔等部分组成。
轮齿是链轮的主要工作部分,与链条的滚子相啮合,传递动力和运动。
3. 链轮的材料:链轮的材料通常选用Q235、Q275、45号钢、灰铸铁等,齿面经过热处理,提高硬度和耐磨性。
4. 链轮的设计计算:设计链轮时,需要根据传动要求确定链轮的模数、齿数、齿宽等参数。
此外,还要考虑链轮的强度、刚度、耐磨性等因素。
5. 链轮的制造:链轮的制造工艺包括车削、铣削、滚齿、插齿、磨齿等步骤。
制造过程中需要保证链轮的尺寸精度、齿形精度以及齿轮与链条的啮合精度。
6. 链轮的安装:链轮的安装要保证同心度、平行度等几何精度,以确保链条的正常传动。
在机械手册中,还可以找到关于链轮的选用、安装、维护和故障
排除等相关内容,为链轮的设计、制造和应用提供参考。
扶梯基础知识一、执行标准GB16899-1997《自动扶梯和自动人行道的制造与安装安全规范》JB/T8545—1997《自动扶梯梯级链、附件和链轮》二、主要技术要求1、提升高度H提升高度是指使用自动扶梯的建筑物上、下楼层间或地铁地面与地下站厅间的高度。
对于倾斜角为35°的自动扶梯,其提升高度不应超过6m。
2、名义宽度Z1名义宽度是指梯级宽度的公称尺寸,通常为600mm、800mm和1000mm三种规格。
3、额定速度v自动扶梯在空载情况下的运行速度,是制造厂商所设计确定并实际运行的速度。
自动扶梯倾斜角α小于30°时,其额定速度不应超过0.75m/s ,通常为0.5m/s、0.65 m/s和0.75 m/s ;自动扶梯倾斜角α大于30°,但不大于35°时,其额定速度不应超过0.5m/s。
4、倾斜角α梯级运行方向与水平面构成的最大角度,通常自动扶梯的倾斜角为30°和35°两种。
自动扶梯的倾斜角α一般不应超过30°,当提升高度不超过6m,额定速度不超过0.5m/s时,倾斜角α允许增至35°。
三、产品分类3.1 按扶手装饰分类1)全透明式:指扶手护壁板采用全透明的玻璃制作的自动扶梯,按护壁板采用玻璃的形状又可进一步分为曲面玻璃式和平面玻璃式。
2)不透明式:指扶手护壁板采用不透明的金属或其他材料制作的自动扶梯。
由于扶手带支架固定在护壁板的上部,扶手带在扶手支架导轨上作循环运动,因此不透明式其稳定性优于全透明式。
主要用于地铁、车站、码头等人流集中的高度较大的自动扶梯。
3)半透明式:指扶手护壁板为半透明的,如采用半透明玻璃等材料的扶手护壁板。
就扶手装饰而言,全透明的玻璃护壁板具有一定的强度,其厚度不应小于6mm,加上全透明的玻璃护壁板有较好的装饰效果,所以护壁板采用平板全透明玻璃制作的自动扶梯占绝大多数。
3.2 按梯级驱动方式分类按输送能力分为不同的梯级宽度、抬升高度和倾斜角度。
•常用机械传动系统的基础知识(一)机械传动的作用是传递运动和力,常用的机械传动类型有齿轮传动、蜗轮蜗杆传动、带传动、链传动、轮系。
1.齿轮传动:齿轮传动的原理是依靠主动轮依次拨动从动轮来实现的。
(1)分类:A、按传动时相对运动为平面运动或空间运动分:①平面齿轮传动(常见的有直齿圆柱齿轮传动、斜齿圆柱齿轮传动、人字齿轮传动,根据齿向,还分为外啮合、内啮合及齿轮与齿条的啮合)②空间齿轮传动(圆锥齿轮传动、交错轴齿轮传动)。
B、按齿轮传动的工作条件分:闭式传动(封闭在刚性的箱体内)、开式传动(齿轮是外露的)。
(2)特点:优点:①适用的圆周速度和功率范围广②传动比准确、稳定、效率高。
③工作可靠性高、寿命长。
④可实现平行轴、任意角相交轴和任意角交错轴之间的传动缺点:①要求较高的制造和安装精度、成本较高。
②不适宜远距离两轴之间的传动。
(3)渐开线标准齿轮基本尺寸的名称有:①齿顶圆②齿根圆③分度圆④摸数⑤压力角等。
(4)轮齿失效形式有以下五种:轮齿折断、齿面点蚀、齿面胶合、齿面磨损、齿面塑性变形。
2.蜗轮蜗杆传动:适用于空间垂直而不相交的两轴间的运动和动力。
(1)分类:A、根据蜗杆螺旋面分为阿基米德螺旋面蜗杆、渐开线螺旋面蜗杆、延伸渐开线螺旋面蜗杆;B、根据蜗杆螺旋线的头数分为单头、双头、多头蜗杆;C、根据螺旋线的旋转方向分为左旋和右旋两种。
(2)特点:优点①传动比大。
②结构尺寸紧凑。
缺点①轴向力大、易发热、效率低。
②只能单向传动。
(3)涡轮涡杆传动的主要参数有:①模数②压力角③蜗轮分度圆④蜗杆分度圆⑤导程⑥蜗轮齿数⑦蜗杆头数⑧传动比等。
(4)蜗杆蜗轮传动正确啮合的条件是蜗杆轴向模数和轴向压力角应分别等于蜗轮的端面模数和端面压力角。
3.带传动:通过中间挠性件(带)传递运动和力,包括①主动轮②从动轮③环形带(1)适用于两轴平行回转方向相同的场合,称为开口运动。
中心距和包角(带与轮接触弧所对的中心角)的概念。
(2)带的型式按横截面形状可分为平带、V带和特殊带三大类。
链轮的基础知识范文链轮是一种常见的传动元件,广泛应用于机械装置中,特别是在链传动系统中。
具体来说,链轮是由齿轮和链条组成的传动装置的一部分,通过链条的滚动来传递动力和转速。
1.链轮的结构和分类:链轮通常由一个具有齿数的圆环构成,齿轮的齿数决定了转速比。
根据齿轮的用途和结构特点不同,链轮可以分为直齿轮、斜齿轮、曲柄齿轮等多种类型。
直齿轮是最常见的一种,齿轮的齿廓直线与轮毂轴线平行。
2.链轮的参数和设计:链轮的设计需要考虑多个参数,包括齿数、模数、齿宽、啮合角等。
齿数决定了链轮的转速比、传动比和轴之间的配合关系,齿宽是齿轮齿面的有效宽度,啮合角则决定了链条与链轮之间的接触情况。
3.链轮的材料和制造工艺:链轮通常使用优质合金钢进行制造,以确保其强度、耐磨性和耐腐蚀性。
制造链轮的工艺包括铸造、锻造、机械加工等。
在制造链轮时,需要特别注意轴孔的精度和轮毂的硬度,以保证链轮与轴之间的配合和传递功率的可靠性。
4.链轮的安装和维护:链轮的安装需要注意与轴承、链条和其他传动装置的配合,并保证链轮的轴线与链条的中心线相互平行。
在使用链轮过程中,需要定期检查链条的磨损情况,并根据需要进行调整和更换,以确保链条和链轮的正常运转。
5.链轮的应用:链轮广泛应用于各种传动装置和机械系统中,例如自行车、摩托车、汽车、工程机械等。
链传动系统具有传动效率高、扭矩传递稳定、负载能力强等特点,因此被广泛用于需要传递大功率和扭矩的场合。
总之,链轮是一种常见的传动元件,具有重要的机械传动作用。
了解链轮的基础知识,包括结构分类、参数设计、材料制造、安装维护和应用领域等方面的内容,可以帮助我们更好地理解和应用链轮,提高传动装置的效率和可靠性。
机械原理课程知识点总结1. 牛顿运动定律牛顿运动定律是机械原理课程中最为基础的知识点之一。
根据牛顿运动定律,物体在外力作用下会产生加速度,加速度的大小与物体的质量和外力的大小成正比,与外力的方向相同。
牛顿运动定律分为三条:(1)牛顿第一定律:物体静止或匀速直线运动的时候,施加在它上面的合力为零。
(2)牛顿第二定律:物体所获加速度与净合力成正比,方向与净合力方向相同,与物体的质量成反比。
(3)牛顿第三定律:任何两个物体之间,它们的相互作用力之间有相等大小、方向相反的反作用力。
通过学习牛顿运动定律,我们可以了解物体在不同力作用下的运动规律,为后续的机械传动和机构运动分析提供了基础。
2. 机械传动机械传动是机械原理课程中的另一个重要知识点。
机械传动是指通过各种传动机构来传递动力和运动的一种方式,它可以实现力的传递、速度的调节和方向的变换。
常见的机械传动包括齿轮传动、带传动、链传动等。
(1)齿轮传动:齿轮传动是利用相互啮合的齿轮来传递动力和运动的一种方法,通过齿轮传动可以实现速度比的调节和方向的变换。
(2)带传动:带传动是利用传动带将动力和运动传递到不同轴上的一种方式,通过改变带轮的直径比来实现速度比的调节。
(3)链传动:链传动是利用链条将动力和运动传递到不同轴上的一种方式,通过改变链轮的齿数比来实现速度比的调节。
通过学习机械传动,我们可以了解各种传动方式的特点和应用范围,为后续的机构运动分析和机械设计提供了重要的基础知识。
3. 平衡力分析平衡力分析是机械原理课程中的重要内容之一。
平衡力分析是指通过分析物体所受外力的大小和方向来判断物体的平衡状态,以及确定物体的平衡条件和平衡位置。
(1)静力学平衡:静力学平衡是指物体在受力平衡的状态下不发生运动,通过分析物体所受外力的大小和方向来确定物体的平衡条件和平衡位置。
(2)平衡力矩分析:平衡力矩分析是指通过分析物体所受外力的力矩来确定物体的平衡条件和平衡位置,力矩的大小和方向可以决定物体的平衡状态。
单元一 ——绪论1、零件是机器及各种设备的基本组成单元。
2、构件是机构中的运动单元体。
3、零件和构件的区别与联系:零件是制造单元,无相互运动;构件是运动单元,相互之间有确定的相对运动。
4、机构是具有确定的相对运动的构件的组合,用来传递运动和力。
5、机器是人们根据需求设计制造的一种执行机械运动的装置。
6、机构与机器的异同点:(1)不同点:机器可以代替人的劳动完成有用的机械功或实现能量转换,机构只能传递运动和力。
(2)相同点:都是由构件组成的,构件之间具有确定的相对运动。
7、机器的组成:动力部分、执行部分、传动部分、控制部分。
8、运动副:两构件直接接触而又能产生一定形式相对运动的可动连接。
9、低副:两构件之间作面接触的运动副。
10、高副:两构件之间作点或线接触的运动副。
11、低副的应用特点:单位面积压力较小,较耐用,传力性能好。
摩擦损失大,效率低。
不能传递较复杂的运动。
12、高副的应用特点:单位面积压力较大,两构件接触处容易磨损。
制造和维修困难。
能传递较复杂的运动。
单元二 ——带传动1、带传动的组成:主动轮、从动轮、绕行带。
2、带传动工作原理:以张紧在至少两轮上的带作为中间挠性件,靠带与带轮接触面间产生的摩擦力(啮合力)来传递运动或动力。
3、带传动传动比:1221d d d d n n i ==。
当10<<i 时,是增速运动;当1=i 时,是等速运动;当1>i 时,是减速运动。
4、例题:有一带传动,其传动比为1:3,主动轮转速min /100r ,从动轮基圆直径为20mm ,求(1)从动轮转速;(2)主动轮基圆直径。
5、V 带传动是由一条或数条V 带和V 带带轮组成的摩擦传动。
6、包角:带与带轮接触弧所对应的圆心角。
包角的大小反映了带与带轮轮缘表面间接触弧的长短。
7、带速的选择:带速太低,传动尺寸大而不经济。
带速太高,离心力又会使带与带轮间的压紧程度减少,传动能力降低。
8、普通V 带传动的应用特点优点:(1)结构简单,制造、安装精度要求不高,使用维护方便,适用于两轴中心距较大的场合。
一、设备基础知识1、常见的几种机械传动方式机械传动按传力方式分,可分为摩擦传动和啮合传动,摩擦传动又分为摩擦轮传动和带传动等,啮合传动可分为齿轮传动、涡轮蜗杆传动、链传动等等;按传动比又可分为定传动比和变传动比传动。
1.1皮带传动:皮带传动是由主动轮、从动轮和紧张在两轮上的皮带所组成。
由于张紧,在皮带和皮带轮的接触面间产生了压紧力,当主动轮旋转时,借摩擦力带动从动轮旋转,这样就把主动轴的动力传给从动轴。
皮带传动分为平皮带传动和三角皮带传动皮带传动的特点:1)可用于两轴中心距离较大的传动。
2)皮带具有弹性、可缓冲和冲击与振动,使传动平稳、噪声小。
3)当过载时,皮带在轮上打滑,可防止其它零件损坏。
4)结构简单、维护方便。
5)由于皮带在工作中有滑动,故不能保持精确的传动比。
6)外廓尺寸大,传动效率低,皮带寿命短。
三角皮带的断面国家规定为O、A、B、C、D、E、F、T等8种,从O到T皮带剖面的面积逐渐增大,传动的功率也逐渐增大。
在机械传动中常碰到传动动比的概念,什么是传动比呢?它是指主动轮的转速n1与从动轮的转速n2之比,用I表示:即I=n1/n2。
)由于皮带传动中存在“弹性滑动”现象,上述传动比公式只是个近似公式,那么皮带传动中这种“弹性滑动”现象是怎样表现的呢?概括如下:在主动轮处,传动带沿带轮的运动是一面绕进,一面向后收缩:在从动轮处,传动带沿带轮的运动是一面绕进,一面向前伸展。
1.2齿轮传动:齿轮传动是由分别安装在主动轴及从动轴上的两个齿轮相互啮合而成。
齿轮传动是应用最多的一种传动形式,它有如下特点能保证传动比稳定不变。
能传递很大的动力。
结构紧凑、效率高。
4)制造和安装的精度要求较高。
5)当两轴间距较大时,采用齿轮传动就比较笨重;齿轮的种类很多,按其外形可分为圆柱齿轮和圆锥齿轮两大类。
圆柱齿轮的外形呈圆柱形、牙齿分布在圆柱体的表面上,按照牙齿与齿轮轴的相对位置,圆柱齿轮又分为直齿圆柱齿轮和斜齿圆柱齿轮,(现在出现了人字形齿轮),圆柱齿轮多用于外啮合齿轮传动,也可以用作内啮合传动和齿轮齿条传动。
机械基础教案轮系一、教学目标1. 了解轮系的功能和作用。
2. 掌握常见的轮系构造和工作原理。
3. 学习如何计算和设计轮系参数。
二、教学内容及教学步骤1. 轮系的概念和功能轮系是机械传动中常用的一种传动装置,它由多个相互嵌合的齿轮组成,用于传递动力和转速。
轮系的作用是改变传动的转速和转矩,并实现不同轴的连接。
2. 轮系的构成和分类轮系由齿轮、轴和轴承等部件组成。
根据传动方式的不同,可以将轮系分为直接轮系和间接轮系两类。
直接轮系是通过齿轮直接传递动力,常见的有直齿轮、斜齿轮和锥齿轮等。
间接轮系是通过链条、皮带或螺旋副传递动力,常见的有链轮、齿带轮和蜗轮蜗杆等。
3. 轮系的工作原理轮系的工作原理是基于齿轮的啮合和滚动运动。
当齿轮啮合时,传动端的齿轮将带动被传动端的齿轮进行旋转,在啮合过程中,齿轮齿面间的传递力矩和转速会发生改变。
4. 轮系参数的计算和设计在设计轮系时,需要考虑齿轮的模数、齿数、压力角等参数。
根据传动需求和工作条件,可以通过计算来确定最佳的轮系参数。
常用的计算方法有齿轮传动的几何计算、动力学计算和强度计算等。
三、教学方法与手段1. 理论讲解:通过课堂讲解,向学生介绍轮系的基本概念、功能和分类。
2. 实例分析:通过实际案例,分析不同轮系的构造和工作原理,引导学生理解轮系的工作过程。
3. 计算演示:通过示范计算和设计轮系参数,让学生了解如何应用数学和物理知识进行轮系设计。
4. 实验演示:进行轮系的实验观察,让学生亲自操作和感受轮系的工作特点。
四、教学评价与反馈1. 测验评价:通过开展小测验,检验学生对轮系相关知识的掌握情况。
2. 作业评价:布置课后作业,要求学生计算和设计轮系参数,检查他们的计算能力和应用能力。
3. 实践评价:观察学生在实验中的表现,评价他们的操作和观察能力。
五、教学总结与展望通过本次教学,学生能够对轮系的构造、工作原理和设计方法进行全面的了解。
他们可以独立进行轮系计算和设计,并能应用所学知识解决实际问题。
一、设备基础知识1常见的几种机械传动方式/ ^! U5 K2 v5 {机械传动按传力方式分,可分为摩擦传动和啮合传动,摩擦传动又分为摩擦轮传动和带传动等,啮合传动可分为齿轮传动、涡轮蜗杆传动、链传动等等;按传动比又可分为定传动比和变传动比传动。
1.1皮带传动皮带传动是由主动轮、从动轮和紧张在两轮上的皮带所组成。
由于张紧,在皮带和皮带轮的接触面间产生了压紧力,当主动轮旋转时,借摩擦力带动从动轮旋转,这样就把主动轴的动力传给从动轴。
皮带传动分为平皮带传动和三角皮带传动 1 _* J! _. l' S3 W8 x7 P( Q9 X- A. i皮带传动的特点:1)可用于两轴中心距离较大的传动。
! l h' a6 Q/ Z9 ~9 b2)皮带具有弹性、可缓冲和冲击与振动,使传动平稳、噪声小。
+ n8 `$ `; N0 e/ D, q13)当过载时,皮带在轮上打滑,可防止其它零件损坏。
. |" j! T j2 P# h$ @+ Y9 C4)结构简单、维护方便。
0 f0 ?3 w* ^9 Z, I: C5 J# h65)由于皮带在工作中有滑动,故不能保持精确的传动比。
2 h7 }, ^; v5 ^: C$ R; Y4 G6)外廓尺寸大,传动效率低,皮带寿命短。
三角皮带的断面国家规定为O、A、B、C、D、E、F、T等8种,从O到T皮带剖面的面积逐渐增大,传动的功率也逐渐增大。
在机械传动中常碰到传动动比的概念,什么是传动比呢?它是指主动轮的转速n1与从动轮的转速n2之比,用I表示:即I=n1/n2。
) g b5 W: T% N; L }由于皮带传动中存在“弹性滑动”现象,上述传动比公式只是个近似公式,那么皮带传动中这种“弹性滑动”现象是怎样表现的呢?概括如下:在主动轮处,传动带沿带轮的运动是一面绕进,一面向后收缩:在从动轮处,传动带沿带轮的运动是一面绕进,一面向前伸展。
8 q' c% T( C4J2 `1.2齿轮传动齿轮传动是由分别安装在主动轴及从动轴上的两个齿轮相互啮合而成。
华润雪花啤酒(长春)有限公司带轮、链轮、齿轮传动编制:设备能源部2004年12月30日传动的类型摩 擦 轮 传 动1、特点:⑴优点:摩擦轮传动是两个相互压紧的摩擦轮靠接触面间的摩擦传递运动和动力的。
由于其结构简单,制造容易,运转平稳,过载可以打滑(可防止重要零部件损坏),以及能无级改变传动比,有着较大的应用范围,是无级变速传动的重要元件。
⑵缺点:由于在运转中有滑动(弹性滑动、几何滑动与打滑),传动效率低,结构尺寸大,作用在轴和轴承上的载荷大,宜用于小功率传动。
定比传动包括:1、圆柱摩擦轮传动;2、槽形摩擦轮传动;3、圆锥摩擦轮传动。
无级变速传动:端面摩擦轮传动(下图a 、b )摩擦轮材料:制造摩擦轮材料所具有的条件:摩擦系数高,接触疲劳强度和耐磨性好,吸湿性小(非),价廉且易于加工。
具体如下:要求结构紧凑,传动效率高时,两轮都选用淬火钢轮面,如GCr15等,经表面硬化处理后达到HRC≥60,轮面应有较高的制造精度和低的表面粗糙度。
为提高寿命应在油中工作。
要求较高的摩擦系数和较小的噪声时,可采用铸铁(或钢)与皮革、夹布胶木、压制石棉纤维、橡胶等材料覆盖的轮面,但接触强度低。
带传动带传动常用的类型:1、平带传动;2、V带传动;3、同步带传动(近年来出现)。
平带结构简单,传动平稳,造价低廉,不需润滑以及缓冲吸振、带轮制造也容易等特点,在传动中心距较大的情况下应用较多。
根据传动原理不同,带传动可分为摩擦型和捏合型两大类,前者过载可以打滑,但传动比不准确(滑动率在2%以下);后者可保证传动同步。
根据截面形状可分为平带传动、V带传动和同步带传动。
常用的平带有橡胶布带、缝合棉布带、棉织带和毛织带等。
其中橡胶布带最广。
在一般机械传动中,应用最广的是V 带传动。
V 带横断面是等腰梯形,带轮作出相应的槽,传动时V 带只和轮槽的两个侧面接触,即以两侧面为工作面,根据槽面摩擦的原理,在同样张力下,V 带传动较平带传动能产生更大的摩擦力。