数字信号处理实验指导书
- 格式:doc
- 大小:808.99 KB
- 文档页数:35
《数字信号处理》实验指导书信息与机电工程学院实验中心2017-11-20实验一 常见离散信号的MATLAB 产生和图形显示一、实验目的:加深对常用离散信号的理解; 二、实验原理:1、基础知识:R1.1 单位样本序列10[]0n n n δ=⎧=⎨≠⎩如果()n δ在时间轴上延迟了k 个单位,得到()n k δ-,即:1[]0n k n k n kδ=⎧-=⎨≠⎩R1.2 单位阶跃序列10[]0n u n n ≥⎧=⎨<⎩ R1.3 指数序列[]n x n A α=,其中()00j e σωα+=,j A A e φ=,则前式化为()000000[]cos()sin()n j n n n x n A eA e n j A e n σωφσσωφωφ++==+++R1.4 正弦序列0[]cos()x n A n ωφ=+,其中A ,0ω,φ是实数,分别称为正弦序列的振幅、角频率和初始相位。
00/2f ωπ=称为频率。
2、用到的MATLAB 命令 运算符和特殊符号 : . + -* / .^ ; %基本矩阵和矩阵控制 i ones pirand randnzeros基本函数 cos sin exp imag real二维图形 axis gird legendplotstem title xlabel ylabelstairs 通用图形函数 clf subplot三、实验内容及要求:编制程序产生信号,并绘出其图形。
例1.1单位样本和单位阶跃序列% 程序 P1.1% 一个单位样本序列的产生clf;% 产生一个从-10到20的向量n = -10:20;% 产生单位样本序列u = [zeros(1,10) 1 zeros(1,20)];% 绘制单位样本序列stem(n,u);xlabel('时间序号 n');ylabel('振幅');title('单位样本序列');axis([-10 20 0 1.2]);习题:Q1.1 运行程序P1.1,以产生单位样本序列u[n]并记录它。
《数字信号处理》实验指导书通信教研室安阳工学院二零零九年三月第1章 系统响应及系统稳定性1.1 实验目的● 学会运用MATLAB 求解离散时间系统的零状态响应; ● 学会运用MATLAB 求解离散时间系统的单位取样响应; ● 学会运用MATLAB 求解离散时间系统的卷积和。
1.2 实验原理及实例分析1.2.1 离散时间系统的响应离散时间LTI 系统可用线性常系数差分方程来描述,即∑∑==-=-Mj jN i i j n x b i n y a 00)()( (1-1) 其中,i a (0=i ,1,…,N )和j b (0=j ,1,…,M )为实常数。
MATLAB 中函数filter 可对式(13-1)的差分方程在指定时间范围内的输入序列所产生的响应进行求解。
函数filter 的语句格式为y=filter(b,a,x)其中,x 为输入的离散序列;y 为输出的离散序列;y 的长度与x 的长度一样;b 与a 分别为差分方程右端与左端的系数向量。
【实例1-1】 已知某LTI 系统的差分方程为试用MATLAB 命令绘出当激励信号为)()2/1()(n u n x n=时,该系统的零状态响应。
解:MATLAB 源程序为>>a=[3 -4 2];>>b=[1 2];>>n=0:30;>>x=(1/2).^n;>>y=filter(b,a,x);>>stem(n,y,'fill'),grid on>>xlabel('n'),title('系统响应y(n)')程序运行结果如图1-1所示。
1.2.2 离散时间系统的单位取样响应系统的单位取样响应定义为系统在)(n 激励下系统的零状态响应,用)(n h 表示。
MATLAB 求解单位取样响应可利用函数filter ,并将激励设为前面所定义的impDT 函数。
《数字信号处理实验》实验1 常用信号产生实验目的:学习用MATLAB编程产生各种常见信号。
实验内容:1、矩阵操作:输入矩阵:x=[1 2 3 4;5 4 3 2;3 4 5 6;7 6 5 4]引用 x的第二、三行;引用 x的第三、四列;求矩阵的转置;求矩阵的逆;2、单位脉冲序列:产生δ(n)函数;产生δ(n-3)函数;3、产生阶跃序列:产生U(n)序列;产生U(n-n0)序列;4、产生指数序列:x(n)=0.5n⎪⎭⎫⎝⎛4 35、产生正弦序列:x=2sin(2π*50/12+π/6)6、产生取样函数:7、产生白噪声:产生[0,1]上均匀分布的随机信号:产生均值为0,方差为1的高斯随机信号:8、生成一个幅度按指数衰减的正弦信号:x(t)=Asin(w0t+phi).*exp(-a*t)9、产生三角波:实验要求:打印出程序、图形及运行结果,并分析实验结果。
实验2 利用MATLAB 进行信号分析实验目的:学习用MATLAB 编程进行信号分析实验内容:1数字滤波器的频率响应:数字滤波器的系统函数为:H(z)=21214.013.02.0----++++z z z z , 求其幅频特性和相频特性:2、离散系统零极点图:b =[0.2 0.1 0.3 0.1 0.2];a=[1.0 -1.1 1.5 -0.7 0.3];画出其零极点图3、数字滤波器的冲激响应:b=[0.2 0.1 0.3 0.1 0.2];a=[1.0 -1.1 1.5 -0.7 0.3];求滤波器的冲激响应。
4、 计算离散卷积:x=[1 1 1 1 0 0];y=[2 2 3 4];求x(n)*y(n)。
5、 系统函数转换:(1)将H(z)=)5)(2)(3.0()1)(5.0)(1.0(------z z z z z z 转换为直接型结构。
(2)将H (z )=3213210.31.123.7105.065.06.11-------+--+-zz z z z z 转换为级联型结构。
数字信号处理实验指导书电子信息工程学院2012年6月目录实验一离散信号产生和基本运算 (3)实验二基于MATLAB的离散系统时域分析 (7)实验三基于ICETEK-F2812-A 教学系统软件的离散系统时域分析 (9)实验四基于MATLAB 的FFT 算法的应用 (16)实验五基于ICETEK-F2812-A 的FFT 算法分析 (18)实验六基于ICETEK-F2812-A 的数字滤波器设计 (20)实验七基于ICETEK-F2812-A的交通灯综合控制 (24)实验八基于BWDSP100的步进电机控制 (26)实验一离散信号产生和基本运算一、实验目的(1)掌握MATLAB最基本的矩阵运算语句。
(2)掌握对常用离散信号的理解与运算实现。
二、实验原理1.向量的生成a.利用冒号“:”运算生成向量,其语句格式有两种:A=m:nB=m:p:n第一种格式用于生成不长为1的均匀等分向量,m和n分别代表向量的起始值和终止值,n>m 。
第二种格式用于生成步长为p的均匀等分的向量。
b.利用函数linspace()生成向量,linspace()的调用格式为:A=linspace(m,n)B=linspace(m,n,s)第一种格式生成从起始值m开始到终止值n之间的线性等分的100元素的行向量。
第二种格式生成从起始值m开始到终止值n之间的s个线性等分点的行向量。
2.矩阵的算术运算a.加法和减法对于同维矩阵指令的A+BA-B对于矩阵和标量(一个数)的加减运算,指令为:A+3A-9b.乘法和除法运算A*B 是数学中的矩阵乘法,遵循矩阵乘法规则A.*B 是同维矩阵对应位置元素做乘法B=inv(A)是求矩阵的逆A/B 是数学中的矩阵除法,遵循矩阵除法规则A./B 是同维矩阵对应位置元素相除另'A表示矩阵的转置运算3.数组函数下面列举一些基本函数,他们的用法和格式都相同。
sin(A),cos(A),exp(A),log(A)(相当于ln)sqrt(A)开平方 abs(A)求模 real(A)求实部 imag(A)求虚部 式中A 可以是标量也可以是矩阵 例: 利用等差向量产生一个正弦值向量 t=0:0.1:10 A=sin(t) plot(A)这时候即可看到一个绘有正弦曲线的窗口弹出 另:每条语句后面加“;”表示不要显示当前语句的执行结果 不加“;”表示要显示当前语句的执行结果。
实验一 采样率对信号频谱的影响一、实验目的1.理解采样定理; 2.掌握采样频率确定方法; 3.理解频谱的概念; 4.理解三种频率之间的关系。
二、实验原理理想采样过程是连续信号x a (t )与冲激函数串M (t )的乘积的过程∑∞-∞=-=k skT t t M )()(δ (1))()()(ˆt M t x t xa a = (2) 式中T s 为采样间隔。
因此,理想采样过程可以看作是脉冲调制过程,调制信号是连续信号x a (t ),载波信号是冲激函数串M (t )。
显然)()()()()(ˆs k s ak s aa kT t kT xkT t t xt x-=-=∑∑∞-∞=∞-∞=δδ (3)所以,)(ˆt xa 实际上是x a (t )在离散时间kT s 上的取值的集合,即)(ˆs a kT x 。
对信号采样我们最关心的问题是,信号经过采样后是否会丢失信息,或者说能否不失真地恢复原来的模拟信号。
下面从频域出发,根据理想采样信号的频谱)(ˆΩj X a和原来模拟信号的频谱)(Ωj X 之间的关系,来讨论采样不失真的条件∑∞-∞=Ω-Ω=Ωk ssakj j X T j X )(1)(ˆ (4)上式表明,一个连续信号经过理想采样后,其频谱将以采样频率Ωs =2π/T s 为间隔周期延拓,其频谱的幅度与原模拟信号频谱的幅度相差一个常数因子1/T s 。
只要各延拓分量与原频谱分量之间不发生频率上的交叠,则可以完全恢复原来的模拟信号。
根据式(4)可知,要保证各延拓分量与原频谱分量之间不发生频率上的交叠,则必须满足Ωs ≥2Ω。
这就是奈奎斯特采样定理:要想连续信号采样后能够不失真地还原原信号,采样频率必须大于或等于被采样信号最高频率的两倍h s Ω≥Ω2,或者h s f f 2≥,或者2hs T T ≤(5) 即对于最高频率的信号一个周期内至少要采样两点,式中Ωh 、f s 、T h 分别为被采样模拟信号的最高角频率、频率和最小周期。
《数字信号处理》实验指导书安阳工学院电子信息与电气工程学院目录实验一离散时间信号的表示及运算 (1)实验二离散时间LTI系统的时域分析 (10)实验三 z变换及离散时间LTI系统的z域分析 (17)实验四离散傅立叶变换及其快速算法 .................... ....... .. (29)实验五 IIR数字滤波器的MATLAB实现 (46)实验六 FIR数字滤波器的MATLAB实现.............................. .. (54)附录 MATLAB主要命令函数表....................... . (61)实验一 离散时间信号的表示及运算一、实验目的1、学会运用MATLAB 表示的常用离散时间信号;2、学会运用MATLAB 实现离散时间信号的基本运算。
二、实验条件装有MATLAB 软件的PC 机 三、 实验原理1、离散时间信号在MATLAB 中的表示离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。
离散序列通常用)(n x 来表示,自变量必须是整数。
离散时间信号的波形绘制在MATLAB 中一般用stem 函数。
stem 函数的基本用法和plot 函数一样,它绘制的波形图的每个样本点上有一个小圆圈,默认是空心的。
如果要实心,需使用参数“fill”、“filled”,或者参数“.”。
由于MATLAB 中矩阵元素的个数有限,所以MATLAB 只能表示一定时间范围内有限长度的序列;而对于无限序列,也只能在一定时间范围内表示出来。
类似于连续时间信号,离散时间信号也有一些典型的离散时间信号。
①单位取样序列单位取样序列)(n δ,也称为单位冲激序列,定义为)0()0(01)(≠=⎩⎨⎧=n n n δ (1-1) 要注意,单位冲激序列不是单位冲激函数的简单离散抽样,它在n =0处是取确定的值1。
在MATLAB 中,冲激序列可以通过编写以下的impDT.m 文件来实现,即function y=impDT(n)y=(n==0); %当参数为0时冲激为1,否则为0 调用该函数时n 必须为整数或整数向量。
实验一 信号、系统及系统响应1、实验目的:(1)熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。
(2)熟悉时域离散系统的时域特性。
(3)利用卷积方法观察分析系统的时域特性。
(4)掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。
2、实验仪器:PC 机一台 MATLAB 软件 3、实验原理:采样是连续信号数字处理的第一个关键环节。
对一个连续信号)(t x a 进行理想采样的过程可用下式表示。
)()()(ˆt p t x t xa a = 其中)(ˆt xa 为)(t x a 的理想采样,)(t p 为周期冲激脉冲, 即 ∑∞-∞=-=n nT t t p )()(δ;由频域卷积定理,得)]([1)(ˆs a am j X Tj X Ω-Ω=Ω ※ 上式表明,)(ˆΩj X a为)(Ωj X a 的周期延拓,其延拓周期为采样角频率(T s /2π=Ω)。
采样前后的频谱示意图见课本。
只有满足采样定理时,才不会发生频率混叠失真。
在计算机上用高级语言计算)(ˆΩj X a 很不方便,下面给出用序列的傅里叶变换来计算)(ˆΩj X a的方法。
课本中(2.4.7)式∑∞-∞=-=r ajwr TT w j X T e X )]2([1)(π,表示序列的傅里叶变换)(jwe X 和模拟信号)(t x a 的傅里叶变换)(Ωj X a 之间的关系式。
与※式比较,可得T w jw a e X j X Ω==Ω|)()(ˆ,这说明两者之间只在频率度量上差一个常数因子T 。
实验过程中应注意这一差别。
为了在数字计算机上观察分析各种序列的频域特性,通常对)(jwe X 在[]π2,0上进行M 点采样来观察分析。
对长度为N 的有限长序列x(n), 有∑-=-=1)()(N n n jw jw k ke n x eX其中 1,,1,02-==M k k Mw k ,π通常M 应取得大一些,以便观察谱的细节变化。
实验一 离散时间信号分析一、实验目的1.掌握各种常用的序列,理解其数学表达式和波形表示。
2.掌握在计算机中生成及绘制数字信号波形的方法。
3.掌握序列的相加、相乘、移位、反褶等基本运算及计算机实现与作用。
4.掌握线性卷积软件实现的方法。
5.掌握计算机的使用方法和常用系统软件及应用软件的使用。
6.通过编程,上机调试程序,进一步增强使用计算机解决问题的能力。
二、实验原理1.序列的基本概念离散时间信号在数学上可用时间序列来表示,其中代表序列的第n 个数字,n 代表时间的序列,n 的取值范围为∞<<∞-n 的整数,n 取其它值)(n x 没有意义。
离散时间信号可以是由模拟信号通过采样得到,例如对)(t x a 模拟信号进行等间隔采样,采样间隔为T ,得到一个{})(nT x a 有序的数字序列就是离散时间信号,简称序列。
2.常用序列常用序列有:单位脉冲序列(单位采样))(n δ、单位阶跃序列)(n u 、矩形序列)(n R N 、实指数序列、复指数序列、正弦型序列等。
3.序列的基本运算序列的运算包括移位、反褶、和、积、标乘、累加、差分运算等。
4.序列的卷积运算∑∞∞-*=-=)()()()()(n h n x m n h m x n y上式的运算关系称为卷积运算,式中代表两个序列卷积运算。
两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。
其计算的过程包括以下4个步骤。
(1)反褶:先将)(n x 和)(n h 的变量n 换成m ,变成)(m x 和)(m h ,再将)(m h 以纵轴为对称轴反褶成)(m h -。
(2)移位:将)(m h -移位n ,得)(m n h -。
当n 为正数时,右移n 位;当n 为负数时,左移n 位。
(3)相乘:将)(m n h -和)(m x 的对应点值相乘。
(4)求和:将以上所有对应点的乘积累加起来,即得)(n y 。
“数字信号处理”实验指导书(一)一、实验课程编码:105003 二、实验课程名称:数字信号处理三、实验项目名称: 应用MATLAB 分析离散信号频谱 四、实验目的掌握应用MATLAB 分析离散信号频谱的方法,即熟悉应用MATLAB 分析离散信号的函数。
五、主要设备安装有MATLAB 软件的电脑 六、实验内容编写MATLAB 程序,实现下面题目:1. 用快速卷积法计算下面两个序列的线性卷积。
)()4.0(s )(15n R n in n x =,)(9.0)(20n R n h n =2.已知序列[]()cos 0120n n N Nx n π⎧≤≤-⎪=⎨⎪⎩其它(1)计算该序列DTFT 的表达式()j X e ω,并画出N=10时的()j X e ω曲线; (2)编写MATLAB 程序,利用FFT 函数,计算N =10时,序列x [k ]的DTFT 在2m mNπω=的抽样值。
利用hold 函数,将抽样点画在()j X e ω的曲线上。
3.理解高密度频谱和高分辨率频谱的概念。
设)52.0cos()48.0(co )(n n s n x ππ+=(1) 取0≤n ≤9,求)(1k X(2) 将(1)中的)(x n 补零加长到0≤n ≤99,求)(2k X (3) 增加取样值的个数,取0≤n ≤99,求)(3k X4. 用DFT 对连续信号做谱分析。
设)50cos()100sin()200cos()(t t t t x a πππ++=,用DFT 分析)(t x a 的频谱结构,选择不同的截取长度Tp ,观察截断效应,试用加窗的方法减少谱间干扰。
选取的参数:(1) 频率s s f T Hz f /1 ,400==(2) 采样信号序列)()()(n w nT x n x a =,)(n w 是窗函数。
选取两种窗函数:矩形窗函数)()(n R n w N =和Hamming 窗,后者在程序中调用函数Hamming 产生宽度为N 的Hamming 窗函数向量。
实验一DES 综合外设实验1.1实验目的和要求DES320E 提供了键盘,液晶,数码管,直流电机,步进电机,交通灯等外设。
本实验学习这些外设的控制原理。
本实验为大型综合性实验,要求学生掌握DSP编程的基本方法。
通过实验,学生能编写外设控制程序。
例如,使用交通灯和定时器实现十字路口红绿灯的控制,直流电机的调速控制,使用液晶数码管显示和键盘实现计算器等。
1.2实验原理1) C54XX 的I O 空间读写C54XX 提供64K 字的I O 空间访问能力。
在汇编指令中分别提供了读和写命令:portr和p ortw。
你也可以在C中实现该I O 操作,方法如下:首先定义I O 空间变量,如:ioport unsigned portXXXX;/* 其中,XXXX 代表具体I O 口地址*/然后,就可以象访问普通变量一样访问I O 口。
如portXXXX=0x55;/* 将0x55 写到X XXX 指定的I O 口*/2) 交通灯的控制DES320E 提供了 12 个 LED,其控制地址为 IO 空间的 0x0c000h。
该地址的 D0-11比特位分别对应这12 个L ED。
将1写入可以点亮L ED,0 则关闭。
3) 直流电机控制DES320E 实验系统配有一个小型直流电机,可以 DSP 编程完成直流电机的调速控制。
其控制方法为:当向0x0e000h(…VC5402 的I O 空间)的D0 比特位写入1时,电机正向转动;当写入 0 时,电机反向转动。
用户可以通过 D0 位为 1 或 0 的持续时间(即D0 输出方波的占空比)控制电机的转速。
注意,使用直流电机时,应该先接通电机的电源,方法如下:向I O 空间的0x8000 地址的D0 比特位写入1。
若要关闭电源,请写入0。
当写入1或0时,你可以听到继电器动作的声音。
4) 步进电机的控制DES320E 实验系统还配有一个步进电机。
IO 空间的0x0f000h 的D0,D1,D2,D3 四个比特位分别对应步进电机的四相驱动端。
实验一信号、系统及系统响应........................................................................................ - 1 - 一实验目的................................................................................................................ - 1 - 二实验原理................................................................................................................ - 1 - 三实验内容及步骤.................................................................................................... - 3 - 四思考题.................................................................................................................... - 4 - 五实验报告要求........................................................................................................ - 5 - 实验二应用FFT对信号进行频谱分析........................................................................... - 6 - 一实验目的................................................................................................................ - 6 - 二实验原理与方法.................................................................................................... - 6 - 三实验内容及步骤.................................................................................................... - 8 - 四思考题.................................................................................................................... - 9 - 五实验报告要求........................................................................................................ - 9 - 实验三用双线性变换法设计IIR滤波器....................................................................... - 11 - 一实验目的.............................................................................................................. - 11 - 二实验原理与方法.................................................................................................. - 11 - 三实验内容及步骤.................................................................................................. - 14 - 四思考题.................................................................................................................. - 15 - 五实验报告要求...................................................................................................... - 15 - 实验四用窗函数设计FIR滤波器................................................................................ - 16 - 一实验目的.............................................................................................................. - 16 - 二实验原理和方法.................................................................................................. - 16 - 三实验内容及步骤.................................................................................................. - 19 - 四思考题.................................................................................................................. - 21 - 五实验报告要求...................................................................................................... - 21 - 附录MATLAB 下的数字信号处理实现示例.................................................................... - 22 -1 信号、系统和系统响应........................................................................................ - 22 -2 用FFT 进行信号的频谱分析............................................................................... - 26 -3 窗函数法设计FIR 滤波器................................................................................... - 28 -4 IIR 滤波器的实现 .............................................................................................. - 31 -5 窗函数设计FIR滤波器基本示例........................................................................ - 34 -实验一 信号、系统及系统响应一 实验目的1.熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解。
2.熟悉离散信号和系统的时域特性。
3.熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4.掌握序列傅氏变换的计算机实现方法,利用序列的傅氏变换对离散信号、系统及系统响应进行频域分析。
二 实验原理1.连续时间信号的采样采样是从连续时间信号到离散时间信号的过渡桥梁,对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生的变化以及信号内容不丢失的条件,而且有助于加深对拉氏变化、傅氏变换、z 变换和序列傅氏变换之间关系的理解。
对一个连续时间信号进行理想采样的过程可以表示为该信号的一个周期冲激脉冲的乘积,即)()()(ˆt M t x t x a a = (1-1)其中)(ˆt xa 是连续信号)(t x a 的理想采样,)(t M 是周期冲激脉冲 ∑+∞-∞=-=n nT t t M )()(δ(1-2) 它也可以用傅立叶级数表示为: ∑+∞-∞=Ω=n t jm s e T t M 1)( (1-3)其中T 为采样周期,s π2=Ω是采样角频率。
设)(s X a 是连续时间信号)(t x a 的双边拉氏变换,即有:⎰+∞∞--=dt e t x s X st a a )()( (1-4)此时理想采样信号)(ˆt xa 的拉氏变换为()ˆˆ()()1()1()1()s s st a a jm t st a m s jm t a m a s m X s xt e dt x t e e dt T x t e dt T X s jm T +∞--∞+∞+∞Ω-=-∞-∞+∞+∞--Ω=-∞-∞+∞=-∞====-Ω⎰∑⎰∑⎰∑ (1-5)作为拉氏变换的一种特例,信号理想采样的傅立叶变换()[]∑+∞-∞=Ω-Ω=Ωm s a a m j X T j X 1)(ˆ (1-6)由式(1-5)和式(1-6)可知,信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期等于采样频率。
根据Shannon 取样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频谱混淆现象。
在计算机处理时,不采用式(1-6)计算信号的频谱,而是利用序列的傅立叶变换计算信号的频谱,定义序列)()()(ˆ)()(t M t x t xnT x n x a a a ===,根据Z 变换的定义,可以得到序列x(n)的Z 变换为:()()n n X z x n z +∞-=-∞=∑ (1-7)以ωj e 代替上式中的z ,就可以得到序列x(n)的傅立叶变换∑+∞-∞=-=n n j j e n x e X ωω)()( (1-8)式(1-6)和式(1-8)具有如下关系:T j a e X j X Ω==Ωωω)()(ˆ (1-9)由式(1-9)可知,在分析一个连续时间信号的频谱时,可以通过取样将有关的计算转化为序列傅立叶变换的计算。