基于单片机的数字频率计的设计与制作
- 格式:doc
- 大小:1.93 MB
- 文档页数:40
目录1频率计的概要和发展动态 (1)2 单片机介绍 (1)2.1单片机的简介和发展 (1)2.2 AT89C51的原理 (2)2.2.1主要特性 (3)2.2.2管脚说明 (3)2.2.3振荡器特性 (4)2.2.4芯片擦除 (4)3 仿真软件protuse的介绍 (5)4系统模块设计 (6)5硬件部分 (6)5.1整形电路 (6)5.2控制电路 (7)5.3显示电路 (8)5.3.1 LCD1602引脚 (8)5.3.2 LCD1602的指令介绍 (8)5.4总体电路图 (9)6仿真结果 (11)6.1仿真结果 (11)6.2结果分析 (11)7 结论 (11)8参考文献 (12)附录 (12)1 keil C51软件介绍 (12)2 程序流程图 (13)3系统源程序 (14)1频率计的概要和发展动态在电子技术中,频率作为基本的参数之一,它与许多电参量的测量方案、测量结果密切相关,因此,频率的测量十分的重要。
在许多情况下,要对信号的频率进行精确测量,就要用到数字频率计。
数字频率计作为一种基础测量仪器,它被用来测量信号(方波、正弦波、锯齿波等)频率,并且用十进制显示测量结果。
它具有测量精度高、测量省时、使用方便等特点。
随着微电子技术和计算机技术的不断发展,单片机被广泛应用到大规模集成电路中,使得设计具有很高的性价比和可靠性。
所以,以单片机为核心的简易数字频率计设计,改善了传统的频率计的不足,充分体现了新一代数字频率计的优越性。
2 单片机介绍2.1单片机的简介和发展单片机微型计算机是微型计算机的一个重要分支,也是颇具生命力的机种。
单片机微型计算机简称单片机,特别适用于控制领域,故又称为微控制器。
通常,单片机由单块集成电路芯片构成,内部包含有计算机的基本功能部件:中央处理器、存储器和IO接口电路等。
因此,单片机只需要和适当的软件及外部设备相结合,便可成为一个单片机控制系统。
单片机经过1、2、3、3代的发展,正朝着多功能、高性能、低电压、低功耗、低价格、大存储容量、强IO功能及较好的结构兼容性方向发展。
基于单片机控制的数字频率计设计1. 简介在电子领域中,频率对于信号处理和电路设计至关重要。
频率计是一种测量电信号频率的仪器,它可以帮助工程师们更好地理解信号的特性,并在电路设计和调试中起到至关重要的作用。
在本文中,我将详细探讨基于单片机控制的数字频率计的设计原理和实现方法,希望能帮助读者全面理解这一主题。
2. 频率计原理频率计的原理在于对输入信号的周期进行测量,并通过适当的算法将其转换为频率。
基于单片机的数字频率计设计采用计数的方法来测量信号周期,然后利用计数的结果和时间基准来计算频率。
在这个过程中,单片机起到了关键的控制和计算作用,能够精准地对输入信号进行测量和处理。
3. 单片机选择在设计数字频率计时,单片机的选择至关重要。
一般情况下,我们会选择性能稳定、计算能力强、易于编程的单片机作为核心控制芯片。
常用的单片机包括STC系列、STM32系列和PIC系列等,它们都具有较好的性能和可靠性,适合用于数字频率计的设计和实现。
4. 系统设计数字频率计系统一般由信号输入、单片机控制、显示模块和电源模块等部分组成。
在系统设计中,信号输入模块用于接收待测信号,并将其转换为数字信号输入到单片机中;单片机控制模块负责对输入信号进行计数和处理,并输出结果到显示模块;显示模块一般采用数码管或液晶显示屏,用于显示测量的频率数值。
电源模块需要为整个系统提供稳定的工作电压,确保系统正常运行。
5. 算法设计在数字频率计的设计中,算法的设计对于测量结果的准确性和稳定性至关重要。
一般而言,常见的测频算法包括时间测量法、计数器法和分频计数法等。
这些算法都需要考虑精确的计数和时间基准,以确保测量结果的准确性。
在算法设计中还需要考虑到单片机的计算能力和存储空间,选择合适的算法和数据结构来降低系统的复杂度和成本。
6. 实现方法基于单片机的数字频率计的实现方法有多种,可以根据具体的需求和应用场景选择合适的硬件和软件方案。
在硬件设计方面,需要考虑信号输入电路、计数电路、显示电路和电源电路等部分;在软件设计方面,需要编写相应的程序代码,实现信号测量、数据处理和显示控制等功能。
基于单片机的数字频率计的设计与实现摘要随着电子信息产业的发展,信号作为其最基础的元素,其频率的测量在科技研究和实际应用中的作用日益重要,而且需要测频的范围也越来越宽。
传统的频率计通常采用组合电路和时序电路等大量的硬件电路构成,产品不但体积较大,运行速度慢,而且测量范围低,精度低。
因此,随着对频率测量的要求的提高,传统的测频的方法在实际应用中已不能满足要求。
因此我们需要寻找一种新的测频的方法。
随着单片机技术的发展和成熟,用单片机来做为一个电路系统的控制电路逐渐显示出其无与伦比的优越性。
本文阐述了以AT89C51单片机为控制器件的频率测量方法,并用汇编语言进行设计,采用单片机智能控制,结合外围电子电路,用以实现高低信号频率的测量。
本文设计的是一个简易数字频率计,被测信号可以是正弦波、三角波、方波。
首先,我们把待测信号经过放大整形;然后把信号送入单片机的定时计数器里进行计数,获得频率值;最后把测得的频率数值送入显示电路里进行显示。
本文从频率计的原理出发,介绍了基于单片机的数字频率计的设计方案,选择了实现系统得各种电路元器件,并对硬件电路进行了仿真。
关键词单片机;频率计;测量-Design and implementation of Digital FrequencyMeter Based on Single Chip MircrocomputeAbstractAlong with the development of electronic information industry, signal as the basic elements, the frequency measurement in scientificresearch and practical application is increasingly important, but also need the scope of frequency measurement is becoming more and more wide. The traditional frequency plan usually adopts combinational circuits and the sequential circuits of the hardware circuit structure, product not only large size, speed is slow, and measuring range, and low accuracy of low. Therefore, as for frequency measurement requirements, thetraditional method of frequency measurement in practical application already cannot satisfy requirements. Therefore, we need to find a new measuring method of frequency. Along with the development of technology and mature, use a singleship as a circuit system of control circuit shown its incomparable advantages.In this paper, with AT89C51 microcontroller to control the frequency of measurement devices and assembly language design, intelligent control using single chip, combined with the external electronic circuit, can be high and low frequency measurements. This paper designs a simple digital frequency, the measured signal can be sine wave , square wave. Firstly, the rectangular pulse, which the measured signal is amplified and reshaped, is used as control throttle valve. Then, the frequency counter counts the number of the periods using the internal timer/counter of signal is chip so as to gain the frequency value of measured signal. Finally, the frequency value of measured signal is displayed through static display circuits.From the analysis of theory, and introduces the digital frequency plan based on single chip design, selection of the system, and have all kinds of circuit components of hardware circuit simulaion.Keywords Micor- computer;Frequency;Measure-目录摘要...... ................................................................. (I)Abstract ........................................................... .. (II)第1章绪论 ..................................................................... .. (1)1.1 课题背景 ..................................................................... . (1)1.2 单片机的发展及特点 ..................................................................... .................1 1.3 频率计的基础知识 ..................................................................... .....................1 1.4 论文研究内容 ..................................................................... .............................2 第2章单片机简介及方案论证 ..................................................................... ...........3 2.1 AT89C51单片机简介 ..................................................................... ..................3 2.1.1 单片机及其引脚说明 ..................................................................... ...........3 2.1.2 AT89C51的定时/计数器原理 (5)2.1.3 定时/计数器的工作模式 ..................................................................... (6)2.1.4 定时,计数器的特殊功能控制寄存器 (6)2.1.5 定时,计数器(T0,T1)的控制寄存器 (7)2.2 数字频率计设计的几种方案 ..................................................................... (8)2.3 几种方案的优劣讨论 ..................................................................... .................8 2.4 本次设计采用的方案 ..................................................................... .................9 2.5 本章小结 ..................................................................... .....................................9 第3章系统硬件设计 ..................................................................... ........................ 10 3.1 数字频率计工作原理及结构框图 (10)3.1.1 一般数字式频率计的原理 ......................................................................10 3.1.2 基于单片机的数字频率计原理 .............................................................. 10 3.2 电路原理图 ..................................................................... ............................... 11 3.3 放大整形电路 ..................................................................... ........................... 11 3.3.1 放大整形电路的必要性 ..................................................................... ..... 11 3.3.2 放大整形电路的原理 ..................................................................... ......... 11 3.4 分频电路 ..................................................................... ................................... 15 3.4.1 分频电路介绍 ..................................................................... .................... 15 3.5 四选一电路 ..................................................................... ............................... 16 3.6 显示电路 ..................................................................... ................................... 17 3.6.1 显示原理 ..................................................................... ............................ 17 3.6.2 显示电路图 ..................................................................... ........................ 19 3.7 本章小结 ..................................................................... ................................... 20 第4章系统软件设计 ..................................................................... ........................ 21 4.1 软件流程图 ..................................................................... ............................... 21 4.2 测频软件实现原理 ..................................................................... . (21)-4.3 几个重要的分程序 ..................................................................... ................... 22 4.4 本章小结 ..................................................................... ................................... 23 结论 ..................................................................... ..................................................... 24 致谢 ..................................................................... ..................................................... 25 参考文献 ..................................................................... ............................................. 26 附录A ...................................................................... ................................................ 27 附录B ...................................................................... ................................................ 33 附录C ...................................................................... ................................................ 39 附录D ...................................................................... (40)第1章绪论1.1 课题背景在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关,,因此频率计在教学、科研、测量仪器、工业控制[1]等方面都有较广泛的应用。
基于单片机简易频率计设计一、前言频率计是一种测量电信号频率的仪器,其应用广泛。
本文将介绍如何基于单片机设计一个简易的频率计。
二、设计思路本次设计采用单片机作为核心控制芯片,通过捕获输入信号的上升沿和下降沿来计算出信号的周期,从而得到信号的频率。
具体实现过程如下:1. 选择合适的单片机选择一款适合本次设计要求的单片机,需要考虑其性能、价格、易用性等因素。
常见的单片机有STC89C52、AT89C51等。
2. 硬件电路设计硬件电路主要包括输入端口、捕获定时器模块、显示模块等。
其中输入端口需要接收待测信号,捕获定时器模块用于捕获信号上升沿和下降沿的时间,显示模块则用于显示测得的频率值。
3. 软件程序设计软件程序主要包括初始化程序、捕获中断服务函数和主函数等。
其中初始化程序用于设置捕获定时器模块和显示模块参数,捕获中断服务函数则是实现对输入信号上升沿和下降沿时间的捕获与计算,主函数则用于控制程序流程和显示结果。
三、硬件设计1. 输入端口设计输入端口需要接收待测信号,一般采用BNC接头。
由于输入信号可能存在较高的电压和噪声,因此需要加入滤波电路以保证输入信号的稳定性。
2. 捕获定时器模块设计捕获定时器模块是本次设计的核心部分,其主要功能是捕获输入信号的上升沿和下降沿时间,并通过计算得到信号周期和频率值。
常见的捕获定时器模块有16位定时器/计数器、32位定时器/计数器等。
在本次设计中,我们选择了16位定时器/计数器。
3. 显示模块设计显示模块主要用于显示测得的频率值。
常见的显示模块有LED数码管、LCD液晶屏等。
在本次设计中,我们选择了LCD液晶屏。
四、软件程序设计1. 初始化程序初始化程序主要包括设置捕获定时器模块参数、设置LCD液晶屏参数等。
2. 捕获中断服务函数捕获中断服务函数是实现对输入信号上升沿和下降沿时间的捕获与计算,其具体实现过程如下:(1)当捕获定时器模块捕获到输入信号上升沿时,记录当前时间值。
基于单片机的频率计的设计1绪论1.1研究背景及主要研究意义频率是电子技术领域永恒的话题,电子技术领域离不开频率,一旦离开频率,电子技术的发展是不可想象的,为了得到性能更好的电子系统,科研人员在不断的研究频率,CPU 就是用频率的高低来评价性能的好坏,可见,频率在电子系统中的重要性。
频率计乂称为频率计数器,是一种专门对被测信号频率进行测量的电子测量仪器,其最基本的工作原理为:当被测信号在特定的时间段T内的周期个数N时,则被测信号的频率£=1\!/「电子计数器是一种基础测量仪器,到目前为止已有三十多年的发展历史。
早期, 设计师们追求的目标主要是扩展测量范围,再加上提高测量精度、稳定度等,这些也是人们衡量电子计算机的技术水平,决定电子技术器价格高低的主要依据。
目前这些技术日臻完善,成熟。
应用现代技术可以轻松地将电子计数器的频率扩展到微波频段。
1.2数字频率计的发展现状随着科学技术的发展,用户对电子计数器也提出了新的要求。
对于低档产品要求使用操作方便,量程(足够)宽,可靠性高,价格低。
而对中高档产品,则要求有较高的分辨率,高精度,高稳定度,高测量速率;除通常通用计数器所具有的功能外,还要有数据处理功能,统计分析功能等等,或者包含电压测量等其他功能。
这些要求有的已经实现或者部分实现,但要真正地实现这些目标,对于生产厂家来说,还有许多工作要做,而不是表面看来似乎发展到头了。
由于微电子技术和计算机技术的发展,频率计都在不断地进步着,灵敏度不断提高,频率范围不断扩大,功能不断增加。
在测试通讯、微波器件或产品时,通常都市较复杂的信号,如含有复杂频率成分、调制的含有未知频率分量的、频率固定的变化的、纯净的或叠加有干扰的等等。
为了能正确的测量不同类型的信号,必须了解待测信号特性和各种频率测量仪器的性能。
微波技术器一般使用类型频谱分析仪的分频或混频电路,另外还包含多个时间基准、合成器、中频放大器等。
虽然所有的微波计数器都是用来完成技术任务的, 但各自厂家都有各自的一套复杂计数器的设计、使得不同型号的技术其性能和价格会有所差别,比如说一些计数器可以测量脉冲参数,并提供类似与频率分析仪的屏幕显示,对这些功能具有不同功能不同规格的众多仪器,我们应该视测试需要正确的选择以达到最经济和最佳的应用效果。
基于单片机简易数字频率计基于单片机的简易数字频率计概述:数字频率计是一种用于测量信号频率的仪器,它能够将输入的模拟信号转换为数字信号,并通过单片机进行处理和显示。
本文将介绍基于单片机的简易数字频率计的原理和实现方法。
一、原理介绍数字频率计的原理基于信号的频率与周期的倒数之间的关系。
当输入信号的频率较高时,直接测量周期较为困难,因此常采用测量信号的脉宽来间接推算频率。
本文所介绍的简易数字频率计就是基于这一原理。
二、硬件设计1. 信号输入:将待测信号接入单片机的GPIO口,通过外部电路对信号进行电平转换和滤波处理,确保输入信号稳定且符合单片机的输入电压范围。
2. 定时器:单片机内部的定时器用于测量输入信号的脉宽。
通过配置定时器的计数器和预分频器,可以实现不同精度的测量。
一般情况下,选择合适的计数器和预分频器,使得定时器的溢出周期与待测信号的周期相当,以提高测量的准确性。
3. 显示模块:通过数码管或LCD显示模块,将测量到的脉宽转换为频率值并进行显示。
可以根据需要选择合适的显示方式和显示精度。
三、软件设计1. IO口配置:在单片机的软件中,需要配置GPIO口的输入和输出模式,以及中断触发条件等。
通过配置正确的IO口,可以实现对信号输入和输出的控制。
2. 定时器配置:配置定时器的计数器和预分频器,并设置中断触发条件。
在定时器中断服务函数中,可以对计数器的值进行读取和处理。
3. 测量算法:在定时器中断服务函数中,可以根据测量到的脉宽值计算出信号的频率。
具体的计算方法有多种,例如可以通过测量多个周期的脉宽平均值来提高测量的准确性。
4. 显示控制:将计算得到的频率值转换为合适的显示格式,并通过显示模块进行显示。
可以根据需要选择合适的显示精度和显示方式。
四、实现方法基于以上原理和设计,可以通过以下步骤来实现简易数字频率计:1. 硬件连接:将待测信号接入单片机的GPIO口,并通过外部电路进行电平转换和滤波处理。
2. 软件编程:根据单片机的型号和开发环境,编写相应的软件程序。
基于51单片机的频率计的设计频率计是一种测量信号频率的仪器或装置,其原理是通过对信号进行计数和定时来测量信号的周期,并进而计算出信号的频率。
在本篇文章中,我们将设计一个基于51单片机的频率计。
设计方案:1.硬件设计:(1)时钟电路:使用11.0592MHz晶振为主频时钟源。
(2)信号输入:选择一个IO口作为信号输入口,通过外部电平转换电路将信号转换为51单片机能够处理的电平。
(3)显示装置:使用一个数码管或液晶显示屏来输出测量结果。
2.软件设计:(1)初始化:设置51单片机的工作模式、引脚功能、定时器等。
初始化时,将IO口配置为输入模式,用于接收外部信号。
(2)定时器设置:利用定时器来进行时间的测量,可以选择适当的定时器和计数器来实现定时功能。
(3)外部中断设置:使用外部中断来触发定时器,当外部信号边沿发生变化时,触发定时器的启动或停止。
(4)中断处理:通过中断处理程序来对定时器进行启动、停止和计数等操作。
(5)频率计算:将计数结果经过一定的处理和运算,计算出信号的频率。
(6)结果显示:将计算得到的频率结果通过数码管或液晶显示屏输出。
3.工作流程:(1)初始化设置:对51单片机进行初始化设置,包括端口、定时器、中断等的配置。
(2)外部信号输入:通过外部电平转换电路将要测量的信号输入至51单片机的IO口。
(3)定时测量:当外部信号发生边沿变化时,触发外部中断,启动定时器进行定时测量。
(4)停止计时:当下一个信号边沿出现时,中断处理程序停止定时器,并将计数结果保存。
(5)频率计算:根据定时器的设置和计数结果,计算出信号的周期和频率。
(6)结果显示:将计算得到的频率结果通过数码管或液晶显示屏进行显示。
4.注意事项:(1)确保信号输入的稳定性:外部信号输入前需要经过滤波处理,保证稳定且无杂波的输入信号。
(2)测量精度的提高:如有必要,可以通过增加定时器的位数或扩大计数范围来提高测量精度。
(3)显示结果的优化:可以根据需要,通过增加缓冲区、优化数码管显示等方式来改善结果的可读性。
基于单片机的频率计的设计一、频率计的基本原理频率是指单位时间内信号周期性变化的次数。
频率计的基本原理就是在一定的时间间隔内对输入信号的脉冲个数进行计数,从而得到信号的频率。
常用的测量方法有直接测频法和间接测频法。
直接测频法是在给定的闸门时间内测量输入信号的脉冲个数,计算公式为:频率=脉冲个数/闸门时间。
这种方法适用于测量高频信号,但测量精度会受到闸门时间和计数误差的影响。
间接测频法是先测量信号的周期,然后通过倒数计算出频率。
其适用于测量低频信号,但测量速度较慢。
在实际设计中,通常会根据测量信号的频率范围选择合适的测量方法,或者结合两种方法来提高测量精度和范围。
二、系统硬件设计1、单片机选型在基于单片机的频率计设计中,单片机是核心控制部件。
常用的单片机有 51 系列、STM32 系列等。
选择单片机时需要考虑其性能、资源、价格等因素。
例如,对于测量精度和速度要求不高的应用,可以选择51 单片机;而对于复杂的系统,可能需要选择性能更强的 STM32 单片机。
2、信号输入电路为了将输入信号接入单片机,需要设计合适的信号输入电路。
一般需要对输入信号进行放大、整形等处理,使其成为标准的脉冲信号。
常见的整形电路可以使用施密特触发器来实现。
3、显示电路频率计的测量结果需要通过显示电路进行显示。
常用的显示器件有液晶显示屏(LCD)和数码管。
LCD 显示效果好,但驱动较为复杂;数码管显示简单直观,驱动相对容易。
4、时钟电路单片机需要一个稳定的时钟信号来保证其正常工作。
时钟电路可以采用外部晶振或内部振荡器,根据系统的精度和稳定性要求进行选择。
5、复位电路为了确保单片机在系统启动时能够正常初始化,需要设计复位电路。
复位电路可以采用上电复位和手动复位两种方式。
三、系统软件设计1、主程序流程系统启动后,首先进行初始化操作,包括设置单片机的工作模式、初始化显示、设置定时器等。
然后进入测量循环,等待输入信号,在给定的闸门时间内进行计数,并计算频率,最后将结果显示出来。
基于单片机的频率计的设计与制作一、设计背景与意义频率是指在单位时间内信号的周期次数或波形的周期数,是电子通信、自动化控制、测量仪器等领域中常用的参数之一、频率计是一种用来测量信号频率的仪器,广泛应用于各个领域。
本文将设计一种基于单片机的频率计,具有结构简单、精度高、易于实现批量生产等特点。
二、设计原理与电路结构本频率计的设计原理基于定时器的计数功能。
具体电路结构如下:1.接收电路:接收被测信号,并经过滤波电路对信号进行滤波处理。
2.方波信号发生电路:采用集成电路产生频率为1MHz的方波信号。
3.单片机控制电路:使用单片机控制定时器1进行计数,并通过串口与PC机进行通信。
三、程序设计与实现1.初始化设置:设置单片机的工作模式和波特率,以及定时器的计数参数。
2.接收输入信号:从信号输入引脚读取信号,并通过滤波电路进行滤波处理。
3.方波信号计数:使用定时器对方波信号进行计数,并保存计数值。
4.系统中断处理:当定时器溢出时,触发中断函数对计数值进行处理。
5.输出结果:将计数值发送到PC机上,通过串口进行通信。
四、制作过程与方法1.电路制作:根据上述电路结构图,选择合适的元器件进行电路制作,焊接完整电路板。
2.程序编写:使用C语言或汇编语言编写单片机的程序,实现频率计的功能。
3.调试测试:将电路板接入供电并连接到PC机上,通过串口与PC机进行通信,测试频率计的测量精度和稳定性。
4.性能优化:对频率计的测量精度和稳定性进行优化,例如增加滤波电路、调整定时器参数等。
五、结论与展望本文设计与制作了一种基于单片机的频率计,实现了对输入信号频率的测量。
经过实际测试,频率计具有测量精度高、稳定性好等优点,能够满足实际应用的需求。
在今后的研究中,可以进一步优化频率计的设计,提高测量精度和稳定性,并拓展其在更多领域的应用。
基于单片机的频率计设计频率计是一种常用仪器,用于测量信号的频率。
本文将介绍一种基于单片机的频率计的设计。
设计思路:1. 选择合适的单片机:由于频率计需要精确测量信号的周期,所以选择一个具有高精度和稳定性的单片机至关重要。
常用的单片机有AT89S51、ATmega328等。
2.连接外部时钟源:为了提高计时的精度,可以选择连接一个外部时钟源,如晶振。
将晶振连接到单片机的计时器输入引脚,通过计时器来计算脉冲信号的周期。
3.配置计时器模式:根据信号的特性,选择合适的计时器模式。
常用的模式有边沿计数模式和脉冲计数模式。
边沿计数模式适用于非连续的信号,脉冲计数模式适用于连续的信号。
4.初始化计时器:在程序中对计时器进行初始化,设置计时器的工作模式、计数范围等参数。
还需设置中断使能和相应的中断处理函数。
5.开始计时:当信号输入到单片机的计时器引脚时,通过中断处理函数开始计时,记录起始时间。
6.结束计时:当信号的周期结束时,再次触发中断,记录结束时间。
7.计算频率:根据起始时间和结束时间,计算出信号的周期,再通过周期计算出频率。
可以选择在显示器上显示频率或者通过串口通信输出。
8.重复计算:根据需要,可以选择连续计算多个信号的频率,以增加测量的准确性。
这个设计是一个基本的频率计,可以测量连续或间断的信号频率。
根据实际需求,还可以进行一些改进和扩展,例如可以加入滤波电路来提高信号的稳定性和抗干扰能力,还可以增加输入和输出接口,方便与其他仪器和设备进行连接和通信。
总结:基于单片机的频率计是一种常见的测量仪器,通过利用计时器来测量信号的周期,从而计算出信号的频率。
这种设计简单易行,稳定性好,可以满足大多数频率测量的需求。
在实际应用中,可以根据具体要求进行相应的改进和扩展。
数字频率计(51单片机)数字频率计(51单片机)数字频率计(Digital Frequency Counter)是一种常用的电子测量仪器,可用于测量信号的频率。
在本文中,我们将介绍如何使用51单片机实现一个简单的数字频率计。
一、原理简介数字频率计的基本原理是通过计算信号波形周期内的脉冲数来确定频率。
在实际应用中,我们通常使用51单片机作为微控制器,通过计数器和定时器模块来实现频率计算。
二、硬件设计1.信号输入首先,我们需要将待测信号输入到频率计中。
可以使用一个输入接口电路,将信号连接到51单片机的IO口上。
2.计时模块我们需要使用51单片机的定时器/计数器来进行计时操作。
在这里,我们选择使用定时器0来进行计数,同时可以利用定时器1来进行溢出次数的计数,以扩展计数范围。
3.显示模块为了显示测量结果,我们可以使用数码管、LCD液晶显示屏等显示模块。
通过将结果以可视化的方式呈现,方便用户进行观察和读数。
三、软件设计1.定时器配置首先,我们需要对定时器进行配置,以确定计时器的计数间隔。
通过设置定时器的工作模式、计数范围和时钟频率等参数,可以控制定时器的计数精度和溢出时间。
2.中断服务程序当定时器溢出时,会触发中断,通过编写中断服务程序,实现对计数器的相应操作,例如将计数值累加,记录溢出次数等。
3.数字频率计算根据计数器的值和溢出次数,我们可以计算出信号的频率。
通过简单的公式计算,即可得到测量结果。
四、实验步骤1.搭建硬件电路,将待测信号连接到51单片机的IO口上,并连接显示模块。
2.根据硬件设计要求,配置定时器的工作模式和计数范围。
3.编写中断服务程序,实现对计数器的相应操作。
4.编写主程序,实现数字频率计算和显示。
5.下载程序到51单片机,进行测试。
五、实验结果与分析通过实验,我们可以得到信号的频率测量结果,并将结果以数码管或LCD屏幕的形式进行显示。
通过对比实际频率和测量频率,可以评估数字频率计的准确性和稳定性。
1前言频率测量是电子学测量中最为基本的测量之一。
由于频率信号抗干扰性强,易于传输,因此可以获得较高的测量精度。
随着数字电子技术的发展,频率测量成为一项越来越普遍的工作,测频原理和测频方法的研究正受到越来越多的关注。
1.1频率计概述数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。
它是一种用十进制数字显示被测信号频率的数字测量仪器。
它的基本功能是测量正弦信号、方波信号及其他各种单位时间内变化的物理量。
在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,经常要用到频率计。
传统的频率计采用测频法测量频率,通常由组合电路和时序电路等大量的硬件电路组成,产品不但体积大,运行速度慢而且测量低频信号不准确。
本次采用单片机技术设计一种数字显示的频率计,测量准确度高,响应速度快,体积小等优点。
1.2频率计发展与应用在我国,单片机已不是一个陌生的名词,它的出现是近代计算机技术的里程碑事件。
单片机作为最为典型的嵌入式系统,它的成功应用推动了嵌入式系统的发展。
单片机已成为电子系统的中最普遍的应用。
单片机作为微型计算机的一个重要分支,其应用范围很广,发展也很快,它已成为在现代电子技术、计算机应用、网络、通信、自动控制与计量测试、数据采集与信号处理等技术中日益普及的一项新兴技术,应用范围十分广泛。
其中以AT89S52为内核的单片机系列目前在世界上生产量最大,派生产品最多,基本可以满足大多数用户的需要。
2 系统总体设计2.1测频的原理测频的原理归结成一句话,就是“在单位时间内对被测信号进行计数”。
被测信号,通过输入通道的放大器放大后,进入整形器加以整形变为矩形波,并送入主门的输入端。
由晶体振荡器产生的基频,按十进制分频得出的分频脉冲,经过基选通门去触发主控电路,再通过主控电路以适当的编码逻辑便得到相应的控制指令,用以控制主门电路选通被测信号所产生的矩形波,至十进制计数电路进行直接计数和显示。
基于51单片机的频率计的设计讲解频率计是一种测量信号频率的仪器。
基于51单片机的频率计设计能够实现对不同频率信号的测量,具有简单、可靠、价格低廉的优势。
本文将详细介绍基于51单片机的频率计的设计原理、电路设计和程序设计。
设计原理:基于51单片机的频率计的设计原理主要包括输入信号的检测和计数、计数值显示和频率计算。
当外部信号输入到单片机的输入引脚时,单片机通过计数器对输入信号的波形进行计数,计数值与输入信号的频率成正比。
通过将计数值转换为频率值,并在显示屏上显示,即可实现对输入信号频率的测量。
电路设计:输入电路:输入电路主要负责将外部信号通过耦合电容和电阻接入单片机的输入引脚。
在输入电路中,耦合电容的作用是将交流信号的AC分量通过,阻隔直流信号的DC分量。
电阻的作用是限制输入信号的幅值,防止单片机输入引脚的过大电流。
计数电路:计数电路是基于51单片机的频率计的核心部分,主要由计数器和时钟发生器组成。
计数器负责对输入信号的波形进行计数,时钟发生器负责提供计数脉冲。
计数器的选择应根据所需测量范围来确定,通常使用定时器/计数器来实现。
显示电路:显示电路主要由数码管和驱动电路组成。
通过将计数值转换为对应的数字,并将数字数据发送给数码管进行显示。
驱动电路负责控制数码管的亮度和显示方式。
程序设计:输入信号的采样:在程序中,通过定时器/计数器对输入信号进行采样,采样时间根据信号频率来确定。
采样得到的数据存储在特定的寄存器中,以供后续的计数和计算。
计数器的计数:通过对输入信号进行计数,得到计数值。
计数值的大小与输入信号的周期成反比,与输入信号频率成正比。
计数器的计数方式可以是边沿计数或脉冲计数,根据实际需求选择。
频率计算和显示:通过将计数值转换为频率值,并将频率值显示在数码管上。
频率计算可以采用简单的比例关系,如频率=计数值/计数时间。
将频率值转换为对应的数字,并通过驱动电路控制数码管的显示。
总结:基于51单片机的频率计通过对输入信号进行采样、计数、计算和显示,能够实现对不同频率信号的测量。
基于单片机的简易频率计设计频率是电信号的基本参数之一,频率的测量在科学研究、工程应用、工业控制等领域具有重要价值。
单片机作为一种微型计算机,具有高性能、低功耗、易于编程等优点,因此,基于单片机的简易频率计设计具有实际的应用价值。
系统架构:基于单片机的简易频率计主要由单片机、信号源、频率计和显示模块组成。
其中,单片机是整个系统的核心,控制信号源的启动和停止,读取频率计的数据,并通过显示模块显示测量结果。
信号源:信号源是用来产生需要测量的交流信号。
一般可以使用函数发生器或信号发生器作为信号源。
频率计:频率计是用来测量交流信号的频率。
可以使用专用的频率计芯片,也可以使用单片机内部的计数器功能。
显示模块:显示模块用于显示测量结果。
可以使用LED显示屏、液晶显示屏等。
主程序:主程序主要负责控制整个系统的运行。
主程序需要初始化单片机和各个模块。
然后,主程序需要从频率计读取频率数据,并计算出频率值。
主程序需要将测量结果显示在显示模块上。
中断服务程序:中断服务程序用于处理外部中断事件,例如信号源的启动和停止。
当外部中断触发时,中断服务程序会执行相应的操作,例如启动或停止测量过程。
定时器程序:定时器程序用于控制测量周期和读取频率计数据的时间间隔。
定时器程序需要在主程序的控制下启动和停止。
测试环境:在实验室环境下进行测试,使用函数发生器作为信号源,输出不同频率的交流信号。
测试方法:将设计的频率计连接到函数发生器的输出端,启动频率计进行测量,并观察显示模块上的测量结果。
验证结果:经过测试和验证,基于单片机的简易频率计能够准确测量不同频率的交流信号,测量结果稳定可靠。
本文设计了一种基于单片机的简易频率计,该频率计具有结构简单、成本低、易于实现等优点。
通过测试和验证,该频率计能够准确测量不同频率的交流信号,具有实际的应用价值。
本设计可以为科学研究、工程应用、工业控制等领域提供一种实用的测量工具。
频率计是一种用于测量信号频率的电子仪器,被广泛应用于各种领域。
摘要在电子技术领域中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。
本文设计的测量频率计由硬件电路和软件设计两部分组成。
硬件电路以AT89S52单片机最小系统为核心,实现整个电路的测试信号控制、数据运算等功能,选用74LS160作为分频电路,并通过LCD显示模块显示测量的数据。
软件设计包括:单片机定时计数程序、LCD显示程序等。
该数字频率计可以对输入信号幅度为5V的正弦波信号、方波信号、三角波信号进行测量,测量的频率范围为1Hz--10MHz。
测量的相对误差为 1%。
本系统具有结构紧凑、体积小、可靠性高、测频范围宽、使用方便等优点。
关键字:数字频率计;信号;单片机AbstractIn the electronics field, the frequency is one of the most basic parameters, and is very closely related to many electrical parameters measurement program, measurement results, so the measurement of frequency becomes even more important. The measurement of frequency designed in this text consist of two parts: the hardware and software design .the hardware circuitry take AT89S52 microcomputer as the core, to achieve the functions of controlling of the entire circuit of the test signals, data operations and choose 74LS160 as a frequency divider circuits, and through LCD display module shows measured data. Software design includes: MCU timer counting procedures, LCD display procedures and so on. The digital frequency meter can measure amplitude sine wave signal, square wave, triangle wave signals of which input signal is 5v, the frequency measured ranges from 1Hz to10MHz. The relative measurement error is 1%. This system has the advantage of compact structure , small size, high reliability, test frequency range, and easy use. Keyword:Figure frequency meter;Signal;Single-chip目录1 绪论 (1)1.1课题背景 (1)1.2课题研究的目的和意义 (1)1.3国内外概况 (2)1.4课题的主要研究工作 (2)2 硬件电路的设计 (3)2.1系统方案选择 (3)2.2系统结构及基本设计原理 (5)2.3基本电路设计 (6)2.3.1前置整形电路 (6)2.3.2 分频电路 (7)2.3.3 选通通道 (10)2.4LCD1602在系统中的应用 (12)2.4.1 LCD1602的特点 (12)2.4.2 LCD1602的工作原理 (13)2.4.3 LCD1602与单片机的连接 (14)2.5控制核心AT89S52单片机 (14)2.5.1 AT89S52引脚功能描述 (14)2.5.2时钟振荡电路 (17)2.5.3复位及复位电路设计 (18)3 软件设计 (20)3.1主程序的设计 (20)3.2LCD1602显示子程序流程 (21)4 系统调试 (22)4.1系统的硬件调试 (22)4.2系统的软件调试 (23)4.3频率测量结果 (24)5 总结与展望 (25)5.1总结 (25)5.2展望 (25)致谢 (26)参考文献 (27)附录1 (29)附录2 (30)1 绪论1.1 课题背景数字频率计(DFM)是电子测量与仪表技术最基础的电子仪表类别之一, 数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器,而且它是数字电压表(DVM)必不可少的部件。
当今数字频率计不仅是作为电压表、计算机、天线电广播通讯设备、工艺过程自动化装置。
多种仪表仪器与家庭电器等许多电子产品中的数据信息输出显示器反映到人们眼帘。
集成数字频率计由于所用元件少、投资少,体积小,功耗低,且可靠性高,功能强,易于设计和研发,使得它具有技术上的实用性和应用的广泛性。
不论从我们用的彩色电视机、电冰箱,DVD,还有我们现在家庭常用到的数字电压表数字万用表等等都包含有频率计。
现在频率计已是向数字智能方向发展,即可以很精确的读数也精巧易于控制。
数字频率计已是现在频率计发展的方向,它不仅可以很方便的读数,而且还可以使频率的测量范围和测量准确度上都比模拟先进.而且频率计的使用已是很多的方面,数字卫星、数字通讯等高科技的领域都有应用,今天数字频率计的发展已经不仅仅是一个小电子产品的发展也是整个民族乃至整个国家的发展,所以频率计的发展是一个整体的趋势。
而从民族产业上来说,我们在这种产业中还落后于西方发达国家,这将会关系到民族产业的兴衰。
所以我们必须很重视当前的情况,学习发达国家的先进技术以发展本国的产业。
1.2 课题研究的目的和意义数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。
随着人们文化生活水平的提高,加上现在中国国力的上升,人民在不断的追求高质量生活的同时大都在密切的关注着我们的民族产业的发展前景。
而频率计的发展虽是一个极小部分但也可以反映出我国民族产业发展的现状。
我国在很多的方面都已不在是过去那个很贫穷落后的国家,但是关系着我们国计民生的民族产业的发展却是不尽人意,不能不成为今天令人注目的焦点。
本论文主要讲述了数字频率计的小集成制作。
用小集成块来实现所要测信号的频率的要求。
正是因为数字频率计的应用是如此的广泛,才使得它的作用是如此的重要,所以更应该去关注和研究。
1.3 国内外概况我国的频率计其实不是落后发达国家太多的,我国在这个领域的发展是极其迅速的,现在的技术实际已是多年来见证。
我国现阶段电子产品的市场特点,电子数字化发展很快。
在我国和发达国家的发展情况是趋于一致的,数字频率计已经应用于高科技等产品上面,可以不无夸张的说没有不包含有频率计的电子产品。
我国的CD、VCD、DVD和数字音响广播等新技术已开始大量进入市场;而在今天这些行业中都必须用到频率计。
到今天频率计已开始并正在向智能、精细方向的发展。
国外的发展比我国要早,所以在这些行业中还领先于我们,我国还是缺少开发和研发的资金投入,很多的电子企业都不太乐意去花大量的时间、资金和精力去研究和开发,这也就使得我国在这方面的人力和资金都不充足,也就无法于发达国家相比,不能够形成一个量产的效果。
从而很多的企业没有竞争力,这也和我国其他的民族产业存在相同的情况,这也正是我国在高速发展后的今天很少有自己的民族品牌的原因,所以我国应该大力的支持自己的民族品牌,不仅仅是要在资金和人才的投入,还要有具体的实际行动并起到一定的保护作用。
1.4 课题的主要研究工作数字频率计的设计与制作是一种过程,并不仅是一种产品。
它作为一种产品,可以大量生产,并且可用于许多装置中,就在今天的数字电压表和数字万用表中都有频率计的功能。
一种规格即可满足的有场合的要求的设计,往往不能做到完全满足,而且对许多用户来说其使用性能也极差。
设计过程由许多零碎资料的收集过程的组成,就像拼图游戏里的零碎图片同时把它们拼装在一起,使得它们之间即不重叠也没有间隙。
而作为一个设计者必须明白自己所要设计的是什么,是来实现一个什么样的功能,在设计过程中所要注意到的问题。
频率计是一种用十进制数字显示被测信号频率的数字测量仪器.它的基本功能是测量正弦信号、方波信号、三角波信号及其他各种单位时间内变化的物理量.本文讲述了数字频率计的整个设计过程及收获。
讲述了数字频率计的工作原理以及其各个组成部分,记述了我在整个设计过程中对各个部分的设计思路、对各部分电路设计方案的选择、元器件的筛选、以及对它们的调试、对调试结果的分析,到最后得到实验结果的方方面面。
2 硬件电路的设计2.1 系统方案选择1 方案一电路整体框架如图2.1所示。
整个系统由纯硬件构成,被测信号首先经过放大,整形电路将其转换成同频率的脉动信号,送入计数器进行计数,闸门的一个输入信号是秒脉冲发出的标准脉冲信号,秒脉冲信号源含有个高稳定的石英振荡器和一个多级分频器共同决定,然后送入显示器显示输入信号的频率。
图 2.1 方案一2. 方案二:采用频率计专用模块,即大规模集成电路将计数器、锁存器、译码、位和段驱动,量程及小数点选择等电路集成在一块芯片中,该方案在技术上是可行的,可以简化电路的设计,当对于设计要求中的某些指标,采用专用模块来完成比较困难,即扩展极为不便。
图 2.2 方案二3. 方案三:本方案采用单片机程序处理输入信号并且将结果直接送往液晶显示器显示,为了提高系统的稳定性,输入信号前进行放大整形,在通过分频电路,为了提高精度达到设计的要求,在电路中接入选择通道74ls151,然后将输出的信号送入单片机。
采用这种方法可大大提高测试频率的精度和灵活性,并且能极大的减少外部干扰,采用C语言编程设计实现的数字频率计,整个系统非常精简,而且具有灵活的现场可更改性。
但采用这种方案相对设计复杂度将会大大提高并且采用单片机系统成本也会大大提高。
图2.3 方案三综合以上:第一种方案采用纯硬件设计,具有设计复杂度小、电路简洁、功能实用且成本低廉等特点,其稳定性较好基本能满足设计要求,但是某些功能实现困难,并且难以调试。
方案二采用高集成的电子集成器件,能够很好的实现数字频率的测量,对于设计的要求可能打不到应有的要求。
方案三:用单片机实现。
目前单片机种类很多,单片机功能越来越强。
根据设计要求,选用MCS - 51系统单片机中的AT89S52 ,该芯片内含3 个16 位定时/ 计数器,能最大限度地简化频率计外围硬件。