吉林省长春市农安县第一中学七年级数学上学期期中试题(扫描版)华东师大版
- 格式:doc
- 大小:6.12 MB
- 文档页数:10
华东师大版版七年级上学期数学期中试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、﹣2022的相反数是()A.﹣B.C.﹣2022D.20222、2022年10月12日下午,“天宫课堂”第三课在中国空间站开讲,神舟十四号飞行乘组三位航天员陈冬、刘洋、蔡旭哲进行授课,央视新闻抖音号进行全程直播,某一时刻观看人数达到421.1万,421.1万用科学记数法可以表示为()A.0.4211×107B.4.211×106C.421.1×104D.4211×1033、若|x﹣2|+|2y﹣6|=0,则x+y的值为()A.9B.5C.﹣5D.﹣64、把(+5)﹣(+3)﹣(﹣1)+(﹣5)写成省略括号的和的形式是()A.﹣5﹣3+1﹣5B.5﹣3﹣1﹣5C.5+3+1﹣5D.5﹣3+1﹣5 5、若|m|=|n|,则m,n的关系是()A.m=n B.m=﹣n C.m=n或m=﹣n D.以上都不是6、有理数a,b在数轴上的对应点的位置如图所示,则下列各式成立的是()A.a+b>0B.b﹣a<0C.ab>0D.|a+b|<|a|+|b| 7、下列说法中正确的是()A.的系数是B.多项式12a2﹣7a+9的次数是3C.是一个单项式D.24abc的次数是38、一个三位数,百位数字是a,十位数字是b,个位数字为c,则这个三位数是()A.abc B.a+b+c C.100abc D.100a+10b+c 9、已知x=2023时,代数式ax3+bx﹣2的值是2,当x=﹣2023时,代数式ax3+bx+5的值等于()A.9B.5C.1D.﹣110、已知:有理数a、b、c,满足abc<0,则的值为()A.±1B.1或﹣3C.1或﹣2D.不能确定二、填空题(每小题3分,满分18分)11、计算:|3.14﹣π|=.12、有理数0.009493精确到千分位的结果为.13、关于x,y的多项式号是一个五次二项式,则m的值为.14、如果将点A向左移动2个单位长度,再向右移动7个单位长度终点表示的数是3,那么点A表示的数是.15、若(x﹣2)3=ax3+bx2+cx+d,则a﹣b+c﹣d的值为.16、如图,长方形ABCD被分成六个小的正方,已知中间一个小正方形的边长为1,其它正方形的边长分别为a、b、c、d.观察图形并探索:(1)b=,d=;(用含a的代数式表示)(2)长方形ABCD的面积为.三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(1);(2);18、先化简,再求值:2(3a2b﹣ab2)﹣3(2a2b+1)﹣3ab2+3,其中a=﹣8,b=.19、若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)求代数式2022(a+b)﹣2cd+3m的值.(2)若多项式x2+3kxy+y2+(a+b)xy﹣m﹣cdxy中不含xy项,求k的值.20、有理数a,b,c在数轴上的位置如图所示,且|a|=|b|.(1)用“>”“<”或“=”填空:b0,a+b0,a﹣c0,b﹣c0;(2)化简:|a﹣b|+|b+c|﹣|a|.21、某自行车厂本周计划每天生产200俩自行车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增长值如下:星期一二三四五六日增长值﹣5+7﹣3+4+10﹣9﹣25根据上面的记录,回答下列问题.(1)哪几天生产的自行车比计划量多?(2)星期几生产的自行车最多,是多少辆?星期几生产的自行车最少,是多少辆?(3)本周是否能按计划完成任务?22、观察下列等式,,,将以上三个等式两边分别相加得.(1)猜想并写出=.(2)直接写出下列各式的计算结果=;(3)计算.23、从2016年12月1日起某市区居民生活用水开始实行阶梯式计量水价,据了解,此次实行的阶梯式计量水价分为三级(如下表所示):月用水量水价(元/吨)第1级20吨以下(含20吨) 1.9第2级20吨﹣30吨(含30吨) 2.9第3级30吨以上 5.9例:若某用户7月份的用水量为35吨,按三级计算则应交水费为:20×1.9+10×2.9+(35﹣20﹣10)×5.9=96.5(元).(1)如果小红家12月份的用水量为12吨,则需缴交水费元;(2)如果小丽家12月份的用水量为27吨,求小丽家该月需缴交水费多少元?(3)如果小明家12月份的用水量为a吨(a>30),求小明家该月应缴交水费多少元?(用含a的代数式表示,并化简)(4)如果某月缴交水费126元,则该月的用水量为吨.24、学习了数轴与绝对值知识后,我们知道:数轴上表示数m与数n的两点之间的距离为|m﹣n|.例如:数轴上表示5和1的两点之间的距离是|5﹣1|=4.利用以上信息,解答下列问题.(1)数轴上表示﹣4和3的两点之间的距离是;表示数a和﹣1的两点之间的距离是.(2)|a+2|表示数轴上,若|a+2|=4,则a =.(3)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|=.(4)若|a+4|+|a﹣2|=10,求a的值.25、如图,P是线段AB上不同于点A,B的一点,AB=18cm,C,D两动点分别从点P,B同时出发在线段AB上向左运动(无论谁先到达A点,均停止运动),点C的运动速度为1cm/s,点D的运动速度为2cm/s.(1)若AP=PB,①当动点C,D运动了2s时,AC+PD=cm;②当C,D两点间的距离为5cm时,则运动的时间为s;(2)当点C,D在运动时,总有PD=2AC,①求AP的长度;②若在直线AB上存在一点Q,使AQ﹣BQ=PQ,求PQ的长度.。
2019-2020 年七年级数学上学期期中质量检测试题华东师大版一、 心 一 ,慧眼 金!( 四个 中只有一个答案是正确。
每小2 分,共20 分)1、3 的相反数是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A . 3B .-1C .- 3D .1332、如果 定收入 “ +”,那么— 50 元表示⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A .收入 50 元B .收入 100 元C .没有收入也没有支出D.支出 50 元3 、下列 各数 | - 2| ,-(- 2)2,-(- 2),(- 2)3 中 , 数的个数有⋯⋯⋯⋯ () A 、 1 个 B 、 2 个C 、 3 个D、 4 个4、下列运算正确 的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ()..A 、 2÷ 8× 1 =2÷( 8× 1)B、6÷( 1+ 1) =6÷ 1+ 6÷1882 323C 、(- 8)×(- 5)× 0=40D、(- 2)× 1×(- 5) =525、 不大于 3 的整数的个数是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯() A 、 5B、 6C 、7D 、86. 我校七年 有学生 x 人,其中女生占45%,那么 男生人数是⋯⋯⋯⋯⋯⋯()A 、 45%xB 、 xC、( 1- 45%) xD、x45%1 45%7、如果22 a 2bc n 是 7 次 式, n 的 是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A 、 4 B、 3 C 、 2 D 、 5近似数 2.60所表示的精确 x 的取 范 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A 、2 . 600x 2 . 605 B 、2 . 595x 2 . 605C 、 2 . 595x2 . 605D 、 2 . 50x2 . 709、若代数式 2 a 2 a3 的 5, 代数式 4a 22a6 的 ⋯⋯⋯()A 、 -22B 、 10C 、-10D 、 2 210、小敏同学利用 算机 了一个 算程序, 入和 出的数据如下表:当 入数据是 8, 出的数据是()入 12345⋯⋯出12 3 45⋯⋯25101726A .8B .8C.8D.861636567耐心填一填,你一定能行(每格1 分,共 24 分).19911、化 或 算:5 = , =, (— 2) +3 = ________。
七年级第一学期期中测试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列说法正确的是( )A.两个有理数的差一定小于被减数B.两个有理数的和一定比这两个有理数的差大C.减去一个负数,差一定大于被减数D.减去一个正数,差一定大于被减数2. 已知3y 2-2y +6的值为8,那么6y 2-4y +1的值为( )A.3B.4C.5D.63. “天上星星有几颗,7后跟上22个0”这是国际天文学联合大会上宣布的消息,用科学记数法表示宇宙空间星星颗数为( )A.2070010⨯B.23710⨯C.230.710⨯D.22710⨯4.已知a=-(-2)2,b=-(-3)3, c=-(-42),则―[a ―(b ―c)]的值为( )A .31 B.-15 C.15 D.-315. 下列说法:①x 的系数是1,次数是0;②式子-0.3a 2,5x 2y 2,-5,m 都是单项式;③单项式-7x 2y 2z的系数是-7,次数是4;④-3лa 5的系数是-3л其中正确的是( )A .①和② B.③和④ C.①和③ D.②和④6. 已知多项式A =x 2+2y 2-z 2 , B =-4x 2+3y 2-2z 2 ,且A +B +C =0,则C 为( )A.5x 2-y 2-z 2B.3 x 2-5y 2-z 2C. 3x 2-y 2-3z 2D. 3x 2-5y 2+3z 27. 绝对值大于3而不大于6的整数有( )A .3 B.4 C.6 D.多于6个8. 如图所示,根据有理数a 、b 、c 在数轴上的位置,下列关系正确的是( )A.B. C.D.9. 已知4a 5b 2和-5a 3n b 2是同类项,则代数式12n-24的值是( ) A .-3 B .-4 C .-5 D .-610. 已知4个矿泉水瓶可以换矿泉水一瓶,现有15个空瓶,若不交钱,最多可以喝( )瓶。
一、选择题1.点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且 32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、 2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004- 2.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( )A .2n n xB .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- 3.已知 2x 6y 2和﹣3x 3m y n 是同类项,则9m 2﹣5mn ﹣17的值是( ) A .﹣1B .﹣2C .﹣3D .﹣4 4.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数C .a 的平方与b 的差的倒数D .a 的平方与b 的倒数的差 5.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a + 6.长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( ) A .3a B .6a +b C .6a D .10a -b 7.按如图所示的运算程序,能使输出的结果为12的是( )A .x=-4,y=-2B .x=3, y=3C .x=2,y=4D .x=4,y=0 8.若21(3)0a b -++=,则b a -=( )A .-412B .-212C .-4D .19.计算4(8)(4)(1)+-÷---的结果是( )A .2B .3C .7 D.43 10.用计算器求243,第三个键应按( )A .4B .3C .y xD .=11.一个数的绝对值是3,则这个数可以是( )A .3B .3-C .3或者3-D .1312.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a+b <0B .a+b >0C .a ﹣b <0D .ab >0二、填空题13.在一列数a 1,a 2,a 3,a 4,…a n 中,已知a 1=2,a 2111a =-,a 3211a =-,a 4311a =-,…a n n 111a -=-,则a 2020=___. 14.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________. 15.多项式234324x x x -+-按x 的降幂排列为______. 16.关于a ,b 的多项式-7ab-5a 4b+2ab 3+9为______次_______项式.其次数最高项的系数是__________.17.等边三角形ABC (三条边都相等的三角形是等边三角形)在数轴上的位置如图所示,点A ,B 对应的数分别为0和1-,若ABC 绕着顶点顺时针方向在数轴上翻转1次后,点C 所对应的数为1,则再翻转3次后,点C 所对应的数是________.18.在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________. 19.A ,B ,C 三地的海拔高度分别是50-米,70-米,20米,则最高点比最低点高______米.20.已知2x =,3y =,且x y <,则34x y -的值为_______.三、解答题21.计算:(1)4222(37)2(1)-+--⨯-; (2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭. 22.计算:(1)152|18|()263-⨯-+; (2)20203221124(2)3()3-+÷--⨯. 23.计算:(1)2×(-3)3-4×(-3)(2)-22÷(12-13)×(-58) 24.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A ,B 是数轴上的点,请参照下图并思考,完成下列各题.(1)如果点A 表示数-3,将A 点向右移动7个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离为 .(2)如果点A 表示数3,将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离为 .(3)如果点A 表示数4-,将A 点向右移动168个单位长度,再向左移动256个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离是 .(4)一般地,如果A 点表示数为m ,将A 点向右移动n 个单位长度,再向左移动P 个单位长度,那么,请你猜想终点B 表示什么数?A ,B 两点间的距离为多少?25.先化简,再求值: ()()()()24222x x y x y x y x y -++---,其中2x =-, 12y . 26.若单项式21425m n x y +--与413n m x y +是同类项,求这两个单项式的积【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先找到特殊点,根据特殊点的下标与数值的关系找到规律,数较大时,利用规律解答.【详解】解:根据题意分析可得:点A₁, A₂,A₃, .. A n 表示的数为-1,1,-2,2,-3,3,...依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧,且为下标加1除以2的相反数;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2;即:当n 为奇数时,n 1A 2n +=-, 当n 为偶数时,2n n A = 所以点A 2008表示的数为: 2008÷2= 1004A 2009表示的数为:- (2009+1) ÷2=-1005故选: C .【点睛】本题考查探索与表达规律.这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后找到规律.2.B解析:B【分析】要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n .【详解】因为第一个单项式是1112(1)2x x -=-⨯;第二个单项式是222222(1)2x x =-⨯;第三个单项式是333332(1)2x x -=-⨯,…,所以第n 个单项式是(1)2n n n x -.故选:B .【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键. 3.A解析:A【分析】根据同类项是字母相同且相同字母的指数也相同,可得m ,n 的值,根据代数式求值,可得答案.【详解】由题意,得3m =6,n =2.解得m =2,n =2.9m 2﹣5mn ﹣17=9×4﹣5×2×2﹣17=﹣1,故选:A .【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.4.D解析:D【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【详解】解:代数式21ab的正确解释是a的平方与b的倒数的差.故选:D.【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.5.A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a元.故选A.【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.6.C解析:C【解析】【分析】根据长方形的周长公式列出算式后化简合并即可.【详解】∵长方形一边长为2a+b,另一边为a-b,∴长方形周长为:2(2a+b+a-b)=6a.故选C.【点睛】本题考查了整式的加减的应用,根据长方形的周长公式列出算式是解决问题的关键.7.C解析:C【分析】根据y的正负然后代入两个式子内分别求解,看清条件逐一排除即可.【详解】当x=-4,y=-2时,-2<0,故代入x2-2y,结果得20,故不选A;当x=3,y=3时,3>0,故代入x2+2y,结果得15,故不选B;当x=2,y=4时,4>0,故代入x2+2y,结果得12,C正确;≥,故代入x2+2y,结果得16,故不选D;当x=4,y=0时,00故选C.【点睛】此题考查了整式的运算,重点是看清楚程序图中的条件,分别代入两个条件式中进行求解.8.C解析:C【解析】【分析】根据非负数的性质可得a-1=0,b+3=0,求出a、b后代入式子进行计算即可得.【详解】由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.9.C解析:C【分析】先计算除法、将减法转化为加法,再计算加法可得答案.【详解】=++解:原式421=,7故选:C.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.10.C解析:C【解析】用计算器求243,按键顺序为2、4、y x、3、=.故选C.点睛:本题考查了熟练应用计算器的能力,解题关键是熟悉不同的按键功能.11.C解析:C【解析】试题∵一个数的绝对值是3,可设这个数位a ,∴|a|=3,∴a=±3故选C .12.A解析:A【分析】根据数轴判断出a 、b 的符号和取值范围,逐项判断即可.【详解】解:从图上可以看出,b <﹣1<0,0<a <1,∴a+b <0,故选项A 符合题意,选项B 不合题意;a ﹣b >0,故选项C 不合题意;ab <0,故选项D 不合题意.故选:A .【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a 、b 的符号,熟知有理数的运算法则是解题关键.二、填空题13.【分析】首先分别求出n=234…时的情况观察它是否具有规律再把2020代入求解即可【详解】∵a1=2∴a21;a3;a42;…发现规律:每3个数一个循环所以2020÷3=673…1则a2020=a1解析:【分析】首先分别求出n=2、3、4…时的情况,观察它是否具有规律,再把2020代入求解即可.【详解】∵a 1=2,∴a 2111a ==--1;a 32111a 2==-;a 4311a ==-2;…, 发现规律:每3个数一个循环,所以2020÷3=673…1,则a 2020=a 1=2.故答案为:2.【点睛】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.14.【分析】直接利用二次三项式的次数与项数的定义得出m 的值【详解】∵多项式是关于x 的二次三项式∴且∴故答案为:【点睛】本题主要考查了多项式正确利用多项式次数与系数的定义得出m 的值是解题关键解析:2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值.【详解】∵多项式||1(2)32m x m x --+是关于x 的二次三项式, ∴||2m =,且()20m --≠, ∴2m =-.故答案为:2-.【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键. 15.【分析】先分清多项式的各项然后按多项式降幂排列的定义排列【详解】多项式的各项是3x2−2x3−4x4按x 降幂排列为故答案为:【点睛】本题考查了多项式我们把一个多项式的各项按照某个字母的指数从大到小或解析:432432x x x -++-【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列.【详解】多项式234324x x x -+-的各项是3x 2,−2,x 3,−4x 4,按x 降幂排列为432432x x x -++-.故答案为:432432x x x -++-.【点睛】本题考查了多项式.我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.16.五四-5【分析】多项式共有四项其最高次项的次数为5次系数为-5由此可以确定多项式的项数次数及次数最高项的系数【详解】∵该多项式共有四项其最高次项是为5次∴该多项式为五次四项式∵次数最高项为∴它的系数 解析:五 四 -5【分析】多项式共有四项437,5,2,9ab a b ab --,其最高次项45a b -的次数为5次,系数为-5,由此可以确定多项式的项数、次数及次数最高项的系数.【详解】∵该多项式共有四项43--,其最高次项是4ab a b ab7,5,2,9-,为5次5a b∴该多项式为五次四项式∵次数最高项为4-5a b∴它的系数为-5故填:五,四,-5.【点睛】本题考查了多项式的项数,次数和系数的求解.多项式中含有单项式的个数即为多项式的项数,包含的单项式中未知数的次数总和的最大值即为多项式的次数.17.4【分析】结合数轴不难发现每3次翻转为一个循环组依次循环然后进行计算即可得解【详解】根据题意可知每3次翻转为一个循环∴再翻转3次后点C 在数轴上∴点C对应的数是故答案为:4【点睛】本题考查了数轴及数的解析:4【分析】结合数轴不难发现,每3次翻转为一个循环组依次循环,然后进行计算即可得解.【详解】根据题意可知每3次翻转为一个循环,∴再翻转3次后,点C在数轴上,+⨯=.∴点C对应的数是1134故答案为:4.【点睛】本题考查了数轴及数的变化规律,根据翻转的变化规律确定出每3次翻转为一个循环组依次循环是解题的关键.18.-5【分析】所给的五个数中最大的数是5绝对值最小的负数是-1所以取两个相除其中商最小的是:5÷(-1)=-5【详解】∵-3<-1<0<2<5所给的五个数中最大的数是5绝对值最小的负数是-1∴任取两个解析:-5【分析】所给的五个数中,最大的数是5,绝对值最小的负数是-1,所以取两个相除,其中商最小的是:5÷(-1)=-5.【详解】∵-3<-1<0<2<5,所给的五个数中,最大的数是5,绝对值最小的负数是-1,∴任取两个相除,其中商最小的是:5÷(-1)=-5,故答案为:-5.【点睛】本题主要考查有理数的大小比较和有理数除法,解决本题的关键是要熟练掌握有理数大小比较和有理数除法法则.19.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【 解析:90【分析】先根据有理数的大小比较法则得出最高点和最低点,再列出运算式子,计算有理数的减法即可得.【详解】因为205070>->-,所以最高点的海拔高度为20米,最低点的海拔高度70-米,则20(70)207090--=+=(米),即最高点比最低点高90米,故答案为:90.【点睛】本题考查了有理数的大小比较法则、有理数减法的实际应用,依据题意,正确列出运算式子是解题关键.20.-6或-18【分析】先依据绝对值的性质求得xy 的值然后再代入计算即可【详解】解:∵∴∵∴当x=2y=3时;当x=-2y=3时故答案为:-6或-18【点睛】此题考查了有理数的混合运算以及绝对值熟练掌握解析:-6或-18【分析】先依据绝对值的性质求得x 、y 的值,然后再代入计算即可.【详解】解:∵2x =,3y =,∴2x =±,3=±y .∵x y <,∴2x =±,3y =,当x=2,y=3时,346x y -=-;当x=-2,y=3时,3418x y -=-.故答案为:-6或-18.【点睛】此题考查了有理数的混合运算以及绝对值,熟练掌握绝对值的代数意义是解本题的关键.三、解答题21.(1)-2;(2)-19【分析】(1)先括号里,再计算乘方、乘法,最后相加减即可;(2)利用乘法的分配率进行计算.(1)4222(37)2(1)-+--⨯-=16162-+-=-2;(2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭=157(36)(36)(36)2912⨯--⨯-+⨯- =-18+20-21=-19【点睛】 考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.22.(1)6;(2)-5【分析】(1)先去掉绝对值,然后根据乘法分配律即可解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)152|18|()263-⨯-+ =18×(12﹣56+23) =18×12﹣18×56+18×23=9﹣15+12=6;(2)20203221124(2)3()3-+÷--⨯ =﹣1+24÷(﹣8)﹣9×19=﹣1+(﹣3)﹣1=﹣5.【点睛】 此题主要考查有理数的混合运算,熟练掌握混合运算顺序是解题关键.23.(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.(1)原式 =2(27)12⨯-+ =-54+12= 42-.(2)原式 =15 4()68 -÷⨯-=5 468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.24.(1)4,7;(2) 1,2;(3) -92,88;(4)m+n-p,|n-p|【分析】(1)根据数轴上的点向右平移加,向左平移减,可得B点表示的数为-3+7=4,根据数轴上两点间的距离是大数减小数,可得答案;(2)根据数轴上的点向右平移加,向左平移减,可得B点表示的数3-7+5=1,根据数轴上两点间的距离是大数减小数,可得答案;(3)根据数轴上的点向右平移加,向左平移减,可得B点表示的数-4+168-256=-92,根据数轴上两点间的距离是大数减小数,可得答案;(4)按照(1)(2)(3)中的方法讨论更加一般的情况即可求解.【详解】解:(1)∵点A表示数-3,∴将A点向右移动7个单位长度,那么终点B表示的数是-3+7=4,A,B两点间的距离为4-(-3)=7,故答案为:4,7;(2)∵点A表示数3,∴将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是3-7+5=1,A,B两点间的距离为3-1=2,故答案为:1,2;(3)∵点A表示数-4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是-4+168-256=-92,A,B两点间的距离是-4-(-92)=88,故答案为:-92,88;(4)∵A点表示的数为m,∴将A点向右移动n个单位长度,再向左移动p个单位长度,那么点B表示的数为m+n-p,A,B两点间的距离为|m-(m+n-p)|=|n-p|.故答案为:m+n-p,|n-p|.【点睛】本题考查的是数轴上点的平移规律及数轴上两点之间的距离公式,点在数轴上平移遵循“左减右加”原则;注意数轴上两点之间的距离为大数减小数,当不确定谁大谁小时记得加绝对值符号;正确利用数形结合分析是解题关键.25.1 3 2试题分析:原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.试题原式222222244442x xy x y x xy y x y =-+--+-=-,当12,2x y =-=-时,原式174.22=-= 26.10453x y - 【分析】根据题意,可得到关于m ,n 的二元一次方程组,求出m ,n 的值,即可求得答案.【详解】∵单项式21425m n x y +--与413n m x y +是同类项, ∴21442m n n m +=+⎧⎨-=⎩, 解得21m n =⎧⎨=⎩, ∴21425252441011355533n m m n x y x y x y x y x y ++--⋅-⋅=-= 【点睛】本题主要考查同类项的定义和单项式乘单项式的法则,根据同类项的定义,列出关于m ,n 的二元一次方程组,是解题的关键.。