最新数学苏科版初中八年级上册平行四边形精选习题
- 格式:doc
- 大小:64.00 KB
- 文档页数:3
3.4 平行四边形(1)备课时间:11月1日 上课时间:11月 日 主备人:蔡 伟【学习目标】1.经历探索平行四边形的有关概念和特征的过程2.探索平行四边形对边相等,对角相等以及对角线互相平分的特征【学习重、难点】探索和掌握平行四边形的特征【学习过程】一、 自主学习1、 的四边形是平行四边形。
二、 合作探究2、操作:BO 是的△ABC 边AC 上的中线,画出△ABC 关于点O 对称的图形。
注:把点B 关于O 的对称点记为D 。
A BC讨论:在上图中,AB与DC,AD与BC平行吗?为什么?3、因为平行四边形是中心对称图形,对角线的交点是它的对称中心,所以ABCD绕点O旋转180°后,请回答下列问题:①AB、BC分别旋转到什么位置?②∠BAD、∠ABC分别旋转到什么位置?③猜想:对角线AC与BD有什么性质?小结:平行四边形的特征:平行四边形是一个对称图形;平行四边形的两组对边;两组对角。
平行四边形的的对角线。
三、达标反馈1、在ABCD中,如果∠A=60°,那么∠B= °,∠C= °,∠D= °2、如果ABCD的周长为32cm,且AB=5cm,那么BC= cm,CD= cm,DA= cm3、已知平行四边形相邻两角的度数比为2:3,则较大的角为()A.72°B.90°C.108°D.126°4、在平行四边形中,对角线AC、BD相交于O,则AD长度x的取值范围是()A.2<<6B.3<x<9C.1<x<9D.2<x<85、如图,ABCD中,BE平分∠ABC且交边AD于点E,如果AB=6cm,BC=10cm,试求:⑴ABCD的周长;⑵线段DE的长度。
EC DBA四、 课后学习6、如图,□ABCD 中,E 、F 分别是BC 和AD 边上的点,且BE=DF ,请说明AE 与CF 的关系,并说明理由。
【学习反思】考点综合专题:一元二次方程与其他知识的综合◆类型一 一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x 2-4x +3=0的根,则该三角形的周长可以是( )A .5B .7C .5或7D .102.(广安中考)一个等腰三角形的两条边长分别是方程x 2-7x +10=D0的根,则该等腰三角形的周长是()A.12 B.9C.13 D.12或93.(罗田县期中)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x 的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x+15=0的根,则△ABC的周长是.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k -1)x+k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m+1)x+m-1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限10.(葫芦岛中考)已知k、b是一元二次方程(2x+1)(3x-1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y=(5-m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是.12.(甘孜州中考)若函数y =-kx +2k +2与y =k x(k ≠0)的图象有两个不同的交点,则k 的取值范围是 . .◆类型三 一元二次方程与二次根式的综合13.(达州中考)方程(m -2)x 2-3-mx +14=0有两个实数根,则m 的取值范围为( )A .m >52B .m ≤52且m ≠2 C .m ≥3 D .m ≤3且m ≠214.(包头中考)已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k 的取值范围是 .考点综合专题:一元二次方程与其他知识的综合1.B 2.A 3.A 4.B 5.86.16 解析:设矩形的长和宽分别为x 、y ,根据题意得x +y =8,所以矩形的周长为2(x +y)=16.7.解:∵一元二次方程x 2+(2k -1)x +k 2+3=0有两个不相等的实数根,∴Δ>0,∴(2k -1)2-4(k 2+3)>0,即-4k -11>0,∴k<-114,令其两根分别为x 1,x 2,则有x 1+x 2=1-2k ,x 1·x 2=k 2+3,∵此方程的两个根分别是一直角三角形的两条直角边,且此直角三角形的斜边长为5,∴x21+x22=52,∴(x1+x2)2-2x1·x2=25,∴(1-2k)2-2(k2+3)=25,∴k2-2k-15=0,∴k1=5,k2=-3,∵k<-114,∴k=-3, ∴把k=-3代入原方程得到x2-7x+12=0,解得x1=3,x2=4,∴直角三角形的两直角边分别为3和4.8.B9.D 解析:∵一元二次方程x2-2x-m=0无实数根,∴Δ<0,∴Δ=4-4×1×(-m)=4+4m<0,∴m<-1,∴m+1<1-1,即m+1<0,m-1<-1-1,即m-1<-2,∴一次函数y=(m+1)x+m-1的图象不经过第一象限.故选D.10.B 11.-2 12.k>-12且k≠013.B 14.k≥1。
一、选择题1.如图,菱形ABCD 中,50A ∠=︒,则ADB ∠的度数为( )A .65︒B .55︒C .45︒D .25︒2.如图,在平行四边形ABCD 中,DE 平分,6,2ADC AD BE ∠==,则平行四边形ABCD 的周长是( )A .16B .18C .20D .243.图1中甲、乙两种图形可以无缝隙拼接成图2中的正方形ABCD .已知图甲中,45F ∠=︒,15H ∠=︒,图乙中 2MN =,则图2中正方形的对角线AC 长为( )A .22B .23C .231+D .232+ 4.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为4,120B ∠=︒,则EF 的值是( )A 3B .2C .23D .45.如图,把长方形纸片ABCD 沿对角线折叠,设重叠部分为EBD △.下列说法错误的是( )A .AE CE =B .12AE BE =C .EBD EDB ∠=∠ D .△ABE ≌△CDE 6.如图,在平行四边形ABCD 中,90B ∠<︒,BC AB >.作AE BC ⊥于点E ,AF CD ⊥于点F ,记EAF ∠的度数为α,AE a =,AF b =.则以下选项错误的是( )A .::a b CD BC =B .D ∠的度数为αC .若60α=︒,则四边形AECF 的面积为平行四边形ABCD 面积的一半D .若60α=︒,则平行四边形ABCD 的周长为()433a b + 7.顺次连接菱形四边中点得到的四边形一定是( ) A .矩形 B .平行四边形 C .菱形 D .正方形8.如图,在ABC 中,90A ∠=,D 是AB 的中点,过点D 作BC 的平行线,交AC 于点E ,作BC 的垂线交BC 于点F ,若AB CE =,且DFE △的面积为1,则BC 的长为( )A .25B .5C .45D .109.如图,己知四边形ABCD 是平行四边形,下列说法正确..的是( )A .若AB AD =,则平行四边形ABCD 是矩形B .若AB AD =,则平行四边形ABCD 是正方形C .若AB BC ⊥,则平行四边形ABCD 是矩形D .若AC BD ⊥,则平行四边形ABCD 是正方形10.下列命题中,正确的命题是( )A .菱形的对角线互相平分且相等B .顺次联结菱形各边的中点所得的四边形是矩形C .矩形的对角线互相垂直平分D .顺次连结矩形各边的中点所得的四边形是正方形11.如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,则重叠部分(即BDE )的面积为( )A .6B .7.5C .10D .2012.如图,把一张长方形纸片沿对角线折叠,若△EDF 是等腰三角形,则∠BDC ( )A .45ºB .60ºC .67.5ºD .75º13.如图,已知在正方形ABCD 中,E 是BC 上一点,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于点G ,连接DG .现有如下4个结论:①AG =GF ;②AG 与EC 一定不相等;③45GDE ∠=︒;④BGE △的周长是一个定值.其中正确的个数为( )A .1B .2C .3D .414.如图,Rt Rt ABC BAD △≌△,BC 、AD 交于点E ,M 为斜边的中点,若CMD α∠=,AEB β∠=.则α和β之间的数量关系为( )A .2180βα-=︒B .60βα-=︒C .180αβ+=︒D .2βα= 15.在Rt △ABC 中,∠C =90°,点P 在边AB 上.BC =6, AC =8, ( ) A .若∠ACP=45°, 则CP=5B .若∠ACP=∠B ,则CP=5C .若∠ACP=45°,则CP=245D .若∠ACP=∠B ,则CP=245二、填空题16.如图,在平行四边形ABCD 中,10,AB BAD =∠的平分线与BC 的延长线交于点E 、与DC 交于点F ,且点F 为边DC 的中点,ADC ∠的平分线交AB 于点M ,交AE 于点N ,连接DE .若6DM =,则DE 的长为_______.17.如图,在ABC 中,10AB AC ==,D 为CA 延长线上一点,DE BC ⊥交AB 于点F .若F 为AB 中点,且12BC =,则DF =__________.18.如图,在Rt ABC △中,90ACB ∠=︒,6AC =,8BC =,点E 、F 分别在AC 、BC 上,将CEF △沿EF 翻折,使C 与AB 的中点M 重合,则CF 的长为______.19.如图,,E F 分别是ABCD 的边,AD BC 上的点.8,60,EF DEF =∠=︒将EFCD 四边形沿EF 翻折,得到四边形',EFCD ED '交BC 于点,G 则GEF △的周长为________.20.如图,将ABCD 沿对角线AC 进行折叠,折叠后点D 落在点F 处,AF 交BC 于点E ,有下列结论:①ABF CFB ≌;②AE CE =;③//BF AC ;④BE CE =,其中正确结论的是__________.21.如图,在四边形ABCD 中,AC a =,BD b =,且AC BD ⊥顺次连接四边形ABCD 各边的中点,得到四边形1111D C B A ,再顺次连接四边形1111D C B A 各边中点,得到四边形2222A B C D …如此进行下去,得到四边形n n n n A B C D ,下列结论正确的有__________.①四边形2222A B C D 是矩形;②四边形4444A B C D 是菱形;③四边形5555A B C D 的周长是4a b +.22.如图,正方形ABCD 中,5AD =,点E 、F 是正方形ABCD 内的两点,且4AE FC ==,3BE DF ==,则EF 的平方为________.23.如图,在矩形ABCD 中,AB =3,BC =4,点M 为AD 的中点,点N 为AB 上一点,连接MN ,CN ,将△AMN 沿直线MN 折叠后,点A 恰好落在CN 上的点P 处,则CN 的长为_____.24.如图,将两个边长为1的小正方形,沿对角线剪开,重新拼成一个大正方形,则大正方形的边长是______.25.如图,以Rt ABC 的斜边BC 为边,向外作正方形BCDE ,设正方形的对角线BD 与CE 的交点为O ,连接AO ,若3AC =,6AO =,则AB 的值是__________.26.如图,已知正方形ABCD 的边长为2,延长BC 至E 点,使CE BC =,连结AE 交CD 于点F ,连结BF 并延长与线段DE 交于点G ,则FG 的长是____.三、解答题27.如图,四边形ABCD 是矩形,对角线AC 与BD 相交于点O ,∠AOD =60°,AD =2,求AC 的长度.28.用总长度为4a 的铁丝可围成一个长方形或正方形,小东同学认为围成一个正方形的面积较大.小东同学的看法对不对?请你用数学知识进行说理.29.已知,如图,在等腰直角三角形ABC 中,90C ∠=︒,D 是AB 的中点,点E ,F 分别是AC ,BC 上的动点,且始终满足CE BF =,(1)证明:DE DF =;(2)求EDF ∠的大小;(3)写出四边形ECFD 的面积与三角形ABC 的面积的关系式,并说明理由.30.在ABC 中,23,AB CD AB =⊥于点,2D CD =.(1)如图1,当点D 是线段AB 的中点时,①AC 的长为________;②延长AC 至点E ,使得CE AC =,此时CE 与CB 的数量关系是_______,BCE ∠与A ∠的数量关系是_______;(2)如图2,当点D 不是线段AB 的中点时,画BCE ∠(点E 与点D 在直线BC 的异侧),使2BCE ∠=,A CE CB ∠=,连接AE . ①按要求补全图形;②求AE 的长.。
数学八年级平行四边形对角线平分线练习题问题一:已知平行四边形ABCD,对角线AC与BD相交于点O。
证明AO平分BD。
解题思路:根据平行四边形的性质,有AB ∥ CD 且 AD ∥ BC。
由于ABCD是平行四边形,所以它的对边相等,即AB = CD 且AD = BC。
由于AB ∥ CD且AD ∥ BC,根据平行线截割定理,可以得出三个相似三角形:ΔABO ∼ ΔCDO,ΔADO ∼ ΔBCO,以及ΔAOD ∼ ΔBOD。
由ΔABO和ΔCDO的相似关系,可知AO/CO = BO/DO,即AO/BD = 1/2。
证毕。
问题二:在平行四边形ABCD中,已知AO平分BD,证明AC平分BO。
解题思路:根据问题一的证明过程,已知AO平分BD,即AO/BD = 1/2。
由平行四边形的性质可知,AB ∥ CD 且 AD ∥ BC。
根据平行四边形的性质,若AO平分BD,则CO平分AD。
由于平行四边形的对角线互相平分,可以得出三个相似三角形:ΔACO ∼ ΔBDO,ΔADO ∼ ΔBCO,以及ΔAOD ∼ ΔBOD。
由ΔACO和ΔBDO的相似关系,可知AC/BD = CO/DO = 1/2。
证毕。
问题三:在平行四边形ABCD中,已知AO平分BD,AC平分BO,证明OD平分BC。
解题思路:根据问题二的证明过程,已知AO平分BD且AC平分BO。
由问题二的证明过程可知,AD ∥ BC,并且AD = BC。
根据平行四边形的性质,若AC平分BO,则CO平分AD。
将平行四边形ABCD绘制于坐标系中,假设B和C分别位于坐标轴x轴的正半轴和负半轴上,点D位于y轴的正半轴上。
设点A的坐标为(-a, 0)。
由于AO平分BD,可得到点O的坐标为(-a/2, 0)。
根据AC平分BO,以及点O的坐标,可得到点C的坐标为(-a/2, a/2)。
因此,点C的坐标为(-a/2, a/2)。
根据点C的坐标,可以得到OD的斜率为-1。
根据点O的坐标,可以得到OD经过点O。
一、选择题1.如图,Rt ABC ∆中,90BAC AB AC AD BC ︒∠==⊥,,于点D ABC ∠,的平分线分别交AC AD 、于E F 、两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连DM ,下列结论:①DF DN =; ②DMN ∆为等腰三角形;③DM 平分BMN ∠;④AE NC =,其中正确结论的个数是( )A .1个B .2个C .3个D .4个D解析:D【分析】 求出BD AD =,DBF DAN ∠=∠,BDF ADN ∠=∠,证明()FBD NAD ASA ≅即可判断①,证明()AFB CNA ASA ≅,推出CN AF AE ==即可判断④,证明()ABM NBM ASA ≅,得AM MN =,由直角三角形斜边的中线的性质推出AM DM MN ==,ADM ABM ∠=∠,即可判断③,根据三角形外角性质求出DNM ∠,证明MDN DNM ∠=∠,即可判断②.【详解】解:∵90BAC ∠=︒,AB AC =,AD BC ⊥,∴45ABC C ∠=∠=︒,AD BD CD ==,90ADN ADB ∠=∠=︒,∴45BAD CAD ∠=︒=∠,∵BE 平分ABC ∠, ∴122.52ABE CBE ABC ∠=∠=∠=︒, ∴9022.567.5BFD AEB ∠=∠=︒-︒=︒,∴67.5AFE BFD AEB ∠=∠=∠=︒,∴AF AE =,AM BE ⊥,∴90AMF AME ∠=∠=︒,∴9067.522.5DAN MBN ∠=︒-︒=︒=∠,在FBD 和NAD 中,FBD DAN BD ADBDF ADN ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()FBD NAD ASA ≅,∴DF DN =,故①正确;在AFB △和CNA 中,4522.5BAF C AB ACABF CAN ∠=∠=︒⎧⎪=⎨⎪∠=∠=︒⎩, ∴()AFB CNA ASA ≅,∴AF CN =,∵AF AE =,∴AE CN =,故④正确;在ABM 和NBM 中,90ABM NBM BM BMAMB NMB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴()ABM NBM ASA ≅,∴AM MN =,在Rt ADN △中,AM DM MN ==,∴22.5DAN ADM ABM ∠=∠=︒=∠,∴22.522.545DMN DAN ADM ∠=∠+∠=︒+︒=︒,∴DM 平分BMN ∠,故③正确;∵4522.567.5DNA C CAN ∠=∠+∠=︒+︒=︒,∴1804567.567.5MDN DNM ∠=︒-︒-︒=︒=∠,∴DM MN =,∴DMN 是等腰三角形,故②正确.故选:D .【点睛】 本题考查了全等三角形的性质与判断,三角形外角性质,三角形内角和定理,直角三角形斜边上中线的性质,等腰三角形的性质和判定,解题的关键是熟练掌握这些性质定理进行证明求解.2.如图,正方形ABCD 中,6AB =,点E 在边CD 上,且2CE DE =.将ADE 沿AE 对折至AFE △,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①ABG AFG △≌△;②BG GC =;③//AG CF ;④3FGC S =.其中正确结论的个数是( )A .1B .2C .3D .4C解析:C【分析】 由正方形和折叠的性质得出AF =AB ,∠B =∠AFG =90°,由HL 即可证明Rt △ABG ≌Rt △AFG ,得出①正确;设BG =x ,则CG =BC−BG =6−x ,GE =GF +EF =BG +DE =x +2,由勾股定理求出x =3,得出②正确;由等腰三角形的性质和外角关系得出∠AGB =∠FCG ,证出平行线,得出③正确; 根据三角形的特点及面积公式求出△FGC 的面积,即可求证④.【详解】∵四边形ABCD 是正方形,∴AB =AD =DC =6,∠B =D =90°,∵CD =3DE ,∴DE =2,∵△ADE 沿AE 折叠得到△AFE ,∴DE =EF =2,AD =AF ,∠D =∠AFE =∠AFG =90°,∴AF =AB ,∵在Rt △ABG 和Rt △AFG 中,AG AG AB AF =⎧⎨=⎩, ∴Rt △ABG ≌Rt △AFG (HL ),∴①正确;∵Rt △ABG ≌Rt △AFG ,∴BG =FG ,∠AGB =∠AGF ,设BG =x ,则CG =BC−BG =6−x ,GE =GF +EF =BG +DE =x +2,在Rt △ECG 中,由勾股定理得:CG 2+CE 2=EG 2,∵CG =6−x ,CE =4,EG =x +2∴(6−x )2+42=(x +2)2解得:x =3,∴BG =GF =CG =3,∴②正确;∵CG =GF ,∴∠CFG =∠FCG ,∵∠BGF=∠CFG+∠FCG,又∵∠BGF=∠AGB+∠AGF,∴∠CFG+∠FCG=∠AGB+∠AGF,∵∠AGB=∠AGF,∠CFG=∠FCG,∴∠AGB=∠FCG,∴AG∥CF,∴③正确;∵△CFG和△CEG中,分别把FG和GE看作底边,则这两个三角形的高相同.∴35CFGCEGS FGS GE==,∵S△GCE=12×3×4=6,∴S△CFG=35×6=185,∴④不正确;正确的结论有3个,故选:C.【点睛】本题考查了正方形性质、折叠性质、全等三角形的性质和判定、等腰三角形的性质和判定、平行线的判定等知识点的运用;主要考查学生综合运用性质进行推理论证与计算的能力,有一定难度.3.平行四边形一边的长是12cm,则这个平行四边形的两条对角线长可以是()A.4cm或6cm B.6cm或10cm C.12cm或12cm D.12cm或14cm D 解析:D【分析】由四边形ABCD是平行四边形,可得OA=12AC,OB=12BD,然后利用三角形三边关系分析求解即可求得答案.【详解】解:∵四边形ABCD是平行四边形,∴OA=12AC,OB=12BD,A、∵AC=4cm,BD=6cm,∴OA=2cm,OB=3cm,∴OA+OB=5cm<12cm,不能组成三角形,故不符合;B 、∵AC=6cm ,BD=10cm ,∴OA=3cm ,OB=5cm ,∴OA+OB=8cm <12cm ,不能组成三角形,故不符合;C 、∵AC=12cm ,BD=12cm ,∴OA=6cm ,OB=6cm ,∴OA+OB=12cm=12cm ,不能组成三角形,故不符合;D 、∵AC=12cm ,BD=14cm ,∴OA=6cm ,OB=7cm ,∴OA+OB=13cm >12cm ,能组成三角形,故符合;故选D .【点睛】此题考查了平行四边形的性质以及三角形的三边关系.注意掌握平行四边形的对角线互相平分.4.下列命题中,错误的是 ( )A .有一个角是直角的平行四边形是正方形;B .对角线相等的菱形是正方形;C .对角线互相垂直的矩形是正方形;D .一组邻边相等的矩形是正方形.A 解析:A【分析】根据正方形的判定逐项作出判断即可求解.【详解】解:A. 有一个角是直角的平行四边形是正方形,判断错误,应该是矩形,符合题意;B. 对角线相等的菱形是正方形,判断正确,不合题意;C. 对角线互相垂直的矩形是正方形,判断正确,不合题意;D. 一组邻边相等的矩形是正方形,判断正确,不合题意.故选:A【点睛】本题考查了正方形的判定,熟练掌握正方形的判定方法是解题关键.5.如果平行四边形ABCD 的对角线相交于点O ,那么在下列条件中,能判断平行四边形ABCD 为菱形的是( )A .OAB OBA ∠=∠;B .OAB OBC ∠=∠; C .OAB OCD ∠=∠;D .OAB OAD ∠=∠.D解析:D【分析】根据菱形的判定方法判断即可.【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠OAB=∠ACD ,∵∠OAB=∠OAD ,∴∠DAC=∠DCA ,∴AD=CD ,∴四边形ABCD 是菱形(邻边相等的平行四边形是菱形)故选:D .【点睛】本题考查菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.6.在矩形ABCD 中,对角线AC 、BD 相交于点O ,AE 平分BAD ∠交BC 于点E ,15CAE ∠=︒.连接OE ,则下面的结论:①DOC 是等边三角形;②BOE △是等腰三角形;③2BC AB =;④150∠=︒AOE ;⑤AOE COE S S =,其中正确的结论有( )A .2个B .3个C .4个D .5个B解析:B【分析】 判断出△ABE 是等腰直角三角形,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠ACB =30°,再判断出△ABO ,△DOC 是等边三角形,可判断①;根据等边三角形的性质求出OB =AB ,再求出OB =BE ,可判断②,由直角三角形的性质可得BC 3AB ,可判断③,由等腰三角形性质求出∠BOE =75°,再根据∠AOE =∠AOB +∠BOE =135°,可判断④;由面积公式可得AOE COE SS =可判断⑤;即可求解.【详解】解:∵AE 平分∠BAD ,∴∠BAE =∠DAE =45°,∴∠AEB =45°,∴△ABE 是等腰直角三角形,∴AB =BE ,∵∠CAE =15°,∴∠ACE =∠AEB−∠CAE =45°−15°=30°,∴∠BAO =90°−30°=60°,∵矩形ABCD 中:OA =OB =OC =OD ,∴△ABO 是等边三角形,△COD 是等边三角形,故①正确;∴OB =AB ,又∵ AB =BE ,∴OB =BE ,∴△BOE 是等腰三角形,故②正确;在Rt △ABC 中∵∠ACB=30°∴BC =3AB ,故③错误;∵∠OBE =∠ABC−∠ABO =90°−60°=30°=∠ACB ,∴∠BOE =12(180°−30°)=75°, ∴∠AOE =∠AOB +∠BOE =60°+75°=135°,故④错误;∵AO =CO ,∴AOE COE S S ,故⑤正确;故选:B .【点睛】本题考查了矩形的性质,等腰直角三角形的性质,等边三角形的判定与性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.7.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH ⊥AB 于点H ,连接OH ,若OA =6,S 菱形ABCD =48,则OH 的长为( )A .4B .8C 13D .6A解析:A【分析】 由菱形的性质得出OA =OC =6,OB =OD ,AC ⊥BD ,则AC =12,由直角三角形斜边上的中线性质得出OH =12AB ,再由菱形的面积求出BD =8,即可得出答案. 【详解】解:∵四边形ABCD 是菱形,∴OA =OC =6,OB =OD ,AC ⊥BD ,∴AC =12,∵DH ⊥AB ,∴∠BHD =90°,∴OH =12BD , ∵菱形ABCD 的面积=12×AC×BD =12×12×BD =48, ∴BD =8,∴OH =12BD =4; 故选:A .【点睛】本题考查了菱形的性质,直角三角形的性质,菱形的面积公式,关键是根据直角三角形斜边上的中线性质求得OH=12BD . 8.如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,则重叠部分(即BDE )的面积为( )A .6B .7.5C .10D .20C解析:C【分析】 由折叠结合矩形的性质先证明,BE DE =设,BE DE x == 则8,AE x =- 再利用勾股定理求解,x 从而可得BDE 的面积.【详解】解: 长方形ABCD ,8,4,AD AB ==//,AD BC ∴,ADB CBD ∴∠=∠由对折可得:,CBD C BD '∠=∠,ADB C BD '∴∠=∠,BE DE ∴=设,BE DE x == 则8,AE x =-由222,BE AB AE =+()22248,x x ∴=+-1680,x ∴=5,x ∴= 5,DE BE ∴==115410.22BDE S DE AB ∴==⨯⨯= 故选:.C【点睛】本题考查的是矩形与折叠问题,勾股定理的应用,矩形的性质,掌握以上知识是解题的关键.9.如图,菱形ABCD 中,∠ABC=60°,AB=4,E 是边AD 上一动点,将△CDE 沿CE 折叠,得到△CFE ,则△BCF 面积的最大值是( )A .8B .83C .16D .163A解析:A【分析】 由三角形底边BC 是定长,所以当△BCF 的高最大时,△BCF 的面积最大,即当FC ⊥BC 时,三角形有最大面积.【详解】解:在菱形ABCD 中,BC=CD=AB=4又∵将△CDE 沿CE 折叠,得到△CFE ,∴FC=CD=4由此,△BCF 的底边BC 是定长,所以当△BCF 的高最大时,△BCF 的面积最大,即当FC ⊥BC 时,三角形有最大面积∴△BCF 面积的最大值是1144822BC FC =⨯⨯= 故选:A .【点睛】本题考查菱形的性质和折叠的性质,掌握三角形面积的计算方法和菱形的性质正确推理计算是解题关键.10.矩形不一定具有的性质是()A.对角线互相平分B.是轴对称图形C.对角线相等D.对角线互相垂直参考答案D解析:D【分析】根据矩形的性质即可判断.【详解】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A、B、C正确,故选:D.【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质.二、填空题11.如图,平行四边形ABCD中,CE AD⊥于点E,点F为边AB的中点,连接EF,CF,若12AD CD=,38CEF∠=︒,则AFE∠=_____________.24°【分析】延长CF交DA延长线于点G证△BCF≌△AGF得GF=FC由垂直得△FEC是等腰三角形可知△BFC是等腰三角形求出∠GFE和∠GFA即可【详解】解:延长CF交DA延长线于点G∵AG∥B解析:24°【分析】延长CF交DA延长线于点G,证△BCF≌△AGF,得GF=FC,由垂直得△FEC是等腰三角形,12AD CD=,可知△BFC是等腰三角形,求出∠GFE和∠GFA即可.【详解】解:延长CF交DA延长线于点G,∵AG∥BC,∴∠G=∠BCF ,∠GAF=∠B ,∵AF=FB ,∴△AGF ≌△BCF ,∴GF=CF ,AG=BC ,∵CE AD ⊥,∴EF=FG=FC ,∠GEC=90°,∵38CEF ∠=︒,∴∠FEG=∠FGE=52°,∠GFE=76°, ∵12AD CD =, ∴BC=BF=AF ,∵AG=BC ,∴AG=AF ,∠G=∠AFG=52°, AFE ∠=76°-52°=24°.【点睛】本题考查了平行四边形的性质,直角三角形的性质,等腰三角形的性质,全等三角形的性质与判定,解题关键是作出适当的辅助线,构造等腰三角形.12.如图,在平行四边形ABCD 中,2AD CD =,F 是AD 的中点,CE AB ⊥,垂足E 在线段AB 上.下列结论①DCF ECF ∠=∠;②EF CF =;③3DFE AEF ∠=∠;④2BEC CEF S S <中,一定成立的是_________.(请填序号)②③④【分析】如图延长EF 交CD 的延长线于H 作EN ∥BC 交CD 于NFK ∥AB 交BC 于K 利用平行四边形的性质全等三角形的判定和性质一一判断即可解决问题【详解】解:如图延长EF 交CD 的延长线于H 作EN ∥解析:②③④【分析】如图延长EF 交CD 的延长线于H .作EN ∥BC 交CD 于N ,FK ∥AB 交BC 于K .利用平行四边形的性质,全等三角形的判定和性质一一判断即可解决问题.【详解】解:如图,延长EF 交CD 的延长线于H .作EN ∥BC 交CD 于N ,FK ∥AB 交BC 于K . ∵四边形ABCD 是平行四边形,∴AB ∥CH ,∴∠A=∠FDH ,在△AFE 和△DFH 中,A FDH AFE HFD AF DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DFH ,∴EF=FH ,∵CE ⊥AB ,AB ∥CH ,∴CE ⊥CD ,∴∠ECH=90°,∴CF=EF=FH ,故②正确,∵DF=CD=AF ,∴∠DFC=∠DCF=∠FCB ,∵∠FCB >∠ECF ,∴∠DCF >∠ECF ,故①错误,∵FK ∥AB ,FD ∥CK ,∴四边形DFKC 是平行四边形,∵AD=2CD ,F 是AD 中点,∴DF=CD ,∴四边形DFKC 是菱形,∴∠DFC=∠KFC ,∵AE ∥FK ,∴∠AEF=∠EFK ,∵FE=FC ,FK ⊥EC ,∴∠EFK=∠KFC ,∴∠DFE=3∠AEF ,故③正确,∵四边形EBCN 是平行四边形,∴S △BEC =S △ENC ,∵S △EHC =2S △EFC ,S △EHC >S △ENC ,∴S △BEC <2S △CEF ,故④正确,故正确的有②③④.故答案为②③④.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质、直角三角形斜边的中线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.13.一个三角形的三边长分别为 6,8,10,则这个三角形最长边上的中线为_____.5【分析】根据勾股定理逆定理判断出三角形是直角三角形然后根据直角三角形斜边上的中线等于斜边的一半解答即可【详解】解:∵62+82=100=102∴该三角形是直角三角形∴×10=5故答案为:5【点睛】解析:5【分析】根据勾股定理逆定理判断出三角形是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:∵62+82=100=102,∴该三角形是直角三角形,∴1×10=5.2故答案为:5【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的逆定理,判断出直角三角形是解题的关键.cm,两条对角线之比为3∶4,则菱形的周长为14.已知菱形的面积为962__________.40【分析】依题意已知菱形的面积以及对角线之比首先根据面积公式求出菱形的对角线长然后利用勾股定理求出菱形的边长【详解】解:设两条对角线长分别为3x和4x由题意可得:解得:x=±4(负值舍去)∴对角线解析:40cm【分析】依题意,已知菱形的面积以及对角线之比,首先根据面积公式求出菱形的对角线长,然后利用勾股定理求出菱形的边长.【详解】解:设两条对角线长分别为3x和4x,由题意可得:134962x x =,解得:x=±4(负值舍去) ∴对角线长分别为12cm 、16cm ,又∵菱形的对角线互相垂直平分,根据勾股定理可得菱形的边长=226+8=10cm ,则菱形的周长为40cm .故答案为:40cm .【点睛】此题主要考查菱形的性质和菱形的面积公式,综合利用了勾股定理.15.如图,在菱形纸片ABCD 中,4AB =,60A ∠=︒,将菱形纸片翻折,使点A 落在CD 边的中点E 处,折痕为FG ,点F 、G 分别在边AB 、AD 上,则GE =_______.28【分析】过点作于根据菱形的性质得到继而可证再利用含30°角的直角三角形性质解得结合勾股定理解得的长根据折叠的性质得到最后在中利用勾股定理得据此整理解题即可【详解】过点作于是菱形是中点在中折叠在中解析:2.8【分析】过点E 作EH AD ⊥于H , 根据菱形的性质,得到//AB CD ,4AD BC CD AB ====,继而可证60A HDE ∠=∠=︒,再利用含30°角的直角三角形性质,解得12DH DE =,结合勾股定理解得HE 的长,根据折叠的性质,得到,AG GE AF EF ==,最后在Rt HGE 中利用勾股定理得222GE GH HE =+,据此整理解题即可.【详解】过点E 作EH AD ⊥于H ,ABCD 是菱形//AB CD ∴,4AD BC CD AB ====60A HDE ∴∠=∠=︒E 是CD 中点2DE ∴=在Rt DHE △中,2DE =HE DH ⊥60HDE ∠=︒30HED ∴∠=︒ 221,213DH HE ∴==-=折叠,AG GE AF EF ∴==在Rt HGE 中222GE GH HE =+22(41)3GE GE ∴=-++2.8GE ∴=故答案为:2.8.【点睛】本题考查翻折变换、菱形的性质、含30°角的直角三角形等知识,是重要考点,难度较易,掌握相关知识是解题关键.16.如图,四边形ABCD 是长方形,F 是DA 延长线上一点,CF 交AB 于点E ,G 是CF 上一点,且∠ACG =∠AGC ,∠GAF =∠F .若∠ECB =20°,则∠ACD 的度数是______________.30°【分析】根据矩形的性质得到AD ∥BC ∠DCB =90°根据平行线的性质得到∠F =∠ECB =20°根据三角形的外角的性质得到∠ACG =∠AGC =∠GAF+∠F =2∠F =40°于是得到结论【详解】解 解析:30°【分析】根据矩形的性质得到AD ∥BC ,∠DCB =90°,根据平行线的性质得到∠F =∠ECB =20°,根据三角形的外角的性质得到∠ACG =∠AGC =∠GAF +∠F =2∠F =40°,于是得到结论.【详解】解:∵四边形ABCD 是矩形,∴AD ∥BC ,∠DCB =90°,∴∠F =∠ECB∵∠ECB =20°,∴∠F =∠ECB =20°,∵∠GAF =∠F ,∴∠GAF =∠F =20°,∴∠ACG =∠AGC =∠GAF +∠F =2∠F =40°,∴∠ACB =∠ACG +∠ECB =60°,∴∠ACD =90°﹣∠ACB =90°﹣60°=30°,故答案为:30°.【点睛】本题考查了矩形的性质,用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和.17.如图,,E F 分别是ABCD 的边,AD BC 上的点.8,60,EF DEF =∠=︒将EFCD 四边形沿EF 翻折,得到四边形',EFCD ED '交BC 于点,G 则GEF △的周长为________.24【分析】根据平行四边形的性质得到AD ∥BC 由平行线的性质得到∠AEG=∠EGF 根据折叠的性质得到推出△GEF 是等边三角形于是得到结论【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BC ∴∠AEG 解析:24【分析】根据平行四边形的性质得到AD ∥BC ,由平行线的性质得到∠AEG=∠EGF ,根据折叠的性质得到60GEF DEF ∠=∠=︒,推出△GEF 是等边三角形,于是得到结论.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEG=∠EGF ,∵将四边形EFCD 沿EF 翻折,得到EFC D '',∴60GEF DEF ∠=∠=︒,∴∠AEG=60°,∴∠EGF=60°,∴△EGF 是等边三角形,∵EF=8,∴△GEF 的周长=24,故答案为:24.【点睛】此题考查平行四边形的性质,折叠的性质,等边三角形的判定及性质,熟练掌握基本性质是解题关键.18.己知菱形ABCD 的边长是3,点E 在直线AD 上,DE =1,联结BE 与对角线AC 相交于点M ,则AM MC 的值是______.或【分析】首先根据题意作图注意分为E 在线段AD 上与E 在AD 的延长线上然后由菱形的性质可得AD ∥BC 则可证得△MAE ∽△MCB 根据相似三角形的对应边成比例即可求得答案【详解】解:∵菱形ABCD 的边长是解析:23或43【分析】 首先根据题意作图,注意分为E 在线段AD 上与E 在AD 的延长线上,然后由菱形的性质可得AD ∥BC ,则可证得△MAE ∽△MCB ,根据相似三角形的对应边成比例即可求得答案.【详解】解:∵菱形ABCD 的边长是3,∴AD=BC=3,AD ∥BC ,如图①:当E 在线段AD 上时,∴AE=AD -DE=3-1=2,∴△MAE ∽△MCB ,∴23MA AE MC BC ==; 如图②,当E 在AD 的延长线上时,∴AE=AD+DE=3+1=4,∴△MAE ∽△MCB ,∴43MA AE MC BC ==. ∴MA MC的值是23或43. 故答案为23或43.【点睛】此题考查了菱形的性质,相似三角形的判定与性质等知识.解题的关键是注意此题分为E 在线段AD 上与E 在AD 的延长线上两种情况,小心不要漏解.19.如图,在正方形纸片ABCD 中,E 是CD 的中点,将正方形纸片折叠,点B 落在线段AE 上的点G 处,折痕为AF .若1DE =,则BF 的长为__________.【分析】连接FE 根据题意得CD=2AE=设BF=x 则FG=xCF=2-x在Rt △GEF 中利用勾股定理可得EF2=(-2)2+x2在Rt △FCE 中利用勾股定理可得EF2=(2-x )2+12从而得到关于 解析:51-【分析】连接FE ,根据题意得CD=2,AE=5,设BF=x ,则FG=x ,CF=2-x ,在Rt △GEF 中,利用勾股定理可得EF 2=(5-2)2+x 2,在Rt △FCE 中,利用勾股定理可得EF 2=(2-x )2+12,从而得到关于x 方程,求解x 即可.【详解】解:连接EF ,如图,∵E 是CD 的中点,且CE=1∴CD=2,DE=1∵四边形ABCD 是正方形,∴AB=BC=CD=DA=2∴2222215AD DE +=+设BF=x ,由折叠得,AG=AB=2,FG=BF=x ,∴52,在Rt △GFE 中,2222252)EF FG GE x =+=+在Rt △CFE 中,CF=BC-BF=2-x ,CE=1∴22222(2)1EF FC CE x =+=-+∴222252)(2)1x x +=-+解得:=51x ,即51,51【点睛】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.20.如图,在平行四边形ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB =8,EF =1,则BC 长为__________.15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB 得出AF=AB=8同理可得DE=DC=8再由EF 的长即可求出BC 的长【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BCDC=AB=8A解析:15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB ,得出AF=AB=8,同理可得DE=DC=8,再由EF 的长,即可求出BC 的长.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,DC=AB=8,AD=BC ,∴∠AFB=∠FBC ,∵BF 平分∠ABC ,∴∠ABF=∠FBC ,则∠ABF=∠AFB ,∴AF=AB=8,同理可证:DE=DC=8,∵EF=AF+DE-AD=1,即8+8-AD=1,解得:AD=15;故答案为:15.【点睛】本题主要考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出AF=AB 是解决问题的关键.三、解答题21.如图,在四边形ABCD 中//AD BC ,5cm AD =,9cm BC =,M 是CD 的中点,P 是BC 边上的一动点(P 与B ,C 不重合),连接PM 并延长交AD 的延长线于Q .(1)试说明不管点P 在何位置,四边形PCQD 始终是平行四边形.(2)当点P 在点B ,C 之间运动到什么位置时,四边形ABPQ 是平行四边形?并说明理由.解析:(1)见解析;(2)PC=2时【分析】(1)由“ASA”可证△PCM ≌△QDM ,可得DQ=PC ,即可得结论;(2)得出P 在B 、C 之间运动的位置,根据一组对边平行且相等的四边形是平行四边形得出结论.【详解】解:(1)∵AD ∥BC ,∴∠QDM=∠PCM ,∵M 是CD 的中点,∴DM=CM ,∵∠DMQ=∠CMP ,DM=CM ,∠QDM=∠PCM ,∴△PCM ≌△QDM (ASA ).∴DQ=PC ,∵AD ∥BC ,∴四边形PCQD 是平行四边形,∴不管点P 在何位置,四边形PCQD 始终是平行四边形;(2)当四边形ABPQ 是平行四边形时,PB=AQ ,∵BC-CP=AD+QD ,∴9-CP=5+CP ,∴CP=(9-5)÷2=2.∴当PC=2时,四边形ABPQ 是平行四边形.【点睛】本题考查了平行四边形的判定和性质,全等三角形判定和性质,熟练掌握平行四边形的性质和判定方法是解题的关键.22.如图,四边形ABCD ,//BC AD ,P 为CD 上一点,PA 平分BAD ∠且BP AP ⊥. (1)若80BAD ︒∠=,求ABP ∠的度数;(2)求证:=+BA BC AD ;(3)设3BP a =,4AP a =,过点P 作一条直线,分别与AD ,BC 所在直线交于点E 点F .若AB EF =,求AE 的长(用含a 的代数式表示).解析:(1)50︒;(2)证明见解析;(3)52a 或3910a 【分析】(1)根据已知条件PA 平分BAD ∠且BP AP ⊥以及三角形内角和,即可求得ABP ∠的度数;(2)延长BP 交AD 的延长线于点G ,由已知条件即可证明ABP AGP ≌,即可得到BA GA =,BP GP =,进而即可证明BCP GDP △≌△,即可得到=BC GD ,通过相等关系,即可证明=+BA BC AD ;(3)根据题意可知,可以分两种情况进行讨论,分别为:①当//AB EF 时,延长BP 交AD 的延长线于点G ,可知此时四边形ABFE 是平行四边形,可以求得AB 的长度,由(2)中证明的ABP AGP ≌,BCP GDP △≌△,可得BA GA =,BP GP =,=CP DP ,=BC GD ,进而可以证明CFP ≌DEP ,可得CF DE =,进而通过线段的等量关系求得AE 的长;②如图3,过B 作BH AD ⊥交AD 于H ,过F 作FI AD ⊥交AD 于I ,同①可得PFC PED △≌△,则CF DE =,则可得5BF AE BC AD AB a +=+==,由ABP △和梯形ABCD 的面积关系可得BH 的长度,通过勾股定理即可得到AH 的长度,通过证明Rt BHA △≌Rt FIE △,可得75AH EI a ==,进而通过等量关系即可得到AE 的长. 【详解】(1)∵PA 平分BAD ∠,BP AP ⊥,∴11804022BAP DAP BAD ∠=∠=∠=⨯︒=︒,90APB ∠=︒, ∴在Rt ABP 中,180180409050ABP BAP APB ∠=︒-∠-∠=-︒-︒=︒;(2)如图1,延长BP 交AD 的延长线于点G , ∵BP AP ⊥,PA 平分BAD ∠,∴90APB APG ∠=∠=︒,BAP GAP ∠=∠, 在ABP △和AGP 中,BAP GAP ∠=∠,AP AP =,APB APG ∠=∠,∴ABP AGP ≌,∴BA GA =,BP GP =, ∵//BC AD , ∴CBP DGP ∠=∠, 在BCP 和GDP △中,CBP DGP ∠=∠,BP GP =,CPB DPG ∠=∠,∴BCP GDP △≌△, ∴=BC GD ,∴BA GA AD GD AD BC ==+=+;(3)分两种情况讨论,①当//AB EF 时,如图2,延长BP 交AD 的延长线于点G , ∴由已知条件可知,此时四边形ABFE 是平行四边形, ∴AE BF =,∵3BP a =,4AP a =,BP AP ⊥,∴在Rt ABP 中,222AB BP AP =+,解得,5AB a =, 由(2)可知,ABP AGP ≌, ∴5BA GA a ==,3BP GP a ==, 由(2)可知,BCP GDP △≌△, ∴=CP DP ,=BC GD , ∵//BC AD , ∴BFP GEP ∠=∠, 在CFP 和DEP 中,CFP DEP ∠=∠,=CP DP ,CPF DPE ∠=∠, ∴CFP ≌DEP , ∴CF DE =, ∵=BC GD ,∴BC CF GD DE +=+, ∴BF EG =,又∵四边形ABFE 是平行四边形, ∴BF AE =,∴BF AE EG ==, ∴25AG AE a ==,∴52AE a =;图2②如图3,过B 作BH AD ⊥交AD 于H ,过F 作FI AD ⊥交AD 于I , 同①可得PFC PED △≌△, ∴CF DE =,∴BF AE BF AD DE BF AD CF BC AD +=++=++=+, ∴5BF AE BC AD AB a +=+==, 在Rt ABP 中,2162ABP S BP AP a =⋅=△, 由(2)可知,梯形ABCD 的面积2212ABP S a ==△, 梯形ABCD 的面积2122BC ADBH a +=⨯=, 解得,245BH a =, 在Rt ABH 中,2275AH AB BH a =-=,∵//BC AD ,∴BH FI =,BF HI =, ∵在Rt BHA △和Rt FIE △中,BH FI =,AB EF =, ∴Rt BHA △≌Rt FIE △,∴75AH EI a ==,∴2()BF AE BF AH EI HI BF AH +=+++=+,∴2()BF AE BF AH +=+, ∴1110BF a =, ∴3910AE AB BF a =-=.图3 【点睛】本题考查了平行线的性质、角平分线的性质、勾股定理、全等三角形的证明和性质、三角形面积、梯形面积、线段的和差、三角形内角和等知识,解答本题的关键是正确的作出辅助线,证明三角形全等.23.如图,在菱形ABCD 中,过点D 分别作DE ⊥AB 于点E ,作DF ⊥BC 于点F .求证:AE =CF .解析:见解析 【分析】先由菱形的性质得到AD CD =,A C ∠=∠,再由AAS 证得ADE CDF ∆≅∆,即可得出结论. 【详解】解:证明:∵四边形ABCD 是菱形,AD CD ∴=,A C ∠=∠, DE AB ∵⊥,DF BC ⊥, 90AED CFD ∴∠=∠=︒, 在ADE ∆和CDF ∆中, AED CFD A CAD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADE CDF AAS ∴∆≅∆,AE CF ∴=.【点睛】本题考查了菱形的性质、全等三角形的判定与性质等知识;熟练掌握菱形的性质和全等三角形的判定与性质是解题的关键.24.如图,CD 是线段AB 的垂直平分线,M 是AC 延长线上一点.(1)在图中补充完整以下作图,保留作图痕迹:作∠BCM的角平分线CN,过点B作CN 的垂线,垂足为E;(2)求证:四边形BECD是矩形;(3)AB与AC满足怎样的数量关系时,四边形BECD是正方形?证明你的结论.解析:(1)如图所示,见解析;(2)见解析;(3)当AB=2AC时,矩形BECD是正方形,证明见解析.【分析】(1)根据角平分线及垂线的作图方法依次作图;(2)根据CD是AB的垂直平分线,推出∠CDB=90°,AC=BC,利用CN平分∠BCM求出∠DCN=∠DCB+∠BCN=90°,由BE⊥CN求得∠BEC=90°,即可得到结论;(3)当AB=2AC时,矩形BECD是正方形,由AD=BD,AB=2AC,求得BD=22AC,根据AD⊥CD,∠CDB=90°,推出BD=CD,由此得到矩形BECD是正方形.【详解】(1)解:如图所示,(2)证明:∵CD是AB的垂直平分线,∴CD⊥BD,AD=BD,∴∠CDB=90°,AC=BC,∴∠DCB=12∠ACB,∵CN平分∠BCM,∴∠BCN=12∠BCM,∵∠ACB+∠BCM=180°,∴∠DCN=∠DCB+∠BCN=12(∠ACB+∠BCM)=90°,∵BE⊥CN,∴∠BEC=90°,∴四边形BECD是矩形;(3)当AB=2AC时,矩形BECD是正方形∵AD=BD,AB=2AC,∴BD=22AC,∵AD⊥CD,∠CDB=90°,∴BD=CD,∴矩形BECD是正方形.【点睛】此题考查作图—角平分线、垂线,矩形的判定定理,正方形的判定定理,正确作图及熟练掌握矩形和正方形的判定定理是解题的关键.25.如图,在▱ABCD中,AB=12cm,BC=6cm,∠A=60°,点P沿AB边从点A开始以2cm/秒的速度向点B移动,同时点Q沿DA边从点D开始以1cm/秒的速度向点A移动,用t表示移动的时间(0≤t≤6).(1)当t为何值时,△PAQ是等边三角形?(2)当t为何值时,△PAQ为直角三角形?解析:(1)t=2;(2)t=3或65t .【分析】(1)根据等边三角形的性质,列出关于t的方程,进而即可求解.(2)根据△PAQ是直角三角形,分两类讨论,分别列出方程,进而即可求解.【详解】解:(1)由题意得:AP=2t(米),AQ=6-t(米).∵∠A=60°,∴当△PAQ是等边三角形时,AQ=AP,即2t=6-t,解得:t=2,∴当t=2时,△PAQ是等边三角形.(2)∵△PAQ 是直角三角形,∴当∠AQP =90°时,有∠APQ =30°,即AP =2AQ ,∴2t =2(6-t ),解得:t =3(秒), 当∠APQ =90°时,有∠AQP =30°,即AQ =2AP ,∴6-t =2·2t ,解得65t =(秒), ∴当t =3或65t =时,△PAQ 是直角三角形. 【定睛】本题主要考查等边三角形的性质,直角三角形的定义以及平行四边形的定义,熟练掌握等边三角形的性质,直角三角形的定义,列出方程,是解题的关键.26.如图,在四边形ABCD 中,BD 为一条对角线,//AD BC ,2AD BC =,90ABD ∠=︒,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分BAD ∠,1BC =,求AC 的长. 解析:(1)见解析;(2)3AC =【分析】(1)根据2AD BC =,E 为AD 的中点,证得四边形BCDE 是平行四边形,再根据BE=DE 即可证得结论;(2)根据AD ∥BC ,AC 平分BAD ∠,求出AD=2BC=2=2AB ,得到30ADB ∠=︒,60ADC ∠=︒,90ACD ∠=︒,根据Rt ACD ∆求出答案即可. 【详解】(1)证明:2AD BC =,E 为AD 的中点, DE BC ∴=. //AD BC ,∴四边形BCDE 是平行四边形. 90ABD ∠=︒,AE DE =, BE DE ∴=,则四边形BCDE 是菱形;(2)解:如答图所示,连接AC , //AD BC ,AC 平分BAD ∠, BAC DAC BCA ∴∠=∠=∠. 1AB BC ∴==.22AD BC ∴==, 2AD AB ∴=,∴在Rt ABD ∆中,30ADB ∠=︒.30DAC ∴∠=︒,60ADC ∠=︒,90ACD ∠=︒. 在Rt ACD ∆中 2AD =, 1CD ∴=,∴223AC AD CD =-=..【点睛】此题考查菱形的判定定理及性质定理,勾股定理,直角三角形30度角的性质,平行线的性质,直角三角形斜边中线等于斜边一半的性质,熟记菱形的判定及性质是解题的关键. 27.在Rt ABC 中,90ACB ︒∠=,以AC 为一边向外作等边三角形ACD ,点E 为AB 的中点,连接DE .(1)证明://DE CB ;(2)探索AC 与AB 满足怎样的数量关系时,四边形DCBE 是平行四边形,并说明理由.解析:(1)见解析;(2)AC =12AB 【分析】(1)首先连接CE ,根据直角三角形的性质可得CE =12AB =AE ,再根据等边三角形的性质可得AD =CD ,然后证明△ADE ≌△CDE ,进而得到∠ADE =∠CDE =30°,再有∠DCB =150°可证明DE ∥CB ; (2)当AC =12AB 或AB =2AC 时,四边形DCBE 是平行四边形.根据(1)中所求得出DC ∥BE ,进而得到四边形DCBE 是平行四边形.【详解】解:(1)证明:连结CE .∵点E 为Rt △ACB 的斜边AB 的中点, ∴CE =12AB =AE . ∵△ACD 是等边三角形, ∴AD =CD . 在△ADE 与△CDE 中,AD DC DE DE AE CE =⎧⎪=⎨⎪=⎩, ∴△ADE ≌△CDE (SSS ), ∴∠ADE =∠CDE =30°. ∵∠DCB =150°, ∴∠EDC +∠DCB =180°. ∴DE ∥CB . (2)当AC =12AB 或AB =2AC 时,四边形DCBE 是平行四边形, 理由:∵AC =12AB ,∠ACB =90°, ∴∠B =30°, ∵∠DCB =150°, ∴∠DCB +∠B =180°, ∴DC ∥BE , 又∵DE ∥BC ,∴四边形DCBE 是平行四边形.【点睛】此题主要考查了平行线的判定、全等三角形的判定与性质,以及平行四边形的判定,关键是掌握直角三角形的性质,以及等边三角形的性质.28.如图,在直角ABC 中,90BAC ∠=︒,点D 是BC 上一点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接DE 交AC 于点M .(1)如图1,若2,30,AB C AD BC =∠=︒⊥,求CD 的长; (2)如图2,若45ADB ∠=︒,点N 为ME 上一点,12MN BC =,求证:AN EN CD =+;(3)如图3,若30C ∠=︒,点D 为直线BC 上一动点,直线DE 与直线AC 交于点M ,当ADM △为等腰三角形时,请直接写出此时CDM ∠的度数. 解析:(1)3;(2)见解析;(3)60︒或15︒或37.5︒ 【分析】(1)根据含30°角的直角三角形的性质可得BC=2AB=4,BD=12AB=1,即可得出CD 的长;(2)在BD 上截取DF=EN ,可证出AEN ADF △≌△,由全等三角形的性质得AN=AF ,,EAN DAF ANE AFD ∠=∠∠=∠,可得出,MAN BAF ANM AFB ∠=∠∠=∠,则AMN ABF △≌△,可得12BF MN BC ==,即F 是BC 的中点,可得出AN=AF=FC=DF+CD=EN+CD ;(3)由题意可得AD=AE ,90EAD ∠=︒,45EDA AED ∠=∠=︒,分三种情况:①AM=MD ,②AM=AD ,③AD=MD ,根据等腰三角形的性质求出AMD ∠的度数,再根据三角形外角的性质即可求解. 【详解】解:(1)∵90BAC ∠=︒,2,30AB C =∠=︒, ∴BC=2AB=4,60B ∠=︒, ∵AD BC ⊥∴90,30ADB BAD ∠=︒∠=︒, ∴BD=12AB=1, ∴CD =BC-BD=4-1=3;(2)证明:如图2,在BD 上截取DF=EN ,。
第十九章平行四边形性质和判定综合习题精选一.解答题(共30小题)1.(2011•资阳)如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).2.(2011•昭通)如图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.3.(2011•徐州)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.4.(2011•铜仁地区)已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.5.(2011•泸州)如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.6.(2010•恩施州)如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.7.(2009•永州)如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.8.(2009•来宾)在▱ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.9.(2006•黄冈)如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.10.(2006•巴中)已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?11.(2002•三明)如图:已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.12.已知:如图,在▱ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.13.如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上.求证:EF和GH互相平分.14.如图:▱ABCD中,MN∥AC,试说明MQ=NP.15.已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.16.如图,已知在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)17.如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证:AF=CE;(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.18.如图平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2(1)求证:D是EC中点;(2)求FC的长.19.(2010•厦门)如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.20.(2010•滨州)如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH的形状?并说明为什么;(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?21.(2008•佛山)如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1)当AB≠AC时,证明:四边形ADFE为平行四边形;(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.22.如图,以△ABC的三边为边,在BC的同侧分别作三个等边三角形即△ABD、△BCE、△ACF,那么,四边形AFED是否为平行四边形?如果是,请证明之,如果不是,请说明理由.23.(2007•黑龙江)在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB.请直接应用上述信息解决下列问题:当点P分别在△ABC内(如图2),△ABC外(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证明.24.(2006•大连)如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).25.(2005•贵阳)在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD分割成四个部分,使含有一组对顶角的两个图形全等;(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有_________组;(2)请在图中的三个平行四边形中画出满足小强分割方法的直线;(3)由上述实验操作过程,你发现所画的两条直线有什么规律?26.如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.27.已知平行四边形的三个顶点的坐标分别为O(0,0)、A(2,0)、B(1,1),则第四个顶点C的坐标是多少?28.已知平行四边形ABCD的周长为36cm,过D作AB,BC边上的高DE、DF,且cm,,求平行四边形ABCD的面积.29.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣3,),B(﹣2,3),C(2,3),点D在第一象限.(1)求D点的坐标;(2)将平行四边形ABCD先向右平移个单位长度,再向下平移个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?(3)求平行四边形ABCD与四边形A1B1C1D1重叠部分的面积?30.如图所示.▱ABCD中,AF平分∠BAD交BC于F,DE⊥AF交CB于E.求证:BE=CF.三角形的中位线练习题姓名1.连结三角形___________的线段叫做三角形的中位线.2.三角形的中位线______于第三边,并且等于_______.3.一个三角形的中位线有_________条.4.如图△ABC中,D、E分别是AB、AC的中点,则线段CD是△ABC的___,线段DE是△ABC_______5、如图,D、E、F分别是△ABC各边的中点(1)如果EF=4cm,那么BC=__cm如果AB=10cm,那么DF=___cm(2)中线AD与中位线EF的关系是___6.如图1所示,EF是△ABC的中位线,若BC=8cm,则EF=_______cm.(1) (2) (3) (4)7.三角形的三边长分别是3cm,5cm,6cm,则连结三边中点所围成的三角形的周长是_________cm.8.在Rt△ABC中,∠C=90°,AC=•5,•BC=•12,•则连结两条直角边中点的线段长为_______.9.若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为()A.4.5cm B.18cm C.9cm D.36cm10.如图2所示,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE 的长为10m,则A,B间的距离为()A.15m B.25m C.30m D.20mA 、20081B 、20091C 、220081D 、22009112.如图3所示,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定13.如图4,在△ABC 中,E ,D ,F 分别是AB ,BC ,CA 的中点,AB=6,AC=4,则四边形AEDF •的周长是( )A .10B .20C .30D .4014.如图所示,□ ABCD 的对角线AC ,BD 相交于点O ,AE=EB ,求证:OE ∥BC .15.如图所示,在△ABC 中,点D 在BC 上且CD=CA ,CF 平分∠ACB ,AE=EB ,求证:EF=12BD .16.如图所示,已知在□ABCD 中,E ,F 分别是AD ,BC 的中点,求证:MN ∥BC .17.已知:如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形.18.已知:△ABC 的中线BD 、CE 交于点O ,F 、G 分别是OB 、OC 的中点.求证:四边形DEFG 是平行四边形.C19.已知:如图,E 为□ABCD 中DC 边的延长线上的一点,且CE =DC ,连结AE分别交BC 、BD 于点F 、G ,连结AC 交BD 于O ,连结OF .求证:AB =2OF .1、 已知在四边形ABCD 中,AB=CD ,E 、F 、G 分别是BD 、AC 、BC 的中点,H 是EF 的中点.求证:EF ⊥GH.3、如图所示,△ABC 中,AB >AC ,AD 平分∠BAC ,CD ⊥AD ,点E 是BC 的中点。
练习1一、选择题(3′×10=30′)1.下列性质中.平行四边形具有而非平行四边形不具有的是().A.内角和为360°B.外角和为360°C.不确定性D.对角相等2.ABCD中.∠A=55°.则∠B、∠C的度数分别是().A.135°.55°B.55°.135°C.125°.55°D.55°.125°·3.下列正确结论的个数是().①平行四边形内角和为360°;②平行四边形对角线相等;③平行四边形对角线互相平分;④平行四边形邻角互补.A.1 B.2 C.3 D.44.平行四边形中一边的长为10cm.那么它的两条对角线的长度可能是().A.4cm和6cm B.20cm和30cm C.6cm和8cm D.8cm和12cm 5.在ABCD中.AB+BC=11cm.∠B=30°.S ABCD=15cm2.则AB与BC的值可能是().A.5cm和6cm B.4cm和7cm C.3cm和8cm D.2cm和9cm)6.在下列定理中.没有逆定理的是().A.有斜边和一直角边对应相等的两个直角三角形全等;B.直角三角形两个锐角互余;C.全等三角形对应角相等;D.角平分线上的点到这个角两边的距离相等.7.下列说法中正确的是().A.每个命题都有逆命题B.每个定理都有逆定理C.真命题的逆命题是真命题D.假命题的逆命题是假命题{8.一个三角形三个内角之比为1:2:1.其相对应三边之比为().A.1:2:1 B.12:1 C.1:4:1 D.12:1:29.一个三角形的三条中位线把这个三角形分成面积相等的三角形有()个.A.2 B.3 C.4 D.510.如图所示.在△ABC中.M是BC的中点.AN平分∠⊥AN.若AB=•14.•AC=19.则MN的长为().A.2 B.2.5 C.3 D.二、填空题(3′×10=30′)(11.用14cm长的一根铁丝围成一个平行四边形.短边与长边的比为3:4.短边的比为________.长边的比为________.12.已知平行四边形的周长为20cm.一条对角线把它分成两个三角形.•周长都是18cm.则这条对角线长是_________cm.13.在ABCD中.AB的垂直平分线EF经过点D.在AB上的垂足为E.•若ABCD•的周长为38cm.△ABD的周长比ABCD的周长少10cm.则ABCD的一组邻边长分别为______.14.在ABCD中.E是BC边上一点.且AB=BE.又AE的延长线交DC的延长线于点F.若∠F=65°.则ABCD的各内角度数分别为_________.15.平行四边形两邻边的长分别为20cm.16cm.两条长边的距离是8cm.•则两条短边的距离是_____cm.16.如果一个命题的题设和结论分别是另一个命题的______和_______.•那么这两个命题是互为逆命题.17.命题“两直线平行.同旁内角互补”的逆命题是_________.18.在直角三角形中.已知两边的长分别是4和3.则第三边的长是________.!19.直角三角形两直角边的长分别为8和10.则斜边上的高为________.斜边被高分成两部分的长分别是__________.20.△ABC的两边分别为.另一边c为奇数.且a+b+•c•是3•的倍数.•则c•应为________.此三角形为________三角形.三、解答题(6′×10=60′)21.如右图所示.在ABCD中.BF⊥AD于⊥CD于E.若∠A=60°.AF=3cm.CE=2cm.求ABCD 的周长.(22.如图所示.在ABCD中.E、F是对角线BD上的两点.且BE=DF.求证:(1)AE=CF;(2)AE∥CF.FCDAEB23.如图所示.ABCD的周长是323AB于⊥CB交CB•的延长线于点的长是3.求(1)∠C的大小;(2)DF的长..24.如图所示.ABCD中.AQ、BN、CN、DQ分别是∠DAB、∠ABC、∠BCD、•∠CDA的平分线.AQ与BN交于与DQ交于M.在不添加其它条件的情况下.试写出一个由上述条件推出的结论.并给出证明过程(要求:•推理过程中要用到“平行四边形”和“角平分线”这两个条件).……25.已知△ABC的三边分别为(n>4).求证:∠C=90°.(26.如图所示.在△ABC中.AC==6.在△ABE中.DE⊥AB于=△ABE=60.•求∠C的度数.| 27.已知三角形三条中位线的比为3:5:6.三角形的周长是112cm.•求三条中位线的长.)28.如图所示.已知AB===CM.求证:∠1=∠2.?29.如图所示.△ABC的顶点A在直线MN上.△ABC绕点A旋转.BE⊥MN于E.•CD•⊥MN于为BC中点.当MN经过△ABC的内部时.求证:(1)FE=FD;(2)当△ABC继续旋转.•使MN不经过△ABC内部时.其他条件不变.上述结论是否成立呢^,30.如图所示.E是ABCD的边AB延长线上一点.DE交BC于F.求证:S △ABF =S△EFC.)答案:一、1.D 2.C 3.C 4.B 5.A 6.C 7.A 8.B 9.C 10.C二、11.3cm 4cm 12.8 13.9cm和10cm 14.50°.130°.50°.130°• •15.10 16.结论题设17.同旁内角互补.两直线平行18.5或719.40325041,41,4141414120.13 直角三、21.ABCD的周长为20cm 22.略23.(1)∠C=45°(2)5624.略25.•略26.∠C=90°27.三条中位线的长为:12cm;20cm;24cm ^28.提示:连结BD.取BD•的中点G.连结 29.(1)略 (2)结论仍成立.提示:过F 作FG ⊥MN 于G 30.略练习2一、填空题(每空2分,共28分) …1.已知在ABCD 中,AB =14cm ,BC =16cm ,则此平行四边形的周长为 cm .2.要说明一个四边形是菱形,可以先说明这个四边形是 形,再说明 (只需填写一种方法)3.如图,正方形ABCD 的对线AC 、BD 相交于点O . ! 那么图中共有 个等腰直角三角形.4.把“直角三角形、等腰三角形、等腰直角三角形”填入下列相应的空格上.(1)正方形可以由两个能够完全重合的 拼合而成; (第3题) (2)菱形可以由两个能够完全重合的 拼合而成; (3)矩形可以由两个能够完全重合的 拼合而成.5.矩形的两条对角线的夹角为 60,较短的边长为12cm ,则对角线长为 cm .6.若直角梯形被一条对角线分成两个等腰直角三角形,那么这个梯形中除两个直角外,其余两个内角的度数分别为 和 . 】7.平行四边形的周长为24cm ,相邻两边长的比为3:1,那么这个平行四边形较短的边长为cm .8.根据图中所给的尺寸和比例,可知这个“十”字标志的周长为 m .'(第8题) (第10题)9.已知平行四边形的两条对角线互相垂直且长分别为12cm 和6cm ,那么这个平行四边形 的面积为 2cm .10.如图,l 是四边形ABCD 的对称轴,如果AD ∥BC ,有下列结论: (1)AB ∥CD ;(2)AB=CD ;(3)AB BC ;(4)AO=OC .其中正确的结论是 . (把你认为正确的结论的序号都填上)1m 1mAB CD O ABCD)O l二、选择题(每题3分,共24分)11. 如果一个多边形的内角和等于一个三角形的外角和.那么这个多边形是( ) [ A 、三角形 B 、四边形 C 、五边形 D 、六边形12.下列说法中,错误的是 ( ) A.平行四边形的对角线互相平分 B.对角线互相平分的四边形是平行四边形 C. 平行四边形的对角相等 D.对角线互相垂直的四边形是平行四边形13.给出四个特征(1)两条对角线相等;(2)任一组对角互补;(3)任一组邻角互补;(4)是轴对称图形但不是中心对称图形,其中属于矩形和等腰梯形共同具有的特征的共有 ( ) 个 个 个 个 14. 四边形ABCD 中.AD 么 的值可能是( )A 、3:5:6:4B 、3:4:5:6C 、4:5:6:3D 、6:5:3:4 、15.如图,直线a ∥b ,A 是直线a 上的一个定点,线段BC 在直线b 上移动,那么在移动过程中ABC ∆的面积 ( )A.变大B.变小C.不变D.无法确定(第15题) (第16题) (第17题) 16.如图,矩形ABCD 沿着AE 折叠,使D 点落在BC 边上的F 点处,如果 60=∠BAF ,则DAE ∠ 等于 ( )、 A. 15 B. 30 C. 45 D. 6017.如图,在ABC ∆中,AB=AC =5,D 是BC 上的点,DE ∥AB 交AC 于点E ,DF ∥AC 交AB 于点F , 那么四边形AFDE 的周长是 ( )18.已知四边形ABCD 中,AC 交BD 于点O ,如果只给条件“AB ∥CD ”,那么还不能判定四形 ABCD 为平行四边形,给出以下四种说法:(1)如果再加上条件“BC=AD ”,那么四边形ABCD 一定是平行四边形;(2)如果再加上条件“BCD BAD ∠=∠”,那么四边形ABCD 一定是平行四边形; 》(3)如果再加上条件“AO=OC ”,那么四边形ABCD 一定是平行四边形;(4)如果再加上条件“CAB DBA ∠=∠”,那么四边形ABCD 一定是平行四边形 其中正确的说法是( )A.(1)(2)B.(1)(3)(4)C.(2)(3)D.(2)(3)(4)三、解答题(第19题8分,第20~23题每题10分,共48分) 19.如图, 中,DB=CD , 70=∠C ,AE ⊥BD 于E . …试求DAE ∠的度数.ABCD EA BC D E F A B C ^ b ABCD(第19题)》20.如图, 中,G 是CD 上一点,BG 交AD 延长线于E ,AF=CG , 100=∠DGE . (1)试说明DF=BG ; (2)试求AFD ∠的度数.。
图1 A B C D初二数学平行四边形专题练习1.如果边长分别为4cm 和5cm 的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm .2.(08贵阳市)如图1,正方形ABCD 的边长为4cm ,则图中阴影部分的面积为 cm 2.3.若四边形ABCD 是平行四边形,请补充条件 (写一个即可),使四边形ABCD 是菱形.4.在平行四边形ABCD 中,已知对角线AC 和BD 相交于点O ,△ABO 的周长为17,AB =6,那么对角线AC +BD =⒎以正方形ABCD 的边BC 为边做等边△BCE ,则∠AED 的度数为 .5.已知菱形ABCD 的边长为6,∠A =60°,如果点P 是菱形内一点,且PB =PD =2那么AP 的长为 .6.在平面直角坐标系中,点A 、B 、C 的坐标分别是A(-2,5),B(-3,-1),C(1,-1),在第一象限内找一点D ,使四边形ABCD 是平行四边形,那么点D 的坐标是 .二、选择题(每题3分,共30分)7.如图2在平行四边形ABCD 中,∠B=110°,延长AD 至F ,延长CD 至E ,连结EF ,则∠E +∠F =( )A .110°B .30°C .50°D .70°图2 图3 图48.菱形具有而矩形不具有的性质是 ( )A .对角相等B .四边相等C .对角线互相平分D .四角相等9.如图3所示,平行四边形ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 的中点.若OE=3 cm ,则AB 的长为 ( )A .3 cmB .6 cmC .9 cmD .12 cm10.已知:如图4,在矩形ABCD 中,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.若AB =2,AD =4,则图中阴影部分的面积为 ( )A .8B .6C .4D .3E AF D C B HG11.将两块能完全重合的两张等腰直角三角形纸片拼成下列图形:①平行四边形(不包括菱形、矩形、正方形)②矩形③正方形④等边三角形⑤等腰直角三角形( )A.①③⑤B.②③⑤C.①②③D.①③④⑤12.如图5所示,是一块电脑主板的示意图,每一转角处都是直角,数据如图所示(单位:mm),则该主板的周长是( )A.88 mm B.96 mm C.80 mm D.84 mm图5 图613、(08甘肃省白银市)如图6所示,把矩形ABCD沿EF对折后使两部分重合,若150∠=o,∠=()则AEFA.110° B.115°C.120° D.130°14、四边形ABCD,仅从下列条件中任取两个加以组合,使得ABCD是平行四边形,一共有多少种不同的组合?()AB∥CD BC∥AD AB=CD BC=ADA.2组B.3组C.4组D.6组15、下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形.B.每组邻边都相等的四边形是菱形.C. 对角线互相垂直的平行四边形是正方形.D.四个角都相等的四边形是矩形.三、解答题16、如图7,四边形ABCD是菱形,对角线AC=8 cm ,BD=6 cm, DH⊥AB于H,求:DH的长。
绝密★启用前《平行四边形》培优专题学校:___________姓名:___________班级:___________考号:___________一.解答题(共40小题)1.附加题:(成绩只作参考,不计入总分)如图:正方形ABCD中内有一E,连接AE,BE,使∠EAB=∠EBA=15°,证明:(1)DE=CE;(2)△CDE是正三角形.2.如图,在正方形ABCD中,P是CD上一点,且AP=BC+CP,Q为CD中点,求证:∠BAP=2∠QAD.3.已知,如图,在正方形ABCD中,O是对角线的交点,AF平分∠BAC,DH⊥AF于点H,交AC于点G,DH延长线交AB于点E.求证:BE=2OG.4.如图,在矩形ABCD中,已知AD=12,AB=5,P是AD边上任意一点,PE⊥BD,PE⊥AC,E、F分别是垂足,求PE+PF的长.5.在正方形ABCD中,P为AB的中点,BE⊥PD的延长线于点E,连接AE、BE、F A⊥AE 交DP于点F,连接BF,FC.求证下列结论:①FB=AB;②CF⊥EF,FC=EF.6.平行四边形ABCD中,AB=2BC,BE⊥AD于点E,F是DC中点.求证:∠EFC=3∠DEF.7.如图,在△ABC中,D为BC的中点,点E、F分别在边AC、AB上,并且∠ABE=∠ACF,BE、CF交于点O.过点O作OP⊥AC,OQ⊥AB,P、Q为垂足.求证:DP=DQ.8.如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm,E点F点分别为AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)求菱形AEDF的面积;(3)若H从F点出发,在线段FE上以每秒2cm的速度向E点运动,点P从B点出发,在线段BC上以每秒3cm的速度向C点运动,问当t为何值时,四边形BPHE是平行四边形?当t取何值时,四边形PCFH是平行四边形?9.如图,已知正方形ABCD的边长为√2,连接AC、BD交于点O,CE平分∠ACD交BD 于点E,(1)求DE的长;(2)过点EF作EF⊥CE,交AB于点F,求BF的长;(3)过点E作EG⊥CE,交CD于点G,求DG的长.10.菱形ABCD中,F是对角线AC的中点,过点A作AE⊥BC垂足为E,G为线段AB上一点,连接GF并延长交直线BC于点H.(1)当∠CAE=30°时,且CE=√3,求菱形的面积;(2)当∠BGF+∠BCF=180°,AE=BE时,求证:BF=(√2+1)GF.11.在▱ABCD中,E,F分别是AB、CD的中点,AF与DE相交于点G,CE与BF相交于点H.(1)求证:四边形EHFG是平行四边形;(2)▱ABCD应满足什么条件时,四边形EHFG是矩形?并说明理由;(3)▱ABCD应满足什么条件时,四边形EHFG是正方形?(不要说明理由).12.如图,在△ABC中,点D在边AC上,DB=BC,E是CD的中点,F是AB的中点,求证:EF=12AB.13.边长为a的正方形ABCD中,点E是BD上一点,过点E作EF⊥AE交射线CB于点F,连结CE.(1)若点F在边BC上(如图);①求证:CE=EF;②若BC=2BF,求DE的长.(2)若点F在CB延长线上,BC=2BF,请直接写出DE的长.14.如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.15.(1)如图1,已知DE∥BC,∠D:∠DBC=2:1,∠1=∠2.求∠DEB的度数.(2)“三等分一个任意角”是数学史上一个著名问题,今天人们已经知道,仅用圆规直尺是不可能做出的.在探索中,有人曾利用过如图2所示的图形,其中,ABCD是长方形(AD ∥CB,F是DA延长线上一点,G是CF上一点,并且∠ACG=∠AGC,∠GAF=∠F,你能证明∠ECB=13∠ACB吗?16.如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.17.如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB =AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=√2CG.18.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,求DF的长.19.如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD.(1)求证:EB=GD;(2)若AB=5,AG=2√2,求EB的长.20.如图1,在矩形ABCD中,AC为对角线,延长CD至点E使CE=CA,连接AE.F为AB上的一点,且BF=DE,连接FC.(1)若DE=1,CF=2√2,求CD的长;(2)如图2,点G为线段AE的中点,连接BG交AC于H,若∠BHC+∠ABG=60°,求证:AF+CE=√3AC.21.如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:求证:(1)△ABE是等边三角形;(2)△ABC≌△AED;(3)S△ABE=S△CEF.22.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)△ABC满足什么条件时,四边形ADCF是矩形?并证明你的结论.23.如图1,在平行四边形ABCD中,E,F分别在边AD,AB上,连接CE,CF,且满足∠DCE=∠BCF,BF=DE,∠A=60°,连接EF.(1)若EF=2,求△AEF的面积;(2)如图2,取CE的中点P,连接DP,PF,DF,求证:DP⊥PF.24.在四边形ABCD中,∠ABC=∠ADC=90°,连接AC、BD,E、F分别是AC、BD的中点,连接EF,试证明EF⊥BD.25.如图①,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PE=P A,PE交CD于F.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图②,把正方形ABCD改为菱形ABCD,其它条件不变,若∠ABC=65°,则∠CPE =度.26.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.求证:(1)AC=EF;(2)四边形ADFE是平行四边形;(3)AC⊥DF.27.如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=8,DC=6,AD=10.动点P 从点D出发,沿线段DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点P运动到点A时,点Q随之停止运动.设运动的时间为t(秒).(1)若四边形ABQP为平行四边形,求运动时间t.(2)当t为何值时,三角形BPQ是以BQ或BP为底边的等腰三角形?28.如图,在▱ABCD中,O是对角线AC的中点,过点O作AC的垂线与边AD、BC分别交于E、F.四边形AFCE是菱形吗?请说明理由.29.如图,在矩形ABCD中,BC=24cm,P、Q、M、N分别从A、B、C、D出发,沿AD、BC、CB、DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止、已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm,(1)当x为何值时,点P、N重合;(2)当x为何值时,以P、Q、M、N为顶点的四边形是平行四边形.30.如图,以△ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,试判断△ABC与△AEG面积之间的关系,并说明理由.31.正方形ABCD中,E、F是AD上的两个点,AE=DF,连CF交BD于点M,连AM交BE于点N,连结DN.如果正方形的边长为2.(1)求证:BE⊥AM;(2)求DN的最小值.32.如图,已知△ABD、△BCE、△ACF都是等边三角形.(1)试判断四边形ADEF的形状并说明理由.(2)当△ABC满足,四边形ADEF是矩形(不需证明).(3)当△ABC满足,四边形ADEF是菱形(不需证明).(4)当△ABC满足,四边形ADEF不存在(不需证明).33.如图,正方形ABCD中,E、F分别是BC、CD边上的点,AE、DE、BF、AF把正方形分成8小块,各小块的面积分别为S1、S2、…S8,若S2=2,S7=3,S8=8,则S3的值为.34.如图:在△ABC中,CE、CF分别平分∠ACB与它的邻补角∠ACD,AE⊥CE于E,AF ⊥CF于F,直线EF分别交AB、AC于M、N.(1)求证:四边形AECF为矩形;(2)试猜想MN与BC的关系,并证明你的猜想;(3)如果四边形AECF是菱形,试判断△ABC的形状,直接写出结果,不用说明理由.35.已知:如图,四边形ABCD中,∠ABC=90°,∠ADC=90°,点E为AC中点,点F 为BD中点.求证:EF⊥BD.36.已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)37.如图正方形ABCD的边长为12,E为CD上一点(CE<DE),P为AD上一点,且∠PBE =45°,PE=10,过B作BF⊥PE于F.(1)求证:BF=CD;(2)求CE的长.38.如图,任意五边形ABCDE,M、N、P、Q分别为AB、CD、BC、DE的中点,K、L分别为MN、PQ的中点,求证:KL∥AE且KL=14AE.39.如图所示.在四边形ABCD中,CD>AB,AB与CD不平行,E,F分别是AC,BD的中点.求证:EF>12(CD−AB).40.如图,四边形ABCD中,对角线AC、BD相交于点O,O为AC、BD的中点,AB=10,AC=16,BD=12.(1)四边形ABCD是什么特殊的四边形?请证明;(2)点P在AO上,点Q在DO上,且AP=2OQ.若PQ=BQ,求AP的长.《平行四边形》培优专题参考答案与试题解析一.解答题(共40小题)1.附加题:(成绩只作参考,不计入总分)如图:正方形ABCD中内有一E,连接AE,BE,使∠EAB=∠EBA=15°,证明:(1)DE=CE;(2)△CDE是正三角形.【分析】(1)由正方形的性质可以得出∠DAB=∠ABC=90°,由∠EAB=∠EBA=15°,可以得出∠DAE=∠EBC=75°及AE=BE,从而可以证明△AED≌△BEC,然后就可以得出结论.(2)以AB为边作正三角形ABM,连接ME,可以得到∠EAM=∠EBM=75°,利用三角形全等可以得出∠AEM=∠BEM=75°,可以得出ME=MB,再证明△BME≌△BCE,可以得出CE=ME,得到EC=BC=CD.从而得出结论.【解答】解:(1)∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵∠EAB=∠EBA=15°,∴∠DAE=∠EBC=75°,AE=BE,∴△AED≌△BEC,∴DE=CE.(2)以AB为边作正三角形ABM,连接ME,如图所示:∵∠EAB=∠EBA=15°,∴AE=BE,又∠EAM=∠EBM=75°,∵ME=ME,∴△MAE≌△MBE,∴∠MEB=∠MEA=75°,∴EM=MB=AB,∵∠EBC=75°,∴∠CBE=∠EBM,∴△BME≌△BCE,∴CE=ME=CB=DC,同理:DE=EM=CB=DC,∴CE=DE=CD,∴△CDE是正三角形.【点评】本题考查了正方形的性质,全等三角形的判定及性质,等边三角形的判定和等腰三角形的性质的运用.2.如图,在正方形ABCD中,P是CD上一点,且AP=BC+CP,Q为CD中点,求证:∠BAP=2∠QAD.【分析】作∠BAC的平分线交BC于M,交DC的延长线于F,进而求证△ABM≌△ANM,进而可得△ABN≌△ADQ,Rt△PMN≌Rt△PMC,△ABM≌△ADQ进而可得出结论.【解答】解:作∠BAP的平分线交BC于M,作MN⊥AP,垂足为N,连接MP∵AF是∠BAP的平分线,MN⊥AP,∴∠BAM=∠MAP,∠B=∠ANM=90°,AM=AM,∴△ABM≌△ANM(AAS),∴MB=MN,AB=AN,∵AP=PC+CB=PC+AB,又AP=AN+NP=AB+NP∴NP=PC,∵PM=PM,∴Rt△PMN≌Rt△PMC(HL),∴MN=MC,∴MB=MC,∴△ABM≌△ADQ(SAS),∴∠QAD=∠BAM,∴∠BAP=2∠QAD【点评】本题考查了正方形各边长相等的性质,全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中求证△ABM≌△ADQ是解题的关键.3.已知,如图,在正方形ABCD中,O是对角线的交点,AF平分∠BAC,DH⊥AF于点H,交AC于点G,DH延长线交AB于点E.求证:BE=2OG.【分析】作OM∥AB交DE于M.首先证明OM是△DEB的中位线,再证明OG=OM即可解决问题.【解答】解:作OM∥AB交DE于M.∵四边形ABCD是正方形,∴OB=OD,∵OH∥BE,∴EM=DM,∴BE=2OM,∵∠OAD=∠ADO=∠BAC=45°,∵F A平分∠BAC,∴∠EAH=22.5°,∵AF⊥DE,∴∠AHE=∠AHD=90°,∴∠AEH=67.5°,∵∠ADE+∠AED=90°,∴∠ADE=22.5°,∴∠OGD=∠GAD+∠ADE=67.5°,∵∠AEH=∠OME=67.5°,∴∠OGM=∠OMG,∴OG =OM ,∴BE =2OG .【点评】本题考查正方形的性质、三角形的中位线定理、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是学会添加辅助线,构造三角形中位线解决问题,属于中考常考题型.4.如图,在矩形ABCD 中,已知AD =12,AB =5,P 是AD 边上任意一点,PE ⊥BD ,PE⊥AC ,E 、F 分别是垂足,求PE +PF 的长.【分析】连结OP ,由S △AOP +S △DOP =15,可得12×OA ×PF +12×OD ×PE =15.由此即可解决问题.【解答】解:连结OP .由矩形ABCD ,AD =12,AB =5.∴AC =BD =2OA =2OB =13.∴OA =OD =6.5.而S 矩形=12×5=60.∴S △AOD =14×60=15.∴S △AOP +S △DOP =15.即12×OA ×PF +12×OD ×PE =15. ∴12×6.5×(PE +PF )=15.∴PE +PF =6013. 【点评】本题考查矩形的性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.在正方形ABCD 中,P 为AB 的中点,BE ⊥PD 的延长线于点E ,连接AE 、BE 、F A ⊥AE交DP 于点F ,连接BF ,FC .求证下列结论:①FB =AB ;②CF ⊥EF ,FC =EF .【分析】(1)根据已知和正方形的性质推出∠EAB=∠DAF,∠EBA=∠ADP,AB=AD,证△ABE≌△ADF即可;取EF的中点M,连接AM,推出AM=MF=EM=DF,证∠AMB =∠FMB,BM=BM,AM=MF,推出△ABM≌△FBM,利用全等三角形的性质得出结论;(2)利用(1)中△ABM≌△FBM可得∠BAM=∠BFM,求出∠FDC=∠EBF,推出△BEF ≌△DFC,利用全等三角形的性质即可得出结论.【解答】证明:(1)∵正方形ABCD,BE⊥PD,EA⊥F A,∴AB=AD=CD=BC,∠BAD=∠EAF=90°=∠BEF,∵∠APD=∠EPB,∴∠EAB=∠DAF,∠EBA=∠ADP,∵AB=AD,在△ABE与△ADF中,{∠EAB=∠DAF AB=AD∠EBA=∠ADP,∴△ABE≌△ADF(ASA),∴AE=AF,BE=DF,∴∠AEF=∠AFE=45°,取EF的中点M,连接AM,∴AM⊥EF,AM=EM=FM,∴BE∥AM,∵AP=BP,∴AM=BE=DF,∴∠EMB=∠EBM=45°,∴∠AMB=90°+45°=135°=∠FMB,在△ABM与△FBM中,{AM=FM∠AMB=∠FMB BM=BM,∴△ABM≌△FBM(SAS),∴AB=BF;(2)∵△ABM≌△FBM,∴∠BAM=∠BFM,∵∠BEF=90°,AM⊥EF,∴∠BAM+∠APM=90°,∠EBF+∠EFB=90°,∴∠APF=∠EBF,∵AB∥CD,∴∠APD=∠FDC,∴∠EBF=∠FDC,在△BEF与△DFC中,{BE=DF∠EBF=∠FDC BF=CF,∴△BEF≌△DFC(SAS),∴CF=EF,∠DFC=∠FEB=90°,∴CF=EF且CF⊥EF.【点评】本题主要考查对正方形的性质,等腰直角三角形,直角三角形斜边上的中线性质,全等三角形的性质和判定,三角形的内角和定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.6.平行四边形ABCD中,AB=2BC,BE⊥AD于点E,F是DC中点.求证:∠EFC=3∠DEF.【分析】取AB中点G,连接FG交BE于O,连接FB,利用三线合一的性质可判断出△FEB 是等腰三角形,然后根据菱形及平行四边形的性质得出FO,FB是∠EFC的三等分线,继而可证得结论.【解答】证明:取AB中点G,连接FG交BE于O,连接FB,则AD∥FG,BE⊥FG,∵G是AB中点,∴O是BE中点,∴△FEB是等腰三角形(三线合一的性质),∴∠EFO=∠BFO,又∵CF=12CD=CB,∴四边形BCFG是菱形,∴∠GFB=∠CFB,∴FO,FB是∠EFC的三等分线,∴DEF=∠EFO=13∠DEF,故可得∠EFC=3∠DEF.【点评】本题考查了平行四边形及菱形的性质,作出AD的平行线FG是解答本题的关键,要求我们熟练掌握等腰三角形的三线合一性质.7.如图,在△ABC中,D为BC的中点,点E、F分别在边AC、AB上,并且∠ABE=∠ACF,BE、CF交于点O.过点O作OP⊥AC,OQ⊥AB,P、Q为垂足.求证:DP=DQ.【分析】取OB中点M,OC中点N,根据三角形中位线定理可得到DM∥OC,DM=12OC,DN∥OB,DN=12OB,再根据直角三角形斜边上的中线的性质得到QM=12OB,PN=12OC,再根据三角形外角的性质即可推出∠QMD=∠PND,从而利用SAS判定△QMD≌△DNP,根据全等三角形的对应的边相等即可证得结论.【解答】证明:如图,取OB中点M,OC中点N,连接MD,MQ,DN,PN.∵D为BC的中点∴DM∥OC,DM=12OC,DN∥OB,DN=12OB.∵在Rt△BOQ和Rt△OCP中,QM=12OB,PN=12OC.∴DM=PN,QM=DN.∠QMD=∠QMO+∠OMD=2∠ABO+∠FOB,∠PND=∠PNO+∠OND=2∠ACO+∠EOC.∵∠ABO=∠ACO,∠FOB=∠EOC,∴∠QMD=∠PND.∴△QMD≌△DNP,∴DQ=DP.【点评】此题主要考查学生对三角形中位线定理及全等三角形的判定与性质的综合运用能力.8.如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm,E点F点分别为AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)求菱形AEDF的面积;(3)若H从F点出发,在线段FE上以每秒2cm的速度向E点运动,点P从B点出发,在线段BC上以每秒3cm的速度向C点运动,问当t为何值时,四边形BPHE是平行四边形?当t取何值时,四边形PCFH是平行四边形?【分析】(1)根据等腰三角形的三线合一可得出D为BC的中点,结合E、F分别为AB、AC的中点可得出DE和DF是△ABC的中位线,根据中位线的定义可得出DE∥AC、DF∥AB,即四边形AEDF是平行四边形,根据三角形中位线定义可得出DE=12AC、DF=12AB,结合AB=AC即可得出DE=DF,从而得出四边形AEDF是菱形;(2)根据中位线的定义可得出EF的长度,根据菱形的面积公式可求出菱形AEDF的面积;(3)由中位线的定义可得出EF∥BC,根据平行四边形的判定定理可得出关于t的一元一次方程,解之即可得出结论.【解答】(1)证明:∵AB=AC,AD⊥BC,∴D为BC的中点.∵E、F分别为AB、AC的中点,∴DE和DF是△ABC的中位线,∴DE∥AC,DF∥AB,∴四边形AEDF是平行四边形.∵E,F分别为AB,AC的中点,AB=AC,∴AE=AF,∴四边形AEDF是菱形,(2)解:∵EF为△ABC的中位线,∴EF=12BC=5.∵AD=8,AD⊥EF,∴S菱形AEDF=12AD•EF=12×8×5=20.(3)解:∵EF∥BC,∴EH∥BP.若四边形BPHE为平行四边形,则须EH=BP,∴5﹣2t=3t,解得:t=1,∴当t=1秒时,四边形BPHE为平行四边形.∵EF∥BC,∴FH∥PC.若四边形PCFH为平行四边形,则须FH=PC,∴2t=10﹣3t,解得:t=2,∴当t=2秒时,四边形PCFH为平行四边形.【点评】本题考查了菱形的判定与性质、三角形的中位线、菱形的面积、等腰三角形的性质、平行四边形的判定以及解一元一次方程,解题的关键是:(1)根据三角形中位线的性质找出DE∥AC、DF∥AB;(2)牢记菱形的面积公式;(3)根据平行四边形的判定定理找出关于t的一元一次方程.9.如图,已知正方形ABCD的边长为√2,连接AC、BD交于点O,CE平分∠ACD交BD 于点E,(1)求DE的长;(2)过点EF作EF⊥CE,交AB于点F,求BF的长;(3)过点E作EG⊥CE,交CD于点G,求DG的长.【分析】(1)求出BC=BE,根据勾股定理求出BD,即可求出DE;(2)求出△FEB≌△ECD,根据全等三角形的性质得出BF=DE即可;(3)延长GE交AB于F,证△GDE∽△FBE,得出比例式,代入即可求出答案.【解答】解:(1)∵四边形ABCD是正方形,∴∠ABC=∠ADC=90°,∠DBC=∠BCA=∠ACD=45°,∵CE平分∠DCA,∴∠ACE=∠DCE=12∠ACD=22.5°,∴∠BCE=∠BCA+∠ACE=45°+22.5°=67.5°,∵∠DBC=45°,∴∠BEC=180°﹣67.5°﹣45°=67.5°=∠BCE,∴BE=BC=√2,在Rt△ACD中,由勾股定理得:BD=√(√2)2+(√2)2=2,∴DE=BD﹣BE=2−√2;(2)∵FE⊥CE,∴∠CEF =90°,∴∠FEB =∠CEF ﹣∠CEB =90°﹣67.5°=22.5°=∠DCE ,∵∠FBE =∠CDE =45°,BE =BC =CD ,∴△FEB ≌△ECD ,∴BF =DE =2−√2;(3)延长GE 交AB 于F ,由(2)知:DE =BF =2−√2,由(1)知:BE =BC =√2,∵四边形ABCD 是正方形,∴AB ∥DC ,∴△DGE ∽△BFE ,∴DG BF =DE BE , ∴2−√2=√2√2, 解得:DG =3√2−4.【点评】本题考查了正方形的性质,全等三角形的性质和判定,相似三角形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键,题目比较好,难度偏大.10.菱形ABCD 中,F 是对角线AC 的中点,过点A 作AE ⊥BC 垂足为E ,G 为线段AB 上一点,连接GF 并延长交直线BC 于点H .(1)当∠CAE =30°时,且CE =√3,求菱形的面积;(2)当∠BGF +∠BCF =180°,AE =BE 时,求证:BF =(√2+1)GF .【分析】(1)只要证明△ABC 是等边三角形,即可解决问题;(2)如图,连接GC ,作GM ⊥GF 交BF 于M .想办法证明△BGC 是等腰直角三角形,再证明△BGM ≌△CGF 即可解决问题;【解答】(1)解:∵四边形ABCD 是菱形,∴AB =BC ,∵AE ⊥BC ,∠EAC =30°,∴∠ACE =60°,AC =2EC =2√3,∴△ABC ,△ACD 都是等边三角形,∴S 菱形ABCD =2•S △ABC =2×√34×(2√3)2=6√3.(2)如图,连接GC ,作GM ⊥GF 交BF 于M .∵四边形ABCD 是菱形,∴BA =BC ,∵AF =FC ,∴BF ⊥AC ,∴∠BF A =90°,∵∠BGF +∠BCF =180°,∠AGF +∠BGF =180°,∴∠AGF =∠ACB ,∵∠GAF =∠CAB∴△AGF ∽△ACB ,∴AG AC =AF AB , ∴AG AF =AC AB ,∵∠CAG =∠BAF ,∴△CAG ∽△BAF ,∴∠CGA=∠BF A=90°,∵AE⊥BE,AE=BE,∴∠ABE=45°,∴∠GBC=∠GCB=45°,∴GB=GC,∵∠BGC=∠MGF,∴∠BGM=∠CGF,∵∠GBM=∠GCF,∴△BGM≌△CGF,∴BM=CF,GM=GF,FM=√2GF,∵∠AGC=90°AF=FC,∴GF=FC=BM,∴BF=BM+FM=GF+√2GF=(√2+1)GF.【点评】本题考查菱形的性质、等边三角形的判定和性质、全等三角形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.11.在▱ABCD中,E,F分别是AB、CD的中点,AF与DE相交于点G,CE与BF相交于点H.(1)求证:四边形EHFG是平行四边形;(2)▱ABCD应满足什么条件时,四边形EHFG是矩形?并说明理由;(3)▱ABCD应满足什么条件时,四边形EHFG是正方形?(不要说明理由).【分析】(1)通过证明两组对边分别平行,可得四边形EHFG是平行四边形;(2)当平行四边形ABCD是矩形时,通过证明有一组邻边相等,可得平行四边形EHFG是菱形;(3)当平行四边形ABCD是矩形,并且AB=2AD时,先证明四边形ADFE是正方形,得出有一个内角等于90°,从而证明菱形EHFG为一个正方形.【解答】解:(1)∵四边形ABCD 是平行四边形,∴AE ∥CF ,AB =CD ,∵E 是AB 中点,F 是CD 中点,∴AE =CF ,∴四边形AECF 是平行四边形,∴AF ∥CE .同理可得DE ∥BF ,∴四边形FGEH 是平行四边形;(2)当平行四边形ABCD 是矩形时,平行四边形EHFG 是菱形.∵四边形ABCD 是矩形∴∠ABC =∠DCB =90°,∵E 是AB 中点,F 是CD 中点,∴BE =CF ,在△EBC 与△FCB 中,∵{BE =CF∠ABC =∠DCB BC =BC,∴△EBC ≌△FCB ,∴CE =BF ,∠ECB =∠FBC ,BH =CH ,EH =FH ,平行四边形EHFG 是菱形;(3)当平行四边形ABCD 是矩形,并且AB =2AD 时,平行四边形EHFG 是正方形.连接EF .∵E,F分别为AB,CD的中点,且AB=CD,∴AE=DF,且AE∥DF,∴四边形AEFD为平行四边形,∴AD=EF,又∵AB=2AD,E为AB中点,则AB=2AE,于是有AE=AD=12AB,这时,EF=AE=AD=DF=12AB,∠EAD=∠FDA=90°,∴四边形ADFE是正方形,∴EG=FG=12AF,AF⊥DE,∠EGF=90°,∴此时,平行四边形EHFG是正方形.【点评】本题考查了平行四边形的判定与性质,菱形的判定和正方形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.12.如图,在△ABC中,点D在边AC上,DB=BC,E是CD的中点,F是AB的中点,求证:EF=12AB.【分析】连接BE,根据等腰三角形三线合一的性质可得BE⊥AC,再根据直角三角形斜边上的中线等于斜边的一半证明.【解答】证明:如图,连接BE,∵在△BCD中,DB=BC,E是CD的中点,∴BE⊥CD,∵F是AB的中点,∴在Rt△ABE中,EF是斜边AB上的中线,∴EF=12 AB【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并作辅助线构造出直角三角形是解题的关键.13.边长为a的正方形ABCD中,点E是BD上一点,过点E作EF⊥AE交射线CB于点F,连结CE.(1)若点F在边BC上(如图);①求证:CE=EF;②若BC=2BF,求DE的长.(2)若点F在CB延长线上,BC=2BF,请直接写出DE的长.【分析】(1)①先利用正方形的对称性可得到∠BAE=∠BCE,然后在证明又∠BAE=∠EFC,通过等量代换可得到∠BCE=∠EFC;②过点E作MN⊥BC,垂直为N,交AD于M.依据等腰三角形的性质可得到FN=CN,从而可得到NC的长,然后可得到MD的长,在Rt△MDE中可求得ED的长;(2)先根据题意画出图形,然后再证明EF=EC,然后再按照(1)②中的思路进行证明即可.【解答】解:(1)①证明:∵正方形ABCD关于BD对称,∴△ABE≌△CBE,∴∠BAE=∠BCE.又∵∠ABC=∠AEF=90°,∴∠BAE=∠EFC,∴∠BCE=∠EFC,∴CE=EF.②过点E作MN⊥BC,垂直为N,交AD于M.∵CE=EF,∴N是CF的中点.∵BC=2BF,∴CNBN =14.又∵四边形CDMN是矩形,△DME为等腰直角三角形,∴CN=DM=ME,∴ED=√2DM=√2CN=√24a.(2)如图所示:过点E作MN⊥BC,垂直为N,交AD于M.∵正方形ABCD关于BD对称,∴△ABE≌△CBE,∴∠BAE=∠BCE.又∵∠ABF=∠AEF=90°,∴∠BAE=∠EFC,∴∠BCE=∠EFC,∴CE=EF.∴FN=CN.又∵BC=2BF,∴FC=32a,∴EN=BN=14a,∴DE=3√24a.【点评】本题主要考查的是正方形的性质、全等三角形的性质和判定、等腰三角形的性质和判定、等腰直角三角形的性质,掌握本题的辅助线的法则是解题的关键.14.如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.【分析】(1)如图1,连接DF,根据对称得:△ADE≌△FDE,再由HL证明Rt△DFG≌Rt△DCG,可得结论;(2)证法一:如图2,作辅助线,构建AM=AE,先证明∠EDG=45°,得DE=EH,证明△DME≌△EBH,则EM=BH,根据等腰直角△AEM得:EM=√2AE,得结论;证法二:如图3,作辅助线,构建全等三角形,证明△DAE≌△ENH,得AE=HN,AD=EN,再说明△BNH是等腰直角三角形,可得结论.【解答】证明:(1)如图1,连接DF,∵四边形ABCD是正方形,∴DA=DC,∠A=∠C=90°,∵点A关于直线DE的对称点为F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,DG =DG∴Rt △DFG ≌Rt △DCG (HL ),∴GF =GC ;(2)BH =√2AE ,理由是:证法一:如图2,在线段AD 上截取AM ,使AM =AE ,∵AD =AB ,∴DM =BE ,由(1)知:∠1=∠2,∠3=∠4,∵∠ADC =90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG =45°,∵EH ⊥DE ,∴∠DEH =90°,△DEH 是等腰直角三角形,∴∠AED +∠BEH =∠AED +∠1=90°,DE =EH ,∴∠1=∠BEH ,在△DME 和△EBH 中,∵{DM =BE∠1=∠BEH DE =EH,∴△DME ≌△EBH ,∴EM =BH ,Rt △AEM 中,∠A =90°,AM =AE ,∴EM =√2AE ,∴BH =√2AE ;证法二:如图3,过点H 作HN ⊥AB 于N ,∴∠ENH =90°,由方法一可知:DE =EH ,∠1=∠NEH ,在△DAE 和△ENH 中,∵{∠A =∠ENH∠1=∠NEH DE =EH,∴△DAE ≌△ENH ,∴AE =HN ,AD =EN ,∵AD =AB ,∴AB =EN =AE +BE =BE +BN ,∴AE =BN =HN ,∴△BNH 是等腰直角三角形,∴BH =√2HN =√2AE .【点评】本题考查了正方形的性质,全等三角形的判定定理和性质定理,对称的性质,等腰直角三角形的性质等知识,解决本题的关键是利用正方形的性质得到相等的边和相等的角,证明三角形全等,作出辅助线也是解决本题的关键.15.(1)如图1,已知DE ∥BC ,∠D :∠DBC =2:1,∠1=∠2.求∠DEB 的度数.(2)“三等分一个任意角”是数学史上一个著名问题,今天人们已经知道,仅用圆规直尺是不可能做出的.在探索中,有人曾利用过如图2所示的图形,其中,ABCD是长方形(AD ∥CB,F是DA延长线上一点,G是CF上一点,并且∠ACG=∠AGC,∠GAF=∠F,你能证明∠ECB=13∠ACB吗?【分析】(1)利用平行线的性质即可解决问题;(2)由AD∥CB,由此∠FCB=∠F,由∠AGC是△AGF的外角,推出∠AGC=∠GAF+∠F=2∠F,又∠ACG=∠AGC,可得∠ACB=∠ECB+∠ACG=∠F+2∠F=3∠F=3∠ECB;【解答】(1)解:如图1中,∵DE∥BC,∴∠D+∠DBC=180°,∵∠D:∠DBC=2:1,∴∠D=2∠DBC,∴2∠DBC+∠DBC=180°,即∠DBC=60°,∵∠1=∠2,∴∠1=∠2=30°,∵DE∥BC,∴∠DEB=∠1=30°.(2)解:如图2中,∵AD∥CB,∴∠FCB=∠F,∵∠AGC是△AGF的外角,∴∠AGC=∠GAF+∠F=2∠F,又∵∠ACG=∠AGC,∠ACB=∠ECB+∠ACG,=∠F+2∠F=3∠F=3∠ECB,∴∠ECB=13∠ACB.【点评】本题考查平行线的性质、矩形的性质、三角形的内角和定理、三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.【分析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为4且E为OM的中点知OH=HA=2、HM=4,再根据勾股定理得OM=2√5,由直角三角形性质知MN=√2OM.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM=√22+42=2√5,∴MN=√2OM=2√10.【点评】本题主要考查正方形的性质,解题的关键是掌握正方形的四条边都相等,正方形的每条对角线平分一组对角及全等三角形的判定与性质.17.如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB =AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=√2CG.【分析】(1)利用勾股定理即可得出BH的长,进而运用公式得出△ABE的面积;(2)过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,判定△AME≌△BNG(AAS),可得ME=NG,进而得出BE=√2GC,再判定△AFO≌△CEO(AAS),可得AF=CE,即可得到DF=BE=√2CG.【解答】解:(1)∵AH=3,HE=1,∴AB=AE=4,又∵Rt△ABH中,BH=2−AH2=√7,∴S△ABE=12AE×BH=12×4×√7=2√7;(2)如图,过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,则∠AMB=∠AME =∠BNG=90°,∵∠ACB=45°,∴∠MAC=∠NGC=45°,∵AB=AE,∴BM=EM=12BE,∠BAM=∠EAM,又∵AE⊥BG,∴∠AHK=90°=∠BMK,而∠AKH=∠BKM,∴∠MAE=∠NBG,设∠BAM=∠MAE=∠NBG=α,则∠BAG=45°+α,∠BGA=∠GCN+∠GBC=45°+α,∴AB=BG,∴AE=BG,在△AME和△BNG中,{∠AME=∠BNG ∠MAE=∠NBG AE=BG,∴△AME≌△BNG(AAS),∴ME=NG,在等腰Rt△CNG中,NG=NC,∴GC=√2NG=√2ME=√22BE,∴BE=√2GC,∵O是AC的中点,∴OA=OC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠OAF=∠OCE,∠AFO=∠CEO,∴△AFO≌△CEO(AAS),∴AF=CE,∴AD﹣AF=BC﹣EC,即DF=BE,∴DF=BE=√2CG.【点评】本题主要考查了平行四边形的性质,全等三角形的判定与性质,等腰直角三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造全等三角形以及等腰直角三角形,利用全等三角形的对应边相等得出结论.18.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,求DF的长.【分析】延长CF交AB于点G,判断出AF垂直平分CG,得到AC=AG,根据三角形中位线定理解答.【解答】解:延长CF交AB于点G,∵AE平分∠BAC,∴∠GAF=∠CAF,∴AF垂直平分CG,∴AC=AG,GF=CF,又∵点D是BC中点,∴DF是△CBG的中位线,∴DF=12BG=12(AB﹣AG)=12(AB﹣AC)=2.【点评】本题关键是通过题目角平分线和垂线合一启发构造等腰三角形,从而构造出DF为△BCG的中位线,利用中位线定理解决问题.19.如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD.(1)求证:EB=GD;(2)若AB=5,AG=2√2,求EB的长.【分析】(1)根据正方形的性质得到∠GAD=∠EAB,证明△GAD≌△EAB,根据全等三角形的性质证明;(2)根据正方形的性质得到BD⊥AC,AC=BD=5√2,根据勾股定理计算即可.【解答】(1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,∴∠GAD=∠EAB,在△GAD和△EAB中,{AC=AE∠GAD=∠EAB AD=AB∴△GAD≌△EAB,∴EB=GD;(2)∵四边形ABCD是正方形,AB=5,∴BD⊥AC,AC=BD=5√2,∴∠DOG=90°,OA=OD=12BD=5√22,∵AG=2√2,∴OG=OA+AG=9√2 2,由勾股定理得,GD=2+OG2=√53,∴EB=√53.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握正方形的对角线相等、垂直且互相平分是解题的关键.。
八年级数学试卷易错压轴选择题精选:平行四边形选择题练习题(附答案)100(2)一、易错压轴选择题精选:平行四边形选择题1.如图,在正方形ABCD中,E为BC上一点,过点E作EF∥CD,交AD于F,交对角线BD于G,取DG的中点H,连结AH,EH,FH.下列结论:①∠EFH=45°;②△AHD≌△EHF;③∠AEF+∠HAD=45°;④若BEEC=2,则1113=BEHAHESS.其中结论正确的是()A.①②③B.①②④C.②③④D.①②③④2.如图,矩形ABCD的面积为20cm2,对角线相交于点O.以AB、AO为邻边画平行四边形AOC1B,对角线相交于点O ;以AB、AO 为邻边画平行四边形AO1C2B,对角线相交于点O2 :……以此类推,则平行四边形AO4C5B的面积为()A.58cm2B.54cm2C.516cm2D.532cm23.如图,正方形ABCD的边长为2,Q为CD边上(异于C,D)的一个动点,AQ交BD于点M.过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下面结论:①AM=MN;②MP=2;③△CNQ的周长为3;④BD+2BP=2BM,其中一定成立的是()A.①②③④B.①②③C.①②④D.①④4.如图,在正方形ABCD中,点E,F分别在BC,CD上,AE AF=,AC与EF相交于点G.下列结论:①AC垂直平分EF;②BE DF EF+=;③当15DAF∠=︒时,AEF 为等边三角形;④当60EAF ∠=︒时,AEB AEF ∠=∠.其中正确的结论是( )A .①③B .②④C .①③④D .②③④5.如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长为( )A .2.8B .22C .2.4D .3.56.如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE =AD ,DF =BD ,连接BF 分别交CD ,CE 于H ,G 下列结论:①EC≠2HG ;②∠GDH =∠GHD ;③图中有8个等腰三角形;④CDG DHF S S △△=.其中正确的结论有( )个A .1B .2C .3D .47.将矩形纸片 ABCD 按如图所示的方式折叠,得到菱形 AECF .若 AB =3,则 BC 的长为( )A 2B .2C .1.5D 38.如图所示,四边形ABCD 是边长为1的正方形,E 为BC 边的中点,沿AP 折叠使D 点落在AE 上的点H 处,连接PH 并延长交BC 于点F ,则EF 的长为( )A .5252- B .552- C .353-D .149.如图,点P ,Q 分别是菱形ABCD 的边AD ,BC 上的两个动点,若线段PQ 长的最大值为85 ,最小值为8,则菱形ABCD 的边长为( )A .4 6B .10C .12D .1610.如图,在Rt ABC 中,90ACB ∠=︒,分别以AB ,AC ,BC 为边,在AB 的同侧作正方形ABHI ,ACFG ,BCED .若图中两块阴影部分的面积分别记为1S ,2S ,则对1S ,2S 的大小判断正确的是( )A .12S S >B .12S SC .12S S <D .无法确定11.将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕,∠BAE =30°,AB =3 ,折叠后,点C 落在AD 边上的C 1处,并且点B 落在EC 1边上的B 1处.则BC 的长为( )A 3B .3C .2D .312.如图,45A ABC C ∠=∠=∠=︒,E 、F 分别是AB 、BC 的中点,则下列结论:①EF BD ⊥,②12EF BD =,③ADC BEF BFE ∠=∠+∠,④AD DC =,其中正确有( )A .1个B .2个C .3个D .4个13.如图,在一张矩形纸片ABCD 中,4AB =,8BC =,点E ,F 分别在AD , BC 上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:①四边形CFHE 是菱形;②EC 平分DCH ∠;③线段BF 的取值范围为34BF ≤≤;④当点H 与点A 重合时,25EF =. 以上结论中,你认为正确的有( )个.A .1B .2C .3D .414.如图,矩形纸片,,ABCD AB a BC b ==,满足12b a b <<,将此矩形纸片按下面顺序折叠,则图4中MN 的长为(用含,a b 的代数式表示)( )A .2b a -B .22b a -C .32b a + D .12b a + 15.如图,平行四边形ABCD 中,对角线AC 、BD 相交于点O ,AD =12AC ,M 、N 、P 分别是OA 、OB 、CD 的中点,下列结论: ①CN ⊥BD ; ②MN =NP ;③四边形MNCP 是菱形; ④ND 平分∠PNM . 其中正确的有( )A .1 个B .2 个C .3 个D .4 个16.如图,ABCD 中,点E 是AD 上一点,BE ⊥AB ,△ABE 沿BE 对折得到△BEG ,过点D 作DF ∥EG 交BC 于点F ,△DFC 沿DF 对折,点C 恰好与点G 重合,则ABAD的值为( )A .12B .33C .22D .3217.如图,在ABC 中,AB =AC =6,∠B =45°,D 是BC 上一个动点,连接AD ,以AD 为边向右侧作等腰ADE ,其中AD =AE ,∠ADE =45°,连接CE .在点D 从点B 向点C 运动过程中,CDE △周长的最小值是( )A .62B .626+C .92D .926+18.在ABCF 中,2BC AB =,CD AB ⊥于点D ,点E 为AF 的中点,若50ADE ∠=︒,则B 的度数是( )A .50︒B .60︒C .70︒D .80︒19.如图,直角梯形ABCD 中AD ∥BC ,∠D =90°.∠A 的平分线交DC 于E ,EF ⊥AB 于F .已知AD =3.5cm ,DC =4cm ,BC =6.5cm .那么四边形BCEF 的周长是( )A .10cmB .11cmC .11.5cmD .12cm20.如图,在平行四边形ABCD 中,过点A 作AG BC ⊥于G ,作AH CD ⊥于H ,且45GAH ∠=︒,2AG =,3AH =,则平行四边形的面积是( )A .62B .122C .6D .1221.如图,在ABCD 中,2,AB AD F =是CD 的中点,作BE AD ⊥于点E ,连接EF BF 、,下列结论:①CBF ABF ∠=∠;②FE FB =;③2EFB S S ∆=四边形DEBC ;④3BFE DEF ∠=∠;其中正确的个数是( )A .1B .2C .3D .422.如图,在□ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论:(1)∠DCF=12∠BCD ;(2)EF=CF ;(3)S △BEC = 2S △CEF ;(4)∠DFE=3∠AEF ;其中正确的结论是( )A .(1)(2)B .(1)(2)(4)C .(2)(3)(4)D .(1)(3)(4)23.如图,在平行四边形ABCD 中,AE 平分BAD ∠,交BC 于点E 且AB AE =,延长AB 与DE 的延长线相交于点F ,连接AC 、CF .下列结论:①ABC EAD △≌△;②ABE △是等边三角形;③BF AD =;④BEF ABC S S =△△;⑤CEF ABE S S =△△;其中正确的有( )A.2个B.3个C.4个D.5个24.如图,已知△ABC的面积为12,点D在线段AC上,点F在线段BC的延长线上,且BF=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A.2 B.3 C.4 D.525.如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在点F处,折痕为MN,则折痕MN的长是()A.53cm B.55cm C.46cm D.45cm26.如图,在△ABC中,∠ABC和∠ACB的角平分线相交于点O.过点O作EF∥BC交AB 于E.交AC于F.过点O作OD⊥AC于D.下列五个结论:其中正确的有()(1) EF=BE+CF;(2)∠BOC=90°+12∠A;(3)点O到△ABC各边的距离都相等;(4)设OD=m.若AE十AF =n,则S△AEF= mn;(5)S△AEF=S△FOC.A.2个B.3个C.4个D.5个27.如图,点,,A B E在同一条直线上,正方形ABCD、正方形BEFC的边长分别为23,、H为线段DF的中点,则BH的长为()A .21B .26C .33D .29 28.如图,正方形ABCD 中,AB=12,点E 在边CD 上,且BG=CG ,将△ADE 沿AE 对折至△AFE,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S △FGC =725.其中正确结论的个数是( )A .2个B .3个C .4个D .5个29.如图,点O (0,0),A (0,1)是正方形1OAA B 的两个顶点,以1OA 对角线为边作正方形121OA A B ,再以正方形的对角线2OA 作正方形121OA A B ,…,依此规律,则点8A 的坐标是( )A .(-8,0)B .(0,8)C .(0,2)D .(0,16)30.如图,在△ABC 中,AB =3,AC =4,BC =5,△ABD ,△ACE ,△BCF 都是等边三角形,下列结论中:①AB ⊥AC ;②四边形AEFD 是平行四边形;③∠DFE =150°;④S 四边形AEFD =5.正确的个数是( )A .1个B .2个C .3个D .4个【参考答案】***试卷处理标记,请不要删除一、易错压轴选择题精选:平行四边形选择题 1.A 【分析】①根据正方形的性质证明∠ADB =45°,进而得△DFG 为等腰直角三角形,根据等腰三角形的三线合一性质得∠EFH =12∠EFD =45°,故①正确; ②根据矩形性质得AF =EB ,∠BEF =90°,再证明△AFH ≌△EGH 得EH =AH ,进而证明△EHF ≌△AHD ,故②正确;③由△EHF ≌△AHD 得∠EHF =∠AHD ,怀AH =EH 得∠AEF +∠HEF =45°,进而得∠AEF +∠HAD =45°,故③正确;④如图,过点H 作MN ⊥AD 于点M ,与BC 交于点N ,设EC =FD =FG =x ,则BE =AF =EG =2x ,BC =DC =AB =AD =3x ,HM =12x ,AM =52x ,HN =52x ,由勾股定理得AH 2,再由三角形的面积公式得BEH AHESS,便可判断④的正误.【详解】证明:①在正方形ABCD 中,∠ADC =∠C =90°,∠ADB =45°, ∵EF ∥CD , ∴∠EFD =90°, ∴四边形EFDC 是矩形. 在Rt △FDG 中,∠FDG =45°,∴FD=FG,∵H是DG中点,∴∠EFH=12∠EFD=45°故①正确;②∵四边形ABEF是矩形,∴AF=EB,∠BEF=90°,∵BD平分∠ABC,∴∠EBG=∠EGB=45°,∴BE=GE,∴AF=EG.在Rt△FGD中,H是DG的中点,∴FH=GH,FH⊥BD,∵∠AFH=∠AFE+∠GFH=90°+45°=135°,∠EGH=180°﹣∠EGB=180°﹣45°=135°,∴∠AFH=∠EGH,∴△AFH≌△EGH(SAS),∴EH=AH,∵EF=AD,FH=DH,∴△EHF≌△AHD(SSS),故②正确;③∵△EHF≌△AHD,∴∠EHF=∠AHD,∴∠AHE=∠DHF=90°,∵AH=EH,∴∠AEH=45°,即∠AEF+∠HEF=45°,∵∠HEF=∠HAD,∴∠AEF+∠HAD=45°,故③正确;④如图,过点H作MN⊥AD于点M,与BC交于点N,设EC=FD=FG=x,则BE=AF=EG=2x,∴BC =DC =AB =AD =3x ,HM =12x ,AM =52x ,HN =52x , ∴22225113222AH x x x ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭=, ∴211021132BEH AHE BE HN S =S AH ⋅=, 故④错误;故选:A .【点睛】本题主要考查正方形的性质、矩形的性质、等腰三角形的性质及勾股定理,这是一道几何综合型题,关键是根据正方形的性质得到线段的等量关系,然后利用矩形、等腰三角形的性质进行求解即可.2.A【分析】设矩形ABCD 的面积为S=20cm 2,由O 为矩形ABCD 的对角线的交点,可得平行四边形AOC 1B 底边AB 上的高等于BC 的12,依此类推可得下一个图形的面积是上一个图形的面积的12,然后求解即可. 【详解】 设矩形ABCD 的面积为S=20cm 2,∵O 为矩形ABCD 的对角线的交点,∴平行四边形AOC 1B 底边AB 上的高等于BC 的12, ∴平行四边形AOC 1B 的面积=12S , ∵平行四边形AOC 1B 的对角线交于点O 1,∴平行四边形AO 1C 2B 的边AB 上的高等于平行四边形AOC 1B 底边AB 上的高的12, ∴平行四边形AO 1C 2B 的面积=12×12S=22S , ……依此类推,平行四边形AO 4C 5B 的面积=52S =5202=58(cm 2), 故选:A .【点睛】本题考查了矩形的对角线互相平分,平行四边形的对角线互相平分的性质,得到下一个图形的面积是上一个图形的面积的12是解题的关键.3.C【分析】连接AC交BD于O,作ME⊥AB于E,MF⊥BC于F,延长CB到H,使得BH=DQ.①正确.只要证明△AME≌△NMF即可;②正确.只要证明△AOM≌△MPN即可;③错误.只要证明∠ADQ≌△ABH,由此推出△ANQ≌△ANH即可;④正确.只要证明△AME≌△NMF,证得四边形EMFB是正方形即可解决问题;【详解】连接AC交BD于O,作ME⊥AB于E,MF⊥BC于F,延长CB到H,使得BH=DQ.∵四边形ABCD是正方形,∴AC⊥BD,222,∠DBA=∠DBC=45°,∴ME=MF,∵∠MEB=∠MFB=∠EBF=90°,∴四边形EMFB是矩形,∵ME=MF,∴四边形EMFB是正方形,∴∠EMF=∠AMN=90°,∴∠AME=∠NMF,∵∠AEM=∠MFN=90°,∴△AME≌△NMF(ASA),∴AM=MN,故①正确;∵∠OAM+∠AMO=90°,∠AMO+∠NMP=90°,∴∠AMO=∠MNP,∵∠AOM=∠NPM=90°,∴△AOM≌△MPN(AAS),∴2,故②正确;∵DQ=BH,AD=AB,∠ADQ=∠ABH=90°,∴∠ADQ ≌△ABH (SAS ),∴AQ=AH ,∠QAD=∠BAH ,∴∠BAH+∠BAQ=∠DAQ+∠BAQ=90°,∵AM=MN ,∠AMN=90°,∴∠MAN=45°,∴∠NAQ=∠NAH=45°,∴△ANQ ≌△ANH (SAS ),∴NQ=NH=BN+BH=BN+DQ ,∴△CNQ 的周长=CN+CQ+BN+DQ=4,故③错误;∵BD+2BP=2BO+2BP=2AO+2BP=2PM+2BP ,∴BD+2BP=2BM ,故④正确.故选:C .【点睛】本题考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.4.A【分析】①通过条件可以得出△ABE ≌△ADF ,从而得出∠BAE=∠DAF ,BE=DF ,由正方形的性质就可以得出EC=FC ,就可以得出AC 垂直平分EF ,②设BC=x ,CE=y ,由勾股定理就可以得出EF 与x 、y 的关系,表示出BE 与EF ,即可判断BE+DF 与EF 关系不确定;③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF 为等边三角形,④当∠EAF=60°时,可证明△AEF 是等边三角形,从而可得∠AEF=60°,而△CEF 是等腰直角三角形,得∠CEF=45°,从而可求出∠AEB=75°,进而可得结论.【详解】解:①四边形ABCD 是正方形,∴AB ═AD ,∠B=∠D=90°.在Rt △ABE 和Rt △ADF 中,AE AF AB AD ⎧⎨⎩==, ∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF∵BC=CD ,∴BC-BE=CD-DF ,即CE=CF ,∵AE=AF ,∴AC 垂直平分EF .(故①正确).②设BC=a ,CE=y ,∴BE+DF=2(a-y )EF=y ,∴BE+DF与EF关系不确定,只有当y=(2−2)a时成立,(故②错误).③当∠DAF=15°时,∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF为等边三角形.(故③正确).④当∠EAF=60°时,由①知AE=AF,∴△AEF是等边三角形,∴∠AEF=60°,又△CEF为等腰直角三角形,∴∠CEF=45°∴∠AEB=180°-∠AEF-∠CEF=75°,∴∠AEB≠∠AEF,故④错误.综上所述,正确的有①③,故选:A.【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.5.B【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2,HE=CH-CE=2,∠HEG=90°,从而由勾股定理可得GH的长.【详解】解:如图,延长BG交CH于点E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=CD=10,∵AG=8,BG=6,∴AG2+BG2=AB2,∴∠AGB=90°,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3,同理:∠4=∠6,在△ABG和△CDH中,AB=CD=10AG=CH=8BG=DH=6∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∴∠2=∠4,在△ABG和△BCE中,∵∠1=∠3,AB=BC,∠2=∠4,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE-BG=8-6=2,同理可得HE=2,在Rt△GHE中,GH===故选:B.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为直角三角形且能够求出两条直角边的长是解题的关键.6.B【分析】关键结合图形证明△CHG≌△EGD,即可逐项判断求解【详解】解:∵DF=BD,∴∠DFB=∠DBF,∵AD∥BC,DE=BC,∴四边形DBCE是平行四边形,∠DFB=∠GBC,∴∠DEC=∠DBC=45°,∴∠DEC=2∠EFB,∴∠EFB=22.5°,∠CGB=∠CBG=22.5°,∴CG=BC=DE,∵DE=DC,∴∠DEG=∠DCE,∵∠GHC=∠CDF+∠DFB=90°+22.5°=112.5°,∠DGE=180°-(∠BGD+∠EGF),=180°-(∠BGD+∠BGC),=180°-(180°-∠DCG )÷2,=180°-(180°-45°)÷2,=112.5°,∴∠GHC=∠DGE ,∴△CHG ≌△EGD ,∴∠EDG=∠CGB=∠CBF ,∴∠GDH=90°-∠EDG ,∠GHD=∠BHC=90°-∠CGB ,∴∠GDH=∠GHD故②正确;∴∠GDH=∠GHD又∠EFB=22.5°,∴∠DHG=∠GDH=67.5°∴∠GDF=90°-∠GDH=22.5°=∠EFB,∴DG=GF,∴HG=DG=GF∴HF=2HG,显然CE≠HF=2HG,故①正确;∵△CHG ≌△EGD ,∴CHG EGD S S ∆∆=∴CHG DHG EGD DHG S S S S ∆∆∆∆+=+,即CDG DHGE S S △四边形=而=EFG DHGE DHF S S S ∆+四边形△,故CDG DHF S S ≠△△故④不正确;结合前面条件易知等腰三角形有△ABD ,△CDB ,△BDF ,△CDE ,△BCG ,△DGH ,△EGF ,△CDG ,△DGF 共9个,∴③错误;故正确的有①②,有2个,故选:B【点睛】本题主要考查对三角形的内角和定理,全等三角形的判定和性质,等腰三角形的性质和判定,正方形的性质,等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.7.D【分析】设BC x =,先根据矩形的性质可得90,B AD BC ∠=︒=,再根据折叠的性质可得,,90OA AD x OC BC x COE B ====∠=∠=︒,从而可得OA OC =,又根据菱形的性质可得AE CE =,然后根据三角形全等的判定定理与性质可得90AOE COE ∠=∠=︒,从而可得点,,A O C 共线,由此可得2AC x =,最后在Rt ABC 中,利用勾股定理即可得.【详解】设BC x =,四边形ABCD 是矩形,90,B AD BC x ∴∠=︒==,由折叠的性质得:,,90OA AD x OC BC x COE B ====∠=∠=︒,OA OC x ∴==,四边形AECF 是菱形,AE CE ∴=,在AOE △和COE 中,OA OC AE CE OE OE =⎧⎪=⎨⎪=⎩,()AOE COE SSS ∴≅,90AOE COE ∴∠=∠=︒,即180AOE COE ∠+∠=︒,∴点,,A O C 共线,2AC OA OC x ∴=+=,在Rt ABC 中,222AB BC AC +=,即2223(2)x x +=,解得x =x =即BC =故选:D . 【点睛】本题考查了矩形与菱形的性质、折叠的性质、三角形全等的判定定理与性质、勾股定理等知识点,利用三角形全等的判定定理与性质证出90AOE COE ∠=∠=︒,从而得出点,,A O C 共线是解题关键.8.A【分析】首先证明Rt △AFB ≌Rt △AFH ,推出BF=FH ,设EF=x ,则BF=FH=12x -,在Rt △FEH 中,根据222,EF EH FH =+构建方程即可解决问题;【详解】解:连接AF .∵四边形ABCD 是正方形, ∴AD=BC=1,∠B=90°,∵BE=EC=12, ∴225AB BE += 由翻折不变性可知:AD=AH=AB=1,∴EH=512-, ∵∠B=∠AHF=90°,AF=AF ,AH=AB ,∴Rt △AFB ≌Rt △AFH ,∴BF=FH ,设EF=x ,则BF=FH=12x -, 在Rt △FEH 中,∵222,EF EH FH =+ ∴22215()1),2x x =-+ ∴525x -= 故选:A .【点睛】本题考查翻折变换、正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是准确寻找全等三角形解决问题,学会利用参数构建方程解决问题,9.B【分析】当点P 和点A 重合时,当点C 和点Q 重合时,PQ 的值最大,当PQ ⊥BC 时,PQ 的值最小,利用这两组数据,在Rt△ABQ 中,可求得答案.【详解】当点P 和点A 重合时,当点C 和点Q 重合时,PQ 的值最大,85PQ =当PQ⊥BC时,PQ的值最小,∴PQ=8,∠Q=90°,在Rt△ACQ中,()22CQ=-=85816.在Rt△ABQ中,设AB=BC=x,则BQ=16-x,∴AQ2+BQ2=AB2即82+(16-x)2=x2解之:x=10.故答案为:B.【点睛】本题考查菱形的性质和勾股定理的运用,解题关键是根据菱形的性质,判断出PQ最大和最小的情况.10.B【分析】连接EH,过点H作HK⊥BF于点K,令AE与BH交于点J,HL与BF交于点L,根据已知条件易证△BHK≌△ABC,继而由全等三角形的性质得S△BHK=S△ABC,BC=HK,∠ABC=∠BHK,再由全等三角形的判定可得△BCJ≌△HKL,进而可得S1=S△BHK=S△ABC,由正方形的性质和全等三角形的判定可知△ABC≌△AIG,继而可得S△ABC=S△AIG=S2,等量代换即可求解.【详解】解:连接EH,过点H作HK⊥BF于点K,令AE与BH交于点J,HL与BF交于点L,由题意可知:四边形BCED是正方形,四边形ACFG是正方形,四边形ABHI是正方形,∠ACB=90°∴∠CEH=∠ECK=90° ,CE=BC∵∠BKH=90°,∴四边形CEHK是矩形,∴ CE=HK又∠HBK+∠ABC=90°, ∠BAC+∠ABC=90°∴∠HBK=∠BAC∴△BHK≌△ABC(AAS)∴S△BHK=S△ABC,BC=HK,∠ABC=∠BHK,∵∠ABC+∠CBJ=90°,∠BHK+∠KHL=90°∴∠CBJ=∠KHL∴△BCJ≌△HKL(ASA)∴S△BCJ=S△HKL,∴S1=S△BHK=S△ABC,∵四边形ACFG是正方形,四边形ABHI是正方形,∴AB=AI,AC=AG,∠G=∠ACB=90°∴△ABC≌△AIG(SAS)∴S△ABC=S△AIG=S2,即S1=S2故选:B【点睛】本题主要考查正方形的性质,全等三角形的判定及其性质,解题的关键是熟练掌握正方形的性质及全等三角形的判定方法.11.B【解析】试题分析:由三角函数易得BE,AE长,根据翻折和对边平行可得△AEC1和△CEC1为等边三角形,那么就得到EC长,相加即可.解:连接CC1.在Rt△ABE中,∠BAE=30°,AB3∴BE=AB×tan30°=1,AE=2,∠AEB1=∠AEB=60°,∵四边形ABCD是矩形∴AD∥BC,∴∠C1AE=∠AEB=60°,∴△AEC1为等边三角形,同理△CC1E也为等边三角形,∴EC=EC1=AE=2,∴BC=BE+EC=3,故选B.12.C【分析】根据三角形的中位线定理“三角形的中位线平行于第三边”可得//EF AC ,12EF AC =,再由45°角可证△ABQ 为等腰直角三角形,从而可得可得AQ BQ =,进而证明AQC BQDASA ≅△△(),利用三角形的全等性质求解即可. 【详解】解:如图所示:连接AC ,延长BD 交AC 于点M ,延长AD 交BC 于Q ,延长CD 交AB 于P .45ABC C ∠=∠=︒,CP AB ∴⊥,45ABC BAD ∠=∠=︒,AQ BC ∴⊥,点D 为两条高的交点,BM ∴为AC 边上的高,即:BM AC ⊥,由中位线定理可得//EF AC ,12EF AC =, BD EF ∴⊥,故①正确;45DBQ DCA ∠+∠=︒,45DCA CAQ ∠+∠=︒,DBQ CAQ ∴∠=∠,BAD ABC ∠=∠,AQ BQ ∴=,90BQD AQC ∠=∠=︒,∴根据以上条件得AQC BQD ASA ≅△△(),BD AC ∴=,12EF AC ∴=,故②正确; 45A ABC C ∠=∠=∠=︒,()18045DAC DCA BAD ABC BCD ∴∠+∠=︒-∠+∠+∠=︒,180135()180ADC DAC DCA BEF BFE ABC ∴∠=︒-∠+∠=︒=∠+∠=︒-∠,故③ADC BEF BFE ∠=∠+∠成立;无法证明AD CD =,故④错误.综上所述:正确的是①②③,故选C .【点睛】本题考点在于三角形的中位线和三角形全等的判断及应用.解题关键是证明AQC BQD ASA ≅△△().13.C【分析】①先判断出四边形CFHE 是平行四边形,再根据翻折的性质可得CF=FH ,然后根据邻边相等的平行四边形是菱形证明,判断出①正确;②根据菱形的对角线平分一组对角线可得∠BCH=∠ECH ,然后求出只有∠DCE=30°时EC 平分∠DCH ,判断出②错误;③点H 与点A 重合时,设BF=x ,表示出AF=FC=8-x ,利用勾股定理列出方程求解得到BF 的最小值,点G 与点D 重合时,CF=CD ,求出最大值BF=4,然后写出BF 的取值范围,判断出③正确;④过点F 作FM ⊥AD 于M ,求出ME ,再利用勾股定理列式求解得到EF ,判断出④正确.【详解】解:①∵FH 与CG ,EH 与CF 都是矩形ABCD 的对边AD 、BC 的一部分,∴FH ∥CG ,EH ∥CF ,∴四边形CFHE 是平行四边形,由翻折的性质得,CF=FH ,∴四边形CFHE 是菱形,(故①正确);②∴∠BCH=∠ECH ,∴只有∠DCE=30°时EC 平分∠DCH ,(故②错误);③点H 与点A 重合时,此时BF 最小,设BF=x ,则AF=FC=8-x ,在Rt △ABF 中,AB 2+BF 2=AF 2,即42+x 2=(8-x )2,解得x=3,点G 与点D 重合时,此时BF 最大,CF=CD=4,∴BF=4,∴线段BF 的取值范围为3≤BF ≤4,(故③正确);过点F 作FM ⊥AD 于M ,则ME=(8-3)-3=2,由勾股定理得, EF=22MF ME +=2242+=25,(故④正确);综上所述,结论正确的有①③④共3个,故选C .【点睛】本题考查了翻折变换的性质,菱形的判定与性质,勾股定理的应用,难点在于灵活运用菱形的判定与性质与勾股定理等其它知识有机结合.14.B【分析】如图3中,由折叠的性质可得PQ =BC =b ,A 1F =a ﹣12b ,△PEQ 是等腰直角三角形,进而可得△MNE 是等腰直角三角形,然后根据等腰直角三角形的性质可得EG =12MN ,而12EG EF A F =-,进一步即可求得答案.【详解】解:如图3中,由折叠的性质可得PQ =BC =b ,A 1F =a ﹣12b ,∠EPQ =11904522APQ ∠=⨯︒=︒,∠EQP =11904522DQP ∠=⨯︒=︒, ∴∠PEQ =90°,∴△PEQ 是等腰直角三角形,如图4,∵MN ∥PQ ,∴△MNE 是等腰直角三角形,∵EG ⊥MN ,∴EG=MG=NG =12MN , ∵12EG EF A F =-=a ﹣2(a ﹣12b )=b ﹣a , ∴MN =2EG =22b a -.故选:B .【点睛】本题考查了矩形的性质、折叠的性质以及等腰直角三角形的判定与性质,正确理解题意、熟练掌握等腰直角三角形的判定和性质是解题的关键.15.C【分析】证出OC=BC,由等腰三角形的性质得CN⊥BD,①正确;证出MN是△AOB的中位线,得MN∥AB,MN=12AB,由直角三角形的性质得NP=12CD,则MN=NP,②正确;周长四边形MNCP是平行四边形,无法证明四边形MNCP是菱形;③错误;由平行线的性质和等腰三角形的性质证出∠MND=∠PND,则ND平分∠PNM,④正确;即可得出结论.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,BC=AD,OA=OC=12 AC,∵AD=12 AC,∴OC=BC,∵N是OB的中点,∴CN⊥BD,①正确;∵M、N分别是OA、OB的中点,∴MN是△AOB的中位线,∴MN∥AB,MN=12 AB,∵CN⊥BD,∴∠CND=90°,∵P是CD的中点,∴NP=12CD=PD=PC,∴MN=NP,②正确;∵MN∥AB,AB∥CD,∴MN∥CD,又∵NP=PC,MN=NP,∴MN=PC,∴四边形MNCP是平行四边形,无法证明四边形MNCP是菱形;③错误;∵MN∥CD,∴∠PDN=∠MND,∵NP=PD,∴∠PDN=∠PND,∴∠MND=∠PND,∴ND平分∠PNM,④正确;正确的个数有3个,故选:C.本题考查了平行四边形性质和判定,三角形中位线定理,直角三角形斜边上的中线性质,等腰三角形的性质等;熟练掌握三角形中位线定理、等腰三角形的性质、直角三角形斜边上的中线性质是解题的关键.16.B【分析】根据平行线的性质和轴对称的性质,利用SAS 证明BEG DEG ≅,进而得到ADG 90∠=︒,设AB=x ,则AG=2x ,CD=x ,,即可求解.【详解】解:在ABCD 中∵DF ∥EG∴∠DEG=∠DFB∵△ABE 沿BE 对折得到△BEG∴∠DEG =2∠A∵∠DFB =∠C +∠CDF∠A=∠C∴∠CDF=∠A∵△DFC 沿DF 对折∴∠BGE=∠DGEBG=DGEG=EG∴BEG DEG ≅∵BE⊥AB∴ADG 90∠=︒设AB=x ,则AG=2x ,CD=x ,=∴3AB AD == 故选:B .【点睛】此题主要考查平行线的性质、轴对称的性质、全等三角形的判断和性质、勾股定理,熟练运用平行线的性质和轴对称的性质证明BEG DEG ≅是解题关键.17.B【分析】 如图(见解析),先根据等腰直角三角形的判定与性质可得90,BAC DAE BC DE ∠=∠=︒==,再根据三角形全等的判定定理与性质可得BD CE =,从而可得CDE △周长为BC +,然后根据垂线段最短可求出AD 的最小值,由此即可得.在ABC 中,6,45AB AC B ==∠=︒,ABC ∴是等腰直角三角形,2290,62BAC BC AB AC ∠=︒=+=,在ADE 中,,45AD AE ADE =∠=︒,ADE ∴是等腰直角三角形,2290,2DAE DE AD AE AD ∠=︒=+=,90BAD CAD CAE CAD ∴∠+∠=∠+∠=︒,BAD CAE ∴∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴≅,BD CE ∴=,CDE ∴周长为622CD CE DE CD BD DE BC DE AD ++=++=+=+, 则当AD 取得最小值时,CDE △的周长最小,由垂线段最短可知,当AD BC ⊥时,AD 取得最小值,AD ∴是BC 边上的中线(等腰三角形的三线合一),1322AD BC ∴==(直角三角形斜边上的中线等于斜边的一半), CDE ∴周长的最小值为62232626+⨯=+,故选:B .【点睛】本题考查了等腰直角三角形的判定与性质、直角三角形斜边上的中线、三角形全等的判定定理与性质、垂线段最短等知识点,正确找出两个全等三角形是解题关键.18.D【分析】连结CE ,并延长CE ,交BA 的延长线于点N ,根据已知条件和平行四边形的性质可证明△NAE ≌△CFE ,所以NE =CE ,NA =CF ,再由已知条件CD ⊥AB 于D ,∠ADE =50°,即可求出∠B 的度数.【详解】解:连结CE ,并延长CE ,交BA 的延长线于点N ,∵四边形ABCF 是平行四边形,∴AB ∥CF ,AB =CF ,∴∠NAE =∠F ,∵点E 是的AF 中点,∴AE =FE ,在△NAE 和△CFE 中,NAE F AE FEAEN FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△NAE ≌△CFE (ASA ),∴NE =CE ,NA =CF ,∵AB =CF ,∴NA =AB ,即BN =2AB ,∵BC =2AB ,∴BC =BN ,∠N =∠NCB ,∵CD ⊥AB 于D ,即∠NDC =90°且NE =CE ,∴DE =12NC =NE , ∴∠N =∠NDE =50°=∠NCB ,∴∠B =80°.故选:D .【点睛】本题考查了平行四边形的性质,综合性较强,难度较大,解答本题的关键是正确作出辅助线,构造全等三角形,在利用等腰三角形的性质解答.19.D【分析】根据角平分线性质得出AD=AF ,根据勾股定理求出EF=DC ,求出AB 长,求出BE ,即可求出答案.【详解】∵AE 平分∠DAB ,∠D=90°,EF ⊥AB ,∴AF=AD=3.5cm ,EF=DE ,∴DC=CE+DE=CE+EF=4cm ,过A 作AM ⊥BC 于M ,则四边形AMCD 是矩形,∴AM=DC=4cm ,AD=CM=3.5cm ,∵BC=6.5cm ,∴BM=6.5cm-3.5cm=3cm ,在Rt △AMB 中,由勾股定理得:22435AB(cm ),∴BF=AB-AF=5cm-3.5cm=1.5cm ,∴四边形BCEF 的周长是BC+BF+CE+EF=6.5cm+1.5cm+CD=8cm+4cm=12cm ,故选:D .【点睛】本题考查了勾股定理,矩形的性质和判定,角平分线性质等知识点,能求出各个边的长度是解此题的关键.20.A【分析】设B x ∠=,先根据平行四边形的性质可得,180,D B x BAD x AB CD ∠=∠=∠=︒-=,再根据直角三角形的两锐角互余、角的和差可得45x =︒,然后根据等腰直角三角形的判定与性质、勾股定理可得22AB =22CD =,最后利用平行四边形的面积公式即可得.【详解】设B x ∠=,四边形ABCD 是平行四边形, ,180180,D B x BAD B x AB CD ∴∠=∠=∠=︒-∠=︒-=,,AG BC AH CD ⊥⊥,9090,9090BAG B x DAH D x ∴∠=︒-∠=︒-∠=︒-∠=︒-,又180,45BAG DAH BAD GAH x GAH ∠+︒-∠+∠=∠∠=︒=,909100458x x x ︒-+︒-=∴︒+︒-,解得45x =︒,即45B ∠=︒,Rt ABG ∴是等腰直角三角形,222,22BG AG AB AG BG ∴===+=22CD ∴=,∴平行四边形ABCD 的面积是3AH CD ⋅=⨯=,故选:A .【点睛】本题考查了平行四边形的性质、直角三角形的两锐角互余、等腰直角三角形的判定与性质、勾股定理等知识点,熟练掌握平行四边形的性质是解题关键.21.C【分析】由平行四边形的性质结合AB=2AD ,CD=2CF 可得CF=CB ,从而可得∠CBF=∠CFB ,再根据CD ∥AB ,得∠CFB=∠ABF ,继而可得CBF ABF ∠=∠,可以判断①正确;延长EF 交BC 的延长线与M ,证明△DFE 与△CFM(AAS),继而得EF=FM=12EM ,证明∠CBE=∠AEB=90°,然后根据直角三角形斜边中线的性质即可判断②正确;由上可得S △BEF =S △BMF ,S △DFE =S △CFM ,继而可得S △EBF =S △BMF =S △EDF +S △FBC ,继而可得2EFB S S ∆=四边形DEBC ,可判断③正确;过点F 作FN ⊥BE ,垂足为N ,则∠FNE=90°,则可得AD//FN ,则有∠DEF=∠EFN ,根据等腰三角形的性质可得∠BFE=2∠EFN ,继而得∠BFE=2∠DEF ,判断④错误.【详解】∵四边形ABCD 是平行四边形,∴AD=BC ,AB=CD ,AD//BC ,∵AB=2AD ,CD=2CF ,∴CF=CB ,∴∠CBF=∠CFB ,∵CD ∥AB ,∴∠CFB=∠ABF ,∴CBF ABF ∠=∠,故①正确;延长EF 交BC 的延长线与M ,∵AD//BC ,∴∠DEF=∠M ,又∵∠DFE=∠CFM ,DF=CF ,∴△DFE 与△CFM(AAS),∴EF=FM=12EM , ∵BF ⊥AD ,∴∠AEB=90°,∵在平行四边形ABCD 中,AD ∥BC ,∴∠CBE=∠AEB=90°,∴BF=12EM , ∴BF=EF ,故②正确;∵EF=FM ,∴S △BEF =S △BMF ,∵△DFE ≌△CFM ,∴S △DFE =S △CFM ,∴S △EBF =S △BMF =S △EDF +S △FBC ,∴2EFB S S ∆=四边形DEBC ,故③正确;过点F 作FN ⊥BE ,垂足为N ,则∠FNE=90°,∴∠AEB=∠FEN ,∴AD//EF ,∴∠DEF=∠EFN ,又∵EF=FB ,∴∠BFE=2∠EFN ,∴∠BFE=2∠DEF ,故④错误,所以正确的有3个,故选C.【点睛】本题考查了平行四边形的性质,直角三角形斜边中线的性质,等腰三角形的判断与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.22.B【分析】利用平行四边形的性质:平行四边形的对边相等且平行,再由全等三角形的判定得出△AEF ≌△DMF (ASA ),利用全等三角形的性质得出对应线段之间关系进而得出答案.【详解】(1)∵F 是AD 的中点,∴AF=FD ,∵在▱ABCD 中,AD=2AB ,∴AF=FD=CD ,∴∠DFC=∠DCF ,∵AD ∥BC ,∴∠DFC=∠FCB ,∴∠DCF=∠BCF ,∴∠DCF=12∠BCD ,故正确;(2)延长EF ,交CD 延长线于M ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A=∠MDF ,∵F 为AD 中点,∴AF=FD ,在△AEF 和△DFM 中,A FDM AF DFAFE DFM ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△AEF ≌△DMF (ASA ),∴FE=MF ,∠AEF=∠M ,∵CE ⊥AB ,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF ,∴EF=CF ,故正确;(3)∵EF=FM ,∴S △EFC =S △CFM ,∵MC >BE ,∴S △BEC <2S △EFC故S △BEC =2S △CEF 错误;(4)设∠FEC=x ,则∠FCE=x ,∴∠DCF=∠DFC=90°-x ,∴∠EFC=180°-2x ,∴∠EFD=90°-x+180°-2x=270°-3x ,∵∠AEF=90°-x ,∴∠DFE=3∠AEF ,故正确,故选:B .【点睛】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,解决本题的关键是得出△AEF ≌△DME .23.B【分析】由平行四边形的性质和角平分线的定义得出∠BAE =∠BEA ,得出AB =BE =AE ,得出②正确;由△ABE 是等边三角形得出∠ABE =∠EAD =60°,由SAS 证明△ABC ≌△EAD ,得出①正确;由S △AEC =S △DEC ,S △ABE =S △CEF 得出⑤正确;③和④不正确.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴∠EAD =∠AEB ,又∵AE 平分∠BAD ,∴∠BAE =∠DAE ,∴∠BAE =∠BEA ,∴AB =BE ,∵AB =AE ,∴△ABE 是等边三角形;②正确;∴∠ABE =∠EAD =60°,在△ABC 和△EAD 中,AB AE ABE EAD BC AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△EAD (SAS );①正确;∵△FCD 与△ABC 等底(AB =CD )等高(AB 与CD 间的距离相等),∴S △FCD =S △ABC ,又∵△AEC 与△DEC 同底等高,∴S △AEC =S △DEC ,∴S △ABE =S △CEF ;⑤正确.若AD 与BF 相等,则BF =BC ,题中未限定这一条件,∴③不一定正确;若S △BEF =S △ACD ;则S △BEF =S △ABC ,则AB =BF ,∴BF =BE ,题中未限定这一条件,∴④不一定正确;正确的有①②⑤.故选:B .【点睛】此题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质、三角形的面积关系;此题比较复杂,注意将每个问题仔细分析.24.C【分析】想办法证明S 阴=S △ADE +S △DEC =S △AEC ,再由EF ∥AC ,可得S △AEC =S △ACF 解决问题.【详解】连接AF 、EC .∵BC =4CF ,S △ABC =12,∴S △ACF =13×12=4, ∵四边形CDEF 是平行四边形,∴DE ∥CF ,EF ∥AC ,∴S △DEB =S △DEC ,∴S 阴=S △ADE +S △DEC =S △AEC ,∵EF ∥AC ,∴S △AEC =S △ACF =4,∴S 阴=4.故选C .【点睛】本题考查平行四边形的性质、三角形的面积、等高模型等知识,解题的关键是熟练掌握等高模型解决问题,学会用转化的思想思考问题,属于中考常考题型.25.D【分析】连接DE ,因为点D 是中点,所以CE 等于4,根据勾股定理可以求出DE 的长,过点M 作MG ⊥CD 于点G ,则由题意可知MG =BC =CD ,证明△MNG ≌△DEC ,可以得到DE =MN ,即可解决本题.【详解】解:如图,连接DE .由题意,在Rt △DCE 中,CE =4cm ,CD =8cm ,由勾股定理得:DE 22CE CD +2248+45.过点M 作MG ⊥CD 于点G ,则由题意可知MG =BC =CD .连接DE ,交MG 于点I .由折叠可知,DE ⊥MN ,∴∠NMG +MIE =90°,∵∠DIG +∠EDC =90°,∠MIE =∠DIG (对顶角相等),∴∠NMG =∠EDC .在△MNG 与△DEC 中,90NMG EDC MG CDMGN DCE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴△MNG ≌△DEC (ASA ).∴MN =DE=.故选D .【点睛】本题主要考查了正方形的性质、折叠以及全等三角形,能够合理的作出辅助线并找出全等的条件是解决本题的关键.26.B【分析】由在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,根据角平分线的定义与三角形内角和定理,即可求得②1902BOC A ∠=+∠︒正确;由平行线的性质和角平分线的定义得出BEO ∆和CFO ∆是等腰三角形得出EF BE CF =+故①正确;由角平分线定理与三角形面积的求解方法,即可求得③设OD m =,AE AF n +=,则12AEF S mn ∆=,故③错误;E 、F 不可能是三角形ABC 的中点,则EF 不能为中位线故④正确.【详解】 解:在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,12OBC ABC ∴∠=∠,12OCB ACB ∠=∠,180A ABC ACB ∠+∠+∠=︒, 1902OBC OCB A ∴∠+∠=︒-∠, 1180()902BOC OBC OCB A ∴∠=︒-∠+∠=︒+∠;故(2)正确; 在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,OBC OBE ∴∠=∠,OCB OCF ∠=∠,//EF BC ,OBC EOB ∴∠=∠,OCB FOC ∠=∠,EOB OBE ∴∠=∠,FOC OCF ∠=∠,BE OE ∴=,CF OF =,EF OE OF BE CF ∴=+=+,。
2021-2022学年鲁教版八年级数学上册《第5章平行四边形》期末综合复习题(附答案)1.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD 2.如图,在平行四边形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④B.②和③C.③和④D.②和④3.如图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC4.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC 等于()A.1cm B.2cm C.3cm D.4cm5.如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14B.16C.20D.186.如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是()A.6B.8C.10D.127.在四边形ABCD中,AC与BD相交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下六个说法中,正确的说法有()(1)如果再加上条件“AD∥BC”,那么四边形ABCD一定是平行四边形;(2)如果再加上条件“AB=CD”,那么四边形ABCD一定是平行四边形;(3)如果再加上条件“∠DAB=∠DCB”那么四边形ABCD一定是平行四边形;(4)如果再加上“BC=AD”,那么四边形ABCD一定是平行四边形;(5)如果再加上条件“AO=CO”,那么四边形ABCD一定是平行四边形;(6)如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.A.3个B.4个C.5个D.6个8.下列说法不正确的是()A.有两组对边分别平行的四边形是平行四边形B.平行四边形的对角线互相平分C.平行四边形的对角互补,邻角相等D.平行四边形的对边平行且相等9.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2B.3C.4D.510.如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()A.4B.3C.D.211.若从一多边形的一个顶点出发,最多可引10条对角线,则它是()A.十三边形B.十二边形C.十一边形D.十边形12.七边形有()条对角线.A.11B.12C.13D.1413.若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是()A.10B.9C.8D.614.一个多边形的内角和是900°,这个多边形的边数是()A.7B.8C.9D.1015.平行四边形ABCD的周长是18,三角形ABC的周长是14,则对角线AC的长是.16.平行四边形的一个内角平分线将该平行四边形的一边分为2cm和3cm两部分,则该平行四边形的周长为.17.平行四边形两邻角的比是3:2,则这两个角的度数分别是.18.已知▱ABCD中,∠C=2∠B,则∠A=度.19.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是(横线只需填一个你认为合适的条件即可)20.已知△ABC中,D、E分别是AB、AC边的中点,则=.21.△ABC的周长为12,点D、E、F分别是△ABC的边AB、BC、CA的中点,连接DE、EF、DF,则△DEF的周长是.22.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.23.若正多边形的内角和是1080°,则该正多边形的边数是.24.如图,在▱ABCD中,点E、F分别是AD、BC的中点,分别连接BE、DF、BD.(1)求证:△AEB≌△CFD;(2)若四边形EBFD是菱形,求∠ABD的度数.25.如图,▱ABCD中,点E、F在对角线AC上,且AE=CF.求证:四边形BEDF是平行四边形.26.如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:四边形BFDE是平行四边形.27.如图,▱ABCD中,E是AD的中点,连接CE并延长,与BA的延长线交于点F.请你找出图中与AF相等的一条线段,并加以证明.(不再添加其它线段,不再标注或使用其它字母)结论:AF=.证明:参考答案1.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,A、∵AE=CF,∴DE=BF,∴四边形BFDE是平行四边形,∴BE∥DF,故本选项能判定BE∥DF;B、∵BE=DF,∴四边形BFDE是等腰梯形,∴本选项不一定能判定BE∥DF;C、∵AD∥BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠EBF=∠FDE,∴∠BED=∠BFD,∴四边形BFDE是平行四边形,∴BE∥DF,故本选项能判定BE∥DF;D、∵AD∥BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠BED=∠BFD,∴∠EBF=∠FDE,∴四边形BFDE是平行四边形,∴BE∥DF,故本选项能判定BE∥DF.故选:B.2.解:∵四边形ABCD是平行四边形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②与④不一定成立,∵当四边形是菱形时,②和④成立.故选:D.3.解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选:D.4.解:∵AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=3cm,∵BC=AD=5cm,∴EC=BC﹣BE=5﹣3=2cm,故选:B.5.解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,OB=OD,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,∴DE+CE+CD=BE+CE+CD=BC+CD=10,∴平行四边形ABCD的周长=2(BC+CD)=20;故选:C.6.解:∵四边形ABCD是平行四边形,∴DC=AB=4,AD=BC=6,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6+4=10;故选:C.7.解:(1)∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形;正确;(2)∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形;正确;(3)∵AB∥CD,∴∠A+∠D=180°,∵∠DAB=∠DCB,∴∠C+∠D=180°,∴AD∥BC,∴四边形ABCD是平行四边形;正确;(4)可能是等腰梯形,所以错误;(5)∵AB∥CD,∴∠BAO=∠DCO,∠ABO=∠CDO,∵AO=CO,∴△AOB≌△COD,∴AB=CD,∴四边形ABCD是平行四边形;正确;(6)此题可以是等腰梯形;错误.故选:B.8.解:A、平行四边形的判定定理:有两组对边分别平行的四边形是平行四边形,故本选项正确;B、平行四边形的性质:平行四边形的对角线互相平分,故本选项正确;C、平行四边形的对角相等,邻角互补,故本选项错误;D、平行四边形的性质:平行四边形的对边平行且相等,故本选项正确;故选:C.9.解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,∴EF=BC=×8=4.故选:C.10.解:∵∠C=90°,∠A=30°,∴BC=AB=4,又∵DE是中位线,∴DE=BC=2.故选:D.11.解:设这个多边形是n边形.依题意,得n﹣3=10,∴n=13.故这个多边形是13边形.故选:A.12.解:当n=7时,=14.故选:D.13.解:设多边形有n条边,由题意得:180°(n﹣2)=360°×3,解得:n=8.故选:C.14.解:设这个多边形的边数为n,则有(n﹣2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选:A.15.解:∵平行四边形ABCD的周长是18∴AB+BC=18÷2=9∵三角形ABC的周长是14∴AC=14﹣(AB+AC)=5故答案为5.16.解:如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE为角平分线,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∴①当AB=BE=2cm,CE=3cm时,则周长为14cm;②当AB=BE=3cm时,CE=2cm,则周长为16cm.故答案为:14cm或16cm.17.解:可设平行四边形的两邻角为3x,2x,则可得3x+2x=180°,解得这两个角的度数分别为108°,72°,故答案为:108°,72°.18.解:∵四边形ABCD是平行四边形,∴AB∥CD,∠A=∠C,∴∠C+∠B=180°,∵∠C=2∠B,∴2∠B+∠B=180°,解得:∠B=60°,∴∠C=120°,∴∠A=120°,故答案为:120.19.解:根据平行四边形的判定方法,知需要增加的条件是AD=BC或AB∥CD或∠A=∠C或∠B=∠D.故答案为AD=BC(或AB∥CD).20.解:由D、E分别是AB、AC边的中点,可得DE为△ABC的中位线,所以=.故答案为.21.解:∵D、E分别是△ABC的边AB、BC的中点,∴DE=AC,同理,EF=AB,DF=BC,∴C△DEF=DE+EF+DF=AC+BC+AB=(AC+BC+AC)=×12=6.故答案是:6.22.解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是八.23.解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:8.24.(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=BC,AB=CD.∵点E、F分别是AD、BC的中点,∴AE=AD,FC=BC.∴AE=CF.在△AEB与△CFD中,,∴△AEB≌△CFD(SAS).(2)解:∵四边形EBFD是菱形,∴BE=DE.∴∠EBD=∠EDB.∵AE=DE,∴BE=AE.∴∠A=∠ABE.∵∠EBD+∠EDB+∠A+∠ABE=180°,∴∠ABD=∠ABE+∠EBD=×180°=90°.25.证明:连接BD交AC于O.∵四边形ABCD是平行四边形,∴AO=CO BO=DO,∵AE=CF,∴AO﹣AE=CO﹣CF,即EO=FO,∴四边形BEDF为平行四边形.26.证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF,∴四边形BFDE是平行四边形.27.解:与AF相等的有CD或AB.证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠F=∠ECD,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(ASA),∴AF=CD,∴AF=CD=AB.故答案为:AB或CD.。
一、选择题1.如图,▱ABCD 中,对角线AC ,BD 相交于O ,BD=2AD ,E ,F ,G 分别是OC ,OD ,AB 的中点,下列结论①BE ⊥AC②四边形BEFG 是平行四边形③EG=GF④EA 平分∠GEF其中正确的是( )A .①②③B .①②④C .①③④D .②③④2.如图,矩形ABCD 中,AB=5,AD=4,M 是边CD 上一点,将△ADM 沿直线AM 对折,得△ANM ,连BN ,若DM=1,则△ABN 的面积是( )A .B .C .D .3.如图,90MON ∠=︒边长为2的等边三角形ABC 的顶点A B 、分别在边OM ,ON 上当B 在边ON 上运动时,A 随之在边OM 上运动,等边三角形的形状保持不变,运动过程中,点C 到点O 的最大距离为( )A .2.4B 5C 31D .524.如图,将一个矩形纸片ABCD 折叠,使点B 与点D 重合,若3,9,AB BC ==则折痕EF 的长度为( )A .3B .23C .10D .31025.如图,四边形,ABCD AD 与BC 不平行,AB CD =.,AC BD 为四边形ABCD 的对角线,,,E F ,G H 分别是,,,BD BC AC AD 的中点下列结论:①EG FH ⊥;②四边形EFGH 是矩形;③HF 平分;EHG ∠④()1 2EG BC AD =-;⑤四边形EFGH 是菱形.其中正确的个数是 ( )A .1个B .2个C .3个D .4个6.如图,正方形ABCD 中,点E 是AD 边的中点,BD 、CE 交于点H ,BE 、AH 交于点G ,则下列结论:①AG ⊥BE ;②BE:BC=5:2;③S △BHE =S △CHD ;④∠AHB=∠EHD .其中正确的个数是A .1B .2C .3D .47.如图,直角梯形ABCD 中AD ∥BC ,∠D =90°.∠A 的平分线交DC 于E ,EF ⊥AB 于F .已知AD =3.5cm ,DC =4cm ,BC =6.5cm .那么四边形BCEF 的周长是( )A .10cmB .11cmC .11.5cmD .12cm8.如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连接BF 交AC 于点M ,连接DE ,BO .若60COB ∠=,FO FC =,则下列结论:①FB OC ⊥,OM CM =;②EOB CMB ≅;③四边形EBFD 是菱形;④:3:2MB OE =.其中正确结论的个数是( )A .1B .2C .3D .49.如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE =AD ,DF =BD ,连接BF 分别交CD ,CE 于H ,G 下列结论:①EC≠2HG ;②∠GDH =∠GHD ;③图中有8个等腰三角形;④CDG DHF S S △△=.其中正确的结论有( )个A .1B .2C .3D .410.如图,在边长为2的等边三角形ABC 中,D 为边BC 上一点,且12BD CD =.点E ,F 分别在边,AB AC 上,且90,EDF M ︒∠=为边EF 的中点,连接CM 交DF 于点N .若//DF AB ,则CM 的长为( )A 233B 334C 536D 3二、填空题11.如图,四边形ABCD ,四边形EBFG ,四边形HMPN 均是正方形,点E 、F 、P 、N 分别在边AB 、BC 、CD 、AD 上,点H 、G 、M 在AC 上,阴影部分的面积依次记为1S ,2S ,则12:S S 等于__________.12.已知:点B 是线段AC 上一点,分别以AB ,BC 为边在AC 的同侧作等边ABD △和等边BCE ,点M ,N 分别是AD ,CE 的中点,连接MN .若AC=6,设BC=2,则线段MN 的长是__________.13.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,AB =OB ,点E ,F 分别是OA ,OD 的中点,连接EF ,EM ⊥BC 于点M ,EM 交BD 于点N ,若∠CEF =45°,FN =5,则线段BC 的长为_____.14.如图,在等边ABC 和等边DEF 中,FD 在直线AC 上,33,BC DE ==连接,BD BE ,则BD BE +的最小值是______.15.如图,四边形纸片ABCD 中,AB BC =, 90ABC ADC ∠=∠=︒.若该纸片的面积为10 cm 2,则对角线BD =______cm .16.如图,在平行四边形ABCD 中,AC ⊥AB ,AC 与BD 相交于点O ,在同一平面内将△ABC 沿AC 翻折,得到△AB’C ,若四边形ABCD 的面积为24cm 2,则翻折后重叠部分(即S △ACE ) 的面积为________cm 2.17.如图,已知在△ABC 中,AB=AC=13,BC=10,点M 是AC 边上任意一点,连接MB ,以MB 、MC 为邻边作平行四边形MCNB ,连接MN ,则MN 的最小值是______18.已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,ABP ∆和DCE ∆全等.19.如图,矩形ABCD 中,CE CB BE ==,延长BE 交AD 于点M ,延长CE 交AD 于点F ,过点E 作EN BE ⊥,交BA 的延长线于点N ,23FE AN ==,,则BC =_________.20.如图,长方形ABCD 中AB =2,BC =4,正方形AEFG 的边长为1.正方形AEFG 绕点A 旋转的过程中,线段CF 的长的最小值为_____.三、解答题21.在矩形ABCD中,AE⊥BD于点E,点P是边AD上一点,PF⊥BD于点F,PA=PF.(1)试判断四边形AGFP的形状,并说明理由.(2)若AB=1,BC=2,求四边形AGFP的周长.22.如图,四边形OABC中,BC∥AO,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x 轴于点P,连结AC交NP于Q,连结MQ.(1)当t为何值时,四边形BNMP为平行四边形?(2)设四边形BNPA的面积为y,求y与t之间的函数关系式.(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.23.如图所示,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直、重合),另一直角边与角边经过点D,且直角顶点E在AB边上滑动(点E不与点A B∠的平分线BF相交于点F.CBM(1)求证: ADE FEM∠=∠;(2)如图(1),当点E在AB边的中点位置时,猜想DE与EF的数量关系,并证明你的猜想;(3)如图(2),当点E在AB边(除两端点)上的任意位置时,猜想此时DE与EF有怎样的数量关系,并证明你的猜想.24.如图,在平面直角坐标系中,已知▱OABC 的顶点A (10,0)、C (2,4),点D 是OA 的中点,点P 在BC 上由点B 向点C 运动.(1)求点B 的坐标;(2)若点P 运动速度为每秒2个单位长度,点P 运动的时间为t 秒,当四边形PCDA 是平行四边形时,求t 的值;(3)当△ODP 是等腰三角形时,直接写出点P 的坐标.25.已知如图1,四边形ABCD 是正方形,45EAF ︒∠= .()1如图1,若点,E F 分别在边BC CD 、上,延长线段CB 至G ,使得BG DF =,若3,2BE BG ==,求EF 的长;()2如图2,若点,E F 分别在边CB DC 、延长线上时,求证: .EF DF BE =-()3如图3,如果四边形ABCD 不是正方形,但满足,90,45,AB AD BAD BCD EAF ︒︒=∠=∠=∠=且7, 13,5BC DC CF ===,请你直接写出BE 的长.26.如图,ABC ADC ∆≅∆,90,ABC ADC AB BC ︒∠=∠==,点F 在边AB 上,点E 在边AD 的延长线上,且,DE BF BG CF =⊥,垂足为H ,BH 的延长线交AC 于点G .(1)若10AB =,求四边形AECF 的面积;(2)若CG CB =,求证:2BG FH CE +=.27.已知正方形ABCD 与正方形(点C 、E 、F 、G 按顺时针排列),是的中点,连接,.(1)如图1,点E 在上,点在的延长线上,求证:DM =ME ,DM ⊥.ME简析: 由是的中点,AD ∥EF ,不妨延长EM 交AD 于点N ,从而构造出一对全等的三角形,即 ≌ .由全等三角形性质,易证△DNE 是 三角形,进而得出结论.(2)如图2, 在DC 的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.(3)当AB=5,CE=3时,正方形的顶点C 、E 、F 、G 按顺时针排列.若点E 在直线CD 上,则DM= ;若点E 在直线BC 上,则DM= .28.在矩形ABCD 中,BE 平分∠ABC 交CD 边于点E .点F 在BC 边上,且FE⊥AE.(1)如图1,①∠BEC=_________°;②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;(2)如图2,FH∥CD交AD于点H,交BE于点M.NH∥BE,NB∥HE,连接NE.若AB=4,AH=2,求NE的长.29.如图,在平行四边形 ABCD中,AD=30 ,CD=10,F是BC 的中点,P 以每秒1 个单位长度的速度从 A向 D运动,到D点后停止运动;Q沿着A B C D→→→路径以每秒3个单位长度的速度运动,到D点后停止运动.已知动点 P,Q 同时出发,当其中一点停止后,另一点也停止运动.设运动时间为 t秒,问:(1)经过几秒,以 A,Q ,F ,P 为顶点的四边形是平行四边形(2)经过几秒,以A ,Q ,F , P为顶点的四边形的面积是平行四边形 ABCD面积的一半?30.如图,在矩形ABCD中,AD=nAB,E,F分别在AB,BC上.(1)若n=1,AF⊥DE.①如图1,求证:AE=BF;②如图2,点G为CB延长线上一点,DE的延长线交AG于H,若AH=AD,求证:AE+BG =AG;(2)如图3,若E为AB的中点,∠ADE=∠EDF.则CFBF的值是_____________(结果用含n的式子表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】由平行四边形的性质可得OB=BC,由等腰三角形的性质可判断①正确,由直角三角形的性质和三角形中位线定理可判断③错误,由BG=EF,BG∥EF∥CD可证四边形BEFG是平行四边形,可得②正确.由平行线的性质和等腰三角形的性质可判断④正确.【详解】∵四边形ABCD是平行四边形,∴BO=DO=1BD,AD=BC,AB=CD,AB∥BC,2又∵BD=2AD,∴OB=BC=OD=DA,且点E 是OC中点,∴BE⊥AC,故①正确,∵E、F分别是OC、OD的中点,∴EF∥CD,EF=1CD,2∵点G是Rt△ABE斜边AB上的中点,∴GE=1AB=AG=BG,2∴EG=EF=AG=BG,无法证明GE=GF,故③错误,∵BG=EF,BG∥EF∥CD,∴四边形BEFG是平行四边形,故②正确,∵EF∥CD∥AB,∴∠BAC=∠ACD=∠AEF,∵AG=GE,∴∠GAE=∠AEG,∴∠AEG=∠AEF,∴AE平分∠GEF,故④正确,故选B.【点睛】本题考查了菱形的判定,平行四边形的性质,全等三角形的判定和性质,三角形中位线定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.2.D解析:D【解析】【分析】延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=4,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=7.5,AQ=8.5,即可求出△ABN的面积.【详解】解:延长MN交AB延长线于点Q,∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=4,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=42+x2,解得:x=7.5,∴NQ=7.5,AQ=8.5,∵AB=5,AQ=8.5,∴S△NAB=S△NAQ=×AN•NQ=××4×7.5=;故选:D.【点睛】本题考查折叠的性质勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质是解题的关键.3.C解析:C【解析】【分析】如图,取AB 的中点D .连接CD .根据三角形的边角关系得到OC 小于等于OD+DC ,只有当O 、D 及C 共线时,OC 取得最大值,最大值为OD+CD ,由等边三角形的边长为2,根据D 为AB 中点,得到BD 为1,根据三线合一得到CD 垂直于AB ,在直角三角形BCD 中,根据勾股定理求出CD 的长,在直角三角形AOB 中,OD 为斜边AB 上的中线,根据直角三角形斜边上的中线等于斜边的一半可得OD 等于AB 的一半,由AB 的长求出OD 的长,进而求出DC+OD ,即为OC 的最大值.【详解】解:如图,取AB 的中点D ,连接CD .∵△ABC 是等边三角形,且边长是2,∴BC=AB=2,∵点D 是AB 边中点,∴BD=12AB=1, ∴22BC BD -2221-33连接OD ,OC ,有OC≤OD+DC ,当O 、D 、C 共线时,OC 有最大值,最大值是OD+CD ,由(1)得,3又∵△AOB 为直角三角形,D 为斜边AB 的中点,∴OD=12AB=1, ∴3OC 的最大值为3故选:C .【点睛】此题考查了等边三角形的性质,直角三角形斜边上的中线等于斜边的一半,以及勾股定理,其中找出OC 最大时的长为CD+OD 是解本题的关键.4.C解析:C【分析】设AE x =,根据勾股定理得到AE ,进而得出BE 的长,再证明5BF BE ==,根据EG AB =,求出GF 的长,最后在运用勾股定理即可得到EF .【详解】解:过E 作EG BC ⊥于G ,设AE x =,则9DE BE x ==-,在Rt ABE △中,222AB AE BE +=,2223(9)x x ∴+=-解得4x =,4AE ∴=,945BE DE ∴==-=,DEF BFE ∠=∠,DEF BEF ∠=∠,BFE BEF ∴∠=∠,5BF BE ∴==,1GF ∴=,Rt EFG ∴中,22223110EF EG GF =+=+=即EF 10,故选:C .【点睛】本题主要考查了折叠问题,矩形的性质以及勾股定理的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解题时注意方程思想的运用.5.C解析:C【分析】先根据三角形中位线定理,得出EF=FG=GH=HE ,进而得到四边形EFGH 是菱形,据此可判断结论是否正确,最后取AB 的中点P ,连接PE ,PG ,根据三角形三边关系以及三角形中位线定理,即可得出()1 2EG BC AD >-. 【详解】解:∵E ,F 分别是BD ,BC 的中点,∴EF 是△BCD 的中位线,∴EF=12CD , 同理可得,GH=12CD ,FG=12AB ,EH=12AB , 又∵AB=CD ,∴EF=FG=GH=HE,∴四边形EFGH是菱形,故⑤正确,②错误,∴EG⊥FH,HF平分∠EHG,故①、③正确,如图所示,取AB的中点P,连接PE,PG,∵E是BD的中点,G是AC的中点,∴PE是△ABD的中位线,PG是△ABC的中位线,∴PE=12AD,PG=12BC,PE∥AD,PG∥BC,∵AD与BC不平行,∴PE与PG不平行,∴△PEG中,EG>PG-PE,∴EG>12BC12AD,即EG>12(BC-AD),故④错误.综上所述,正确的有①③⑤.故选:C.【点睛】本题主要考查了中点四边形,三角形三边关系以及三角形中位线定理的运用,解题时注意:三角形的中位线平行于第三边,并且等于第三边的一半.6.D解析:D【分析】首先根据正方形的性质证得△BAE≌△CDE,推出∠ABE=∠DCE,再证△ADH≌△CDH,求得∠HAD=∠HCD,推出∠ABE=∠HAD:求出∠ABE+∠BAG=90°;最后在△AGE中根据三角形的内角和是180°求得∠AGE=90°即可得到①正确;因为点E是AD边的中点,求出AB= 2AE,5即可求得5,故②正确;根据 AD ∥BC,求出S△BDE=S△CDE,推出 S△BDE﹣S△DEH=S△CDE﹣S△DEH,即;S△BHE=S△CHD,故③正确;由∠AHD=∠CHD,得到邻补角和对顶角相等得到∠AHB=∠EHD,故④正确【详解】∵四边形ABCD是正方形,E是AD边上的中点,∴AE=DE,AB=CD,∠BAD=∠CDA=90°,在△BAE 和△CDE 中∵AE DE BAE CDE AB CDA =⎧⎪∠=∠⎨⎪=⎩∴△BAE ≌△CDE (SAS ),∴∠ABE=∠DCE ,∵四边形ABCD 是正方形,∴AD=DC ,∠ADB=∠CDB=45°,∵在△ADH 和△CDH 中,AD CD ADH CDH DH DH =⎧⎪∠=∠⎨⎪=⎩∴△ADH ≌△CDH (SAS ), ∴∠HAD=∠HCD ,∵∠ABE=∠DCE∴∠ABE=∠HAD ,∵∠BAD=∠BAH+∠DAH=90°,∴∠ABE+∠BAH=90°,∴∠AGB=180°-90°=90°,∴AG ⊥BE ,故①正确;∵点E 是AD 边的中点,∴AB= 2AE ,∴∴,故②正确;∵AD ∥BC ,∴S △BDE =S △CDE ,∴S △BDE ﹣S △DEH =S △CDE ﹣S △DEH ,即;S △BHE =S △CHD ,故③正确;∵△ADH ≌△CDH ,∴∠AHD=∠CHD ,∴∠AHB=∠CHB ,∵∠BHC=∠DHE ,∴∠AHB=∠EHD ,故④正确;故选:D .【点睛】本题考查了全等三角形的判定与性质和正方形的性质,解题的关键是熟练掌握其性质. 7.D解析:D【分析】根据角平分线性质得出AD=AF,根据勾股定理求出EF=DC,求出AB长,求出BE,即可求出答案.【详解】∵AE平分∠DAB,∠D=90°,EF⊥AB,∴AF=AD=3.5cm,EF=DE,∴DC=CE+DE=CE+EF=4cm,过A作AM⊥BC于M,则四边形AMCD是矩形,∴AM=DC=4cm,AD=CM=3.5cm,∵BC=6.5cm,∴BM=6.5cm-3.5cm=3cm,在Rt△AMB中,由勾股定理得:22435AB(cm),∴BF=AB-AF=5cm-3.5cm=1.5cm,∴四边形BCEF的周长是BC+BF+CE+EF=6.5cm+1.5cm+CD=8cm+4cm=12cm,故选:D.【点睛】本题考查了勾股定理,矩形的性质和判定,角平分线性质等知识点,能求出各个边的长度是解此题的关键.8.C解析:C【分析】①证明△OBC是等边三角形,即可得OB=BC,由FO=FC,即可得FB垂直平分OC,①正确;②由FB垂直平分OC,根据轴对称的性质可得△FCB≌△FOB,根据全等三角形的性质可得∠BCF=∠BOF=90°,再证明△FOC≌△EOA,所以FO=EO,即可得OB垂直平分EF,所以△OBF≌△OBE,即△EOB≌△FCB,②错误;③证明四边形DEBF是平行四边形,再由OB垂直平分EF,根据线段垂直平分线的性质可得BE=BF,即可得平行四边形DEBF为菱形,③正确;④由OBF≌△EOB≌△FCB得∠1=∠2=∠3=30°,在Rt△OBE中,可得OE=3,在Rt△OBM中,可得3,即可得BM :OE =3:2,④正确.【详解】①∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,∴FB⊥OC,OM=CM;①正确;②∵FB垂直平分OC,根据轴对称的性质可得△FCB≌△FOB,∴∠BCF=∠BOF=90°,即OB⊥EF,∵OA=OC,∠FOC=∠EOA,∠DCO=∠BAO,∴△FOC≌△EOA,∴FO=EO,∴OB垂直平分EF,∴△OBF≌△OBE,∴△EOB≌△FCB,②错误;③∵△FOC≌△EOA,∴FC=AE,∵矩形ABCD,∴CD=AB,CD∥AB,∴DF∥EB,DF=EB,∴四边形DEBF是平行四边形,∵OB垂直平分EF,∴BE=BF,∴平行四边形DEBF为菱形;③正确;④由OBF≌△EOB≌△FCB得∠1=∠2=∠3=30°,在Rt△OBE中,3,在Rt△OBM中,3∴BM ::OB=3:2.④正确;所以其中正确结论的个数为3个;故选C.【点睛】本题考查了矩形的性质、等腰三角形的性质、全等三角形的性质和判定、线段垂直平分线的性质、菱形的判定及锐角三角函数,是一道综合性较强的题目,解决问题的关键是会综合运用所学的知识分析解决问题.9.B解析:B【分析】关键结合图形证明△CHG≌△EGD,即可逐项判断求解【详解】解:∵DF=BD,∴∠DFB=∠DBF,∵AD∥BC,DE=BC,∴四边形DBCE是平行四边形,∠DFB=∠GBC,∴∠DEC=∠DBC=45°,∴∠DEC=2∠EFB,∴∠EFB=22.5°,∠CGB=∠CBG=22.5°,∴CG=BC=DE,∵DE=DC,∴∠DEG=∠DCE,∵∠GHC=∠CDF+∠DFB=90°+22.5°=112.5°,∠DGE=180°-(∠BGD+∠EGF),=180°-(∠BGD+∠BGC),=180°-(180°-∠DCG)÷2,=180°-(180°-45°)÷2,=112.5°,∴∠GHC=∠DGE,∴△CHG≌△EGD,∴∠EDG=∠CGB=∠CBF,∴∠GDH=90°-∠EDG,∠GHD=∠BHC=90°-∠CGB,∴∠GDH=∠GHD故②正确;∴∠GDH=∠GHD又∠EFB=22.5°,∴∠DHG=∠GDH=67.5°∴∠GDF=90°-∠GDH=22.5°=∠EFB,∴DG=GF,∴HG=DG=GF∴HF=2HG,显然CE≠HF=2HG,故①正确;∵△CHG ≌△EGD ,∴CHG EGD S S ∆∆=∴CHG DHG EGD DHG S S S S ∆∆∆∆+=+,即CDG DHGE S S △四边形=而=EFG DHGE DHF S S S ∆+四边形△,故CDG DHF S S ≠△△故④不正确;结合前面条件易知等腰三角形有△ABD ,△CDB ,△BDF ,△CDE ,△BCG ,△DGH ,△EGF ,△CDG ,△DGF 共9个,∴③错误;故正确的有①②,有2个,故选:B【点睛】本题主要考查对三角形的内角和定理,全等三角形的判定和性质,等腰三角形的性质和判定,正方形的性质,等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.10.C解析:C【分析】根据等边三角形边长为2,在Rt BDE ∆中求得DE 的长,再根据CM 垂直平分DF ,在Rt CDN ∆中求得CN ,利用三角形中位线求得MN 的长,最后根据线段和可得CM 的长.【详解】 解:等边三角形边长为2,12BD CD =, ∴23BD =,43CD =, 等边三角形ABC 中,//DF AB ,60FDC B ∴∠=∠=︒,90EDF ∠=︒,30BDE ∴∠=︒,DE BE ∴⊥,1123BE BD ∴==,2222213()33DE BD BE ⎛⎫=-=-= ⎪⎝⎭, 如图,连接DM ,则Rt DEF ∆中,12DM EF FM ==,60FDC FCD ∠=∠=︒,CDF ∴∆是等边三角形,43CD CF ∴==, CM ∴垂直平分DF ,30DCN ∴∠=︒,Rt CDN ∴∆中,43DF =,32DN =,23CN =, ∵EM =FM ,DN =FN ,∴132MN ED =, 23353CM CN MN ∴=+. 故选:C .【点睛】本题主要考查了三角形的综合应用,解决问题的关键是掌握等边三角形的性质、勾股定理、平行线的性质、线段垂直平分线的判定等.熟练掌握这些性质是解题的关键.二、填空题11.4:9【分析】设DP =DN =m ,则PN 2m ,PC =2m ,AD =CD =3m ,再求出FG=CF=12BC=32m ,分别求出两个阴影部分的面积即可解决问题.【详解】根据图形的特点设DP =DN =m ,则PN 22m m +2m ,∴2m=MC ,22PM MC +,∴BC =CD =PC+DP=3m ,∵四边形HMPN 是正方形,∴GF ⊥BC∵∠ACB =45︒,∴△FGC 是等腰直角三角形,∴FG=CF=12BC=32m , ∴S 1=12DN×DP=12m 2,S 2=12FG×CF=98m 2, ∴12:S S =12m 2: 98m 2=4:9, 故答案为4:9.【点睛】本题考查正方形的性质,勾股定理等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.12【分析】如图(见解析),先根据等边三角形的性质、平行四边形的判定与性质可得//,4ME AB ME AB ==,再根据平行线的性质可得60FEM C ∠=∠=︒,然后利用直角三角形的性质、勾股定理可得2,EF MF ==,从而可得3FN =,最后在Rt FMN 中,利用勾股定理即可得.【详解】如图,连接ME ,过点M 作MF CE ⊥,交CE 延长线于点F ,ABD △和BCE 都是等边三角形,2BC =,60,2,A CBE C BE CE AD A C B B ∴∠=∠=∠=︒====,//AD BE ∴,6AC =,624AD AB ∴==-=,点M ,N 分别是AD ,CE 的中点,112,122AM AD EN CE ∴====, AM BE ∴=,∴四边形ABEM 是平行四边形,//,4ME AB ME AB ∴==,60FEM C ∴∠=∠=︒,在Rt EFM △中,906030EMF ∠=︒-︒=︒,12,2EF ME MF ∴==== 123FN EN EF ∴=+=+=,则在Rt FMN 中,22223(23)21MN FN MF =+=+=,故答案为:21.【点睛】本题考查了等边三角形的性质、勾股定理、平行四边形的判定与性质、直角三角形的性质等知识点,通过作辅助线,构造直角三角形和平行四边形是解题关键.13.45【分析】设EF =x ,根据三角形的中位线定理表示AD =2x ,AD ∥EF ,可得∠CAD =∠CEF =45°,证明△EMC 是等腰直角三角形,则∠CEM =45°,证明△ENF ≌△MNB ,则EN =MN =12x ,BN =FN =5,最后利用勾股定理计算x 的值,可得BC 的长.【详解】解:设EF =x ,∵点E 、点F 分别是OA 、OD 的中点,∴EF 是△OAD 的中位线,∴AD =2x ,AD ∥EF ,∴∠CAD =∠CEF =45°,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC =2x ,∴∠ACB =∠CAD =45°,∵EM ⊥BC ,∴∠EMC =90°,∴△EMC 是等腰直角三角形,∴∠CEM =45°,连接BE ,∵AB =OB ,AE =OE∴BE ⊥AO∴∠BEM =45°,∴BM =EM =MC =x ,∴BM =FE ,易得△ENF ≌△MNB ,∴EN =MN =12x ,BN =FN =5, Rt △BNM 中,由勾股定理得:BN2=BM2+MN2, 即22215()2x x =+解得,x =25,∴BC =2x =45.故答案为:45.【点睛】本题考查了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.14.37【分析】如图,延长CB 到T ,使得BT=DE ,连接DT ,作点B 关于直线AC 的对称点W ,连接TW ,DW ,过点W 作WK ⊥BC 交BC 的延长线于K .证明BE=DT ,BD=DW ,把问题转化为求DT+DW 的最小值.【详解】解:如图,延长CB 到T ,使得BT=DE ,连接DT ,作点B 关于直线AC 的对称点W ,连接TW ,DW ,过点W 作WK ⊥BC 交BC 的延长线于K .∵△ABC ,△DEF 都是等边三角形,BC=3DE=3,∴BC=AB=3,DE=1,∠ACB=∠EDF=60°,∴DE ∥TC ,∵DE=BT=1,∴四边形DEBT 是平行四边形,∴BE=DT ,∴BD+BE=BD+AD ,∵B ,W 关于直线AC 对称,∴CB=CW=3,∠ACW=∠ACB=60°,DB=DW,∴∠WCK=60°,∵WK⊥CK,∴∠K=90°,∠CWK=30°,∴CK=12CW=32,WK=3CK=332,∴TK=1+3+32=112,∴TW=2222113322TK WK⎛⎫⎛⎫+=+ ⎪⎪ ⎪⎝⎭⎝⎭=37,∴DB+B E=DB+DT=DW+DT≥TW,∴BD+BE≥37,∴BD+BE的最小值为37,故答案为37.【点睛】本题考查轴对称-最短问题,等边三角形的性质,解直角三角形,平行四边形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考填空题中的压轴题.15.25【分析】作BE⊥AD于E,BF⊥CD于F,则四边形BEDF是矩形,证明△ABE≌△CBF(AAS),得出BE=BF,△ABE的面积=△CBF的面积,则四边形BEDF是正方形,四边形ABCD的面积=正方形BEDF的面积,求出BE=10,即可求得BD的长.【详解】解:作BE⊥AD交DA延长线于E,BF⊥CD于F,如图所示:则∠BEA=∠BFC=90°,∵∠ADC=90°,∴四边形BEDF是矩形,∴∠EBF=90°,∵∠ABC=90°,∴∠EBF=∠ABC=90°,∴∠ABE=∠CBF,在△ABE 和△CBF 中,BEA BFC ABE CBF AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBF (AAS ),∴BE=BF ,△ABE 的面积=△CBF 的面积,∴四边形BEDF 是正方形,四边形ABCD 的面积=正方形BEDF 的面积,∴BE=DE ,BE 2=10 cm 2,∴(cm),∴.故答案为:【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、矩形的判定与性质等知识;熟练掌握正方形的判定与性质,证明三角形全等是解题的关键.16.6【分析】由折叠的性质可得∠BAC=∠B'AC=90°,AB=AB',S △ABC =S △AB'C =12cm 2,可证点B ,点A ,点B'三点共线,通过证明四边形ACDB'是平行四边形,可得B'E=CE ,即可求解.【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,S △ABC =1242⨯=12cm 2,∵在同一平面内将△ABC 沿AC 翻折,得到△AB ′C ,∴∠BAC=∠B'AC=90°,AB=AB',S △ABC =S △AB'C =12cm 2,∴∠BAB'=180°,∴点B ,点A ,点B'三点共线,∵AB ∥CD ,AB'∥CD ,∴四边形ACDB'是平行四边形,∴B'E=CE ,∴S △ACE =12S △AB'C =6cm 2, 故答案为:6.【点睛】本题考查了翻折变换,平行四边形的判定和性质,证明点B ,点A ,点B'三点共线是本题的关键.17.12013【分析】设MN 与BC 交于点O ,连接AO ,过点O 作OH ⊥AC 于H 点,根据等腰三角形的性质和勾股定理可求AO 和OH 长,若MN 最小,则MO 最小即可,而O 点到AC 的最短距离为OH 长,所以MN 最小值是2OH .【详解】解:设MN 与BC 交于点O ,连接AO ,过点O 作OH ⊥AC 于H 点,∵四边形MCNB 是平行四边形,∴O 为BC 中点,MN =2MO .∵AB =AC =13,BC =10,∴AO ⊥BC .在Rt △AOC 中,利用勾股定理可得AO 2222135AC CO -=-12.利用面积法:AO ×CO =AC ×OH ,即12×5=13×OH ,解得OH =6013. 当MO 最小时,则MN 就最小,O 点到AC 的最短距离为OH 长, 所以当M 点与H 点重合时,MO 最小值为OH 长是6013. 所以此时MN 最小值为2OH =12013. 故答案为:12013. 【点睛】本题主要考查了平行四边形的性质、垂线段最短、勾股定理、等腰三角形的性质,解题的关键是分析出点到某线段的垂线段最短,由此进行转化线段,动中找静.18.1或7.【分析】存在2种情况满足条件,一种是点P 在BC 上,只需要BP=CE 即可得全等;另一种是点P 在AD 上,只需要AP=CE 即可得全等【详解】设点P 的运动时间为t 秒,当点P 在线段BC 上时,则2BP t =,∵四边形ABCD 为长方形,∴AB CD =,90B DCE ∠=∠=︒,此时有ABP DCE ∆∆≌,∴BP CE =,即22t =,解得1t =;当点P 在线段AD 上时,则2BC CD DP t ++=,∵4AB =,6AD =,∴6BC =,4CD =,∴()()6462162AP BC CD DA BC CD DP t t =++-++=++-=-,∴162AP t =-,此时有ABP CDE ∆∆≌,∴AP CE =,即1622t -=,解得7t =;综上可知当t 为1秒或7秒时,ABP ∆和CDE ∆全等.故答案为:1或7.【点睛】本题考查动点问题,解题关键是根据矩形的性质可得,要证三角形的全等,只需要还得到一条直角边相等即可19.663【分析】通过四边形ABCD 是矩形以及CE CB BE ==,得到△FEM 是等边三角形,根据含30°直角三角形的性质以及勾股定理得到KM ,NK ,KE 的值,进而得到NE 的值,再利用30°直角三角形的性质及勾股定理得到BN ,BE 即可.【详解】解:如图,设NE 交AD 于点K ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC=90°,∴∠MFE=∠FCB ,∠FME=∠EBC∵CE CB BE ==,∴△BCE 为等边三角形,∴∠BEC=∠ECB=∠EBC=60°,∵∠FEM=∠BEC ,∴∠FEM=∠MFE=∠FME=60°,∴△FEM 是等边三角形,FM=FE=EM=2,∵EN ⊥BE ,∴∠NEM=∠NEB=90°,∴∠NKA=∠MKE=30°,∴KM=2EM=4,NK=2AN=6,∴在Rt △KME 中,=∴NE=NK+KE=6+∵∠ABC=90°,∴∠ABE=30°,∴BN=2NE=12+∴BE=22663-=+,BN NE∴BC=BE=663,故答案为:663【点睛】本题考查了矩形,等边三角形的性质,以及含30°直角三角形的性质与勾股定理的应用,解题的关键是灵活运用30°直角三角形的性质.20.25﹣2【分析】连接AF,CF,AC,利用勾股定理求出AC、AF,再根据三角形的三边关系得到当点A,F,C在同一直线上时,CF的长最小,最小值为25﹣2.【详解】解:如图,连接AF,CF,AC,∵长方形ABCD中AB=2,BC=4,正方形AEFG的边长为1,∴AC=25,AF=2,∵AF+CF≥AC,∴CF≥AC﹣AF,∴当点A,F,C在同一直线上时,CF的长最小,最小值为25﹣2,故答案为:25﹣2.【点睛】此题考查矩形的性质,正方形的性质,勾股定理,三角形的三边关系.三、解答题21.(1)四边形AGFP 是菱形,理由见解析;(2)四边形AGFP 的周长为:2【分析】(1)根据矩形的性质和菱形的判定解答即可;(2)根据全等三角形的判定和性质,以及利用勾股定理解答即可.【详解】解:(1)四边形AGFP 是菱形,理由如下:∵四边形ABCD 是矩形,∴∠BAP =90°,∵PF ⊥BD ,PA =PF ,∴∠PBA =∠PBF ,∵AE ⊥BD ,∴∠PBF+∠BGE =90°,∵∠BAP =90°,∴∠PBA+∠APB =90°,∴∠APB =∠BGE ,∵∠AGP =∠BGE ,∴∠APB =∠AGP ,∴AP =AG ,∵PA =PF ,∴AG =PF ,∵AE ⊥BD ,PF ⊥BD ,∴AE ∥PF ,∴四边形AGFP 是平行四边形,∵PA =PF ,∴平行四边形AGFP 是菱形;(2)在Rt △ABP 和Rt △FBP 中,∵PB =PB ,PA =PF ,∴Rt △ABP ≌Rt △FBP (HL ),∴AB =FB =1,∵四边形ABCD 是矩形,∴AD =BC =2,∴BD =设PA =x ,则PF =x ,PD =2﹣x ,PF 1,在Rt △DPF 中,DF 2+PF 2=PD 2,∴2221)(2)x x +=-解得:x =12,∴四边形AGFP 的周长为:4x =4×122=. 【点睛】 此题考查矩形的性质,菱形的判定,全等三角形的判定和性质和勾股定理,解题的关键是熟练掌握所学的知识定理进行解题.22.(1)34;(2)y =4t +2;(3)存在,点M 的坐标为(1,0)或(2,0). 【分析】(1)因为BN ∥MP ,故当BN=MP 时,四边形BNMP 为平行四边形,此时点M 在点P 的左侧,求解即可;(2)y =12(BN +PA )•OC ,即可求解; (3)①当∠MQA 为直角时,则△MAQ 为等腰直角三角形,则PA =PM ,即可求解;②当∠QMA 为直角时,则NB +OM =BC =3,即可求解.【详解】(1)∵BN ∥MP ,故当BN =MP 时,四边形BNMP 为平行四边形.此时点M 在点P 的左侧时,即0≤t <1时,MP =OP ﹣OM =3﹣t ﹣2t =3﹣3t ,BN =t ,即3﹣3t =t ,解得:t =34; (2)由题意得:由点C 的坐标知,OC =4,BN =t ,NC =PO =3﹣t ,PA =4﹣OP =4﹣(3﹣t )=t +1,则y =12(BN +PA )•OC =12(t +t +1)×4=4t +2; (3)由点A 、C 的坐标知,OA =OC =4, 则△COA 为等腰直角三角形,故∠OCA =∠OAC =45°,①当∠MQA 为直角时,∵∠OAC =45°,故△MAQ 为等腰直角三角形,则PA =PM ,而PA =4﹣(3﹣t )=t +1,PM =OP ﹣OM =(3﹣t )﹣2t =3﹣3t ,故t +1=3﹣3t ,解得:t =12,则OM =2t =1, 故点M (1,0);②当∠QMA 为直角时,则点M 、P 重合,则NB +OM =BC =3,即2t +t =3,解得:t =1,故OM =OP =2t =2,故点M (2,0);综上,点M 的坐标为(1,0)或(2,0).【点睛】本题是四边形综合题,涉及坐标与图形、平行四边形的性质、等腰直角三角形的判定和性质、图形的面积计算等,复杂度较高,难度较大,其中(3)要分类求解,避免遗漏.23.(1)详见解析;(2)DE EF =,理由详见解析;(3)DE EF =,理由详见解析【分析】(1)根据90,90AED FEB ADE AED ∠+∠=︒∠+∠=︒,等量代换即可证明;(2)DE=EF ,连接NE ,在DA 边上截取DN=EB ,证出△DNE ≌△EBF 即可得出答案;(3)在DA 边上截取DN EB =,连接NE ,证出()DNE EBF ASA ≌即可得出答案.【详解】(1)证明:∵90DAB DEF ∠=∠=︒,∴90,90AED FEB ADE AED ∠+∠=︒∠+∠=︒,∴ADE FEM ∠=∠;(2) ;DE EF =理由如下:如图,取AD 的中点N ,连接NE ,∵四边形ABCD 为正方形,∴AD AB = ,∵,N E 分别为,AD AB 中点 ∴11,22AN DN AD AE EB AB ====,∴,DN BE AN AE ==又∵90A ∠=︒∴45ANE ∠=︒∴180135DNE ANE ∠=︒-∠=︒,又∵90CBM ∠=︒,BF 平分CBM ∠∴45,135CBF EBF ∠=︒∠=︒.∴DNE EBF ∠=∠在DNE △和EBF △中ADE FEBDN EBDNE EBF∠=∠⎧⎪=⎨⎪∠=∠⎩()DNE EBF ASA ≌,∴DE EF =(3) DE EF =.理由如下:如图,在DA 边上截取DN EB =,连接NE ,∵四边形ABCD 是正方形, DN EB =,∴AN AE =,∴AEN △为等腰直角三角形,∵45ANE ∠=︒∴18045135DNE ∠=︒-︒=︒,∵BF 平分CBM ∠, AN AE =,∴9045135EBF ∠=︒+︒=︒,∴DNE EBF ∠=∠,在DNE △和EBF △中ADE FEB DN EBDNE EBF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()DNE EBF ASA ≌,∴DE EF =.【点睛】此题主要考查了正方形的性质以及全等三角形的判定与性质等知识,解决本题的关键就是求证△DNE ≌△EBF .24.(1)B (12,4);(2)52t s =;(3)58,4,3,4,2,4,,42 【分析】(1)由四边形OABC 是平行四边形,得到OA BC =,//OA BC ,于是得到 10OA =,2OE AF ,可求出点B 的坐标; (2)根据四边形PCDA 是平行四边形,得到PC AD =,即1025t -=,解方程即可得到结论;(3)如图2,可分三种情况:①当5PD OD 时,②当5PO OD 时,③当 PD OP =时分别讨论计算即可.【详解】解:如图1,过C 作CE OA ⊥于E ,过B 作BF OA ⊥于 F ,四边形OABC 是平行四边形,OA BC ,//OA BC , A ,C 的坐标分别为(10,0), (2,4), 10OA ∴=,2OE AF , 10BC ∴=,(12,4)B ;(2)设点P 运动t 秒时,四边形PCDA 是平行四边形,由题意得:102PC t =-,点D 是OA 的中点, 152OD BC AD OA ,四边形PCDA 是平行四边形,PC AD ,即1025t -=,52t ∴=, ∴当52t =秒时,四边形PCDA 是平行四边形; (3)如图2,①当5PDOD 时,过1P 作1PE OA 于 E ,则14PE ,3DE ∴=,1(8,4)P ,又D ,C 的坐标分别为()5,0,(2,4),∴225245CD ,即有,当点P 与点C 重合时,5PD OD ,。
苏科新版八下第9章《中心对称图形—平行四边形》易错培优习题一.选择题(共12小题)1.平行四边形一定具有的性质是()A.内角和为180°B.是中心对称图形C.邻边相等D.对角互补2.一辆模型赛车,先前进1m,然后沿原地逆时针方向旋转,旋转角为α(0<α<90°),被称为一次操作,若五次操作后,发现赛车回到出发点,则旋转角α为()A.108°B.120°C.72°D.36°3.如图,该图形绕点O按下列角度旋转后,不能与其自身重合的是()A.216°B.144°C.108°D.72°4.如图,已知平行四边形ABCD中,点A的坐标是(4,0),点C的坐标是(﹣4,0),点D的坐标是(﹣2,﹣2),则点B的坐标是()A.(4,2)B.(6,﹣2)C.(2,2)D.(﹣10,﹣2)5.下列平行四边形中,其图中阴影部分面积不一定等于平行四边形面积一半的是()A.B.C.D.6.如图,▱ABCD的周长为60cm,AC,BD相交于点O,EO⊥BD交AD于点E,则△ABE 的周长为()A.30 cm B.60cm C.40cm D.20 cm7.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则矩形的另一边AD的长是()A.2B.4C.2D.48.如图,在▱ABCD中,AB=3,AD=5,∠ABC的平分线交AD于E,交CD的延长线于点F,则DF=()A.1B.C.2D.39.如图,∠MON=90°,矩形ABCD在∠MON的内部,顶点A,B分别在射线OM,ON 上,AB=4,BC=2,则点D到点O的最大距离是()A.2﹣2B.2+2C.2﹣2D.10.如图,已知AB=8,P为线段AB上一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和PBFE,点P,C,E在一条直线上,∠DAP=60°,M,N分别是对角线AC,BE的中点,当点P在线段AB上移动时,点M,N之间的距离最短为()A.B.C.4D.311.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有4005个三角形,则n的值是()A.1002B.1001C.1000D.99912.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1,A2,…,A n分别是正方形对角线的交点,则n个正方形重叠形成的重叠部分的面积和为()A.cm2B.cm2C.cm2D.()n cm2二.填空题(共8小题)13.在正方形、长方形、线段、等边三角形和平行四边形这五种图形中,是旋转对称图形不是中心对称图形的是.14.若D,E,F分别为△ABC各边的中点,且△DEF的周长为9,则△ABC的周长为.15.如图,△ODC是由△OAB绕点O顺时针旋转40°后得到的图形,若点D恰好落在AB 上,且∠AOC=105°,则∠C的度数是.16.在△ABC中,点E,F分别是边AB,AC的中点,点D在BC边上,连接DE,DF,EF,请你添加一个条件,使△BED与△FDE全等.17.在△ABC中,AB=AC,高AH与中线BD相交于点E,如果BC=2,BD=3,那么AE =.18.如图,在四边形ABCD中,∠ADC+∠BCD=220°,E、F分别是AC、BD的中点,P 是AB边上的中点,则∠EPF=°.19.在面积为30的平行四边形ABCD中,过点A作AE垂直直线BC于点E,作AF垂直直线CD于点F,若AB=10,BC=12,则CE+CF的值为.20.如图,正方形ABCD的各边分别平行于x轴或者y轴,蚂蚁甲和蚂蚁乙都由点(3,0)出发,同时沿正方形ABCD的边做环绕运动,蚂蚁甲按顺时针方向以3个单位长度秒的速度做匀速运动,蚂蚁乙按逆时针方向以1个单位长度秒的速度做匀速运动,则两只蚂蚁出发后第三次相遇点的坐标是.三.解答题(共6小题)21.(1)指出下列旋转对称图形的最小旋转角,并在图中标明它的旋转中心O.(2)在上述几个图形中有没有中心对称图形?具体指明是哪几个?解:图形A的最小旋转角是度,它中心对称图形.图形B的最小旋转角是度,它中心对称图形.图形C的最小旋转角是度,它中心对称图形.图形D的最小旋转角是度,它中心对称图形.图形E的最小旋转角是度,它中心对称图形.22.如图所示的两个图形成中心对称,请找出它的对称中点.23.如图,已知平行四边形ABCD中,∠ABC的平分线与边CD的延长线交于点E,与AD 交于点F,且AF=DF.①求证:AB=DE;②若AB=3,BF=5,求△BCE的周长.24.在正方形ABCD中,BD为正方形对角线,E,F是BD上两点,BE=3,EF=5,DF=4,求∠BAE+∠DCF的度数.25.已知,在等边△ABC中,点E在BA的延长线上,点D在BC上,且ED=EC (1)如图1,求证:AE=DB;(2)如图2,将△BCE绕点C顺时针旋转60°至△ACF(点B、E的对应点分别为点A、F),连接EF.在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对线段长度之差等于AB的长.26.已知△ABC中,AB=AC,点E、D、F分别是AB、BC、AC的中点.(1)如图①,若∠A=90°,请判断四边形AEDF的形状,并证明你的结论.(2)如图②,若∠A=120°,BC=4,求四边形AEDF的周长和面积.参考答案一.选择题(共12小题)1.平行四边形一定具有的性质是()A.内角和为180°B.是中心对称图形C.邻边相等D.对角互补【解答】解:A、平行四边形的内角和为360°,故此选项错误;B、平行四边形是中心对称图形,故此选项正确;C、平行四边形的对角相等,邻边不一定相等,故此选项错误;D、平行四边形的对角相等,但不一定互补,故此选项错误;故选:B.2.一辆模型赛车,先前进1m,然后沿原地逆时针方向旋转,旋转角为α(0<α<90°),被称为一次操作,若五次操作后,发现赛车回到出发点,则旋转角α为()A.108°B.120°C.72°D.36°【解答】解:由题意,得赛车所走路线为正五边形,正五边形外角之和为360°,所以五次旋转角之和为360°,所以α=360°÷5=72°.故选:C.3.如图,该图形绕点O按下列角度旋转后,不能与其自身重合的是()A.216°B.144°C.108°D.72°【解答】解:该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,因而A、B、D选项都正确,不能与其自身重合的是C选项.故选:C.4.如图,已知平行四边形ABCD中,点A的坐标是(4,0),点C的坐标是(﹣4,0),点D的坐标是(﹣2,﹣2),则点B的坐标是()A.(4,2)B.(6,﹣2)C.(2,2)D.(﹣10,﹣2)【解答】解:如图所示,平行四边形ABCD中,点A的坐标是(4,0),点C的坐标是(﹣4,0),∴O是AC的中点,∴点D与点B关于原点对称,又∵点D的坐标是(﹣2,﹣2),∴B(2,2),故选:C.5.下列平行四边形中,其图中阴影部分面积不一定等于平行四边形面积一半的是()A.B.C.D.【解答】解:A、因为高相等,三个底是平行四边形的底,根据三角形和平行四边形的面积可知,阴影部分的面积等于平行四边形的面积的一半,正确;B、因为两阴影部分的底与平行四边形的底相等,高之和正好等于平行四边形的高,所以阴影部分的面积等于平行四边形的面积的一半,正确;C、根据平行四边形的对称性,可知小阴影部分的面积等于小空白部分的面积,所以阴影部分的面积等于平行四边形的面积的一半,正确;D、无法判断阴影部分面积是否等于平行四边形面积一半,错误.故选:D.6.如图,▱ABCD的周长为60cm,AC,BD相交于点O,EO⊥BD交AD于点E,则△ABE 的周长为()A.30 cm B.60cm C.40cm D.20 cm【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OB=OD,又∵OE⊥BD,∴OE是线段BD的中垂线,∴BE=DE,∴AE+ED=AE+BE,∵▱ABCD的周长为60cm,∴AB+AD=30cm,∴△ABE的周长=AB+AE+BE=AB+AD=30cm,故选:A.7.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则矩形的另一边AD的长是()A.2B.4C.2D.4【解答】解:过O点作OH⊥AD,∵四边形ABCD是矩形,∠AOB=60度,∴△AOB是等边三角形,AO=BO=2,∠BAO=60°,∴∠DAO=30°.在Rt△AHO中,AO=2,∠HAO=30°,∴AH=.所以AD=2AH=2.故选:C.8.如图,在▱ABCD中,AB=3,AD=5,∠ABC的平分线交AD于E,交CD的延长线于点F,则DF=()A.1B.C.2D.3【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=5,AB=CD=3,∴∠ABE=∠CFE,∵∠ABC的平分线交AD于点E,∴∠ABE=∠CBF,∴∠CBF=∠CFB,∴CF=CB=5,∴DF=CF﹣CD=5﹣3=2,故选:C.9.如图,∠MON=90°,矩形ABCD在∠MON的内部,顶点A,B分别在射线OM,ON 上,AB=4,BC=2,则点D到点O的最大距离是()A.2﹣2B.2+2C.2﹣2D.【解答】解:取AB中点E,连接OE、DE、OD,∵∠MON=90°,∴OE=AB=2.在Rt△DAE中,利用勾股定理可得DE=2.在△ODE中,根据三角形三边关系可知DE+OE>OD,∴当O、E、D三点共线时,OD最大为OE+DE=2+2.故选:B.10.如图,已知AB=8,P为线段AB上一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和PBFE,点P,C,E在一条直线上,∠DAP=60°,M,N分别是对角线AC,BE的中点,当点P在线段AB上移动时,点M,N之间的距离最短为()A.B.C.4D.3【解答】解:连接PM、PN.∵四边形APCD,四边形PBFE是菱形,∠DAP=60°,∴∠APC=120°,∠EPB=60°,∵M,N分别是对角线AC,BE的中点,∴∠CPM=∠APC=60°,∠EPN=∠EPB=30°,∴∠MPN=60°+30°=90°,设P A=2a,则PB=8﹣2a,PM=a,PN=(4﹣a),∴MN===,∴a=3时,MN有最小值,最小值为2,故选:A.11.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有4005个三角形,则n的值是()A.1002B.1001C.1000D.999【解答】解:分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1﹣3;图②中三角形的个数为5=4×2﹣3;图③中三角形的个数为9=4×3﹣3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,第n个图形中共有三角形的个数为4n﹣3,即4n﹣3=4005,n=1002,故选:A.12.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1,A2,…,A n分别是正方形对角线的交点,则n个正方形重叠形成的重叠部分的面积和为()A.cm2B.cm2C.cm2D.()n cm2【解答】解:由题意可得阴影部分面积等于正方形面积的,即是,5个这样的正方形重叠部分(阴影部分)的面积和为×4,n个这样的正方形重叠部分(阴影部分)的面积和为×(n﹣1)=.故选:B.二.填空题(共8小题)13.在正方形、长方形、线段、等边三角形和平行四边形这五种图形中,是旋转对称图形不是中心对称图形的是等边三角形.【解答】解:正方形、等腰梯形、线段、等边三角形和平行四边形这五种图形中正方形、线段和平行四边形都是中心对称图形,只有等边三角形是旋转对称图形但不是中心对称图形,故答案为:等边三角形.14.若D,E,F分别为△ABC各边的中点,且△DEF的周长为9,则△ABC的周长为18.【解答】解:∵D,E,F分别为△ABC各边的中点,∴DE、EF、DF是△ABC的中位线,∴DE=BC,EF=AB,DF=AC,∴△ABC的周长=2△DEF的周长=2×9=18.故答案为:18.15.如图,△ODC是由△OAB绕点O顺时针旋转40°后得到的图形,若点D恰好落在AB 上,且∠AOC=105°,则∠C的度数是45°.【解答】解:∵∠AOC的度数为105°,由旋转可得∠AOD=∠BOC=40°,∴∠AOB=105°﹣40°=65°,∵△AOD中,AO=DO,∴∠A=(180°﹣40°)=70°,∴△ABO中,∠B=180°﹣70°﹣65°=45°,由旋转可得,∠C=∠B=45°,故答案为:45°.16.在△ABC中,点E,F分别是边AB,AC的中点,点D在BC边上,连接DE,DF,EF,请你添加一个条件D是BC的中点,使△BED与△FDE全等.【解答】解:当D是BC的中点时,△BED≌△FDE,∵E,F分别是边AB,AC的中点,∴EF∥BC,当E,D分别是边AB,BC的中点时,ED∥AC,∴四边形BEFD是平行四边形,∴△BED≌△FDE,故答案为:D是BC的中点.17.在△ABC中,AB=AC,高AH与中线BD相交于点E,如果BC=2,BD=3,那么AE =.【解答】解:如图所示,连接DH,∵AB=AC,AH⊥BC,∴H为BC的中点,又∵D为AC的中点,∴DH为△ABC的中位线,∴DH∥AB,DH=AB,∴△DEH∽△BEA,∴===,又∵BD=3,∴BE=2,∴Rt△BEH中,EH==,∴AE=2EH=2,故答案为:2.18.如图,在四边形ABCD中,∠ADC+∠BCD=220°,E、F分别是AC、BD的中点,P 是AB边上的中点,则∠EPF=40°.【解答】解:∵四边形ABCD中,∠ADC+∠BCD=220°,∴∠BAD+∠ABC=360°﹣220°=140°,∵E、F分别是AC、BD的中点,P是AB边上的中点,∴PE是△ABC的中位线,PF是△ABD的中位线,∴PE∥BC,PF∥AD,∴∠BPF=∠BAD,∠APE=∠ABC,∴∠APE+∠BPF=∠BAD+∠ABC=140°,∴∠EPF=180°﹣140°=40°,故答案为:40.19.在面积为30的平行四边形ABCD中,过点A作AE垂直直线BC于点E,作AF垂直直线CD于点F,若AB=10,BC=12,则CE+CF的值为22+或2+.【解答】解:分两种情况:①如图1所示:当∠BAD为锐角时,∵平行四边形ABCD的面积=BC•AE=AB•AF=30,AB=10,BC=12,∴AE=2.5,AF=3,∵AE⊥直线BC于点E,作AF⊥直线CD于F,∴∠AEB=∠AFD=90°,∴BE===,DF===3,∴CE=CB+BE=12+,CF=CD+DF=10+3,∴CE+CF=22+;②如图2所示:当∠BAD为钝角时,同理可得:BE=,DF=3,∴CE=CB﹣BE=12﹣,CF=DF﹣CD=3﹣10,∴CE+CF=2+,综上所述,CE+CF的值为22+或2+.故答案是:22+或2+.20.如图,正方形ABCD的各边分别平行于x轴或者y轴,蚂蚁甲和蚂蚁乙都由点(3,0)出发,同时沿正方形ABCD的边做环绕运动,蚂蚁甲按顺时针方向以3个单位长度秒的速度做匀速运动,蚂蚁乙按逆时针方向以1个单位长度秒的速度做匀速运动,则两只蚂蚁出发后第三次相遇点的坐标是(0,﹣3).【解答】解:由已知,正方形周长为4×6=24,∵甲、乙速度分别为3单位/秒,1单位/秒,则两只蚂蚁每次相遇时间间隔为=6秒,则两只蚂蚁相遇点依次为(0,3)、(﹣3,0)、(0,﹣3),故答案为:(0,﹣3).三.解答题(共6小题)21.(1)指出下列旋转对称图形的最小旋转角,并在图中标明它的旋转中心O.(2)在上述几个图形中有没有中心对称图形?具体指明是哪几个?解:图形A的最小旋转角是60度,它是中心对称图形.图形B的最小旋转角是72度,它不是中心对称图形.图形C的最小旋转角是72度,它不是中心对称图形.图形D的最小旋转角是120度,它不是中心对称图形.图形E的最小旋转角是90度,它是中心对称图形.【解答】解:(1)如图所示,(2)图形A的最小旋转角是60度,它是中心对称图形.图形B的最小旋转角是72度,它不是中心对称图形.图形C的最小旋转角是72度,它不是中心对称图形.图形D的最小旋转角是120度,它不是中心对称图形.图形E的最小旋转角是90度,它是中心对称图形.故答案为:60,是;72,不是;72,不是;120,不是;90,是.22.如图所示的两个图形成中心对称,请找出它的对称中点.【解答】解:连接CC′,BB′,两条线段相交于当O,则点O即为对称中点.23.如图,已知平行四边形ABCD中,∠ABC的平分线与边CD的延长线交于点E,与AD 交于点F,且AF=DF.①求证:AB=DE;②若AB=3,BF=5,求△BCE的周长.【解答】解:①∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠A=∠FDE,∠ABF=∠E,∵AF=DF,∴△ABF≌△DEF,∴AB=DE;②∵BE平分∠ABC,∴∠ABF=∠CBF,∵AD∥BC,∴∠CBF=∠AFB,∴∠ABF=∠AFB,∴AF=AB=3,∴AD=2AF=6∵四边形ABCD是平行四边形,∴BC=AD=6,CD=AB=3,∵△ABF≌△DEF,∴DE=AB=3,EF=BF=5,∴CE=6,BE=EF+BF=10,∴△BCE的周长=BC+CE+BE=10+6+6=22.24.在正方形ABCD中,BD为正方形对角线,E,F是BD上两点,BE=3,EF=5,DF=4,求∠BAE+∠DCF的度数.【解答】解:将△ABE绕点A逆时针旋转90°得到△ADP,连接PF,AF,∵四边形ABCD是正方形,∴∠ABD=∠ADB=45°,AB=AD=CD,又∵△ABE≌△ADP,∴PD=BE=3,∠ADP=∠ABE=45°,∴∠PDF=∠ADP+∠ADB=90°,∴PF==5,∴PF=PE,又∵AE=AP,AF=AF,∴△AFE≌△AFP(SSS),∴∠F AP=∠F AE=∠EAP=45°,∴∠P AD+∠DAF=45°,根据正方形的对称性,可得∠DCF=∠DAF,又∵∠BAE=∠DAP,∴∠BAE+∠DCF=45°.25.已知,在等边△ABC中,点E在BA的延长线上,点D在BC上,且ED=EC (1)如图1,求证:AE=DB;(2)如图2,将△BCE绕点C顺时针旋转60°至△ACF(点B、E的对应点分别为点A、F),连接EF.在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对线段长度之差等于AB的长.【解答】解:(1)如图,作DK∥AC交AB于K,则△BDK是等边三角形,∵△ABC是等边三角形,∴∠EKD=∠EAC=120°,∠B=∠BKD=60°,∴DK=BD,∵ED=EC,∴∠EDC=∠ECD,∴∠B+∠KED=∠EDC,∵∠ECA+∠ACB=∠ECD,∴∠B+∠KED=∠ECA+∠ACB,∵∠B=∠ACB=60°,∴∠KED=∠ECA,在△DKE与△EAC中,,∴△DKE≌△EAC(AAS),∴AE=DK,∴BD=AE.(2)BE﹣AE=AB;BE﹣BD=AB;AF﹣AE=AB;AF﹣BD=AB.理由:由旋转可得,△BCE≌△ACF,∴BE=AF,又∵BD=AE,AB=BE﹣AE,∴BE﹣AE=AB;BE﹣BD=AB;AF﹣AE=AB;AF﹣BD=AB.26.已知△ABC中,AB=AC,点E、D、F分别是AB、BC、AC的中点.(1)如图①,若∠A=90°,请判断四边形AEDF的形状,并证明你的结论.(2)如图②,若∠A=120°,BC=4,求四边形AEDF的周长和面积.【解答】解:(1)四边形AEDF是正方形.证明:∵AB=AC,点E、D、F分别是AB、BC、AC的中点,∴AE=DE=DF=AF,∴四边形AEDF是菱形,∵∠A=90°,∴四边形AEDF是正方形.(2)如图,连接AD,EF,∵AB=AC,点D是BC的中点,∴AD⊥BC,又∵∠A=120°,BC=4,∴∠B=30°,BD=2,∴AD=tan30°×BD=2,∴AB=2AD=4,由题可得,DF是△ABC的中位线,∴2DF=AB,即DF=2,∴菱形AEDF周长为8.由题可得,EF是△ABC的中位线,∴BC=2EF,即EF=2,∴菱形AEDF的面积=0.5×2×2=2.。
2024年人教版八年级上册数学第四单元课后练习题(含答案和概念)试题部分一、选择题:1. 在人教版八年级上册数学第四单元中,下列哪个图形是平行四边形?()A. 四边形ABCD,AB∥CD,AD∥BCB. 四边形EFGH,EF∥GH,EG∥FH,且EF=GHC. 四边形IJKL,IK∥JL,IJ∥KL,但IK≠JLD. 四边形MNOP,MN∥OP,MO∥NP,但MN≠OP2. 下列哪个条件可以判定一个四边形是矩形?()A. 有一个角是直角B. 对角线相等C. 对角线互相平分D. 对角线互相垂直平分3. 在直角坐标系中,点A(2,3)关于原点对称的点是()A. (2,3)B. (2,3)C. (2,3)D. (3,2)4. 下列哪个比例式可以说明三角形ABC与三角形DEF相似?()A. AB/DE = BC/EFB. AB/DE = AC/DFC. AB/DE = AC/EFD. BC/EF = AC/DF5. 若平行四边形ABCD的周长为20cm,AD=6cm,则BC的长度为()A. 4cmB. 5cmC. 6cmD. 8cm6. 下列哪个图形既是轴对称图形,又是中心对称图形?()A. 等腰三角形B. 矩形C. 正五边形D. 梯形7. 下列哪个条件可以判定两个三角形全等?()A. 两边和它们的夹角分别相等B. 两边和其中一边的对角分别相等C. 两角和其中一边分别相等D. 两角和它们的夹边分别相等8. 在直角三角形中,若一个锐角的度数是30°,则另一个锐角的度数是()A. 30°B. 45°C. 60°D. 90°9. 下列哪个图形的面积可以通过底乘以高的一半来计算?()A. 矩形B. 三角形C. 平行四边形D. 梯形10. 若等腰梯形的上底为5cm,下底为15cm,高为6cm,则该梯形的面积为()A. 45cm²B. 60cm²C. 75cm²D. 90cm²二、判断题:1. 平行四边形的对角线互相平分。
平行四边形专项练习题.选择题(共12小题)1 •在下列条件中,能够判定一个四边形是平行四边形的是( )A . —组对边平行,另一组对边相等B •—组对边相等,一组对角相等C. 一组对边平行,一条对角线平分另一条对角线D. —组对边相等,一条对角线平分另一条对角线2 •设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( )A. a >bB . a=bC. a v bD . b=a+180°3 .如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两 张等腰直角二角形纸片的面积都为 S ,另两张直角三角形纸片的面积都为 S 2,中间一张 正方形纸片的面积为S 3,则这个平行四边形的面积一定可以表示为(4 .在?ABCD 中,AB=3, BC=4,当?ABCD 的面积最大时,下列结论正确的有( )①AC=5;②/ A+Z C=180;③AC 丄BD;④AC=BD A .①②③B .①②④C.②③④D .①③④5 .如图,在?ABCD 中,AB=6, BC=8 Z C 的平分线交 AD 于E,交BA 的延长线于F ,则A . 2B . 3 C. 4 D . 66 .如图,在?ABCD 中,BF 平分Z ABC,交AD 于点F , CE 平分Z BCD ,交AD 于点E ,AB=6,EF=2,则BC 长为()C. 4S 2+S D .3S+4SA . 4S7 .如图,在?ABCD 中,AB=12, AD=8,Z ABC 的平分线交CD 于点F ,交AD 的延长线于 点E, CG± BE,垂足为G ,若EF=2贝懺段CG 的长为()A .寸B .亦 C. 2厢 D .屈8. 如图,在?ABCD 中,AB >AD ,按以下步骤作图:以点A 为圆心,小于AD 的长为半径 画弧,分别交AB 、AD 于点E 、F ;再分别以点E 、F 为圆心,大于^EF 的长为半径画弧, 两弧交于点G ;作射线AG 交CD 于点H ,则下列结论中不能由条件推理得出的是 (9.如图,将?ABCD 沿对角线AC 折叠,使点B 落在B 处,若/仁/ 2=44°则/B 为( )A . 66°B . 104° C. 114° D. 12410. 如图,?ABCD 的对角线AC BD 相交于点O ,且AC+BD=16, CD=6,则厶ABO 的周长11. 四边形ABCD 中,对角线AC BD 相交于点O ,给出下列四个条件: ①AD // BC;②AD=BQ ③OA=OC ④OB=ODB . 10 C. 12 D .14B . AD=DHC. DH=BC D .CH=DHB . 14C . 20D . 22 A . 8 A . 10从中任选两个条件,能使四边形 ABCD 为平行四边形的选法有(二•填空题(共6小题)13. _______________________________ 如图,把平行四边形ABCD 折叠,使点C 与点A 重合,这时点D 落在D i ,折痕为EF, 若/ BAE=55,则/ D i AD= .14. 如图,在?ABCD 中,P 是CD 边上一点,且AP 和BP 分别平分/ DAB 和/ CBA 若AD=5,AP=8,则厶APB 的周长是 _________ .15. 如图所示,四边形 ABCD 的对角线相交于点 0,若AB / CD ,请添加一个条件 (写一个即可),使四边形ABCD 是平行四边形.A . 3种B . 4种C . 5种D . 6种12•如图,点A , B 为定点,定直线 中点,对下列各值:I // AB , P 是I 上一动点,点 M , N 分别为PA, PB 的①线段MN 的长;②厶PAB 的周长; / APB 的大小.③厶PMN 的面积;④直线MN , AB 之间的距离;⑤C.①③④D.④⑤B •②⑤ A •②③DB16 •如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为______________ .17•如图,在△ ABC中,/ ACB=90, M、N分别是AB、AC的中点,延长BC至点D,使CD=-BD,连接DM、DN、MN .若AB=6,贝U DN= __________ .D~C--------------------- 518. 如图,在厶ABC中,点D、E、F分别是边AB BC CA上的中点,且AB=6cm, AC=8cm 则四边形ADEF的周长等于 ______________ cm.三.解答题(共8小题)19. 如图,E是?ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ ADE^A FCE(2)若/ BAF=90,BC=5 EF=3 求CD的长.A D5 C F20. 如图,在?ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF(2)连接DE,若AD=2AB求证:DE丄AF.21 •已知:如图,在四边形ABCD中,AB// CD, E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.22•如图,四边形ABCD中,对角线AC, BD相交于点0,点E,F分别在0A, OC上(1)给出以下条件;①0B=0D,②/仁/2,③0E=0F请你从中选取两个条件证明△BEO^A DF0(2)在(1)条件中你所选条件的前提下,添加AE=CF求证:四边形ABCD是平行四边形.23•如图,点0是厶ABC内一点,连结0B 0C,并将AB、0B、0C AC的中点D、E、F、G依次连结,得到四边形DEFG(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,0M=3,/ 0BC和/ 0CB互余,求DG的长度.5 C24 .如图,?ABCD中,BD是它的一条对角线,过A、C两点作AE丄BD, CF丄BD,垂足分别为E、F,延长AE、CF分别交CD AB于M、N.(1) 求证:四边形CMAN是平行四边形.(2) 已知DE=4, FN=3,求BN 的长.25•如图,在?ABCD中,点E, F在对角线AC上,且AE=CF求证:(1)DE=BF(2)四边形DEBF是平行四边形.26.如图,等边△ ABC的边长是2, D、E分别为AB AC的中点,延长BC至点F,使CF=-BC,连接CD和EF.(1) 求证:DE=CF(2) 求EF的长.参考答案与解析一.选择题1.【分析】根据平行四边形的判定方法以及全等三角形的判定方法一一判断即可.解:A、错误.这个四边形有可能是等腰梯形.B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C.2 .【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论. 解:•••四边形的内角和等于a,•••a= (4-2) ?180° =360°•••五边形的外角和等于b,••• b=360°,••• a=b.故选B.3. 【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出9 (用a、c表示), 得出S, S2, Q之间的关系,由此即可解决问题.解:设等腰直角三角形的直角边为a,正方形边长为c,贝卩S2令 (a+c) (a- c) 令'a2-%2,•S2=Si - — S3,•S s=2S - 2S2,•••平行四边形面积=2S+2S2+3=2S+2S2+2S I - 2S2=4S.故选A.4. 【分析】当?ABCD的面积最大时,四边形ABCD为矩形,得出/ A=Z B=Z C=Z D=90°, AC=BD根据勾股定理求出AC,即可得出结论.解:根据题意得:当?ABCD的面积最大时,四边形ABCD为矩形,A=Z B=Z C=Z D=9C°, AC=BD•AC= ' ! 4 =5 ,①正确,②正确,④正确;③不正确;故选:B.5 •【分析】由平行四边形的性质和角平分线得出/ F=Z FCB证出BF=BC=8同理:DE=CD=6 求出AF=BF- AB=2, AE=AD- DE=g即可得出结果.解:•••四边形ABCD是平行四边形,••• AB// CD, AD=BC=8 CD=AB=6•••/ F=Z DCF,v CF平分/ BCD,•••/ FCB=z DCF,•••/ F=Z FCB••• BF=BC=8同理:DE=CD=6••• AF=BF- AB=2, AE=AD- DE=2AE+AF=4;故选:C.6.【分析】由平行四边形的性质和角平分线得出/ ABF=Z AFB得出AF=AB=6同理可证DE=DC=6再由EF的长,即可求出BC的长.解:v四边形ABCD是平行四边形,. AD/ BC DC=AB=6 AD=BC•••/ AFB=/ FBCv BF 平分/ ABC,./ ABF=/ FBC则/ ABF=/ AFB. AF=AB=6同理可证:DE=DC=6v EF=AF+DE- AD=2即6+6- AD=2解得:AD=10;故选:B.7 •【分析】先由平行四边形的性质和角平分线的定义,判断出/ CBE2 CFB" ABEK E, 从而得到CF=BC=8 AE=AB=12再用平行线分线段成比例定理求出BE,然后用等腰三角形的三线合一求出BG,最后用勾股定理即可.解:•••/ ABC的平分线交CD于点F,•••/ ABEN CBE•••四边形ABCD是平行四边形,•••DC// AB,•••/ CBE=/ CFB=/ ABEK E,•CF=BC=AD=8 AE=AB=12••• AD=8,•DE=4,••• DC/ AB ,…_「,•丄一—…丨:_「,•EB=6,v CF=CB CGL BF,在Rt A BCG中,BC=8 BG=2,根据勾股定理得,CG=:1「二=2. ■,故选:C.8 .【分析】根据作图过程可得得AG平分/ DAB,再根据角平分线的性质和平行四边形的性质可证明/ DAH=Z DHA,进而得到AD=DH,解:根据作图的方法可得AG平分/ DAB,v AG 平分/ DAB,•/ DAH=Z BAH,v CD// AB ,•Z DHA=Z BAH,•Z DAH=Z DHA,••• AD=DH, ••• BC=DH 故选D.9 .【分析】由平行四边形的性质和折叠的性质得出/ ACD=Z BAC=/ B' AC由三角形的外角性质求出/ BAC=/ ACD=Z B' A C=/仁22°,再由三角形内角和定理求出/ B即可. 解:•••四边形ABCD是平行四边形,••• AB// CD,•••/ ACD=/ BAC,由折叠的性质得:/ BAC=Z B' AC•••/ BAC=/ ACD=Z B' A C=/仁22°,•••/ B=1800-/ 2-/ BAC=180 - 44° - 22°=114°° 故选:C.10. 【分析】直接利用平行四边形的性质得出AO=CQ BO=DO, DC=AB=6再利用已知求出AO+BO的长,进而得出答案.解:•••四边形ABCD是平行四边形,••• AO=CO BO=DO, DC=AB=6••• AC+BD=16 ,AO+BO=8,•••△ABO的周长是:14.故选:B.11. 【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.解:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ AD3A CBQ进而得到AD=CB可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ ADO^A CBQ进而得到AD=CB可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;•••有4种可能使四边形ABCD为平行四边形.故选:B.12. 【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN」-AB, 从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.解:•••点A, B为定点,点M, N分别为PA, PB的中点,•MN是A PAB的中位线,•MN^-AB,即线段MN的长度不变,故①错误;PA PB的长度随点P的移动而变化,所以,△ PAB的周长会随点P的移动而变化,故②正确;••• MN的长度不变,点P到MN的距离等于I与AB的距离的一半,•△ PMN的面积不变,故③错误;直线MN , AB之间的距离不随点P的移动而变化,故④错误;/ APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.二.填空题13 .【分析】由平行四边形的性质和折叠的性质得出/ D i AE=Z BAD,得出/ D i AD=Z BAE=55 即可.解:•••四边形ABCD是平行四边形,•/ BAD=Z C,由折叠的性质得:/ D i AE=Z C,•Z D i AE=Z BAD,•Z D i AD=Z BAE=55;故答案为:55°.i4.【分析】根据平行四边形性质得出AD// CB, AB//CD,推出Z DA由Z CBA=i80,求出ZPAB F Z PBA=90 ,在厶APB中求出Z APB=90,由勾股定理求出BP,证出AD=DP=5BC=PC=5得出DC=10=AB即可求出答案.解:•••四边形ABCD是平行四边形,••• AD// CB, AB// CD,•••/ DAB+Z CBA=180,又••• AP和BP分别平分Z DAB和Z CBA•••Z PAB F Z PBA=- (Z DAB^Z CBA) =90°°在厶APB中,Z APB=180—(Z PAB F Z PBA) =90°;••• AP 平分Z DAB,•Z DAP=Z PAB••• AB// CD,•Z PAB=/ DPA•Z DAP=Z DPA•△ ADP是等腰三角形,•AD=DP=5同理:PC=CB=5即AB=DC=DPPC=10在Rt A APB 中,AB=10, AP=8,•BP=;Q「护=6 ,•△ APB 的周长=6+8+10=24;故答案为:24.15. 【分析】根据平行四边形的定义或判定定理即可解答.解:可以添加:AD// BC (答案不唯一).故答案是:AD // BC.16. 【分析】结合题意,总结可知,每个图中三角形个数比图形的编号的4倍少3个三角形,即可得出结果.解:第①是1个三角形,仁4X 1- 3;第②是5个三角形,5=4X 2 -3;第③是9个三角形,9=4X 3 -3;•第n个图形中共有三角形的个数是4n - 3;故答案为:4n - 3.17. 【分析】连接CM,根据三角形中位线定理得到NMh「CB, MN // BC,证明四边形DCMN 是平行四边形,得到DN=CM,根据直角三角形的性质得到CM=-AB=3,等量代换即可. 解:连接CM,••• M、N分别是AB、AC的中点,••• NM—-CB, MN // BC,又CD丄BD,••• MN=CD,又MN // BC,•••四边形DCMN是平行四边形,••• DN=CM,vZ ACB=90, M 是AB 的中点,••• CMh「AB=3,••• DN=3,故答案为:3.18. 【分析】首先证明四边形ADEF是平行四边形,根据三角形中位线定理求出DE、EF 即可解决问题.解:v BD=AD, BE=EC••• DE=-AC=4cm DE/ AC,v CF=FA CE=BEEF=「AB=3cm, EF// AB,•••四边形ADEF是平行四边形,.四边形ADEF的周长=2 (DE+EF) =14cm.故答案为14.•解答题19. 【分析】(1)由平行四边形的性质得出AD// BC, AB// CD,证出/ DAE=Z F,Z D=Z ECF 由AAS证明△ ADE^A FCE即可;(2)由全等三角形的性质得出AE=EF=3由平行线的性质证出/ AED=Z BAF=90,由勾股定理求出DE,即可得出CD的长.(1)证明:•••四边形ABCD是平行四边形,••• AD// BC, AB// CD,•••/ DAE=Z F, / D=Z ECF••• E是?ABCD的边CD的中点,••• DE=CE在厶ADE和厶FCE中,f ZDAE=ZFZD=ZECF ,[DE=CE•••△ ADE^A FCE( AAS;(2)解::ADE^A FCE••• AE=EF=3••• AB// CD,•••/ AED=Z BAF=90 ,在?ABCD中 , AD=BC=5••• DE=l「rr= =4 ,••• CD=2DE=820. 【分析】(1)由在?ABCD中,E是BC的中点,利用ASA即可判定厶ABE^A FCE 继而证得结论;(2)由AD=2AB AB=FC=CD 可得AD=DF,又由△ ABE^A FCE 可得AE=EF 然后利用三线合一,证得结论.证明:(1)v四边形ABCD是平行四边形,••• AB// DF,•••/ ABE=/ FCE••• E为BC中点,••• BE=CE 在厶ABE与厶FCE中,r ZAEE=ZFCE乂BE=CE ,IZAEB=ZCEF•••△ABE^A FCE( ASA, ••• AB=FC(2 )T AD=2AB AB=FC=CD•AD=DF,•:△ ABE^A FCE•AE=EF• DE 丄AF.21. 【分析】利用平行线的性质得出/ BAE=/ CFE由AAS得出△ ABE^A FCE得出对应边相等AE=EF再利用平行四边形的判定得出即可.解:四边形ABFC是平行四边形;理由如下:••• AB// CD,•/ BAE=/ CFE••• E是BC的中点,•BE=CEf ZBAE=ZCFE在厶ABE和厶FCE中,. —.屮 ,[BE=CE•△ABE^A FCE( AAS;•AE=EF又••• BE=CE•四边形ABFC是平行四边形.22. 【分析】(1)选取①②,利用ASA判定△ BE3A DFO即可;(2)根据△ BEO^A DFO可得EO=FQ BO=DO,再根据等式的性质可得AO=CO根据两条对角线互相平分的四边形是平行四边形可得结论.证明:(1)选取①②,rzi=Z2•••在△ BEO和厶DFO 中EADO ,IZEOB=ZFOD•••△ BEC^A DFO (ASA ;(2)由(1)得:△ BEO^A DFO,••• EO=FO BO=DQ••• AE=CF••• AO=CQ•••四边形ABCD是平行四边形.23. [分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF// BCDG// BC且DG=-BC,从而得到DE=EF DG// EF,再利用一组对边平行且相等的四边形是平行四边形证明即可;(2)先判断出/ BOC=90 ,再利用直角三角形斜边的中线等于斜边的一半,求出EF即可. 解:(1 ):D、G分别是AB、AC的中点,••• DG// BC, DG丄BC,••• E、F分别是OB OC的中点,••• EF// BC, EF丄BC,••• DG=EF DG// EF,•••四边形DEFG是平行四边形;(2)•••/ OBC和/OCB互余,•••/ OBC+Z OCB=90 ,•••/ BOC=90 ,••• M为EF的中点,OM=3 ,••• EF=2OM=6由(1)有四边形DEFG是平行四边形,••• DG=EF=624. [分析】(1)只要证明CM// AN , AM / CN即可.(2)先证明△ DEM^A BFN得BN=DM ,再在RT^DEM中,利用勾股定理即可解决问题.(1)证明:•••四边形ABCD是平行四边形,••• CD// AB,••• AM 丄BD, CN丄BD,••• AM // CN,••• CM / AN, AM // CN,•••四边形AMCN是平行四边形.(2四边形AMCN是平行四边形,•CM=AN,•••四边形ABCD是平行四边形,•CD=AB CD// AB,•DM=BN,Z MDE=Z NBF, 在厶MDE和厶NBF中,fZMDE=ZNBFZDEM二ZNFB二勺『,[DM二•△MDE^A NBF,•ME=NF=3,在Rt A DME 中,vZ DEM=9° , DE=4, ME=3,•DM= . [ :「丄,r =5 ,•BN=DM=5.£) _______ ___________ C25. 【分析】(1)根据全等三角形的判定方法,判断出△ ADE^A CBF,即可推得DE=BF (2)首先判断出DE// BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF是平行四边形即可.证明:(1)v四边形ABCD是平行四边形,•AD// CB, AD=CB•Z DAE=Z BCF在厶ADE和厶CBF中,rAD=CBZ DAE=Z BCFI..AE=CF•••△ ADE^A CBF••• DE=BF(2)由(1),可得△ ADE^ACBF,•••/ ADE=Z CBF•••/ DEF=/ DAE F Z ADE, / BFEN BC+Z CBF,•••/ DEF=/ BFE••• DE// BF,又••• DE=BF•••四边形DEBF是平行四边形.26. 【分析】(1)直接利用三角形中位线定理得出DE•'丄BC,进而得出DE=FC(2)利用平行四边形的判定与性质得出DC=EF进而利用等边三角形的性质以及勾股定理得出EF的长.(1)证明::D、E分别为AB AC的中点,••• DE *△ ABC的中位线,••• DE•'丄BC,•••延长BC至点F,使CF=-BC,••• DE=FC(2)解::DE^FC,•••四边形DEFC是平行四边形,•••DC=EF••• D为AB的中点,等边△ ABC的边长是2 ,••• AD=BD=1, CD 丄AB , BC=2••• DC=EF= \。
2024年人教版八年级上册数学第二单元课后练习题(含答案和概念)试题部分一、选择题:1. 在人教版八年级上册数学第二单元中,下列哪个图形是平行四边形?()A. 四边形ABCD,AB∥CD,AD∥BCB. 四边形EFGH,EF∥GH,EG∥FH,且EF=GHC. 四边形IJKL,IK∥JL,IJ∥KLD. 四边形MNOP,MN=NO=OP=PM2. 若平行四边形ABCD的对角线交于点O,下列哪个结论是正确的?()A. OA=OC,OB=ODB. OA=OB,OC=ODC. OA=BC,OB=CDD. OA=BD,OB=AC3. 下列关于平行四边形性质的说法,错误的是()A. 平行四边形的对边相等B. 平行四边形的对角相等C. 平行四边形的邻角互补D. 平行四边形的对角线互相平分4. 在平行四边形ABCD中,若AB=6cm,BC=8cm,则对角线AC的取值范围是()A. 2cm<AC<14cmB. 2cm<AC<10cmC. 4cm<AC<14cmD. 4cm<AC<10cm5. 下列关于矩形性质的说法,错误的是()A. 矩形的对边平行且相等B. 矩形的四个角都是直角C. 矩形的对角线相等D. 矩形的对角线互相垂直6. 若一个平行四边形的四个角都是直角,那么这个平行四边形是()A. 矩形B. 菱形C. 正方形D. 无法确定7. 在矩形ABCD中,若对角线AC和BD的交点为O,下列哪个结论是正确的?()A. OA=OC,OB=ODB. OA=OB,OC=ODC. OA=BC,OB=CDD. OA=BD,OB=AC8. 下列关于菱形性质的说法,错误的是()A. 菱形的对边平行B. 菱形的四条边相等C. 菱形的对角相等D. 菱形的对角线互相垂直9. 在菱形ABCD中,若对角线AC和BD的交点为O,下列哪个结论是正确的?()A. OA=OC,OB=ODB. OA=OB,OC=ODC. OA=BC,OB=CDD. OA=BD,OB=AC10. 下列关于正方形性质的说法,错误的是()A. 正方形的四条边相等B. 正方形的四个角都是直角C. 正方形的对角线相等D. 正方形的对角线互相垂直且平分二、判断题:1. 平行四边形的对角线互相平分。
A B E C F D 平行四边形习题课
一、填空题:
1.已知,如图,在□ABD 中,AB=4c ,AD=7c ,∠AB 的平分线交AD 于点E ,交D 的延长线于点F ,则DF=______c 。
2.如图,在□ABD 中,DE 平分∠AD 交B 于E ,AF⊥DE 于F ,已知∠DAF=48°,则∠B=_________
3.已知,在□ABD 中,AB=4,B=6,B 边上的高AE=2,则D 边上的高AF 的长是________。
4.如图,在□ABD 中,AD 、B 间的距离AF =20,AB 、D 间的距离AE =40,∠EAF=30°,则AB = ,B = .□ABD 的面积为 .
5如图所示,在ABD 中,AE ⊥B 于E ,AF ⊥D 于F ,∠BAD =120°,BE =2,FD =3,
则∠EAF = ,
ABD 的周长为 。
二、选择题:
6.平行四边形一边长为10,一条对角线长为6,则它的另一条对角线长a 的取值范围为 ( )
A .4<a<16
B .14<a<26 .12<a<20 D .8<a<32
7、下面各条件中,能判定四边形是平行四边形的是 ( ) F E D C B A
F E D C B A F
E D C B A (第1题) (第2题) (第3题) (第4题)
A B
F C D E A 、对角线互相垂直 B 、对角线互相平分
、一组对角相等 D 、一组对边相等
8、平行四边形的两条对角线及一边的长可依次取 ( )
A 、6、6、6
B 、6、4、3 、6、4、6 D 、3、4、5
三、解答题:
9、在ABD 中,E 、F 分别在D 、AB 上,且DE =BF 。
求证:四边形AFE 是平行四边形。
10.如图所示,□AEF 的对角线相交于点O ,DB 经过点O ,分别与AE ,F 交于B ,D .求证:四边形ABD 是平行四边形.
11.如图,已知,□ABD 中,AE=F ,M 、N 分别是DE 、BF 的中点.
求证:四边形MFNE 是平行四边形.
12.如图,平行四边形ABD ,E 、F 两点在对角线BD 上,且BE=DF ,连接AE ,E ,F ,FA .求证:四边形AEF 是平行四边形.
13.在□ABD中,分别以AD、B为边向内作等边△ADE和等边△BF,连接BE、DF.求证:四边形BEDF是平行四边形.。