人教版八年级数学上册 13.2.1 画轴对称图形 培优训练(包含答案)
- 格式:docx
- 大小:810.85 KB
- 文档页数:9
13.1 画轴对称图形
(第1课时)
1.如图1所示在方格纸上画出的一棵树的一半,请你以树干为对称轴画出树的另一半.
图1
2. 画出如图2所示的图形关于直线l的对称图形.
图2
3.把下列图形补充成以MN为轴的轴对称图形.
图3
4.如图所示,下图是由一个圆,一个半圆和一个三角形组成的图形,请你以直线AB为对称轴,把原图形补成轴对称图形.(保留作图痕迹,不要求写作法和证明)
图4
5.请用1个等腰三角形,2个矩形,3个圆在下面的方框(如图所示)内设计一个轴对称图形,并用简练的语言文字说明你的创意.
图5
6.如果两个图形关于一条直线对称,则任何一对对应点的连线段都被这条直线__________。
7.如图6所示,将长方形ABCD沿对角线AC折叠,使点C恰好落在如图C1的位置,若∠DBC=30º,则∠ABC1=________。
图6
8.如图7所示是小明制作的风筝,为了平衡制成了轴对称图形,已知OC是对称轴,∠A=35º,∠BCO=30º,那么∠AOB=_____.
图7
9.如图,B,E分别是AB,CD的中点,AB⊥CD,DE⊥AC,求证:AC=CD
图8
参考答案
1~5略 6.垂直平分
7.300
8.1300
9.连接AD,由垂直平分线的性质可知.。
13.2.1 画轴对称图形一.选择题(共10小题)2.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长点,那么下点B中正确的个数是()垂直平分C.第2题图第4题图第8题图5.下列图形:其中所有轴对称图形的对称轴条数之和为().变换构成了下列四个图形,这四个图形中不是轴对称图形的是()C小正方形涂黑,得到新的图形(阴影部分),其中不是轴对称图形的是( )C9.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形 _________ .10.(2009•绍兴)在黑板报的设计中,小敏遇到了如下的问题:在如图中,直线l 与AB 垂直,要作△ABC 关于l 的轴对称图形.小敏已作出了一步,请你用直尺和圆规作出这个图形的其余部分,保留作图痕迹,并写出相应的作法.作法:(1)以B 为圆心,BA 为半径作弧,与AB 的延长线交于点P ; _________ _________________________就是所要作的轴对称图形.11.在如图的正方形网格中有一个三角形ABC ,作出三角形ABC 关于直线MN 的轴反射图形,若网格上最小正方形边长为1,则三角形ABC 与它轴反射图形的面积之和是 _________.12.画一个图形关于某条直线的对称图形时,只要从已知图形上找出几个 _________ ,然后分别作出它们的 _________ ,再按原有方式连接起来即可.13.如图,已知长方形的台球桌台ABCD ,有黑、白两球分别位于M 、N 两点的位置上,试问:怎样撞击白球N ,才能让白球先撞台边AB ,反弹后再击中黑球M .(在图上画出)14.利用图形中的对称点,画出图形的对称轴.15.如图,AB 左边是计算器上的数字“5”,若以直线AB 为对称轴,那么它的轴对称图形是数字 _________ .16.下列每对文字图形中,能看成关于虚线对称的有: _________ (只需要序号). 17.如图所示,观察规律并填空:_________.18.下图是用纸叠成的生活图案,其中属于轴对称图形的是(用序号表示) _________ .三.解答题(共10小题)19.观察右面两个图形,解答下列问题: (1)其中是轴对称图形的为 _________(2)用尺规作图的方法画出其中轴对称图形的对称轴(要求:只保留作图痕迹,不写作法)20.已知四边形ABCD ,如果点D 、C 关于直线MN 对称, (1)画出直线MN ;(2)画出四边形ABCD 关于直线MN 的对称图形.21.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上). (1)在图中作出△ABC 关于直线l 对称的△A 1B 1C 1;(要求:A 与A 1,B 与B 1,C 与C 1相对应)(2)在(1)问的结果下,连接BB 1,CC 1,求四边形BB 1C 1C 的面积.22.已知:如图,在△ABC 中,AB=BC=2,∠ABC=120°,BC∥x轴,点B 的坐标是(﹣3,1).(1)画出△ABC 关于y 轴对称的△A′B′C′;(2)求以点A 、B 、B′、A′为顶点的四边形的面积.23.如图,△ABC和△A′B′C′关于直线MN对称,△A′B′C′和△A″B″C″关于直线EF 对称.(1)画出直线EF;(2)直线MN与EF相交于点O,试探究∠BOB″与直线MN、EF所夹锐角α的数量关系.13.2.1 画轴对称图形一、选择题(共8小题)1.B 2.C 3.C 4.C 5.B 6.A 7.A 8.D二.填空题(共10小题)9.10. 解:(1)分别以B,P为圆心,BC,AC为半径作弧,两弧交于点Q;(2)连接BQ,PQ.△BPQ.11. 512. 关键点对称点13.14.2;16. ①⑤;17. .;18. ①②③15.三.解答题(共5小题)19. 解:(1)②,①;(2)(3分)20. 解:(1)如图,直线MN即为所求;(2)四边形A′B′DC即为四边形ABDC关于直线MN的对称图形.21. 解(1)如图,△A1B1C1是△ABC关于直线l的对称图形.(2)由图得四边形BB1C1C是等腰梯形,BB1=4,CC1=2,高是4.∴S四边形BB1C1C=,==12.22.解:(1)如图所示;(2)过A点作AD⊥BC,交CB的延长线于点D,则∠ABD=180°﹣∠ABC=180°﹣120°=60°在Rt△ABD中,BD=AB•cos∠ABD=2×=1AD=AB•sin∠ABD=2×又知点B的坐标为(﹣3,1)∴点A的坐标为(﹣4,1+)∵AA′⊥y轴,BB′⊥y轴∴AA′⊥BB′∵AB与A′B′不平行∴以点A,B,B′,A′为顶点的四边形是等腰梯形由点A,B的坐标可求得AA′=2×4=8,BB′=2×3=6∴梯形ABB′A′的面积=(AA′+BB′)•AD=×(8+6)×=7.23. 解:(1)如图,连接B′B″.(1分)作线段B'B″的垂直平分线EF.(2分)则直线EF是△A′B′C′和△A″B″C″的对称轴.(3分)(2)连接B′O.∵△ABC和△A'B'C'关于直线MN对称,∴∠BOM=∠B'OM.(5分)又∵△A'B'C'和△A″B″C″关于直线EF对称,∴∠B′OE=∠B″OE.(6分)∴∠BOB″=∠BOM+∠B′OM+∠B′OE+∠B″OE=2(∠B′OM+∠B′OE)=2α即∠BOB″=2α.(7分)。
人教版八年级上《13
第1课时画轴对称图形
基础题
知识点1补全轴对称图形
1.如图所示是轴对称图形的一部分,请以l为对称轴,画出它的另一部分.
知识点2补全成轴对称图形的其中一个图形
2.如图,画出△ABC关于直线l对称的图形.
3.如图,分不在格点图中补全以已知直线:l、m、n、p为对称轴的轴对称图形.
中档题
4.如图所示,已知△ABC和直线MN.求作:△A′B′C′,使△A′B′C′和△ABC关于直线MN对称.(不要求写作法,只保留作图痕迹)21教育网
6.(郴州中考)在下面的方格纸中.
(1)作出△ABC关于MN对称的图形△A1B1C1;
(2)讲明△A2B2C2是由△A1B1C1通过如何样的平移得到的?
综合题
7.(乐山中考)如图,在10×10的正方形的网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).21·cn·j y·com
(1)在图中作出△ABC关于直线l对称的△A1B1C1;
(2)在(1)咨询的结果下,连接BB1,CC1,求四边形BB1C1C的面积.
参考答案
1.图略. 2.图略. 3.图略. 4.图略. 5.所补画的图形图略.6.(1)图略.(2)由B1,B2在图上的位置可知,B1先向右平移6格,再向下平移2格,因此△A2B2C2是由△A1B1C1先向右平移6格,再向下平移2格得到的.7.(1)图略.(2)S四边形BB1C1C=12.21世纪教育网版权所有。
人教版数学八年级上册第十三章13.2 画轴对称图形培优练习一、选择题1.作已知点关于某直线的对称点的第一步是()A.过已知点作一条直线与已知直线相交B.过已知点作一条直线与已知直线垂直C.过已知点作一条直线与已知直线平行D.不确定2.点M(-3,2)关于x轴的对称点N的坐标是()A.(3,2) B.(-3,2) C.(-3,-2) D.(3,-2)3.在平面直角坐标系中,点P(-2,1)关于y轴的对称点的坐标为()A.(-2,-1) B.(2,-1) C.(-2,1) D.(2,1)4.下列是四位同学作△ABC关于直线MN的轴对称图形,其中正确的是()A B C D5.若点A(4,3),点B(4,-3),则点A与点B的关系是()A.关于x轴对称B.关于直线x=-1对称C.关于y轴对称D.关于直线y=-1对称6.如图,在小方格中画与△ABC成轴对称的三角形(不与△ABC重合),则这样的三角形能画出()A.1个B.2个C.3个D.4个7. 下列说法正确的是()A.任何一个图形都有对称轴;B.两个全等三角形一定关于某直线对称;C.若△ABC与△A′B′C′成轴对称,则△ABC△△A′B′C′;D.点A,点B在直线l两旁,且AB与直线l交于点O,若AO=BO,则点A与点B△关于直线l对称.8. 下列图形:其中所有轴对称图形的对称轴条数之和为()A .13 B.11 C.10 D.89. 如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是()A.△B.△C.△D.△10. 如图,△ABC中,AD平分△BAC,DE△AB,DF△AC,E、F为垂足,则下列四个结论,其中正确的个数是()△△DEF=△DFE;△AE=AF;△AD垂直平分EF;△EF垂直平分AD.A.1个B.2个C.3个D.4个二、填空题11.若点A(m,3)与点B(2,n)关于y轴对称,则m=,n=.12.如图,△ABO是关于y轴对称的轴对称图形,点A的坐标为(-2,3),则点B的坐标为.13.若点A(x,-5)与点B(2,y)关于x轴对称,则y x=.14.将点A(-2,3)向下平移4个单位长度后得到点B,点B关于x轴对称的点C的坐标为.15. 由一个平面图形可以得到它关于某条直线对称的图形,这个图形与原图形的_________、___________完全一样.16. 下列每对文字图形中,能看成关于虚线对称的有:_________(只需要序号).17. 数的运算中会有一些有趣的对称形式,仿照等式△的形式填空,并检验等式是否成立.△12×231=132×21; △12×462=___________;△18×891=__________; △24×231=___________.三、解答题17.如图,给出了一个图案的一半,其中虚线l是这个图案的对称轴,请作出这个图形关于l的轴对称图形,并说出这个图案的形状.18. 如图,在10×10的正方形网格中有一个四边形和两个三角形(所有顶点都在方格的格点上).(1)请你画出以上三个图形关于直线MN对称的图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数.19. 已知:如图,点P,Q为△AOB内部两点,点M,N分别为OA,OB上的两个动点,作四边形PMNQ,请作图说明当点M,N在何处时,四边形PMNQ 的周长最小.20.△ABC在平面直角坐标系中的位置如图所示.。
13.2 画轴对称图形第 1 课时画轴对称图形1.如图,△A'B'C'是由△ABC 经过( )得到的.A. 平移B.轴对称C.旋转D.先平移后,再轴对称2.小亮在镜中看到身后墙上的时钟如下,你认为实际时间最接近8:00 的是( ).3.一正方形风筝图案如图所示,以图中的对角线AB 为对称轴,在对角线的下方再画一个三角形,使得新的风筝图案成为轴对称图形.若下列有一图形为此轴对称图形,则此图形为( ).4.一4×4 的正方形网格如图所示,其中已有3 个小方格涂成了黑色.现在要从其余13 个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图形成为轴对称图形,这样的白色小方格有个.5.一轴对称图形的一部分如图所示,请以直线l 为对称轴,画出它的另一部分.6.如图,在3×3 的正方形格点图中,有格点三角形ABC,请你画出格点三角形DEF,使△DEF 与△ABC 关于某直线对称(在图中画出4 个不同的格点三角形DEF).7.请用一些线段、三角形、圆、长方形等基本图形,设计一个轴对称图形,并用简单的文字说明你的创意.★8.小张站在镜子前,从镜子中看到镜子对面墙上挂着的电子表,且读数为,则电子表上的实际时刻是.★9.如图,△ABC 和△A'B'C'关于直线MN 对称,△A'B'C'和△A″B″C″关于直线EF 对称.(1)画出直线EF;(2)直线MN 与EF 相交于点O,试探究∠BOB″与直线MN,EF 所夹锐角α的数量关系.答案与解析夯基达标1.D2.D3.C4.35.解如图.培优促能6.解答案不唯一.如图.7.解答案不唯一,例如:创新应用8.10:219.解(1)作法:如图,连接B'B″.作线段B'B″的垂直平分线EF.则直线EF 是△A'B'C'和△A″B″C″的对称轴.(2)连接B'O,BO,B″O.∵△ABC 和△A'B'C'关于MN 对称,∴∠BOM=∠B'OM.又△A'B'C'和△A″B″C″关于EF 对称,∴∠B'OE=∠B″OE.∴∠BOB″=∠BOM+∠B'OM+∠B'OE+∠B″OE=2(∠B'OM+∠B'OE)=2α,即∠BOB″=2α.。
第十三章轴对称13.1轴对称13.2画轴对称图形专题一轴对称图形1.【2012·连云港】下列图案是轴对称图形的是()2.众所周知,几何图形中有许多轴对称图形,写出一个你最喜欢的轴对称图形是:______________________.(答案不唯一)3.如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内涂黑两个小正方形,使它们成为轴对称图形.专题二轴对称的性质4.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个5.如图,∠A=90°,E为BC上一点,A点和E点关于BD对称,B点、C点关于DE对称,求∠AB C和∠C的度数.6.如图,△ABC和△A′B′C′关于直线m对称.(1)结合图形指出对称点.(2)连接A、A′,直线m与线段AA′有什么关系?(3)延长线段AC与A′C′,它们的交点与直线m有怎样的关系?其他对应线段(或其延长线)的交点呢?你发现了什么规律,请叙述出来与同伴交流.专题三灵活运用线段垂直平分线的性质和判定解决问题7.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A.3 B.2 C.3D.18.如图,在△ABC中,BC=8,AB的垂直平分线交BC于D,AC的垂直平分线交BC与E,则△ADE的周长等于________.9.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,那么线段AB、BD、DE之间有什么数量关系?并加以证明.专题四利用关于坐标轴对称点的坐标的特点求字母的取值范围10.已知点P(-2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1B.-1C.5D.-511.已知P1点关于x轴的对称点P2(3-2a,2a-5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P1点的坐标是__________.状元笔记【知识要点】1.轴对称图形与轴对称轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线是它的对称轴.轴对称:把一个平面图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴.2.轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.线段的垂直平分线的性质和判定性质:线段垂直平分线上的点与这条线段两个端点的距离相等.判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.4.关于x轴、y轴对称的点的坐标的特点点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);【温馨提示】1.轴对称图形是针对一个图形而言,是指一个具有对称的性质的图形;轴对称是针对两个图形而言,它描述的是两个图形的一种位置关系.2.在平面直角坐标系中,关于x轴对称的两个图形的对应点的横坐标相同,纵坐标互为相反数;关于y轴对称的两个图形的对应点的横坐标互为相反数,纵坐标相同.参考答案:1.D 解析:∵将D图形上下或左右折叠,图形都能重合,∴D图形是轴对称图形,故选D.2.圆、正三角形、菱形、长方形、正方形、线段等3.如图所示:4.A 解析:根据轴对称的定义可得,如果△ABC和△ADE关于直线l对称,则△ABC≌△ADE,即①正确;因为如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对应线段、对应角相等,故l垂直平分DB,∠C=∠E,即②,③正确;因为成轴对称的两个图形对应线段或延长线如果相交,那么,交点一定在对称轴上,故BC与DE的延长线的交点一定落在直线l上,即④正确.综上所述,①②③④都是正确的,故选A.5.解:根据题意A点和E点关于BD对称,有∠ABD=∠EBD,即∠ABC=2∠ABD=2∠EBD.B点、C点关于DE对称,有∠DBE=∠BCD,∠ABC=2∠BCD.且已知∠A=90°,故∠ABC+∠BCD=90°.故∠ABC=60°,∠C=30°.6.解:(1)对称点有A和A',B和B',C和C'.(2)连接A、A′,直线m是线段AA′的垂直平分线.(3)延长线段AC与A′C′,它们的交点在直线m上,其他对应线段(或其延长线)的交点也在直线m上,即若两线段关于直线m对称,且不平行,则它们的交点或它们的延长线的交点在对称轴上.7.B 解析:在Rt△FDB中,∵∠F=30°,∴∠B=60°.在Rt△ABC中,∵∠ACB=90°,∠ABC=60°,∴∠A=30°.在Rt△AED中,∵∠A=30°,DE=1,∴AE=2.连接EB. ∵DE 是AB的垂直平分线,∴EB=AE=2. ∴∠EBD=∠A=30°.∵∠ABC=60°,∴∠EBC=30°.∵∠F=30°,∴EF=EB=2.故选B.AF ED8.8 解析:∵DF是AB的垂直平分线,∴DB=DA.∵EG是AC的垂直平分线,∴EC=EA.∵BC=8,∴△ADE的周长=DA+EA+DE=DB+DE+EC=BC=8.9.解:AB+BD=DE.证明:∵AD⊥BC,BD=DC,∴AB=AC.∵点C在AE的垂直平分线上,∴AC=CE.∴AB=CE.∴AB+BD=CE+DC=DE.10.C 解析:关于y轴对称的点横坐标互为相反数,纵坐标相等,∴a=2,b=3.∴a+b=5.解得1.5<a<2.5,又因为a必须为整数,∴a=2.∴点P2(-1,-1).∴P1点的坐标是(-1,1).。
人教版八年级数学上册《13.2画轴对称图形》同步练习题(附答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.点P(3,-1)关于x轴对称的点的坐标是()A.(-3,1) B.(-3,-1) C.(1,-3) D.(3,1)2.用刻度尺分别画下列图形的对称轴,可以不用刻度尺上的刻度画的是()A.①②③④B.②③C.③④D.①②3.若点和点关于轴对称,则等于()A.-2 B.-1 C.1 D.34.某小区的圆形花园中间有两条互相垂直的小路,园丁在花园中栽种了8棵桂花,如图所示.若A,B两处桂花的位置关于小路对称,在分别以两条小路为x,y轴的平面直角坐标系内,若点A的坐标为,则点B的坐标为()A.B.C.D.5.已知点与点关于轴对称,则在()A.第一象限B.第二象限C.第三象限D.第四象限6.已知点A(4,3)和点B是坐标平面内的两个点,且它们关于过点(﹣3,0)与y轴平行的直线对称,则点B的坐标是()A.(1,3)B.(﹣10,3)C.(4,3)D.(4,1)7.如图,x轴是△AOB的对称轴,y轴是△BOC的对称轴,点A的坐标为(1,2),则点C的坐标为()A.( -1,-2) B.( 1,-2) C.( -1,2) D.( -2,-1)8.如图①是3×3正方形方格,将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有A.4种B.5种C.6种D.7种二、填空题:(本题共5小题,每小题3分,共15分.)9.在平面直角坐标系中,点,点关于x轴对称,则的值为.10.若点A(,)关于轴对称的点在第四象限,则的取值范围是. 11.如图,在的正方形格纸中,有一个以格点为顶点的,在格纸中能画出与成轴对称且也以格点为顶点的三角形(不包括本身),这样的三角形共有个.12.如图,已知直线l经过点(0,﹣1)并且垂直于y轴,若点P(﹣3,2)与点Q(a,b)关于直线l对称,则a+b=.13.如图,在平面直角坐标系xOy中,点A(2,0),B(4,2),若点P在x轴下方,且以O,A,P 为顶点的三角形与△OAB全等,则满足条件的P点的坐标是.三、解答题:(本题共5题,共45分)14.如图,已知△ABC和直线L,作出△ABC关于直线L对称的图形△A′B′C′.15.作图题:(不要求写作法)如图,△ABC在平面直角坐标系中,其中,点A,B,C的坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)作△ABC关于y轴对称的△A1B1C1,其中,点A、B、C的对应点分别为A1、B1、C1;(2)写出点A1、B1、C1的坐标.16.某市拟建造农民文化公园,将12个场馆排成6行,每行4个场馆,市政府将如图所示的设计图公布后,引起了一群初中生的浓厚兴趣,他们纷纷设计出许多精美的轴对称图形来,请你也设计一幅符合条件的图形.17.李明同学准备制作一个正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(阴影部分),折叠后发现少一个面,请你在图中的拼接图形上再接一个正方形,使新拼成的图形经过折叠后能称为一个封闭的正方体盒子.(添加的正方形用阴影表示,在图①,图②中各画一个符合要求的图形即可)18.如图,方格纸上画有AB、CD两条线段,按下列要求作图(不保留作图痕迹,不要求写出作法)①请你在图(1)中画出线段AB关于CD所在直线成轴对称的图形;②请你在图(2)中添上一条线段,使图中的3条线段组成一个轴对称图形,请画出所有情形.参考答案:1.D 2.A 3.D 4.A 5.A 6.B 7.A 8.B9.310..11.12.-713.或14.解:如图所示.15.(1)解:如图所示,△A1B1C1即为所求;(2)解:点A1、B1、C1的坐标分别为(2,1),(4,5),(5,2)16.解:如图所示:17.解:如图所示:18.解:作图如下,。
人教版八年级数学上册13.2 画轴对称图形优化训练一、选择题1. 如图,长方形的一条对称轴是()A.直线l1B.直线l2C.直线l3D.直线l42. 小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(-1,0)表示,右下角方子的位置用(0,-1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形,则她放的位置是()A.(-2,1) B.(-1,1)C.(1,-2) D.(-1,-2)3. 如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(-2,3),先把△ABC向右平移4个单位得到△A1B1C1,再作△A1B1C1关于x轴的对称图形△A2B2C2,则顶点A2的坐标是()A.(-3,2) B.(2,-3)C.(1,-2) D.(3,-1)4. 2019·都江堰模拟如图,在△ABC中,分别以点A,B为圆心,大于12AB的长为半径画弧,两弧相交于点M,N,作直线MN交AB于点O,连接CO,则下列结论不正确的是()A.AO=BO B.MN⊥ABC.AN=BN D.AB=2CO5. 在平面直角坐标系中,点B的坐标是(4,-1),点A与点B关于x轴对称,则点A的坐标是()A.(4,1)B.(-1,4)C.(-4,-1)D.(-1,-4)6. 如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°7. 如,在小方格中画与△ABC成轴对称的三角形(不与△ABC重合),这样的三角形能画出()A.1个B.2个C.3个D.4个8. 在平面直角坐标系中,已知在y轴与直线x=3之间有一点M(a,3).如果该点关于直线x=3的对称点N的坐标为(5,3),那么a的值为()A.4B.3C.2D.19. 若△ABC的三个顶点的横坐标不变,纵坐标都乘-1,则所得三角形与原三角形的关系是()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴负方向平移1个单位长度D.将原图形沿y轴负方向平移1个单位长度10. 如图,在直角坐标系xOy中,直线y=1是△ABC的对称轴,已知点A的坐标是(4,4),则点B的坐标是()图13-2-7A.(4,-4)B.(-4,2)C.(4,-2)D.(-2,4)二、作图题11. 利用刻度尺和三角尺作图:如图所示,已知四边形ABCD和直线m.请你作出四边形A1B1C1D1,使得四边形A1B1C1D1和四边形ABCD关于直线m成轴对称.12. 分析与操作如图,有公路l1同侧、l2异侧的两个城镇A,B,电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不写作法)13. (1)在图①中,CA=CB,CM=CN,请用无刻度的直尺画出△ABC的对称轴;(2)在图②中,已知正五边形ABCDE,请用无刻度的直尺画出它的一条对称轴.14. 尺规作图:已知△ABC(如图),作出AB边上的中线CP.(不写作法,保留作图痕迹)三、解答题15. 如图,作出△ABC关于直线m对称的图形.16. 请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图①,四边形ABCD中,AB=AD,∠B=∠D,画出四边形ABCD的对称轴m;(2)如图②,四边形ABCD中,AD∥BC,∠A=∠D,画出BC边的垂直平分线n.17. 如图,直线l和直线m相交于点O.(1)先作出△ABC关于直线l对称的△A'B'C',再作出△A'B'C'关于直线m对称的△A1B1C1;(2)△ABC与△A1B1C1关于某条直线对称吗?若对称,请画出对称轴.18. (1)如图①,AB=AC.这两条线段一定关于某条直线对称吗?如果是,请画出对称轴a(尺规作图,保留作图痕迹);如果不是,请说明理由.(2)如图②,已知线段AB和点C.求作线段CD(不要求尺规作图),使它与AB成轴对称,且点A与点C是对称点,标明对称轴b,并简述画图过程.(3)如图③,任意位置的两条线段AB,CD,AB=CD.你能通过对其中一条线段作有限次的轴对称使它们重合吗?如果能,请描述操作方法;如果不能,请说明理由.人教版八年级数学上册13.2 画轴对称图形优化训练-答案一、选择题1. 【答案】B2. 【答案】B[解析] 根据方子的位置可知对称轴是从左上斜向下的对角线所在的直线,由此可知第4枚圆子应放入棋盘(-1,1)的位置.故选B.3. 【答案】B解析:顶点A的坐标是(-2,3),△ABC向右平移4个单位后得到△A1B1C1的顶点A1的坐标是(2,3),△A1B1C1关于x轴对称图形△A2B2C2的顶点A2的坐标是(2,-3).4. 【答案】D[解析] 由作法得MN垂直平分AB,∴OA=OB,MN⊥AB,AN=BN,只有选项D不成立.5. 【答案】A6. 【答案】C[解析] 由作法得CG⊥AB.∵AC=BC,∴CG平分∠ACB,∠A=∠B=40°.∵∠ACB=180°-∠A-∠B=100°,∴∠BCG=12∠ACB=50°.7. 【答案】C[解析] 符合题意的三角形有3个,如图.8. 【答案】D[解析] ∵该点关于直线x=3的对称点N的坐标为(5,3),∴对称点到直线x=3的距离为5-3=2.又∵点M(a,3)到直线x=3的距离为3-a,∴3-a=2.∴a=1.9. 【答案】A[解析] ∵纵坐标乘-1,∴变化前后纵坐标互为相反数.又∵横坐标不变,∴所得三角形与原三角形关于x轴对称.故选A.10. 【答案】C[解析] 根据题意,得点A和点B是关于直线y=1对称的点,它们到直线y=1的距离相等,都是3个单位长度,所以点B的坐标是(4,-2).二、作图题11. 【答案】解:如图,四边形A1B1C1D1即为所求.12. 【答案】如图所示,①作两条公路夹角的平分线OD,OE;②作线段AB的垂直平分线FG,则射线OD,OE与直线FG的交点C1,C2即为所求的位置.13. 【答案】解:(1)如图①,直线CD即为所求.(2)答案不唯一,如图②,直线OA即为所求.14. 【答案】解:如图所示,CP即为所求.三、解答题15. 【答案】解:如图所示,△A'B'C'即为所求.16. 【答案】解:(1)如图①,直线m即为所求.(2)如图②,直线n即为所求.17. 【答案】解:(1)如图所示:(2)由图可知,△ABC与△A1B1C1不关于某条直线对称.18. 【答案】解:(1)这两条线段一定关于某条直线对称,对称轴a如图①所示.(2)如图②所示.(ⅰ)连接AC;(ⅱ)作线段AC的垂直平分线,即为对称轴b;(ⅲ)作点B关于直线b的对称点D;(ⅳ)连接CD,线段CD即为所求.(3)能.操作方法(不唯一):如图③所示,连接BD;作线段BD的垂直平分线,即为对称轴c;作点C关于直线c的对称点E;连接BE;作∠ABE的平分线,角平分线所在的直线d即为对称轴,故其中一条线段作两次轴对称即可使它与另一条线段重合.。
人教新版八年级上学期《13.2 画轴对称图形》同步练习卷一.选择题(共1小题)1.已知M(2,2).规定“把点M先作关于x轴对称,再向左平移1个单位”为一次变换.那么连续经过2018次变换后,点M的坐标变为()A.(﹣2016,2)B.(﹣2016,一2)C.(﹣2017,﹣2)D.(﹣2017,2)二.填空题(共9小题)2.已知点A(﹣3,0),B(5,4),点P是线段AB的中点,P与Q关于x轴对称,则Q点坐标是.3.在平面直角坐标系中,点A的坐标为(3,4),点B与点A关于x轴对称,点C与点A关于y轴对称,则BC=.4.若点A(m,﹣3),B(﹣2,n)关于y轴对称,则m n的值为.5.点A(a,b)与点B(﹣3,4)关于y轴对称,则a+b的值为.6.点M(﹣5,3)关于直线x=1的对称点的坐标是.7.在平面直角坐标系中,点P(﹣2,5)关于直线x=2对称的点的坐标为.8.已知点P(﹣1,2),那么点P关于直线x=1的对称点Q的坐标是.9.如图,在平面直角坐标系中,已知点A的坐标为(4,4),若△ABC是关于直线y=1的轴对称图形,则点B的坐标为;若△ABC是关于直线y=a的轴对称图形,则点B的坐标为.10.如图,已知点A(2,2)关于直线y=kx(k>0)的对称点恰好落在x轴的正半轴上,则k的值是.三.解答题(共5小题)11.作图题如图,在有方格的直角坐标系中,△ABC的三个顶点均在格子上(1)画出与△ABC关于x轴对称的△A'B'C';(2)△ABC的面积为;(3)点C'的坐标为.12.如图,平面直角坐标系中,△ABC的顶点都在网格点上,其中,A(﹣4,5),B(﹣2,1),C(﹣1,3).(1)作出△ABC关于y轴对称的△A1B1C1;(2)写出△A1B1C1的各顶点的坐标;(3)求△ABC的面积.13.在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A,C的坐标分别是(﹣4,6),(﹣2,4).(1)请在如图所示的网格平面内作出平面直角坐标系(原点记为O);(2)请作出△ABC关于y轴对称的△A1B1C1;(3)写出点B1的坐标;(4)若把C1向下平移5个单位得到C2,请直接写出△OB1C2的面积.14.在平面直角坐标系中,已知△ABC的三个顶点为A(﹣1,2),B(﹣1,0),C(0,3),将△ABC关于x轴对称得到△A1B1C1,(1)在平面直角坐标系中画出△A1B1C1;(2)写出点A1,B1,C1的坐标.15.如图,图中的小方格都是边长为1的正方形,①直接写出△ABC的各顶点坐标:A(,),B(,)C(,);②画出△ABC关于y轴的对称图形△A1B1C1;③直接写出△ABC关于x轴对称的△A2B2C2的顶点A2(,)B2(,)(其中A2与A对应,B2与B对应,不必画图.)人教新版八年级上学期《13.2 画轴对称图形》同步练习卷参考答案与试题解析一.选择题(共1小题)1.已知M(2,2).规定“把点M先作关于x轴对称,再向左平移1个单位”为一次变换.那么连续经过2018次变换后,点M的坐标变为()A.(﹣2016,2)B.(﹣2016,一2)C.(﹣2017,﹣2)D.(﹣2017,2)【分析】根据轴对称判断出点M变换后在x轴上方,然后求出点M纵坐标,再根据平移的距离求出点M变换后的横坐标,最后写出坐标即可.【解答】解:由题可得,第2018次变换后的点M在x轴上方,∴点M的纵坐标为2,横坐标为2﹣2018×1=﹣2016,∴点M的坐标变为(﹣2016,2),故选:A.【点评】本题考查了坐标与图形变化﹣平移,读懂题目信息,确定出连续2018次这样的变换得到点在x轴上方是解题的关键.二.填空题(共9小题)2.已知点A(﹣3,0),B(5,4),点P是线段AB的中点,P与Q关于x轴对称,则Q点坐标是(1,﹣2).【分析】依据中点公式即可得到P(1,2),再根据P与Q关于x轴对称,即可得出Q点坐标是(1,﹣2).【解答】解:∵A(﹣3,0),B(5,4),点P是线段AB的中点,∴P(,),即P(1,2),又∵P与Q关于x轴对称,∴Q点坐标是(1,﹣2),故答案为:(1,﹣2).【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.3.在平面直角坐标系中,点A的坐标为(3,4),点B与点A关于x轴对称,点C与点A关于y轴对称,则BC=10.【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得B、C两点坐标,再利用两点之间的距离公式计算即可.【解答】解:∵点A的坐标为(3,4),点B与点A关于x轴对称,点C与点A 关于y轴对称,∴B(3,﹣4),C(﹣3,4)∴BC==10,故答案为:10.【点评】此题主要考查了关于坐标轴对称的点的坐标特点,关键是掌握点的坐标的变化规律.4.若点A(m,﹣3),B(﹣2,n)关于y轴对称,则m n的值为.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得m=2,n=﹣3,然后再代入m n求值即可.【解答】解:∵点A(m,﹣3),B(﹣2,n)关于y轴对称,∴m=2,n=﹣3,∴m n=,故答案为:.【点评】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标变化规律.5.点A(a,b)与点B(﹣3,4)关于y轴对称,则a+b的值为7.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a,b的值,再求a+b即可.【解答】解:∵点A(a,b)与点B(﹣3,4)关于y轴对称,∴a=3,b=4,∴a+b=3+4=7,故答案为:7.【点评】此题主要考查了关于y轴对称的点的坐标,关键是掌握点的坐标的变化规律.6.点M(﹣5,3)关于直线x=1的对称点的坐标是(7,3).【分析】利用轴对称的性质即可解决问题;【解答】解:设N(m,n)与点M(﹣5,3)关于直线x=1的对称,则有n=3,m+(﹣5)=2,∴m=7,∴N(7,3),故答案为(7,3).【点评】本题考查坐标与图形的性质、解题的关键是学会利用参数解决问题,属于中考常考题型.7.在平面直角坐标系中,点P(﹣2,5)关于直线x=2对称的点的坐标为(6,5).【分析】根据平面直角坐标系关于直线x=2的对称点特征解答即可.【解答】解:如图:在平面直角坐标系中,点P(﹣2,5)关于直线x=2对称的点的坐标为(6,5),故答案为;(6,5)【点评】本题主要考查了关于直线对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆,比较简单.8.已知点P(﹣1,2),那么点P关于直线x=1的对称点Q的坐标是(3,2).【分析】根据关于直线x=1的对称点的连线的中点在对称轴上,纵坐标相等进行解答.【解答】解:设点Q的坐标为(x,y),∵点P(﹣1,2)与点Q(x,y)关于直线x=1的对称,∴y=2,=1,∴x=3,∴点Q的坐标为(3,2),故答案为:(3,2).【点评】考查了坐标与图形变化﹣对称,熟练掌握轴对称的性质以及对称点的坐标关系是解题的关键.9.如图,在平面直角坐标系中,已知点A的坐标为(4,4),若△ABC是关于直线y=1的轴对称图形,则点B的坐标为(4,﹣2);若△ABC是关于直线y=a的轴对称图形,则点B的坐标为(4,2a﹣4).【分析】根据轴对称的性质,可得对称点的连线被对称轴垂直平分,即可得到两点到对称轴的距离相等.利用此性质可在坐标系中得到对应点的坐标.【解答】解:根据题意,点A和点B是关于直线y=1对称的对应点,∴它们到y=1的距离相等,是3个单位长度,AB⊥x轴,∴点B的坐标是(4,﹣2).若△ABC是关于直线y=a的轴对称图形,则点B的横坐标为4,纵坐标为a﹣(4﹣a)=2a﹣4,∴点B的坐标为(4,2a﹣4),故答案为:(4,﹣2),(4,2a﹣4).【点评】本题主要考查了坐标的对称特点,解此类问题的关键是要掌握轴对称的性质:对称轴垂直平分对应点的连线.10.如图,已知点A(2,2)关于直线y=kx(k>0)的对称点恰好落在x轴的正半轴上,则k的值是.【分析】作辅助线,构建点与x轴和y轴的垂线,先根据点A的坐标得出OA′的长,再根据中位线定理和推论得:CF是△AA′E的中位线,所以CF=AE=1,也可以求OF的长,表示出点C的坐标,代入直线y=kx中求出k的值.【解答】解:设A关于直线y=kx的对称点为A′,连接AA′,交直线y=kx于C,分别过A、C作x轴的垂线,垂足分别为E、F,则AE∥CF,∵A(2,2),∴AE=OE=2,∴OA=2,∵A和A′关于直线y=kx对称,∴OC是AA′的中垂线,∴OA′=OA=2,∵AE∥CF,AC=A′C,∴EF=A′F=,∴CF=AE=1,∴OF=OA′﹣A′F=,∴C(,1),把C(,1)代入y=kx中得:1=()k,k=,故答案为:,【点评】本题考查了一次函数及轴对称的性质,要熟知对称轴是对称点连线的垂直平分线,本题还利用了中位线的性质及推论,这此知识点要熟练掌握:三角形的中位线平行于第三边且等于第三边的一半.求正比例函数的解析式,就是求直线上一点的坐标即可.三.解答题(共5小题)11.作图题如图,在有方格的直角坐标系中,△ABC的三个顶点均在格子上(1)画出与△ABC关于x轴对称的△A'B'C';(2)△ABC的面积为5;(3)点C'的坐标为(﹣2,2).【分析】(1)分别作出点A,B,C关于x的对称点,再顺次连接即可得;(2)利用割补法求解可得;(3)根据所作图形即可得.【解答】解:(1)如图所示,△A'B'C'即为所求;(2)△ABC的面积为3×4﹣×1×3﹣×1×3﹣×2×4=5,故答案为:5;(3)由图知点C′的坐标为(﹣2,2),故答案为:(﹣2,2).【点评】本题主要考查作图﹣轴对称变换,解题的关键是掌握轴对称变换的定义及其性质,割补法求面积.12.如图,平面直角坐标系中,△ABC的顶点都在网格点上,其中,A(﹣4,5),B(﹣2,1),C(﹣1,3).(1)作出△ABC关于y轴对称的△A1B1C1;(2)写出△A1B1C1的各顶点的坐标;(3)求△ABC的面积.【分析】(1)先根据轴对称的定义作出各顶点的对应点,再顺次连接可得;(2)由图形可得点的坐标;(3)利用割补法求解可得.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)由图知,A1(4,5),B1(2,1),C1(1,3);(3)△ABC的面积为3×4﹣×2×4﹣×1×2﹣×2×3=4.【点评】此题主要考查了轴对称变换,根据图形的性质得出对应点位置是解题关键.13.在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A,C的坐标分别是(﹣4,6),(﹣2,4).(1)请在如图所示的网格平面内作出平面直角坐标系(原点记为O);(2)请作出△ABC关于y轴对称的△A1B1C1;(3)写出点B1的坐标(3,2);(4)若把C1向下平移5个单位得到C2,请直接写出△OB1C2的面积 3.5.【分析】(1)根据点A,C的坐标确定平面直角坐标系即可;(2)作出A,B,C的对应点A1,B1,C1即可;(3)根据点B1的位置写出坐标即可;(4)利用分割法求面积即可;【解答】解:(1)平面直角坐标系如图所示;(2)△A1B1C1如图所示;(3)B1(3,2).故答案为(3,2);(4)=9﹣×2×3﹣×1×2﹣×1×3=3.5,故答案为3.5.【点评】本题考查作图﹣轴对称变换、平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.14.在平面直角坐标系中,已知△ABC的三个顶点为A(﹣1,2),B(﹣1,0),C(0,3),将△ABC关于x轴对称得到△A1B1C1,(1)在平面直角坐标系中画出△A1B1C1;(2)写出点A1,B1,C1的坐标.【分析】(1)根据A,B,C的坐标画出△ABC,再根据要求画出△A1B1C1即可;(2)根据点A1,B1,C1的位置写出坐标即可;【解答】解:(1)△A1B1C1如图所示;(2)A1(﹣1,﹣2),B1(﹣1,0),C1(0,﹣3);【点评】本题考查作图﹣轴对称变换,解题的关键是正确作出图形,属于中考常考题型.15.如图,图中的小方格都是边长为1的正方形,①直接写出△ABC的各顶点坐标:A(﹣3,2),B(﹣4,﹣3)C(﹣1,﹣1);②画出△ABC关于y轴的对称图形△A1B1C1;③直接写出△ABC关于x轴对称的△A2B2C2的顶点A2(﹣3,﹣2)B2(﹣4,3)(其中A2与A对应,B2与B对应,不必画图.)【分析】①根据三角形在坐标中的位置可得;②分别作出点A、B、C关于y轴的对称点,再顺次连接可得;③分别作出点A、B、C关于x轴的对称点,再首尾顺次连接可得.【解答】解:①△ABC的各顶点坐标:A(﹣3,2)、B(﹣4,﹣3)、C(﹣1,﹣1);故答案为:﹣3、2;﹣4、﹣3;﹣1、﹣1;②如图,△A1B1C1即为所求,③如图,△A2B2C2即为所求,A2坐标为(﹣3,﹣2)、B2坐标为(﹣4,3).故答案为:﹣3、﹣2;﹣4、3.【点评】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键.。
人教版数学八年级上册13.2.1画轴对称图形培优训练一.选择题(本大题共10小题,每小题3分,共30分)1.下列图形中,不能由其中一部分通过轴对称变换得到的是()2.一名同学用正方形和圆设计一个图案,要求整个图关于正方形的某条对角线对称,那么下列图案中不符合要求的是()3.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形,将纸片展开,得到的图形是()4.下列各组图形中,其中一个能由另一个通过轴对称变换得到的是()5.如图是一只停在平静水面上的小船,它的“倒影”应是图中的()6. 如图,分别以直线l为对称轴,所作轴对称图形错误的是()7. 下列图形中,不能由其中一部分通过轴对称变换得到的是()8.下列说法中,错误的是()A. 任意两条相交直线都组成一个轴对称图形B. 等腰三角形最少有1条对称轴,最多有3条对称轴C. 成轴对称的两个三角形一定全等D. 全等的两个三角形一定成轴对称9. 小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是( )10. 如图,在3×3的正方形格中有四个格点A,B,C,D,以其中一点为原点,格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()A.A点B.B点C.C点D.D点11.如图,AB左边是计算器上的数字“5”,若以直线AB为对称轴,那么它的轴对称图形是数字_____.12.如图,在2×2的正方形格点图中,有一个以格点为顶点的△ABC,请你找出格点图中所有与△ABC 成轴对称,也以格点为顶点的三角形,这样的三角形共有________个.13. 仔细观察下列图案,并按规律在横线上画出合适的图形.14. 这是映在水中的一辆汽车的牌号倒影,如图,你能说出这辆汽车的牌号吗?________________.15. 在平面镜里看到背后墙上电子钟示数,实际时间是:______________.16. 给出下列图形:①线段;②射线;③直线;④圆;⑤等腰直角三角形;⑥等边三角形;⑦等腰梯形.其中只有一条对称轴的图形有___________ (填序号)17. 在等腰三角形、等边三角形、直角三角形、等腰直角三角形等特殊的三角形中,是轴对称图形的有_________个18. 如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌CDB;⑤OA=OD.其中正确的是_______________ (只填写序号)三.解答题(共7小题,46分)19.(6分)如图,将各图形补成关于直线l对称的图形20.(6分)如图,作出△ABC关于直线l对称的图形.21.(6分)如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.(1)画出△ABC关于直线BM对称的△A1B1C1;(2)写出AA1的长度.22.(6分)图①,图②均是8×8的正方形格,每个小正方形的顶点称为格点,线段OM,ON的端点均在格点上.在图①,图②给定的格中以OM,ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.23.(6分)在下面的方格纸中.(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?24.(8分)在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下图中画出所有这样的△DEF25.(8分)如图,△ABC和△A′B′C′关于直线MN对称,△A′B′C′和△A″B″C″关于直线EF对称.(1)画出直线EF;(2)直线MN与EF相交于点O,试探究∠BOB″与直线MN,EF所夹锐角α的数量关系.参考答案:1-5CDCCB 6-10CCDDB11. 212. 513.14.P9072315. 20:1516. ①⑤⑦17. 318. ①②③④19. 解:补全图如下:20. 解:作图如下:21. 解:(1)如图所示,△A1B1C1即为所求;(2)由图可得,AA1=1022. 解:如图所示:23. 解:(1)作图如下:(2)由B1,B2在图上的位置可知,B1先向右平移6格;再向下平移2格,因此△A2B2C2是由△A1B1C1先向右平移6格;再向下平移2格得到的24. 解:如图所示:25. 解:(1)如图所示.(2)∵△ABC和△A′B′C′关于直线MN对称,∴∠BOM=∠B′OM.又∵△A′B′C′和△A″B″C″关于直线EF对称,∴∠BOB″=∠BOM+∠B′OM+∠B′OE+∠B″OE=2(∠B′OM+∠B′OE)=2α,即∠BOB″=2α.。
人教版八年级数学上册13.1 轴对称优化训练一、选择题1. 下列倡导节约的图案中,属于轴对称图形的是()2. 在下列图形中是轴对称图形的是()3. P是∠AOB内一点,分别作点P关于直线OA,OB的对称点P1,P2,连接OP1,OP2,则下列结论正确的是()A. OP1⊥OP2B. OP1=OP2C. OP1⊥OP2且OP1=OP2D. OP1≠OP24. 如图,线段AB与A'B'(AB=A'B')不关于直线l成轴对称的是()5. 若点A(2m,2-m)和点B(3+n,n)关于y轴对称,则m,n的值分别为()A.1,-1 B.5 3,13C.-5,7 D.-13,-736. 如图,点A在直线l上,△ABC与△AB'C'关于直线l对称,连接BB'分别交AC,AC'于点D,D',连接CC',下列结论不一定正确的是()A.∠BAC=∠B'AC''∥BB'C.BD=B'D'D.AD=DD'7. 如图,线段AB外有C,D两点(在AB同侧),且CA=CB,DA=DB,∠ADB=80°,∠CAD=10°,则∠ACB的度数为()A.80°B.90°C.100°D.110°8. 如图,以C为圆心,大于点C到AB的距离为半径作弧,交AB于点D,E,再以D,E为圆心,大于12DE的长为半径作弧,两弧交于点F,作射线CF,则()A.CF平分∠ACB B.CF⊥ABC.CF平分AB D.CF垂直平分AB9. 如图,C,E是直线l两侧的点,以点C为圆心,CE的长为半径画弧交直线l于A,B两点.又分别以点A,B为圆心,大于12AB的长为半径画弧,两弧交于点D,连接CA,CB,CD,则下列结论不一定正确的是()A.CD⊥直线lB.点A,B关于直线CD对称C.点C,D关于直线l对称D.CD平分∠ACB10. 图中序号(1)(2)(3)(4)对应的四个三角形都是由△ABC进行了一次变换之后得到的,其中是通过轴对称变换得到的是()A.(1)B.(2)C.(3)D.(4)二、填空题11. 如图所示图案是几种车的标志,在这几个图案中,轴对称图形有________个,其中只有一条对称轴的轴对称图形有________个,对称轴最多的轴对称图形有________条对称轴.12. 设点P(2m-3,3-m)关于y轴的对称点在第二象限,则整数m的值为________.13. 如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE=1,则BC的长是________.14. 数学活动课上,两名同学围绕作图问题:“如图①,已知直线l和直线l外一点P,用直尺和圆规作直线PQ,使PQ⊥直线l于点Q.”分别作出了如图②③所示的两个图形,其中作法正确的为图(填“②”或“③”).三、作图题15. 如图,已知△ABC.(1)用直尺和圆规分别作出AB,AC边的垂直平分线l1,l2;(2)若直线l1,l2的交点为O,连接OB,OC.求证:OB=OC.四、解答题16. 图中的两个图形关于某条直线对称,根据图中提供的条件求出x,y的值.17. 如图,在△ABE中,AD⊥BE于点D,C是BE上一点,DC=BD,且点C 在AE的垂直平分线上.若△ABC的周长为22 cm,求DE的长.18. 已知:如图,∠BAC的平分线与BC的垂直平分线DG交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:BE=CF;(2)若AF=6,BC=7,求△ABC的周长.19. 如图,DF为△ABC的边BC的垂直平分线,F为垂足,DF交△ABC的外角平分线AD于点D,DE⊥AB于点E,且AB>AC,连接BD,CD.求证:(1)∠DBE=∠DCA;(2)BE=AC+AE.人教版八年级数学上册13.1 轴对称优化训练-答案一、选择题1. 【答案】B2. 【答案】 B3. 【答案】B4. 【答案】A[解析] 选项A中,A'B'是由线段AB平移得到的,所以线段AB与A'B'不关于直线l成轴对称.5. 【答案】C[解析] ∵点A(2m,2-m)和点B(3+n,n)关于y轴对称,∴2m+3+n=0,2-m=n,解得m=-5,n=7.6. 【答案】D[解析] 如图,设BB'交直线l于点O.∵△ABC与△AB'C'关于直线l对称,∴△ABC ≌△AB'C',BB'⊥l ,CC'⊥l ,AB=AB',AC=AC',OD=OD',OB=OB'. ∴∠BAC=∠B'AC',BB'∥CC',BD=B'D'. 故选项A ,B ,C 正确.故选D .7. 【答案】C8. 【答案】B9. 【答案】C[解析] 由作法可知CD 垂直平分AB ,故选项A ,B 正确;∵CD 垂直平分AB ,∴CA =CB. 设CD 与AB 交于点G ,易证Rt △ACG ≌Rt △BCG ,∴∠ACG =∠BCG , 即CD 平分∠ACB ,故选项D 正确; ∵AB 不一定平分CD ,故选项C 错误. 故选C.10. 【答案】A二、填空题11. 【答案】32 212. 【答案】2[解析] 由于点P 关于y 轴的对称点在第二象限,则点P 在第一象限.依题意有⎩⎨⎧2m -3>0,3-m>0,解得32<m<3.因为m 为整数,所以m =2.13. 【答案】3[解析] ∵AD 平分∠BAC ,且DE ⊥AB ,∠C =90°,∴CD =DE=1.∵DE 是AB 的垂直平分线,∴AD =BD. ∴∠B =∠DAB.∵∠DAB=∠CAD,∴∠CAD=∠DAB=∠B.∵∠C=90°,∴∠CAD+∠DAB+∠B=90°.∴∠B=30°.∴BD=2DE=2.∴BC=BD+CD=2+1=3.14. 【答案】③三、作图题15. 【答案】解:(1)如图所示.(2)证明:如图,连接OA.∵l1是AB的垂直平分线,∴OA=OB.同理,OA=OC.∴OB=OC.四、解答题16. 【答案】[解析] 因为两个图形关于某条直线对称,所以观察发现A和F,B和E,C和H,D和G分别是对称点,因此CD边与HG边是对应边,长度相等,∠ADC和∠FGH是对应角,大小相等.解:x=∠ADC=360°-40°-95°-110°=115°,y=HG=3.17. 【答案】解:∵BD=DC,AD⊥BE,∴AB=AC.∵点C在AE的垂直平分线上,∴AC=CE.∵△ABC的周长是22 cm,∴AC+AB+BD+CD=22 cm.∴AC+CD=11 cm.∴DE=CD+CE=CD+AC=11 cm.18. 【答案】(1)证明:如图,连接CD.∵点D 在BC 的垂直平分线上,∴BD =CD. ∵DE ⊥AB ,DF ⊥AC ,AD 平分∠BAC , ∴DE =DF ,∠BED =∠CFD =90°. 在Rt △BDE 和Rt △CDF 中,⎩⎨⎧DE =DF ,BD =CD ,∴Rt △BDE ≌Rt △CDF(HL).∴BE =CF. (2)在Rt △ADE 和Rt △ADF 中, ⎩⎨⎧DE =DF ,AD =AD ,∴Rt △ADE ≌Rt △ADF. ∴AE =AF =6.∴△ABC 的周长=AB +BC +AC =(AE +BE)+BC +(AF -CF)=6+7+6=19.19. 【答案】证明:(1)如图,过点D 作DG ⊥CA 交CA 的延长线于点G .∵DF 是BC 的垂直平分线,∴BD=CD.∵AD 是△ABC 的外角平分线,DE ⊥AB ,DG ⊥CA , ∴DE=DG ,∠DEB=∠DGC=90°. 在Rt △DBE 和Rt △DCG 中,∴Rt △DBE ≌Rt △DCG (HL). ∴∠DBE=∠DCA.(2)∵Rt △DBE ≌Rt △DCG ,∴BE=CG . 在Rt △DEA 和Rt △DGA 中,∴Rt △DEA ≌Rt △DGA (HL). ∴AE=AG .∴BE=CG=AC+AG=AC+AE,即BE=AC+AE.。
课后训练基础巩固1.下列说法正确的是().A.全等的两个图形可以由其中一个经过轴对称变换得到B.轴对称变换得到的图形与原图形全等C.轴对称变换得到的图形可以由原图形经过一次平移得到D.轴对称变换中的两个图形,每一对对应点所连线段都被这两个图形之间的直线垂直平分2.下面是一位美术爱好者利用网格图设计的几个英文字母的图形,你认为其中是轴对称图形的有().A.1个B.2个C.3个D.4个3.点M(1,2)关于x轴对称的点的坐标为().A.(-1,-2) B.(-1,2)C.(1,-2) D.(2,-1)4.如图,将正方形纸片对折两次,并剪出一个菱形小洞后铺平,得到的图形是().5.已知点P(a+1,3)、Q(-2,2a+b)关于y轴对称,则a=__________,b=__________;若关于x对称,则a=__________,b=__________.6.如图,四边形ABCD的顶点坐标为A(-5,1),B(-1,1),C(-1,6),D(-5,4),请作出四边形ABCD关于x轴及y轴的对称图形,并写出各对称图形的顶点坐标.能力提升7.李芳同学球衣上的号码是253,当她把镜子放在号码的正左边时,镜子中的号码是().8.若|3a-2|+|b-3|=0,则P(-a,b)关于y轴的对称点P′的坐标是__________.9.点A(-2a,a-1)在x轴上,则A点的坐标是__________,A点关于y轴的对称点的坐标是__________.10.桌面上有A、B两球,若要将B球射向桌面任意一边,使一次反弹后击中A球,则如图所示8个点中,可以瞄准的点有().A.1个B.2个C.4个D.6个11.小明上午在理发店理发时,从镜子内看到背后墙上普通时钟的时针与分针的位置如图所示,此时时间是________.12.(探索规律题)数的运算中含有一些有趣的对称形式,如第(1)个式子,依照等式的形式填空,并检验等式是否成立.(1)12×231=132×21;(2)12×462=__________×__________;(3)18×891=__________×__________;(4)24×231=__________×__________.13.(湖南郴州)作图题:在方格纸中,画出△ABC关于直线MN对称的△A1B1C1.14.将一张长方形的纸对折(如图所示),可以得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到几条折痕?如果对折n次可以得到几条折痕?15.(实际应用题)如图所示,某人每天先将羊群从驻地A赶到河边饮水(直线a表示河流),然后再赶到草地放牧(直线b表示草地边界),傍晚回到驻地A.请你设计出最短的放牧路线.16.用四个任意大小的半圆面设计四个轴对称图案(如图所示),并且为所设计的每个图案命名,名称贴切生动.莲花盛开参考答案1.B点拨:由轴对称概念及性质进行判断,知B正确,D错误,这两个图形之间的直线不一定是对称轴,又因为成轴对称的两个图形不仅全等还与位置有关故A、C错误.2.B点拨:由图形的特征,结合轴对称的概念,可以判断只有第一个和第三个中的图形都是轴对称图形,故有2个,应选B.3.C点拨:关于x轴对称的点的坐标变化特点是:横坐标不变,纵坐标互为相反数,故选C.4.C点拨:本题是将正方形两次翻折后剪裁,且剪裁位置在折叠后图形的正中间,因而将所给最后图形作两次轴对称展开,得到图形C.5.11-33点拨:若点P(a+1,3)、Q(-2,2a+b)关于y轴对称,则a+1=2,2a+b=3,解得a=1,b=1;同样若点P(a+1,3)、Q(-2,2a+b)关于x轴对称,则a+1=-2,2a+b=-3,解得a=-3,b=3.6.解:(1)如图所示,四边形A′B′C′D′和四边形A″B″C″D″即为所求.(2)关于y轴对称的四边形A′B′C′D′各顶点的坐标分别是A′(5,1),B′(1,1),C′(1,6),D′(5,4);关于x轴对称的四边形A″B″C″D″各顶点的坐标分别是A″(-5,-1),B″(-1,-1),C″(-1,-6),D″(-5,-4).7.A点拨:把球衣上253的号码向左翻折180°,得到的图案即是镜子中的号码.8.2 (,3) 39.(-2,0)(2,0)点拨:因为点A在x轴上,所以a-1=0,所以a=1,A点的坐标就是(-2,0),关于y轴的对称点的坐标是(2,0).10.B点拨:如题图,以D点为例,若能击中A球,则∠BDQ=∠ADQ,很显然不等,所以一次反弹后不能击中A球,8个点中只有射向F、Q时,才能击中A球,故选B.11.10时45分点拨:镜子里的时针与分针关于镜面对称,左右相反.12.(2)26421(3)19881(4)13242点拨:仔细的观察不难发现等号左、右两边是对称的,根据这一规律,即可得出结论.13.解:分别作出点A,B,C关于直线MN的对称点A′,B′,C′,再依次连接即得到图形。
八年级上册13.2 画轴对称图形专项练习(含答案)(满分:100分)班级:______ 姓名:______ 学号:____ 成绩:____一、选择题(每小题3分,共36分)1、这是映在水中的一辆汽车的牌号倒影,如图,你能说出这辆汽车的牌号吗?( )A.P90753 B.b90753 C.P60723 D.P 907232、已知点P1(a-1,5)和P2(2,b-1)关于x轴对称,则(a+b)20 19的值为().A.0 B.-1 C.1 D.(-3)20193、小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是( )4、如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠B AC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.B. 4 C.D.55、在锐角△ABC内一点P满足PA=PB=PC,则点P是△ABC()A.三条角平分线的交点B.三边垂直平分线的交点C.三条高的交点D.三条中线的交点6、下列图案中,有且只有三条对称轴的是( )A. AB. BC. CD. D7、如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)8、点M(1,2)关于x轴对称的点的坐标为()A:(-1,-2) B:(-1,2)C:(1,-2) D:(2,-1)9、如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为………………………………………………………………()A.1cm B.2cm C.3cm D.4cm10、下列轴对称图形中,对称轴条数最多的是().11、在平面直角坐标系中。
点P(-2,3)关于x轴的对称点在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限12、在平面直角坐标系中,将点A ( l , 2 )的横坐标乘以-l ,纵坐标不变,得到点,则点A 与的关系是()A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.将点A 向x 轴负方向平移一个单位得点二、填空题13、如图,E是正方形ABCD边AD上一点,AE=2cm,DE=6cm,P 是对角线BD上的一动点,则AP+PE的最小值是.14、若点P1(–1,3)和P2(1,b)关于y轴对称,则b= .15、如图,ΔABC中,AB=AC=14cm,AB的垂直平分线MN交AC 于D,ΔDBC的周长是24cm,则BC=___________.16、若,求P(-a,b)关于y轴的对轴点P′的坐标。
前言:
该同步训练习题由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。
以高质量的同步训练习题助力考生查漏补缺,在原有基础上更进一步。
(最新精品同步训练习题)
13.2画轴对称图形
第1课时画轴对称图形
[学生用书P49]
1.[2016·诸城月考]如图13-2-5,已知:△ABC,直线m.求作:△DEF,使△DEF与△ABC关于直线m对称.
图13-2-5
2.如图13-2-6,在方格纸中给出了一个图案的一半,其中的虚线是这个图案的对称轴.在方格纸中画出该图案的另一半.
图13-2-6
3.如图13-2-7,在正方形网格中有一个△DEF和直线HG.
(1)作△DEF关于直线HG的轴对称图形;
(2)作△DEF的边EF上的高;
(3)若网格上的最小正方形边长为1,求△DEF的面积.
图13-2-7
4.[2016·商河期末](1)如图13-2-8(1),在边长为1的小正方形组成的网格中,△ABC的三个顶点分别在格点上,请在网格中按要求作出下列图形,并标注相应的字母.
①作△A1B1C1,使得△A1B1C1与△ABC关于直线l对称;
②△A1B1C1的面积为__4__.
(2)如图13-2-8(2),已知△ABC.
①用直尺和圆规分别作AB,AC的垂直平分线,其交点为M(保留作图痕迹,。
人教版数学八年级上册《13.2 画轴对称图形》课时练习一、选择题1.在平面直角坐标系中,点P(﹣2,5)与点Q关于x轴对称,则点Q的坐标是()A.(﹣2,5)B.(2,5)C.(﹣2,-5)D.﹣(2,-5)2.已知点P1(a,3),P2(2,b)关于x轴对称,则a的值为()A.﹣3B.2C.3D.﹣23.在平面直角坐标系中,将点P(﹣2,3)沿x轴方向向右平移个单位得到点,再作出点Q关于y轴对称的对称点得到点M,点M的坐标是()A.(﹣1,-3)B.(1,3)C.(1,-3)D.(﹣1,3)4.点P(﹣2,﹣8)关于y轴的对称点P1的坐标是(a﹣2,3b+4),则a,b的值为()A.a=﹣4,b=﹣4B.a=﹣4,b=4C.a=4,b=4D.a=4,b=﹣4 5.在直角坐标系中,O为坐标原点,A点坐标为(3,4)先将△ABC向下平移2个单位长度得到△A1B1C1,再作△A1B1C1关于y轴的对称图形△A2B2C2,则点A2的坐标为()A.C.6.在平面直角坐标系中,点P(a,﹣5)与点Q(3,b)关于x轴对称,则a﹣b的值为()A.8B.﹣8C.2D.﹣27.在平面直角坐标系中,点(﹣7,6)关于x轴对称点是()A.C.(7,﹣6)D.(﹣7,﹣6)8.点P(﹣2,3)关于y轴对称点的坐标在第()象限.A.第一象限B.第二象限C.第三象限D.第四象限9.如图,分别以△ABC的边AB,AC所在直线为对称轴作△ABC的对称图形△ABD和△ACE,∠BAC=150°,线段BD与CE相交于点O,连接BE、ED、DC、OA.有如下结论:①∠EAD=90°;②∠BOE=60°;③OA平分∠BOC;④EA=ED;⑤BP=EQ.其中正确的结论个数是()A.4个B.3个C.2个D.1个10.在平面直角坐标系中,把一个封闭图形的各个顶点的横坐标都乘以﹣1,纵坐标不变,并把得到的顶点依次连接,那么得到的封闭图形与原来图形相比位置上()A.向左平移了1个单位B.关于y轴对称C.关于x轴对称D.向下平移了2个单位二、填空题11.若点P(2,3)关于y轴的对称点是点P'(a+1,3),则a=.12.点A的坐标为(6,﹣8),点A关于x轴的对称点为点B,则点B的坐标是.13.把点A(a+2,a﹣1)向上平移3个单位,所得的点与点A关于x轴对称,则a的值为.14.点A(2,﹣3)关于x轴对称的点的坐标为,点B(﹣3,1)到y轴的距离是.15.已知A(a,2)和B(1,b)关于x轴对称,则(a+b)2016=.三、解答题16.如图,利用关于坐标轴对称的点的坐标的特点.(1)画出与△ABC的关于y轴对称的图形△A1B1C1;(2)写出各点坐标:A1(),B1(),C1();(3)直接写出△ABC的面积是.17.如图,作出三角形ABC关于x轴对称的图形三角形A1B1C1,并指出点A1、B1、C1的坐标.18.如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1,写出点A1,B1,C1的坐标(直接写答案).(2)△A1B1C1的面积为.(3)在y轴上画出点Q,使△QAB的周长最小.19.在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)△ABC的面积为;(2)在直线l上找一点P,使点P到边AB、BC的距离相等.(3)画出△ABC关于直线l对称的图形△A1B1C1;再将△A1B1C1向下平移4个单位,画出平移后得到的△A2B2C2.(4)结合轴对称变换和平移变换的有关性质,两个对应三角形△ABC和△A2B2C2的对应点所具有的性质是().A.对应点连线与对称轴垂直B.对应点连线被对称轴平分或与对称轴重合C.对应点连线被对称轴垂直平分D.对应点连线互相平行参考答案题号 1 2 3 4 5 6 7 8 9 10 答案 C B D D D D D A B B 11.﹣3.12.(6,8).13.﹣0.5.14.(2,3);3.15.1.16.解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,A1(4,1),B1(1,﹣1),C1(3,2);故答案为:4,1;1,﹣1;3,2;(3)S△ABC=3×3﹣×1×1﹣×2×3﹣×2×3=2.5故答案为:2.5.17.解:如图所示:△A1B1C1,即为所求,A1(﹣3,﹣5);B1(﹣5,2);C1(3,﹣2).18.解:(1)如图所示:△A1B1C1即为所求;由图可知:A1(﹣1,2),B1(﹣3,1),C1(2,﹣1);(2)S△A1B1C1=S矩形EFGH﹣S△A1EB1﹣S△B1FC1﹣S△A1HC1=3×5﹣×1×2﹣×2×5﹣×3×3=15﹣1﹣5﹣=4.5.故答案为:4.5;(3)连接A1B交y轴于Q,则此时△QAB的周长最小.19.解:(1)△ABC的面积=4×3﹣×4×2﹣×2×1﹣×2×3=4;故答案为4;(2)如图,点P为所作。
13.2 第1课时画轴对称图形基础闯关全练拓展训练1.(2016山东济宁邹城一模)若点A(a-2,3)和点B(-1,b+5)关于y轴对称,则点C(a,b)在( )A.第一象限B.第二象限C.第三象限D.第四象限2.在平面直角坐标系内,已知在y轴与直线x=3之间有一点M(a,3),如果该点关于直线x=3的对称点N的坐标为(5,3),那么a的值为( )A.4B.3C.2D.13.如图,在10×10的正方形网格中有一个四边形和两个三角形(所有顶点都在方格的格点上).(1)请你画出以上三个图形关于直线MN对称的图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数.能力提升全练拓展训练1.(2016江西中考模拟)如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( )A.A点B.B点C.C点D.D点2.在平面直角坐标系中,已知点P(a,5)在第二象限,则点P关于直线m(直线m上各点的横坐标都是2)对称的点的坐标是( )A.(-a,5)B.(a,-5)C.(-a+2,5)D.(-a+4,5)3.如图,在正方形ABCD(正方形四边相等,四个角均为直角)中,E、F、P、H分别为四边的中点,请分别在图1、2、3中画一个以A、B、C、D、E、F、P、H中的三点为顶点的三角形,所画三角形要求与△APH成轴对称(三个三角形的位置要有区别),并画出相应的一条对称轴.三年模拟全练拓展训练1.(2018山西吕梁孝义期中,15,★★☆)若点A(2a+1,-3a+2)关于x轴对称的点在第四象限,则a的取值范围是.2.(2017辽宁丹东中考模拟,15,★★☆)如图,在平面直角坐标系中,线段OA与线段OA'关于直线l:y=x对称.已知点A的坐标为(2,1),则点A'的坐标为.五年中考全练拓展训练(2016山东滨州中考,7,★☆☆)如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E的坐标是( )A.(2,-3)B.(2,3)C.(3,2)D.(3,-2)核心素养全练拓展训练1.在平面直角坐标系中,已知直线l:y=x,作A1(1,0)关于y=x的对称点B1,将点B1向右水平平移2个单位得到点A2;再作A2关于y=x的对称点B2,将点B2向右水平平移2个单位得到点A3;……,按此规律,则点B2 017的坐标是.2.平面直角坐标系中有一点A(1,1),对点A进行如下操作:第一步,作点A关于x轴的对称点A1,延长线段AA1到点A2,使得2A1A2=AA1;第二步,作点A2关于y轴的对称点A3,延长线段A2A3到点A4,使得2A3A4=A2A3;第三步,作点A4关于x轴的对称点A5,延长线段A4A5到点A6,使得2A5A6=A4A5;……则点A2的坐标为,点A2 017的坐标为.若点A n的坐标恰好为(4m,4n)(m、n均为正整数),请写出m和n的关系式.13.2画轴对称图形基础闯关全练拓展训练1.D 由点A(a-2,3)和点B(-1,b+5)关于y轴对称,得a-2=1,b+5=3,解得a=3,b=-2,则点C(a,b)在第四象限.2.D ∵点M关于直线x=3的对称点N的坐标为(5,3),∴点N到直线x=3的距离为2,∴点M(a,3)到直线x=3的距离为2,又点M在y轴与直线x=3之间,∴a=1.3.解析(1)所画图形如图所示:(2)这个整体图形共有4条对称轴.能力提升全练拓展训练1.B 如图所示,以B点为原点,建立平面直角坐标系,此时存在两个点A,C关于y轴对称,故选B.2.D ∵直线m上各点的横坐标都是2,点P(a,5)在第二象限,∴点P到直线m的距离为2-a,∴点P关于直线m 对称的点的横坐标是2-a+2=4-a,故点P关于直线m对称的点的坐标是(-a+4,5).3.解析如图所示(虚线为相应的对称轴):三年模拟全练拓展训练1.答案-<a<解析∵点A(2a+1,-3a+2)关于x轴对称的点在第四象限,∴点A在第一象限,∴解不等式①得,a>-,解不等式②得,a<,所以,a的取值范围是-<a<.故答案为-<a<.2.答案(1,2)解析过点A作AC⊥x轴于点C,过点A'作A'C'⊥y轴于点C',连接AA',则∠ACO=∠A'C'O=90°.∵线段OA与线段OA'关于直线l:y=x对称,∴△ODA'≌△ODA,∠C'OD=∠DOC,∴∠A'OD=∠AOD,OA'=OA,∴∠C'OD-∠A'OD=∠DOC-∠AOD,即∠A'OC'=∠AOC.在△ACO和△A'C'O中,∴△ACO≌△A'C'O,∴AC=A'C',CO=OC',∵点A的坐标为(2,1),∴OC=2,AC=1,∴OC'=2,A'C=1,∴点A'的坐标为(1,2).五年中考全练拓展训练C 由A(0,a)可知点A一定在y轴上,由C(b,m),D(c,m)可知点C与点D关于y轴对称,∴y轴过点A,且垂直平分CD,x轴平行于CD,∴点B与点E关于y轴对称,∵点B(-3,2),∴点E(3,2),故选C.核心素养全练拓展训练1.答案(2 016,2 017)解析如图所示.易知B1(0,1),B2(1,2),B3(2,3),B4(3,4),B5(4,5),依次类推,点B2 017的坐标是(2 016,2 017).2.答案(1,-2);(2504,-2504);m=n解析由题意得,A1(1,-1),A2(1,-2),A3(-1,-2),A4(-2,-2),A5(-2,2),A6(-2,4),A7(2,4),A8(4,4),∵2 017÷8=252……1,∴点A2 017为第253循环组的第一个点,易知A2 017和A1所在象限一样,A2 017(2504,-2504).若点A n的坐标恰好为(4m,4n)(m、n均为正整数),则m和n的关系式为m=n.。
人教版数学八年级上册
13.2.1画轴对称图形
培优训练
一.选择题(本大题共10小题,每小题3分,共30分)
1.下列图形中,不能由其中一部分通过轴对称变换得到的是()
2.一名同学用正方形和圆设计一个图案,要求整个图关于正方形的某条对角线对称,那么下列图案中不符合要求的是()
3.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形,将纸片展开,得到的图形是()
4.下列各组图形中,其中一个能由另一个通过轴对称变换得到的是()
5.如图是一只停在平静水面上的小船,它的“倒影”应是图中的()
6. 如图,分别以直线l为对称轴,所作轴对称图形错误的是()
7. 下列图形中,不能由其中一部分通过轴对称变换得到的是()
8.下列说法中,错误的是()
A. 任意两条相交直线都组成一个轴对称图形
B. 等腰三角形最少有1条对称轴,最多有3条对称轴
C. 成轴对称的两个三角形一定全等
D. 全等的两个三角形一定成轴对称
9. 小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是( )
10. 如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()
A.A点
B.B点
C.C点
D.D点
11.如图,AB左边是计算器上的数字“5”,若以直线AB为对称轴,那么它的轴对称图形是数字_____.
12.如图,在2×2的正方形格点图中,有一个以格点为顶点的△ABC,请你找出格点图中所有与△ABC 成轴对称,也以格点为顶点的三角形,这样的三角形共有________个.
13. 仔细观察下列图案,并按规律在横线上画出合适的图形.
14. 这是映在水中的一辆汽车的牌号倒影,如图,你能说出这辆汽车的牌号吗?________________.
15. 在平面镜里看到背后墙上电子钟示数,实际时间是:______________.
16. 给出下列图形:①线段;②射线;③直线;④圆;⑤等腰直角三角形;⑥等边三角形;⑦等腰梯形.其中只有一条对称轴的图形有___________ (填序号)
17. 在等腰三角形、等边三角形、直角三角形、等腰直角三角形等特殊的三角形中,是轴对称图形的有_________个
18. 如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;
②AD∥BC;③四边形ABCD是菱形;④△ABD ≌CDB;⑤OA=OD.其中正确的是_______________ (只填写序号)
三.解答题(共7小题,46分)
19.(6分) 如图,将各图形补成关于直线l对称的图形
20.(6分) 如图,作出△ABC关于直线l对称的图形.
21.(6分) 如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.
(1)画出△ABC关于直线BM对称的△A1B1C1;
(2)写出AA1的长度.
22.(6分) 图①,图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM,ON的端点均在格点上.在图①,图②给定的网格中以OM,ON为邻边各画一个四边形,使第四个顶点在格点上.要求:
(1)所画的两个四边形均是轴对称图形.
(2)所画的两个四边形不全等.
23.(6分) 在下面的方格纸中.
(1)作出△ABC关于MN对称的图形△A1B1C1;
(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?
24.(8分) 在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下图中画出所有这样的△DEF
25.(8分) 如图,△ABC和△A′B′C′关于直线MN对称,△A′B′C′和△A″B″C″关于直线EF对称.
(1)画出直线EF;
(2)直线MN与EF相交于点O,试探究∠BOB″与直线MN,EF所夹锐角α的数量关系.
参考答案:
1-5CDCCB 6-10CCDDB
11. 2
12. 5
13.
14.P90723
15. 20:15
16. ①⑤⑦
17. 3
18. ①②③④
19. 解:补全图如下:
20. 解:作图如下:
21. 解:(1)如图所示,△A1B1C1即为所求;
(2)由图可得,AA1=10
22. 解:如图所示:
23. 解:(1)作图如下:
(2)由B1,B2在图上的位置可知,B1先向右平移6格;再向下平移2格,因此△A2B2C2是由△A1B1C1先向右平移6格;再向下平移2格得到的
24. 解:如图所示:
25. 解:(1)如图所示.
(2)∵△ABC和△A′B′C′关于直线MN对称,
∴∠BOM=∠B′OM.
又∵△A′B′C′和△A″B″C″关于直线EF对称,
∴∠BOB″=∠BOM+∠B′OM+∠B′OE+∠B″OE=2(∠B′OM+∠B′OE)=2α,即∠BOB″=2α.。