矮塔斜拉桥结构及设计特点
- 格式:pdf
- 大小:333.42 KB
- 文档页数:5
V ol121 N o14公 路 交 通 科 技2004年4月JOURNA L OF HIGHWAY AND TRANSPORT ATION RESEARCH AND DEVE LOPMENT 文章编号:1002Ο0268(2004)04Ο0066Ο03矮塔斜拉桥的设计何新平(山西省交通规划勘察设计院,山西 太原 030012)摘要:矮塔斜拉桥是介于梁式桥和斜拉桥之间的一种桥型,其适用跨度也介于梁式桥和斜拉桥之间。
本文结合离石高架桥主桥的设计情况,浅析PC部分斜拉桥的桥型特点、受力特性及设计要点。
山西离石高架桥主桥为双塔单索面三跨连续部分斜拉预应力混凝土箱梁桥,主桥孔跨为85+135+85m,采用塔梁固结、塔梁与墩分离,墩顶设支座的结构形式。
关键词:矮塔斜拉桥;结构设计;力学分析中图分类号:U4921431 文献标识码:ADe sign of Low Tower CableΟstayed BridgeHE XinΟping(The C ommunications Survey&Design Institute of Shanxi Province,Shanxi T aiyuan 030012,China)Abstract:Low tower cableΟstayed bridge is one type of bridge between girder bridge and cableΟstayed bridge,and its suitable span is als o between girder bridge and cableΟstayed bridge1Based on the design conditions of the main frame of Lishi viaduct,the characteristics of bridge type,force principle and design gist of the PC Part of the cableΟstayed bridge are simply analyzed1Lishi Viaduct Bridge is a3Οspan partially cableΟstayed prestressed concrete box girder bridge with tw o towers and singleΟcableΟplane1S pans are attributed as85+ 135+85m,the structure type of cons olidated towerΟgirder,separated towerΟgirder and pier and top pier m outed supports is used1K ey words:Low tower CableΟstayed bridge;S tructure design;Mechanics analysis0 概述矮塔斜拉桥又称部分斜拉桥,为一种新兴的桥型结构,国外近10年内已修建了20余座此类桥梁。
浅谈矮塔斜拉桥和多塔斜拉桥矮塔斜拉桥是介于连续梁与斜拉桥之间的一种斜拉组合体系桥,具有塔矮、梁刚、索集中的特点。
矮塔斜拉桥主梁刚度较大,是主要的承重构件,斜拉索对梁起加劲、调整受力的作用,斜拉索的恒载索力占总索力(恒载索力十活载索力)的比重较斜拉桥大,斜拉索的应力变幅较小,疲劳问题不突出,因而斜拉索的容许应力可取0.6pk f ,从而降低工程造价。
矮塔斜拉桥与连续梁相比具有结构新颖跨越能力大、施工简单、经济等优点;与斜拉桥相比具有施工方便、节省材料、主梁刚度大等优点。
使得矮塔斜拉桥具有广阔的发展空间。
矮塔斜拉桥结构特点:1、塔高较矮。
拉索倾角较小,拉索为主梁提供较大的轴向力,并且拉索尽可能密集地从塔顶鞍座上通过,锚固于主梁。
一般塔高可取主跨的1/8-1/12;2、以梁为主,索为辅,梁体高度约是同跨径梁式桥的1/2或斜拉桥的2倍,梁高与跨度之比较大,一般为1/40-1/20,并且主梁自身承受大部分荷载作用约70%斜拉索只承受30%起到帮扶作用;3、主梁无索区段较一般斜拉桥要长,有较明显的塔旁无索区段,不设置端锚索;4、边孔与主孔的跨度比值在0.5-0.6左右,类似连续梁;5、为了充分利用矮塔的高度,拉索多成扇形布置且布置较集中,通常布置 在边跨、中跨跨中1/3附近。
在己建成的矮塔斜拉桥中,索鞍鞍座普遍采用双套管结构,拉索应力变幅一般只有斜拉桥的1/3左右,施工过程及合拢后,基本不需要进行拉索索力调整;6、适用跨径宜选择在100m-200m 之间,如果采用组合梁或复合梁,则跨径可达300m.7、尤其适用于多塔多跨和塔高受限制的情形,从刚度和疲劳考虑,它更适用于铁路桥或双层桥面,但采用多跨时存在较大的挠度问题。
矮塔斜拉桥的受力特点:索塔将斜拉索索力按一定比例分配给主梁的水平和垂直方向,当主梁刚度较大时,就可以降低塔高,以节约材料,并给主梁提供较大的水平分力,以解决主梁体内预应力的不足。
所以矮塔斜拉桥索塔的作用主要是通过分配斜拉索索力,从而实现对结构性能的改善。
矮塔斜拉桥拉索等值张拉施工工法矮塔斜拉桥拉索等值张拉施工工法一、前言矮塔斜拉桥作为一种常见的桥梁结构,其施工工法具有重要的意义。
本文将介绍一种矮塔斜拉桥拉索等值张拉施工工法,其中包含工法特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析以及工程实例等内容,旨在为读者提供参考。
二、工法特点矮塔斜拉桥拉索等值张拉施工工法具有以下几个显著特点。
1. 高效快捷:采用拉索等值张拉的方法,能够快速完成施工,节省时间和人力成本。
2. 结构稳定:通过合理的张拉力分布和拉索布置方式,能够确保桥梁结构的稳定性和承载能力。
3. 施工影响小:由于采用等值张拉的方式,施工对周围环境的影响较小,减少了对交通和生活的干扰。
4. 施工质量高:采用先进的施工工法和技术手段,能够保证施工质量达到设计要求,并提高桥梁的耐久性和使用寿命。
三、适应范围矮塔斜拉桥拉索等值张拉施工工法适用于以下情况。
1. 矮塔斜拉桥的施工,尤其适用于跨度较大、高度较低的桥梁。
2. 对桥梁施工时间有较高要求,需要快速完成施工的情况。
3. 施工环境有限,希望减少对周围环境的影响的情况。
4. 对桥梁施工质量有较高要求,希望提高施工质量和耐久性的情况。
四、工艺原理矮塔斜拉桥拉索等值张拉施工工法是基于以下工艺原理。
1. 拉索等值张拉原理:拉索在桥梁结构中起到传力和支撑作用,通过等值张拉的方式,使得各个拉索受力相等,从而实现整个结构的平衡和稳定。
2. 拉索布置方式:根据桥梁结构和受力特点,合理确定拉索布置方式,确保拉索受力分布均匀,减小结构变形和应力集中。
3. 拉索张拉控制:通过控制拉索张拉力大小和时间,实现桥梁结构的变形控制和稳定性控制。
五、施工工艺矮塔斜拉桥拉索等值张拉施工工艺包括以下几个施工阶段。
1. 基础施工:包括基础的浇筑和固化,确保基础的强度和稳定性。
2. 桥墩施工:根据桥梁设计,进行桥墩的搭建和施工,确保桥梁的支撑和传力功能。
矮塔斜拉桥方案设计论文矮塔斜拉桥方案设计论文近年来,随着城市化进程的不断加快,城市交通建设得到了空前的发展,跨河桥梁的建设也成为城市建设的重要组成部分。
与此同时,随着人们对桥梁建设要求的不断提高,设计师们也在进行着不断的技术创新和设计改进。
矮塔斜拉桥作为一种新兴的桥梁类型,其简洁、轻盈、美观、安全等优点受到广泛关注和青睐,在各地的桥梁建设中越来越多地应用。
本文以某城市一座正在规划中的矮塔斜拉桥为研究对象,从桥梁结构、斜拉索系统、地基处理、桥面设计等方面进行综合设计,以期为该城市的桥梁建设提供一些借鉴和参考。
1.桥梁结构设计矮塔斜拉桥的特点在于其简洁、轻盈的结构形式,其主梁由斜拉索负责承担桥面荷载,利用斜拉索与主梁组成桥面及其他荷载的承载系,同时为减小受力的集中度,普通矮塔斜拉桥的横向拉索要根据现场实际情况制定相应高度及间隔。
矮塔斜拉桥一般采用不大于45度的斜拉角,以保证桥面的稳定性和均匀受力,同时满足桥梁美观性的要求。
本次研究的矮塔斜拉桥,采用了T形截面的主梁,其优点在于结构简单,质量轻,能够满足桥面的承载和荷载分配要求。
而矮塔上部采用H形车间的形式,把上部结构虚拟成一个整体,使结构简单明了,能够有效减小风荷载对该桥梁的影响,同时采用设计耐久性好、维护方便、安装可靠的钢制结构,以保证结构的安全性和美观性。
桥面按照标准设计,采用预制混凝土板梁,能够保证桥面不仅满足基本安全要求,而且有更好的舒适性,同时斜拉索的设计和布置也能够满足承载体系要求,确保桥梁安全、稳定。
2.斜拉索系统设计矮塔斜拉桥斜拉索的设计是桥梁结构的关键之一,决定了桥梁的承载能力和稳定性。
本次研究的矮塔斜拉桥采用了多股斜拉索,悬挂在矮塔顶端,在主桥梁的两侧呈V形布置。
斜拉索的公称抗拉强度一般不小于1860MPa,能够满足承载要求和安全要求。
斜拉索的张力计算是矮塔斜拉桥设计的重要环节,二次张力计算则是计算斜拉索贴近主梁的轮廓的水平张力。
矮塔斜拉桥施工方案摘要:本文旨在提供一种针对矮塔斜拉桥的施工方案。
矮塔斜拉桥是一种特殊的桥梁结构,其主要特点是桥梁高度较低且存在一定的斜拉角度。
该文将介绍矮塔斜拉桥的设计要点、施工方法以及施工时应注意的问题,以期为相关工程的设计和实施提供参考。
1. 引言矮塔斜拉桥作为一种新型的桥梁结构,具有占地面积小、造价低廉、对地形适应性强等优点,因此在城市交通建设中得到了广泛应用。
然而,由于其特殊的施工方式和结构特点,对施工方案的制定提出了更高的要求。
因此,本文旨在提供一种可行的矮塔斜拉桥施工方案,以期帮助相关工程的设计和实施。
2. 矮塔斜拉桥的设计要点矮塔斜拉桥的设计要点包括桥梁高度、斜拉角度、主梁尺寸等方面。
在确定桥梁高度时,需要考虑桥梁的通行需求以及地形条件,确保桥梁在满足安全要求的前提下尽可能降低高度。
斜拉角度的确定需要综合考虑桥梁结构和施工条件等因素,确保桥梁的稳定性和承载能力。
主梁的尺寸设计需要满足桥梁的承重要求和结构稳定性要求,同时考虑到材料使用效率和工程造价的因素。
3. 施工方法矮塔斜拉桥的施工方法分为几个关键步骤,包括基础施工、塔吊安装、主梁架设和斜拉索安装等。
3.1 基础施工基础施工是整个施工过程的第一步,它包括地基处理、临时支撑结构的搭建以及基础混凝土浇筑等。
地基处理需要根据地质勘察结果确定基础形式,确保基础的稳定性。
在基础施工过程中,需要搭建临时支撑结构以支撑主梁的架设。
3.2 塔吊安装在基础施工完成后,需要安装塔吊用于主梁的架设。
塔吊的安装需要根据桥梁的几何尺寸和施工要求确定合适的位置和高度,并进行精确的安装调整。
3.3 主梁架设主梁架设是矮塔斜拉桥施工过程中的关键步骤。
主梁的架设需要保证准确的位置和高度,而且在架设过程中需要注意材料的保护,确保主梁在架设过程中不受损坏。
3.4 斜拉索安装斜拉索的安装是矮塔斜拉桥施工的最后一个环节。
在安装斜拉索之前,需要确保主梁和塔吊的位置和高度准确无误。
矮塔斜拉桥结构及设计特点【摘要】矮塔斜拉桥由于其具有性能优越、造型美观、经济指标良好等优点,在世界各国得到广泛的应用,发展十分迅速。
本文主要介绍了矮塔斜拉桥设计特点,分析了设计要点及问题,还就矮塔斜拉桥主梁施工的线形控制进行了探讨。
【关键词】矮塔斜拉桥;结构;设计特点引言随着桥梁技术的不断发展,出现了许多新型的桥梁结构。
矮塔斜拉桥就是近年来出现的一种新型桥梁结构形式。
这种桥型是介于常规斜拉桥与普通梁桥之间的一种组合体系桥梁,使得桥梁的跨径得以延长。
由于其具有优越的结构性能和良好的经济特性,在世界各国得到广泛的应用。
1矮塔斜拉桥设计特点1.1矮塔斜拉桥主梁设计矮塔斜拉桥与常规斜拉桥最大的不同是主塔比较矮,这个特性使得斜拉索与主梁的夹角较小,斜拉索提供的竖向分力仅能抵消梁体所受的部分竖向内力。
客观上主梁以梁的受弯、受压、受剪和斜拉索受拉来共同承担竖向荷载,主梁以压弯为主,此外,主梁还需抵抗活载偏心引起的扭矩。
因此,主梁采用变截面箱梁是非常好的选择,而根据矮塔斜拉桥斜拉索索面布置的不同,常采用单箱单室或单箱多室等截面形式。
1.2矮塔斜拉桥主塔设计矮塔斜拉桥的主塔不仅要承受斜拉索竖向分力引起的轴向压力,而且还要承受由于两侧斜拉索的拉力不同所引起的弯矩,塔的刚度将直接影响全桥的受力特性,塔是矮塔斜拉桥的主要受力构件之一。
矮塔斜拉桥的受力性能取决于主梁、主塔、墩及斜拉索的相对刚度。
矮塔斜拉桥的拉索就像主梁的体外预应力筋,主塔的作用就是增大体外预应力筋的力臂,拉索主要作用是通过初拉力的预应力效应来改善主梁的受力性能;当主梁抗弯刚度较大时,可以通过降低主塔高度给主梁提供较大的轴向分力,从而解决主梁体内预应力的不足。
主塔除承受拉索的竖向轴力分力外,还可以通过优化斜拉索索力来改善其自身的受力性能。
塔高的选择首先与桥梁的主跨跨径有关,其次是斜拉索的索面布置形式、拉索的索距和水平倾角等有关。
在相同跨径的情形下:塔高降低,斜拉索的倾角减小,索力在水平方向的分力增大,主梁轴力增大,主梁最大正、负弯矩的绝对值增大,挠度变大。
矮塔斜拉桥设计注意事项矮塔斜拉桥是一种常用于跨越河流、山谷等地理障碍的桥梁形式。
与传统的悬索桥相比,矮塔斜拉桥具有设计简单、施工便利等优点,并且能够满足较大跨度的需求。
在设计矮塔斜拉桥时,需要注意以下几个方面。
首先,考虑地理环境。
矮塔斜拉桥的设计需要根据具体地理环境制定。
包括地质环境、水文环境、气候环境等因素的综合考虑。
例如,在基础设计上,需要充分考虑地质条件,保证桥梁的稳定性。
在水文方面,需要充分考虑附近水域的水位变化、洪水位、洪水流速等因素,保证桥梁的安全性。
另外,根据桥梁所处的气候条件,合理选择材料和施工方式,确保桥梁的耐久性。
其次,考虑跨度和荷载。
矮塔斜拉桥的设计跨度较大,荷载也较高,因此需要充分考虑桥梁结构的强度和刚度。
在桥梁跨度的选择上,需要综合考虑地理条件、工程经济等因素,确保桥梁的安全性和经济性。
在荷载设计上,需要考虑车辆荷载、行人荷载等不同类型的荷载,并且要考虑荷载的作用时间、作用方式等因素,保证桥梁的稳定性和安全性。
再次,考虑材料和施工工艺。
矮塔斜拉桥的设计需要选择合适的材料和施工工艺,以确保桥梁的稳定性和耐久性。
在材料选择上,需要充分考虑材料的强度、耐久性、防腐蚀性等因素。
常用的材料包括钢材、混凝土等。
在施工工艺选择上,需要考虑桥梁的形式和复杂程度,选择合适的施工工艺,保证施工质量。
最后,考虑桥梁的使用功能和美观性。
矮塔斜拉桥通常用于交通运输,因此需要考虑桥梁的通行能力和使用功能。
例如,桥面的宽度、坡度、栏杆的设计等,都需要满足正常的交通需求。
同时,矮塔斜拉桥也是一种城市景观,因此需要考虑桥梁的美观性。
包括桥梁的造型设计、颜色选择等方面,使桥梁成为一个城市的标志性建筑。
综上所述,矮塔斜拉桥的设计需要考虑地理环境、跨度和荷载、材料和施工工艺、使用功能和美观性等多个方面的因素。
只有综合考虑这些因素,才能设计出稳定、安全、美观的矮塔斜拉桥。
矮塔斜拉桥的结构设计浅析一、引言桥梁设计向大跨、轻型、轻质、美观、环保方向发展,因此,设计师对降低结构自重、结构轻型化及经济指标的要求变得越来越高。
1988年,法国工程师Jacgues Mathiv提出了新的桥梁结构形式——矮塔斜拉桥[1]。
1994年,日本建成了世界上第一座矮塔斜拉桥——小田原港桥,其跨度为(74+122+74)m,桥面宽13.0m,双塔双索面的固结体系,拉索通过塔顶的鞍座后锚固在主梁上。
其后在日本得到迅速发展。
我国虽起步稍晚,但发展势头迅猛,并在全国各地广泛采用[1] [2]。
矮塔斜拉桥的发展过程与混凝土结构的发展相似,混凝土结构从普通钢筋混凝土→预应力混凝土→部分预应力混凝土;桥梁是连续梁→斜拉桥→矮塔斜拉桥,部分预应力混凝土的出现,填补了普通钢筋混凝土与全预应力混凝土之间的空白,同理,矮塔斜拉桥的出现,也填补了刚性桥与柔性桥之间的空白,为桥型方案的选择提供了更广阔的空间。
二、矮塔斜拉桥的结构设计要点2.1、矮塔斜拉桥的受力特性分析矮塔斜拉桥是介于具有柔性斜拉桥和刚性梁桥之间的一种过渡性桥梁结构形式,就是一种刚柔相济的新型桥梁,其受力特征及梁高介于两者之间,并在布索、结构尺寸及受力特点等方面与常规斜拉桥有着较大的差别,同时在总体抗力中梁与斜拉索共同作用,其抗力的比例与斜拉索刚度和梁的刚度的比值有关,且塔高较矮,如图1所示。
图1 桥型布置图根据以上桥型特点及受力分析可知:连续梁受弯、受剪为主,矮塔斜拉桥的受力特点接近一般预应力混凝土梁桥的体外索,梁受压、受剪,斜拉索受拉;斜拉桥的梁受压,斜拉索受拉,三种桥型方案的最大差别在于主梁的力学行为不同,同时连续梁→矮塔斜拉桥→斜拉桥的主梁承受弯矩逐渐减小,但轴力逐渐增加[1][2]。
因此,矮塔斜拉桥既不是梁桥也不是传统的斜拉桥,它是一种斜拉桥和梁桥的协作体系,该体系解决了主梁体内预应力钢束配置效率不高和空间不足的问题,同时降低主梁结构刚度及自重,并充分发挥了斜拉桥不经济或梁桥刚度不够的跨度优势。
矮塔斜拉桥施工方案
矮塔斜拉桥是一种新型的桥梁结构,具有结构简单、施工快速、经济实用等优点。
下面给出一种施工方案,具体步骤如下:
1、桥墩基础施工:首先进行桥墩基础的施工,采用混凝土浇
筑的方式,根据设计要求,将桥墩基础的梁板钢筋进行布置并浇筑混凝土。
2、桥塔施工:在桥墩施工完成后,进行桥塔的施工。
桥塔是
矮塔斜拉桥的支撑结构,主要承受桥梁荷载并传递到桥墩上。
桥塔施工采用模板搭设的方式,首先搭建好桥塔的模板,然后进行混凝土浇筑。
桥塔施工完成后,需要进行养护一段时间,以确保混凝土的强度。
3、斜拉索施工:在完成桥塔的养护后,进行斜拉索的施工。
斜拉索是矮塔斜拉桥的主要承担荷载的结构,通过斜拉索将桥梁的荷载传递到桥塔上。
斜拉索的施工分为两个步骤:首先,悬挂斜拉索,即将斜拉索连接到桥塔和桥梁上;然后,张拉斜拉索,即通过张拉设备将斜拉索拉紧,以达到设计要求的预应力。
4、桥面铺设:在斜拉索施工完成后,进行桥面的铺设。
桥面
铺设采用预制混凝土板进行,首先将预制混凝土板安装在桥面梁上,然后进行固定和连接。
之后,进行预制混凝土板的拼缝处理,并进行养护。
5、桥梁主体验收:在桥面铺设完成后,进行桥梁主体的验收。
验收内容包括桥梁结构的安全性、稳定性、功能完备性等方面。
根据验收结果可以对桥梁进行调整和完善。
以上即是矮塔斜拉桥施工的一个简要方案,通过以上步骤可以完成整个桥梁的施工。
当然,具体的施工方案还需根据实际情况进行调整和优化,以确保施工的质量和安全。
浅谈矮塔斜拉桥和多塔斜拉桥矮塔斜拉桥是介于连续梁与斜拉桥之间的一种斜拉组合体系桥,具有塔矮、梁刚、索集中的特点。
矮塔斜拉桥主梁刚度较大,是主要的承重构件,斜拉索对梁起加劲、调整受力的作用,斜拉索的恒载索力占总索力(恒载索力十活载索力)的比重较斜拉桥大,斜拉索的应力变幅较小,疲劳问题不突出,因而斜拉索的容许应力可取0.6pk f ,从而降低工程造价。
矮塔斜拉桥与连续梁相比具有结构新颖跨越能力大、施工简单、经济等优点;与斜拉桥相比具有施工方便、节省材料、主梁刚度大等优点。
使得矮塔斜拉桥具有广阔的发展空间。
矮塔斜拉桥结构特点:1、塔高较矮。
拉索倾角较小,拉索为主梁提供较大的轴向力,并且拉索尽可能密集地从塔顶鞍座上通过,锚固于主梁。
一般塔高可取主跨的1/8-1/12;2、以梁为主,索为辅,梁体高度约是同跨径梁式桥的1/2或斜拉桥的2倍,梁高与跨度之比较大,一般为1/40-1/20,并且主梁自身承受大部分荷载作用约70%斜拉索只承受30%起到帮扶作用;3、主梁无索区段较一般斜拉桥要长,有较明显的塔旁无索区段,不设置端锚索;4、边孔与主孔的跨度比值在0.5-0.6左右,类似连续梁;5、为了充分利用矮塔的高度,拉索多成扇形布置且布置较集中,通常布置 在边跨、中跨跨中1/3附近。
在己建成的矮塔斜拉桥中,索鞍鞍座普遍采用双套管结构,拉索应力变幅一般只有斜拉桥的1/3左右,施工过程及合拢后,基本不需要进行拉索索力调整;6、适用跨径宜选择在100m-200m 之间,如果采用组合梁或复合梁,则跨径可达300m.7、尤其适用于多塔多跨和塔高受限制的情形,从刚度和疲劳考虑,它更适用于铁路桥或双层桥面,但采用多跨时存在较大的挠度问题。
矮塔斜拉桥的受力特点:索塔将斜拉索索力按一定比例分配给主梁的水平和垂直方向,当主梁刚度较大时,就可以降低塔高,以节约材料,并给主梁提供较大的水平分力,以解决主梁体内预应力的不足。
所以矮塔斜拉桥索塔的作用主要是通过分配斜拉索索力,从而实现对结构性能的改善。
斜拉桥结构体系及特点斜拉桥亦称矮塔斜拉桥, 其构造特点是在连续梁中支点处设置矮索塔, 其塔高只有斜拉桥索塔高度的一半左右, 斜拉索通过矮索塔上设置的鞍座对主梁产生竖向支反力和水平压力。
部分斜拉桥主梁自身刚度较大, 能够承担大部分荷载效应, 斜拉索对主梁只起到一定程度的帮扶作用。
斜拉桥是介于斜拉桥和连续梁桥之间的一种新桥型, 兼具斜拉桥和连续梁桥的双重结构特征。
斜拉桥是由上部结构索、塔、梁三种基本构件和下部结构墩台、基础组成的结构体系, 影响部分斜拉桥结构各部分荷载效应最根本的因素是梁、塔、墩之间的结合方式, 不同的结合方式产生不同的结构体系。
根据部分斜拉桥结构自身的特点和梁、塔、索、墩的结合方式, 可将部分斜拉桥结构体系划分为三种型式: (1) 塔梁固结体系; (2) 支承体系; (3) 刚构体系, 见图1 所示。
(4)半漂浮体系,见图2所示。
(1)塔梁固结体系及特点塔梁固结、塔墩分离、梁底设支座支承在桥墩上, 斜拉索为弹性支承, 这是一种完全的主梁具有弹性支承的连续梁结构。
这种体系必须有一个固定支座, 一般是一个塔柱处梁底支座固定, 而其他支座可纵向活动。
这种体系的主要优点是取消了承受很大弯矩的梁下塔柱部分, 代之以一般桥墩, 中央段的轴向拉力较小, 梁身受力也很均匀, 整体温度变化对这种体系影响较小, 几乎可以略去。
这种体系结构整体刚度小, 当中跨满载时, 由于主梁在墩顶处的转角位移导致塔柱倾斜, 使塔顶产生较大的水平位移, 因而显著增大了主梁的跨中挠度。
上部结构重力和活载反力需经支座传递到桥墩, 因此需设置大吨位支座。
我国的漳州战备桥、小西湖黄河大桥、离石高架桥; 日本的蟹泽桥、士狩大桥、木曾川桥、揖斐川桥、新唐柜大桥均采用这种体系。
已建部分斜拉桥采用这种结构体系较多, 与连梁体系相同, 符合部分斜拉桥的概念含义。
塔梁固结体系的特点:塔、墩内力最小,温变内力也小,主梁边跨负弯矩较大。
( 2)支承体系及特点塔墩固结、塔梁分离, 主梁在塔墩上设置竖向支承, 支座均为活动支座, 这种体系接近主梁具有弹性支承的连续梁结构。
矮塔斜拉桥概述1.1矮塔斜拉桥的定义和特点矮塔斜拉桥为近20年来出现的一种新桥型,瑞士、日本、韩国等一些国家这几年修建了多座这种桥梁。
由于它优越的结构性能,良好的经济指标,越来越显示出巨大的发展潜力。
我国在这种桥型上起步稍晚,2001年建成的漳州战备大桥,是国内第一座真正意义上的矮塔斜拉桥。
对于这种桥型的称谓尚未统一。
日本的屋代南桥与屋代北桥为两座轻载铁路桥,初看起来象斜拉桥,因而日本的桥梁界对其笼统地称为斜拉桥。
小田原港桥是一座公路桥,日本桥梁界没有把它称为斜拉桥,而是沿用了法国工程师1988年提出的名称—Extra-dosed Prestressing Concrete Bridge,即超配量体外索PC桥,简称EPC桥。
实际上屋代南、北桥与小田原港桥其结构体系非常相似,同样可以称为EPC桥。
在美国,这种桥有称为“Extra-dosed Prestressing Concrete Bridge”的,也有称为“Extra-dosed Cable-stayed Bridge”的。
国内的称谓也一直存在争论,1995年我国著名桥梁专家严国敏先生首次把它定义为“部分斜拉桥”。
其含义是:在结构性能上,斜拉索仅仅分担部分荷载,还有相当部分的荷载由梁的受弯、受剪来承受。
“部分斜拉”即源于斜拉索的斜拉程度。
后来国内一些文章根据这种桥型塔高较矮的特点,又把这种桥型定义为矮塔斜拉桥。
矮塔斜拉桥的受力是以梁为主,索为辅,所以梁体高度介于梁式桥与斜拉桥之间,大约是同跨径梁式桥的1/2倍或斜拉桥的2倍。
截面一般采用变截面形式,特殊情况采用等截面。
矮塔斜拉桥的桥塔一般采用实心截面。
塔高为主跨的1/8~1/12,由于桥塔矮,刚度大,一般不考虑失稳问题。
梁上无索区较之一般斜拉桥要长,而且除了主孔中部和边孔端部的无索区段之外,还有较明显的塔旁无索区段。
边孔与主孔的跨度比值较之斜拉桥要大。
一般斜拉桥边孔与主孔的跨度比值一般小于0.5,多数在0.4左右,而矮塔斜拉桥与一般连续梁(刚构)桥相似,为避免端支点出现负反力,边孔与主孔的跨度之比一般会大于0.5,较合理的比值在0.6左右。