中考数学100份试卷分类汇编一次函数的应用(含答案)
- 格式:doc
- 大小:3.01 MB
- 文档页数:48
初中数学一次函数的应用题型分类汇编——销售最大利润问题3(附答案详解) 1.某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y (千克)与销售单价x (元/千克)之间为一次函数关系,如图所示.(1)当2080x ≤≤时,y = ;(2)要使销售利润达到800元,销售单价应定为每千克多少元.2.“低碳生活,绿色出行”,自行车成为人们喜爱的交通工具.某品牌共享自行车在温州的投放量自2017年起逐月增加,据统计,该品牌共享自行车1月份投放了640辆,3月份投放了1000辆.(1)该品牌共享自行车前3个月的投放量的月平均增长率相同,则这三个月一共投放了多少辆自行车?(2)考虑到增强客户体验,该品牌共享自行车准备投入3万元向自行车生产厂商定制了一批两种规格比较高档的自行车,之后投放到某高端写字楼区域.已知自行车生产厂商生产A 型车的成本价为300元/辆,售价为500元/辆,生产B 型车的成本价为700元/辆,售价为1000元/辆.根据指定要求,B 型车的数量需超过12辆,且A 型车的数量不少于B 型车的2倍.自行车生产厂商应如何设计生产方案才能获得最大利润?最大利润是多少?3.某公司在北部湾经济区农业示范基地采购A ,B 两种农产品,已知A 种农产品每千克的进价比B 种多2元,且用24000元购买A 种农产品的数量(按重量计)与用18000元购买B 种农产品的数量(按重量计)相同.(1)求A ,B 两种农产品每千克的进价分别是多少元?(2)该公司计划购进A ,B 两种农产品共40吨,并运往异地销售,运费为500元/吨,已知A 种农产品售价为15元/kg ,B 种农产品售价为12元/kg ,其中A 种农产品至少购进15吨且不超过B 种农产品的数量,问该公司应如何采购才能获得最大利润,最大利润是多少?4.五一期间,某商场计划购进甲、乙两种商品,已知购进甲商品1件和乙商品3件共需240元;购进甲商品2件和乙商品1件共需130元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.5.一种火爆的网红电子产品,每件产品成本16元、工厂将该产品进行网络批发,批发单价y(元)与一次性批发量x(件)(x为正整数)之间满足如图所示的函数关系.()1直接写出y与x之间所满足的函数关系式,并写出自变量x的取值范围;()2若一次性批发量不超过60件,当批发量为多少件时,工厂获利最大?最大利润是多少?6.某经销商从市场得知如下信息:某品牌空调扇某品牌电风扇进价(元/台)700 100售价(元/台)900 160他现有40000元资金可用来一次性购进该品牌空调扇和电风扇共100台,设该经销商购进空调扇x台,空调扇和电风扇全部销售完后获得利润为y元.(1)求y关于x的函数解析式;(2)利用函数性质,说明该经销商如何进货可获利最大?最大利润是多少元?7.甲乙两个仓库要向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨水泥,B地需110吨水泥,两库到A,B两地的路程和运费如下表(表中运费栏“元/(吨、千米)”表示每吨水泥运送1千米所需人民币)(本题满分10分)路程/千米运费(元/吨、千米)甲库乙库甲库乙库A地20 15 12 12B地25 20 10 8(1)设甲库运往A地水泥x吨,求总运费y(元)关于x(吨)的函数关系式;(2)当甲、乙两库各运往A、B两地多少吨水泥时,总运费最省?最省的总运费是多少?8.在2019春季环境整治活动中,某社区计划对面积为1600m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,甲队每天能完成绿化的面积是80 m2,乙队每天能完成绿化面积的40 m2(1)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y关于x的函数解析式;(2)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过25天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.9.一汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系:(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每月租出的车辆数y(辆)与每辆车的月租金x(元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:(3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元.10.总公司将一批衬衫由甲、乙两家分店共同销售,因地段不同,甲店一天可售出20件,每件盈利40元;乙店一天可售出32件,每件盈利30元.经调查发现,每件衬杉每降价1元,甲、乙两家店一天都可多售出2件.设甲店每件衬衫降价a元时,一天可盈利y1元,乙店每件衬衫降价b元时,一天可盈利y2元.(1)当a=5时,求y1的值.(2)求y2关于b的函数表达式.(3)若总公司规定两家分店下降的价格必须相同,请求出每件衬衫下降多少元时,两家分店一天的盈利和最大,最大是多少元?11.武汉市雾霾天气严重,环境治理已刻不容缓,武汉市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台,经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台,若供应商规定这种空气净化器售价不低于330元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式.(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?(3)当售价x(元/台)满足什么条件时,商场每月销售这种空气净化器所获得的利润w(元)不低于70000元?12.某书店在“读书节”之前,图书按标价销售,在“读书节”期间制定了活动计划.(1)“读书节”之前小明发现:购买5本A图书和8本B图书共花279元,购买10本A 图书比购买6本B图书多花162元,请求出A、B图书的标价;(2)“读书节”期间书店计划用不超过3680元购进A、B图书共200本,且A图书不少于50本,A、B两种图书进价分别为24元、16元;销售时准备A图书每本降价1.5元,B图书价格不变,那么书店如何进货才能使利润最大?13.某商店用2500元采购A型商品的件数是用750元采购B种商品件数数量的2倍,已知一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若商店购进A,B型商品共150件,已知A型商品的售价为30元/件,B型商品的售价为25元/件,且全部售出,设购进A型商品m件,求这批商品的利润W(元)与m之间的函数关系式;(3)在(2)的条件下,若A型商品的件数不少于B型商品的4倍,请你设计获利最大的进货方案,并求最大利润.14.城区某新建住宅小区计划购买并种植甲、乙两种树苗共300株.已知甲种树苗每株60元,乙种树苗每株90元.(1)若购买树苗共用21000元,问甲、乙两种树苗应各买多少株?(2)据统计,甲、乙两种树苗每株树苗对空气的净化指数分别为0.2和0.6,问如何购买甲、乙两种树苗才能保证该小区的空气净化指数之和等于90?15.某超市准备购进甲、乙两种品牌的文具盒,甲、乙两种玩具盒的进价和售价如下表,预计购进乙品牌文具盒的数量y(个)与甲品牌玩具盒数量x(个)之间的函数关系如图所示.甲乙进价(元)15 30售价(元)20 38(1)y与x之间的函数关系式是;(2)若超市准备用不超过6000元购进甲、乙两种文具盒,则至少购进多少个甲种文具盒?(3)在(2)的条件下,写出销售所得的利润W(元)与x(个)之间的关系式,并求出获得的最大利润.16.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?17.自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16 000元采购A型商品的件数是用7 500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B 型的件数,且不小于80件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数解析式,并写出m的取值范围;(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.18.某商场计划购进A、B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?19.一水果店主分两批购进同一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%.(1)该水果店主购进第一批这种水果每箱的单价是多少元?(2)该水果店主计划两批水果的售价均定为每千克4元,每箱10千克,实际销售时按计划无损耗售完第一批后,发现第二批水果品质不如第一批,于是该店主将售价下降a%销售,结果还是出现了2%的损耗,但这两批水果销售完后仍赚了不低于2346元,求a的最大值.20.随着生活水平的提高,人们对饮水品质的需求越来越高,某公司根据市场需求代理A,B两种型号的净水器,其中A型净水器每台的利润为400元,B型净水器每台的利润为500元.该公司计划再一次性购进两种型号的净水器共100台,其中B型净水器的进货量不超过A 型净水器的2倍,设购进A 型净水器x 台,这100台净水器的销售总利润为y 元.(1)求y 关于x 的函数关系式;(2)该公司购进A 型、B 型净水器各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A 型净水器出厂价下调a (0<a <150)元,且限定公司最多购进A 型净水器60台,若公司保持同种净水器的售价不变,请你根据以上信息,设计出使这100台净水器销售总利润最大的进货方案.21.在某水果店进行了一次促销活动,一次性购买A 种水果的单价y (元)与购买量x (千克)的函数关系如图.(1)当05x <≤时,单价y 为_______元.(2)求图中第②段函数图象的解析式,并指出x 的取值范围.(3)促销活动期间,张老师计划去该店买A 种水果10千克,那么张老师共需花费多少钱?22. 黄石知名特产“黄石港饼”“白鸭牌松花皮蛋”“珍珠果米酒”一直以来享有美誉,深受人们喜爱.端午节快到了,为了满足市场需求,某公司组织20辆汽车装运港饼、皮蛋、米酒共120吨去外地销售,按计划20辆汽车都要装满,且每辆汽车只能装运同一类食品,根据下表提供的信息解答以下问题. 港饼 皮蛋 米酒每辆汽车载重量(吨) 8 65 每吨食品获利(万元) 0.20.4 0.6(1)设装运港饼的车辆为x 辆,装运皮蛋的车辆为y 辆,求y 与x 之间的函数关系式;(2)此次销售获利为W 万元,试求W 关于x 的函数关系式;(3)如果装运每种食品的车辆都不少于2辆,那么怎样安排车辆能使此次销售获利最大?并求出最大利润.23.我市从2018 年1 月1 日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8 万元购进A、B 两种型号的电动自行车共30 辆,其中每辆B 型电动自行车比每辆A 型电动自行车多500 元.用5 万元购进的A 型电动自行车与用 6 万元购进的B 型电动自行车数量一样.(1)求A、B 两种型号电动自行车的进货单价;(2)若A 型电动自行车每辆售价为2800 元,B 型电动自行车每辆售价为3500 元,设该商店计划购进A 型电动自行车m 辆,两种型号的电动自行车全部销售后可获利润y 元.写出y 与m 之间的函数关系式;(3)该商店如何进货才能获得最大利润;此时最大利润是多少元.24.A城有某种农机30台,B城有该农机40台.现要将这些农机全部运往C、D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36台,从A城往C、D两乡运送农机的费用分别为250元/台和200元/台,从B城往C、D两乡运送农机的费用分别为150元/台和240元/台(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并直接写出自变量x的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(100<a<250)作为优惠,其他费用不变.在(2)的条件下,若总费用最小值为10740元,直接写出a的值.25.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:信息三:按件计酬:每生产一件甲产品可得3.00元,每生产一件乙产品可得5.60元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)小王该月最多能得多少元,此时生产甲、乙两种产品分别多少件.26.黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A ,B 两种树木共100棵进行校园绿化升级,经市场调查:购买A 种树木2棵,B 种树木5棵,共需600元;购买A 种树木3棵,B 种树木1棵,共需380元.(1)求A 种,B 种树木每棵各多少元;(2)因布局需要,购买A 种树木的数量不少于B 种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.27.21.(2013年四川攀枝花8分)某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元;(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案;(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大;最大利润是多少元.28.某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资. 已知生产每件产品的成本是40元,在销售过程中发现:当销售单价定为120元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x (元),年销售量为y (万件),年获利为z (万元)。
一次函数地应用一.选择题(共10小题)1.(•哈尔滨)小明家、公交车站、学校在一条笔直地公路旁(小明家、学校到这条公路地距离忽略不计),一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计),小明与家地距离s(单位:米)与他所用时间t(单位:分钟)之间地函数关系如图所示,已知小明从家出发7分钟时与家地距离为1200米,从上公交车到他到达学校共用10分钟,下列说法:①小明从家出发5分钟时乘上公交车②公交车地速度为400米/分钟③小明下公交车后跑向学校地速度为100米/分钟④小明上课没有迟到其中正确地个数是()A. 1个 B. 2个 C. 3个 D. 4个考点:一次函数地应用.分析:根据图象可以确定他家与学校地距离,公交车时间是多少,他步行地时间和公交车地速度和小明从家出发到学校所用地时间.解答:解:①小明从家出发乘上公交车地时间为7﹣(1200﹣400)÷400=5分钟,①正确;②公交车地速度为(3200﹣1200)÷(12﹣7)=400米/分钟,②正确;③小明下公交车后跑向学校地速度为(3500﹣3200)÷3=100米/分钟,③正确;④上公交车地时间为12﹣5=7分钟,跑步地时间为10﹣7=3分钟,因为3<4,小明上课没有迟到,④正确;故选:D.点评:本题考查利用函数地图象解决实际问题,正确理解函数图象横、纵坐标表示地意义是解题地关键,注意,在解答时,单位要统一.2.(•聊城)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈地行进路程S (km)与北京时间t(时)地函数图象如图所示.根据图象得到小亮结论,其中错误地是()A.小亮骑自行车地平均速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家C.妈妈在距家12km处追上小亮D. 9:30妈妈追上小亮考点:一次函数地应用.分析:根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车地平均速度,对应函数图象,得到妈妈到姥姥家所用地时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.解答:解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车地平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应地时间t=9.5,小亮到姥姥家对应地时间t=10,10﹣9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家地时间为9﹣8=1小时,∴小亮走地路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选:D.点评:本题考查了一次函数地应用,解决本题地关键是读懂函数图象,获取相关信息.3.(•连云港)如图是本地区一种产品30天地销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)地函数关系,图②是一件产品地销售利润z(单位:元)与时间t(单位:天)地函数关系,已知日销售利润=日销售量×一件产品地销售利润,下列结论错误地是()A.第24天地销售量为200件B.第10天销售一件产品地利润是15元C.第12天与第30天这两天地日销售利润相等D.第30天地日销售利润是750元考点:一次函数地应用.分析:根据函数图象分别求出设当0≤t≤20,一件产品地销售利润z(单位:元)与时间t (单位:天)地函数关系为z=﹣x+25,当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)地函数关系为y=,根据日销售利润=日销售量×一件产品地销售利润,即可进行判断.解答:解:A、根据图①可得第24天地销售量为200件,故正确;B、设当0≤t≤20,一件产品地销售利润z(单位:元)与时间t(单位:天)地函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=﹣x+25,当x=10时,y=﹣10+25=15,故正确;C、当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)地函数关系为y=k1t+b1,把(0,100),(24,200)代入得:,解得:,∴y=,当t=12时,y=150,z=﹣12+25=13,∴第12天地日销售利润为;150×13=1950(元),第30天地日销售利润为;150×5=750(元), 750≠1950,故C错误;D、第30天地日销售利润为;150×5=750(元),故正确.点评:本题考查了一次函数地应用,解决本题地关键是利用待定系数法求函数解析式.4.(•重庆)今年“五一”节,小明外出爬山,他从山脚爬到山顶地过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走地路程为s(米),s与t之间地函数关系如图所示.下列说法错误地是()A.小明中途休息用了20分钟B.小明休息前爬山地平均速度为每分钟70米C.小明在上述过程中所走地路程为6600米D.小明休息前爬山地平均速度大于休息后爬山地平均速度考点:一次函数地应用.分析:根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800﹣2800)米,爬山地总路程为3800米,根据路程、速度、时间地关系进行解答即可.解答:解:A、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息地时间为:60﹣40=20分钟,故正确;B、根据图象可知,当t=40时,s=2800,所以小明休息前爬山地平均速度为:2800÷40=70(米/分钟),故B正确;C、根据图象可知,小明在上述过程中所走地路程为3800米,故错误;D、小明休息后地爬山地平均速度为:(3800﹣2800)÷(100﹣60)=25,小明休息前爬山地平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山地平均速度大于休息后爬山地平均速度,故正确;故选:C.点评:本题考查了函数图象,解决本题地关键是读懂函数图象,获取信息,进行解决问题.5.(•南通)在20km越野赛中,甲乙两选手地行程y(单位:km)随时间x(单位:h)变化地图象如图所示,根据图中提供地信息,有下列说法:①两人相遇前,甲地速度小于乙地速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲地行程比乙多3km;④甲比乙先到达终点.其中正确地有()A. 1个 B. 2个 C. 3个 D. 4个考点:一次函数地应用.分析:根据题目所给地图示可得,两人在1小时时相遇,行程均为10km,出发0.5小时之内,甲地速度大于乙地速度,0.5至1小时之间,乙地速度大于甲地速度,出发1.5小时之后,乙地路程为15千米,甲地路程为12千米,乙比甲先到达终点.解答:解:在两人出发后0.5小时之前,甲地速度小于乙地速度,0.5小时到1小时之间,甲地速度大于乙地速度,故①错误;由图可得,两人在1小时时相遇,行程均为10km,故②正确;甲地图象地解析式为y=10x,乙AB段图象地解析式为y=4x+6,因此出发1.5小时后,甲地路程为15千米,乙地路程为12千米,甲地行程比乙多3千米,故③正确;甲到达终点所用地时间较少,因此甲比乙先到达终点,故④错误.故选C.点评:本题考查了一次函数地应用,行程问题地数量关系速度=路程后÷时间地运用,解答时理解函数地图象地含义是关键.6.(•烟台)A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间地关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲地速度是4千米/小时;④乙先到达B地.其中正确地个数是()A. 1 B. 2 C. 3 D. 4考点:一次函数地应用.分析:观察函数图象,从图象中获取信息,根据速度,路程,时间三者之间地关系求得结果.解答:解:由函数图象可知,乙比甲晚出发1小时,故①正确;乙出发3﹣1=2小时后追上甲,故②错误;甲地速度为:12÷3=4(千米/小时),故③正确;乙地速度为:12÷(3﹣1)=6(千米/小时),则甲到达B地用地时间为:20÷4=5(小时),乙到达B地用地时间为:20÷6=(小时),1+3,∴乙先到达B地,故④正确;正确地有3个.故选:C.点评:本题考查了一次函数地应用,解决本题地关键是读懂函数图象,获取相关信息.7.(•随州)甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶地时间为t(单位:小时),s 与t之间地函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲地速度是乙速度地一半.其中,正确结论地个数是()A. 4 B. 3 C. 2 D. 1考点:一次函数地应用.分析:根据题意结合横纵坐标地意义得出辆摩托车地速度进而分别分析得出答案.解答:解:由图象可得:出发1小时,甲、乙在途中相遇,故①正确;甲骑摩托车地速度为:120÷3=40(千米/小时),设乙开汽车地速度为a千米/小时,则,解得:a=80,∴乙开汽车地速度为80千米/小时,∴甲地速度是乙速度地一半,故④正确;∴出发1.5小时,乙比甲多行驶了:1.5×(80﹣40)=60(千米),故②正确;乙到达终点所用地时间为1.5小时,甲得到终点所用地时间为3小时,故③错误;∴正确地有3个,故选:B.点评:此题主要考查了一次函数地应用,读函数地图象时首先要理解横纵坐标表示地含义是解题关键.8.(•鄂州)甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城地距离y(千米)与甲车行驶地时间t(小时)之间地函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确地结论有()A. 1个 B. 2个 C. 3个 D. 4个考点:一次函数地应用.分析:观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城地距离y与时间t地关系式,可求得两函数图象地交点,可判断③,再令两函数解析式地差为50,可求得t,可判断④,可得出答案.解答:解:由图象可知A、B两城市之间地距离为300km,甲行驶地时间为5小时,而乙是在甲出发1小时后出发地,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城地距离y与t地关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城地距离y与t地关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线地交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车, ∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,∴④正确;综上可知正确地有①②④共三个,故选C.点评:本题主要考查一次函数地应用,掌握一次函数图象地意义是解题地关键,特别注意t 是甲车所用地时间.9.(•荆门)在一次800米地长跑比赛中,甲、乙两人所跑地路程s(米)与各自所用时间t (秒)之间地函数图象分别为线段OA和折线OBCD,则下列说法正确地是()A.甲地速度随时间地增加而增大B.乙地平均速度比甲地平均速度大C.在起跑后第180秒时,两人相遇D.在起跑后第50秒时,乙在甲地前面考点:一次函数地应用.分析: A、由于线段OA表示甲所跑地路程S(米)与所用时间t(秒)之间地函数图象,由此可以确定甲地速度是没有变化地;B、甲比乙先到,由此可以确定甲地平均速度比乙地平均速度快;C、根据图象可以知道起跑后180秒时,两人地路程确定是否相遇;D、根据图象知道起跑后50秒时OB在OA地上面,由此可以确定乙是否在甲地前面.解答:解:A、∵线段OA表示甲所跑地路程S(米)与所用时间t(秒)之间地函数图象,∴甲地速度是没有变化地,故选项错误;B、∵甲比乙先到,∴乙地平均速度比甲地平均速度慢,故选项错误;C、∵起跑后180秒时,两人地路程不相等,∴他们没有相遇,故选项错误;D、∵起跑后50秒时OB在OA地上面,∴乙是在甲地前面,故选项正确.故选D.点评:本题考查利用函数地图象解决实际问题,正确理解函数图象横纵坐标表示地意义,理解问题地过程,就能够通过图象得到函数问题地相应解决.10.(•北京)一家游泳馆地游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A 类 50 25B 类 200 20C 类 400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳地次数介于45~55次之间,则最省钱地方式为()A.购买A类会员年卡 B.购买B类会员年卡C.购买C类会员年卡 D.不购买会员年卡考点:一次函数地应用.分析:设一年内在该游泳馆游泳地次数为x次,消费地钱数为y元,根据题意得:yA =50+25x,yB=200+20x,yC=400+15x,当45≤x≤50时,确定y地范围,进行比较即可解答.解答:解:设一年内在该游泳馆游泳地次数为x次,消费地钱数为y元,根据题意得:yA=50+25x,yB=200+20x,yC=400+15x,当45≤x≤50时,1175≤yA≤1300;1100≤yB≤1200;1075≤yC≤1150;由此可见,C类会员年卡消费最低,所以最省钱地方式为购买C类会员年卡.故选:C.点评:本题考查了一次函数地应用,解决本题地关键是根据题意,列出函数关系式,并确定函数值地范围.二.填空题(共6小题)11.(•广州)某水库地水位在5小时内持续上涨,初始地水位高度为6米,水位以每小时0.3米地速度匀速上升,则水库地水位高度y米与时间x小时(0≤x≤5)地函数关系式为y=6+0.3x .考点:根据实际问题列一次函数关系式.分析:根据高度等于速度乘以时间列出关系式解答即可.解答:解:根据题意可得:y=6+0.3x(0≤x≤5),故答案为:y=6+0.3x.点评:此题考查函数关系式,关键是根据题中水位以每小时0.3米地速度匀速上升列出关系式.12.(•沈阳)如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水地高度y(cm)和注水时间x(s)之间地关系满足如图2中地图象,则至少需要 5 s能把小水杯注满.考点:一次函数地应用.分析:一次函数地首先设解析式为:y=kx+b,然后利用待定系数法即可求得其解析式,再由y=11,即可求得答案.解答:解:设一次函数地首先设解析式为:y=kx+b,将(0,1),(2,5)代入得:,解得:,∴解析式为:y=2x+1,当y=11时,2x+1=11,解得:x=5,∴至少需要5s能把小水杯注满.故答案为:5.点评:此题考查了一次函数地实际应用问题.注意求得一次函数地解析式是关键.13.(•武汉)如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间地函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省 2 元.考点:一次函数地应用.分析:根据函数图象,分别求出线段OA和射线AB地函数解析式,即可解答.解答:解:由线段OA地图象可知,当0<x<2时,y=10x,1千克苹果地价钱为:y=10,设射线AB地解析式为y=kx+b(x≥2),把(2,20),(4,36)代入得:,解得:,∴y=8x+4,当x=3时,y=8×3+4=28.当购买3千克这种苹果分三次分别购买1千克时,所花钱为:10×3=30(元),30﹣28=2(元).则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元.点评:本题考查了一次函数地应用,解决本题地关键是分别求出线段OA和射线AB地函数解析式.14.(•黄石)一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子地容量和价格如表.现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则购买盒子所需要最少费用为29 元.型号 A B单个盒子容量(升) 2 3单价(元) 5 6考点:一次函数地应用.分析:设购买A种型号盒子x个,购买盒子所需要费用为y元,则购买B种盒子地个数为个,分两种情况讨论:①当0≤x<3时;②当3≤x时,利用一次函数地性质即可解答.解答:解:设购买A种型号盒子x个,购买盒子所需要费用为y元,则购买B种盒子地个数为个,①当0≤x<3时,y=5x+=x+30,∵k=1>0,∴y随x地增大而增大,∴当x=0时,y有最小值,最小值为30元;②当3≤x时,y=5x+﹣4=26+x,∵k=1>0,∴y随x地增大而增大,∴当x=3时,y有最小值,最小值为29元;综合①②可得,购买盒子所需要最少费用为29元.故答案为:29.点评:本题考查了一次函数地应用,解决本题地关键是根据题意列出函数解析式,利用一次函数地性质解决最小值地问题,注意分类讨论思想地应用.15.(•阜新)小明到超市买练习本,超市正在打折促销:购买10本以上,从第11本开始按标价打折优惠,买练习本所花费地钱数y(元)与练习本地个数x(本)之间地关系如图所示,那么在这个超市买10本以上地练习本优惠折扣是七折.考点:一次函数地应用.分析:根据函数图象求出打折前后地单价,然后解答即可.解答:解:打折前,每本练习本价格:20÷10=2元,打折后,每本练习本价格:(27﹣20)÷(15﹣10)=1.4元,=0.7,所以,在这个超市买10本以上地练习本优惠折扣是七折.故答案为:七.点评:本题考查了一次函数地应用,比较简单,准确识图并求出打折前后每本练习本地价格是解题地关键.16.(•威海)如图,点A、B地坐标分别为(0,2),(3,4),点P为x轴上地一点,若点B 关于直线AP地对称点B′恰好落在x轴上,则点P地坐标为().考点:一次函数综合题.分析:先用待定系数法求出直线AB地解析式,由对称地性质得出AP⊥AB,求出直线AP地解析式,然后求出直线AP与x轴地交点即可.解答:解:设直线AB地解析式为:y=kx+b,把A(0,2),B(3,4)代入得:,解得:k=,b=2,∴直线AB地解析式为:y=x+2;∵点B与B′关于直线AP对称,∴AP⊥AB,∴设直线AP地解析式为:y=﹣x+c,把点A(0,2)代入得:c=2,∴直线AP地解析式为:y=﹣x+2,当y=0时,﹣x+2=0,解得:x=,∴点P地坐标为:();故答案为:().点评:本题是一次函数综合题目,考查了用待定系数法确定一次函数地解析式、轴对称地性质、垂线地关系等知识;本题有一定难度,综合性强,由直线AB地解析式进一步求出直线AP地解析式是解决问题地关键.三.解答题(共14小题)17.(•甘南州)某酒厂每天生产A,B两种品牌地白酒共600瓶,A,B两种品牌地白酒每瓶地成本和利润如下表:设每天生产A种品牌白酒x瓶,每天获利y元.(1)请写出y关于x地函数关系式;(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?A B成本(元/瓶) 50 35利润(元/瓶) 20 15考点:一次函数地应用.专题:图表型.分析:(1)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶;利润=A种品牌白酒瓶数×A 种品牌白酒一瓶地利润+B种品牌白酒瓶数×B种品牌白酒一瓶地利润,列出函数关系式;(2)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶;成本=A种品牌白酒瓶数×A种品牌白酒一瓶地成本+B种品牌白酒瓶数×B种品牌白酒一瓶地成本,列出方程,求x地值,再代入(1)求利润.解答:解:(1)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得y=20x+15(600﹣x)=5x+9000;(2)A种品牌白酒x瓶,则B种品牌白酒(600﹣x)瓶,依题意,得50x+35(600﹣x)=26400,解得x=360,∴每天至少获利y=5x+9000=10800.点评:根据题意,列出利润地函数关系式及成本地关系式,固定成本,可求A种品牌酒地瓶数,再求利润.18.(•黔西南州)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水地政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x吨,应交水费为y元,写出y与x之间地函数关系式;(3)小黄家3月份用水26吨,他家应交水费多少元?考点:一次函数地应用.分析:(1)设每吨水地政府补贴优惠价为a元,市场调节价为b元,根据题意列出方程组,求解此方程组即可;(2)根据用水量分别求出在两个不同地范围内y与x之间地函数关系,注意自变量地取值范围;(3)根据小英家地用水量判断其再哪个范围内,代入相应地函数关系式求值即可.解答:解:(1)设每吨水地政府补贴优惠价为a元,市场调节价为b元.根据题意得,解得:.答:每吨水地政府补贴优惠价为1元,市场调节价为2.5元.(2)∵当0≤x≤12时,y=x;当x>12时,y=12+(x﹣12)×2.5=2.5x﹣18,∴所求函数关系式为:y=.(3)∵x=26>12,∴把x=26代入y=2.5x﹣18,得:y=2.5×26﹣18=47(元).答:小英家三月份应交水费47元.点评:本题考查了一次函数地应用,题目还考查了二元一次方程组地解法,特别是在求一次函数地解析式时,此函数是一个分段函数,同时应注意自变量地取值范围.19.(•义乌市)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家地路程y(米)和所经过地时间x(分)之间地函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中地速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?考点:一次函数地应用.分析:(1)根据观察横坐标,可得去超市地时间,根据观察纵坐标,可得去超市地路程,根据路程与时间地关系,可得答案;在超市逗留地时间即路程不变化所对应地时间段;(2)求出返回家时地函数解析式,当y=0时,求出x地值,即可解答.解答:解:(1)小敏去超市途中地速度是:3000÷10=300,在超市逗留了地时间为:40﹣10=30(分).(2)设返回家时,y与x地函数解析式为y=kx+b,把(40,3000),(45,2000)代入得:,解得:,∴函数解析式为y=﹣200x+11000,当y=0时,x=55,∴返回到家地时间为:8:55.点评:本题考查了一次函数地应用,观察函数图象获取信息是解题关键.20.(•济宁)小明到服装店进行社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元,乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装地费用不得超过7500元,则甲种服装最多购进多少件??(2)在(1)地条件下,该服装店对甲种服装以每件优惠a(0<a<20)元地价格进行促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?考点:一次函数地应用;一元一次不等式组地应用.分析:(1)设甲种服装购进x件,则乙种服装购进(100﹣x)件,然后根据购进这100件服装地费用不得超过7500元,列出不等式解答即可;(2)首先求出总利润W地表达式,然后针对a地不同取值范围进行讨论,分别确定其进货方案.解答:解:(1)设甲种服装购进x件,则乙种服装购进(100﹣x)件,根据题意得:,解得:65≤x≤75,∴甲种服装最多购进75件;(2)设总利润为W元,W=(120﹣80﹣a)x+(90﹣60)(100﹣x)即w=(10﹣a)x+3000.①当0<a<10时,10﹣a>0,W随x增大而增大,∴当x=75时,W有最大值,即此时购进甲种服装75件,乙种服装25件;②当a=10时,所以按哪种方案进货都可以;③当10<a<20时,10﹣a<0,W随x增大而减小.当x=65时,W有最大值,即此时购进甲种服装65件,乙种服装35件.点评:本题考查了一元一次方程地应用,不等式组地应用,以及一次函数地性质,正确利用x表示出利润是关键.21.(•日照)如图1所示,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图2为列车离乙地路程y(千米)与行驶时间x(小时)时间地函数关系图象.(1)填空:甲、丙两地距离1050 千米.(2)求高速列车离乙地地路程y与行驶时间x之间地函数关系式,并写出x地取值范围.考点:一次函数地应用.分析:(1)根据函数图形可得,甲、丙两地距离为:900+150=1050(千米);(2)分两种情况:当0≤x≤3时,设高速列车离乙地地路程y与行驶时间x之间地函数关系式为:y=kx+b,把(0,900),(3,0)代入得到方程组,即可解答;根据确定高速列出地速度为300(千米/小时),从而确定点A地坐标为(3.5,150),当3<x≤3.5时,设高速列车离乙地地路程y与行驶时间x之间地函数关系式为:y=k1x+b1,把(3,0),(3.5,150)代入得到方程组,即可解答.解答:解:(1)根据函数图形可得,甲、丙两地距离为:900+150=1050(千米),故答案为:1050.(2)当0≤x≤3时,设高速列车离乙地地路程y与行驶时间x之间地函数关系式为:y=kx+b, 把(0,900),(3,0)代入得:,解得:,∴y=﹣300x+900,高速列出地速度为:900÷3=300(千米/小时),150÷300=0.5(小时),3+0.5=3.5(小时)如图2,点A地坐标为(3.5,150)当3<x≤3.5时,设高速列车离乙地地路程y与行驶时间x之间地函数关系式为:y=k1x+b1,把(3,0),(3.5,150)代入得:, 解得:,∴y=300x﹣900,∴y=.点评:本题考查了一次函数地应用,解决本题地关键是读懂图象,获取相关信息,用待定系数法求函数解析式.22.(•资阳)学校需要购买一批篮球和足球,已知一个篮球比一个足球地进价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球地单价;(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买地数量不少于足球数量地,学校可用于购买这批篮球和足球地资金最多为10500元.请问有几种购买方案?(3)若购买篮球x个,学校购买这批篮球和足球地总费用为y(元),在(2)地条件下,求哪种方案能使y最小,并求出y地最小值.考点:一次函数地应用;一元一次方程地应用;一元一次不等式组地应用.分析:(1)设一个篮球x元,则一个足球(x﹣30)元,根据“买两个篮球和三个足球一共需要510元”列出方程,即可解答;(2)设购买篮球x个,足球(100﹣x)个,根据“篮球购买地数量不少于足球数量地,学校可用于购买这批篮球和足球地资金最多为10500元”,列出不等式组,求出x地取值范围,由x为正整数,即可解答;(3)表示出总费用y,利用一次函数地性质,即可确定x地取值,即可确定最小值.解答:解:(1)设一个篮球x元,则一个足球(x﹣30)元,由题意得:2x+3(x﹣30)=510,解得:x=120,∴一个篮球120元,一个足球90元.。
专项训练一次函数的最值应用一、一次函数最值问题的基本模型1.如果n≤x≤m,那么y=kx+b有最大或最小值.当x=n时,y有最小值,当x=m时,y有最大值.当x=n时,y有最大值,当x=m时,y有最小值.2.如果x≥n,那么y=kx+b有最大或最小值.当x=n时,y有最小值;当x=n时,y有最大值.3.如果x≤m,那么y=kx+b有最大或最小值.当x=m时,y有最大值;当x=n时,y有最小值.4.如果n<x<m,x取值不定,那么y=kx+b既没有最大值也没有最小值.但是,如果x 取特殊值(如x取整数值),可参照前述三条求最值.二、一次函数最值应用的步骤1.审题,求一次函数的解析式;3.根据题意确定自变量的取值范围;4.结合增减性和自变量的取值范围确定函数的最值.类型一实际应用中直接求最值1.为迎接国庆节的到来,某校团委组织了“歌唱祖国”有奖征文活动,并设立了一、二、三等奖.学校计划派人根据设奖情况买50件奖品,其中二等奖件数比一等奖件数的2倍还少10件,三等奖所花钱数不超过二等奖所花钱数的1.5倍各种奖品的单价如下表所示如果计划一等奖买x件,买50件奖品的总钱数是w元.(1)求与x的函数关系式及自变量x的取值范围;(2)请你计算一下,如果购买这三种奖品所花的总钱数最少,最少是多少元?2.某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要原料0.25吨,每生产1吨乙产品需要原料0.5吨,受市场影响,该厂能获得的原料至多为1000吨,其他原料充足.求该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.两种卡消费时,y与x的函数关系如图所示,解答下列问题:(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算.4.我市一水果批发市场某商家批发苹果采取分段计价的方式,其价格如表所示:购买苹果数x(千克)不超过50千克的部分超过50千克的部分每千克价格(元)10 8(1)小刚购买苹果40千克,应付多少元?(2)若小刚购买苹果x千克,用去了y元分别写出当0≤x≤50和x>50时,y与x的关系式;(3)计算出小刚若一次性购买80千克所付的费用比分两次共购买80千克(每次都购买40千克)所付的费用少多少元?5.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?类型二方案设计中的最值6.煤炭是陕西省的主要矿产资源之一,煤炭生产企业需要对煤炭运送到用煤单位所产生的费用进行核算并纳入企业生产计划.某煤矿现有1000吨要全部运往A,B两厂,通过了解获得A,B两厂的有关信息如表(表中运费栏“元/t·km”表示每吨煤炭运送一千米所需的费用):(1)写出总运费y(元)与运往A厂的煤炭量x(t)之间的函数关系式,并写出自变量的取值范围;(2)请你运用函数有关知识,为该煤矿设计总运费最少的运送方案,并求出最少的总运费.7.某水果商从外地购进某种水果若干箱,需要租赁货车运回.经了解,当地运输公司有大、小两种型号货车,其运力和租金如表:(1)若该水果商计划租用大、小货车共8辆,其中大货车x辆,共需付租金y元,请写出y与x的函数关系式;(2)在(1)的条件下,若这批水果共340箱,所租用的8辆货车可一次将购进的水果全部运回,请给出最节省费用的租车方案,并求出最低费用.8.年初,武汉暴发新冠疫情,“一方有难,八方支援”,某地为助力武汉抗疫,紧急募集到一批物资运往武汉的A,B两县,用载重量为16吨的大货车8辆和载重量10吨的小货车10辆恰好一次性运完这批物资.运往A,B两县的运费标准如表:(1)如果安排到A,B两县的货车都是9辆,设前往A县的大货车为x辆,前往A,B两县的总运费为y元,求出y与x的函数关系式(写出自变量的取值范围);(2)在(1)的条件下,若运往A县的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.9.在抗击新冠肺炎疫情期间,市场上的消毒液和防护口罩热销.某药店推出两种优惠方案,方案①:购买1瓶消毒液,赠送1个口罩,方案②:消毒液和口罩一律按9折优惠.消毒液每瓶定价40元,口罩每个定价5元小明需买4瓶消毒液和若干个口罩(不少于4个),设购买口罩x 个,用优惠方案①购买费用为y 1元,用优惠方案②购买费用为y 2元. (1)请分别写出y 1,y 2与x 之间的函数关系式; (2)什么情况下选择方案②更优惠?(3)若要买4瓶消毒液和12个口罩,请你设计怎样购买最便宜.参考答案1.解:(1)w = 12x +10(2x-10)+5[50-x-(2x-10)]= 17x +200.由⎪⎪⎩⎪⎪⎨⎧-⨯≤--->--->->)102(105.1)]102(50[50)]102(50[01020x x x x x x x ,得10≤x <20.∴自变量的取值范围是10≤x <20,且x 为整数;(2)w =17x +200,∵k =17>0,∴w 随x 的增大而增大,减小而减小. ∵1≤0x <20,当x =10时,有w 最小值,最小值为w =17×10+200=370. 2.解: (1) y =0.3x +0.4(2500-x )=-0.1x +1000, 因此y 与x 之间的函数表达式为:y =-0.1x +1 000;⎧≤-+1000)2500(5.025.0x x又∵k =-0.1<0,∴y 随x 的减小而增大. ∴当x =1000时, y 最大,此时2500-x =1500, 因此,生产甲产品1000吨,乙产品1500吨时,利润最大.3,解:(1)设y 甲=k 1x ,根据题意得:5k 1=100,解得:k 1=20.∴у甲=20x. 设y 乙=k 2x +100,根据题意得:20k 2+100=300,解:k 2=10. ∴y 乙= 10x +100;(2)①y 甲<y 乙,即20x <10x-100,解得:x <10,当入园次数小于10次时,选择甲消费卡比较合算;②y 甲=y 乙,即20x =10x-100,解得:x =10,当入园次数等于10次时,选择两种消费卡费用一样;③y 甲>y 乙,即 20x >10x +100,解得:x >10,当入园次数大于10次时,选择乙消费卡比较合算.4,解:(1)由表格可得,40×10=400(元), 答:小刚购买苹果40千克,应付400元; (2)由题意可得,当0≤x ≤50时, y 与x 的关系式是y =10x ,当x >50时,y 与x 的关系式是y =10×50—8(x-50)=8x +100, 即当x >50时,y 与x 的关系式是y =8x +100;(3)小刚若一次性购买80千克所付的费用为:8×80-100=740(元),分两次共购买80千克(每次都购买40千克)所付的费用为:40×10×2=800(元),800—740=60(元),答:小刚若一次性购买80千克所付的费用比分两次共购买80千克(每次都购买40 千克)所付的费用少60元.5.解:(1)依题意得:y =4x +3(50-x ) =x +150;(2)依题意得:⎩⎨⎧≤-+≤-+,②,①17)50(4.03.019)50(2.05.0x x x x解不等式①得:x ≤30,解不等式②得:x ≥28, ∴不等式组的解集为28≤x ≤30.∵y =x +150, y 是随2的增大而增大,且28≤x ≤30,∴当甲种饮料取28千克,乙种饮料取22千克时,成本总额y 最小,y 最小=28+150=1786,解:(1)若运往A 厂x 吨,则运往B 厂为(1000-x )吨. 依题意得:y =200×0.45x +150×a ×(1000-x )=90x-150ax + 150000a =(90-150a )x + 150000a ,依题意得⎩⎨⎧≤-≤8001000600x x ,解得200≤x ≤600.故函数关系式为y =(90-150a )x +150000a , (200≤x ≤600) ; (2)当0<a <0.6时,90-150a >0,∴当x =200时,y 最小=(90-150a )×200+150000a =120000a +18000. 此时,1000-x =1000-200=800.当a >0.6时,90-150a <0,又因为运往A 厂总吨数不超过600吨, ∴当x =600时,y 最小=(90-150a )×600+150000a =60000a +54000. 此时,1000-x =1000-600=400.当a =0.6时,y =90000,答:当0<a <0.6时,运往A 厂200吨, B 厂800吨时,总运费最低,最低运费(120000a +18000)元.当a >0.6时,运往A 厂600吨,B 厂400吨时,总运费最低,最低运费(60000a +54000)元.当a =0.6时,运费90000元.7.解:(1)由题意可得,y =400x +320(8-x )=80x +2560. 即y 与x 的函数关系式为y =80x +2560;(2)由题意可得,45x +35(8-x )≥340,解得,x ≥6, ∵y =80x +2560,∴k =80,y 随x 的增大而增大. ∴当x =6时, y 取得最小值,此时y =3040,8-x =2.答:最节省费用的租车方案是大货车6辆,小货车2辆,最低费用是3040元.8.解:(1)设前往A 县的大货车为z 辆,则前往A 县的小货车为(9-x )辆;前往B 县的大货车为(8-x )辆,前往B 县的小货车为(1+x )辆,根据题意得:y =1080x +750(9-x )+120(8-x )+950(1+x )=80x +17300 (0≤x ≤8); (2)由题意得,16x +10(9-x )≥120,解得x ≥5. 又∵0≤x ≤8,∴5≤x ≤8且为整数.∵y =80x +17300,且80>0,∴y 随x 的增大而增大, ∴当x =5时,y 最小,最小值为y =80×5+17300=17700.货车前往B县.最少运费为17700元.9.解:(1)由题意得:y1=40×4+5(x-4)=5x+140;y2=40×0.9×4+5×0.9x=4.5x+144;(2)当y1>y2时,5x+140>4.5x+144,解得x>8,答:当x>8时,选择方案②更优惠;(3)方案①:y1=5×12+140=220(元);方案②:y2=4.5×12+144=198(元);方案③:先按方案①买4瓶消毒液,送4个口罩,剩下8个口罩按方案②购买,总价为:40×4+5×0.9×8=196(元),∵200>198>196,∴方案③最省钱.答:购买4瓶消毒液和12个口罩用方案③最优惠.。
中考中的一次函数应用题求解(答案)1 试题概述一次函数应用题,因其综合了一元一次方程、一元一次不等式、二元一次方程组等内容,能实现数与形有机地结合,能体现分类讨论、对应、极端值等数学思想与方法,并且容易与现实生活中的重大事件联系起来以体现数学的应用价值,近年来一直是中考命题的热点。
此外,由于中考考查二次函数内容时,大多是以二次函数与几何相结合的压轴题形式出现,而反比例函数应用题命题的范围又相对狭窄,因此一次函数应用题就一直是中考试题中最频繁出现的考点。
一次函数应用题考查的最主要考点集中在三个方面:⑴学生对数形结合的认识和理解;⑵将实际问题转化为一次函数的能力,即数学建模能力;⑶分类讨论、极端值、对应关系、有序性的数学思想方法的考查。
⑷对一次函数与方程、不等式关系的理解与转化能力。
一次函数试题的命题形式多样,从近几年的中考题来看,可以大致归为以下几类:⑴方案设计问题(物资调运、方案比较);⑵分段函数问题(分段价格、几何动点);⑶由形求式(单个函数图象、多个函数图象)。
⑷一次函数多种变量及其最值问题。
2.1方案设计问题⑴物资调运例1.(2008年重庆第27题)为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨,、100吨、80吨,需要全部运往四川重灾地区的D、E两县。
根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨。
(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍。
其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨。
则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220 200 200运往E县的费用(元/吨)250 220 210为即使将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?解析:本题题干文字长,数量关系复杂,但只要弄懂了题意,并结合表格将数量关系进行整理,解决起来并不难。
中考数学试题分类—次函数与二次函数一.一次函数的图象(共2小题)1.(2020•嘉兴)一次函数y=2x﹣1的图象大致是()A.B.C.D.2.(2019•杭州)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.二.一次函数的性质(共1小题)3.(2019•杭州)某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式.三.一次函数图象上点的坐标特征(共3小题)4.(2020•杭州)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.5.(2020•湖州)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A.y=x+2B.y=√2x+2C.y=4x+2D.y=2√33x+26.(2019•绍兴)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1B.0C.3D.4四.一次函数的应用(共10小题)7.(2019•金华)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是.8.(2020•宁波)A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?9.(2020•衢州)2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?①游轮与货轮何时相距12km?10.(2020•绍兴)我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤),则y是x的一次函数.下表中为若干次称重时所记录的一些数据.x(厘米)12471112y(斤)0.75 1.00 1.50 2.75 3.25 3.50(1)在上表x,y的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?11.(2020•金华)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.12.(2020•温州)某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进一批相同的T 恤衫,数量是3月份的2倍,但每件进价涨了10元.(1)4月份进了这批T恤衫多少件?(2)4月份,经销商将这批T恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a 件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a件,然后将b件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.①用含a的代数式表示b.①已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.13.(2019•绍兴)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.14.(2019•台州)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=−310x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.15.(2019•宁波)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.(2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)16.(2019•湖州)某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校又骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x (分),图1中线段OA 和折线B ﹣C ﹣D 分别表示甲、乙离开小区的路程y (米)与甲步行时间x (分)的函数关系的图象;图2表示甲、乙两人之间的距离s (米)与甲步行时间x (分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,画出当25≤x ≤30时s 关于x 的函数的大致图象.(温馨提示:请画在答题卷相对应的图上)五.一次函数综合题(共2小题)17.(2019•温州)如图,在平面直角坐标系中,直线y =−12x +4分别交x 轴、y 轴于点B ,C ,正方形AOCD 的顶点D 在第二象限内,E 是BC 中点,OF ⊥DE 于点F ,连结OE .动点P 在AO 上从点A 向终点O 匀速运动,同时,动点Q 在直线BC 上从某一点Q 1向终点Q 2匀速运动,它们同时到达终点.(1)求点B 的坐标和OE 的长.(2)设点Q 2为(m ,n ),当n n =17tan ∠EOF 时,求点Q 2的坐标.(3)根据(2)的条件,当点P 运动到AO 中点时,点Q 恰好与点C 重合.①延长AD 交直线BC 于点Q 3,当点Q 在线段Q 2Q 3上时,设Q 3Q =s ,AP =t ,求s 关于t 的函数表达式.①当PQ 与△OEF 的一边平行时,求所有满足条件的AP 的长.18.(2019•衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =n +n 3,y =n +n 3那么称点T 是点A ,B 的融合点. 例如:A (﹣1,8),B (4,﹣2),当点T (x ,y )满足x =−1+43=1,y =8+(−2)3=2时,则点T (1,2)是点A ,B 的融合点.(1)已知点A (﹣1,5),B (7,7),C (2,4),请说明其中一个点是另外两个点的融合点.(2)如图,点D (3,0),点E (t ,2t +3)是直线l 上任意一点,点T (x ,y )是点D ,E 的融合点. ①试确定y 与x 的关系式.①若直线ET 交x 轴于点H .当△DTH 为直角三角形时,求点E 的坐标.六.反比例函数的性质(共1小题)19.(2020•杭州)设函数y 1=n n ,y 2=−n n (k >0). (1)当2≤x ≤3时,函数y 1的最大值是a ,函数y 2的最小值是a ﹣4,求a 和k 的值.(2)设m ≠0,且m ≠﹣1,当x =m 时,y 1=p ;当x =m +1时,y 1=q .圆圆说:“p 一定大于q ”.你认为圆圆的说法正确吗?为什么?七.反比例函数系数k 的几何意义(共3小题)20.(2020•温州)点P ,Q ,R 在反比例函数y =n n (常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=27,则S 2的值为 .21.(2020•湖州)如图,已知在平面直角坐标系xOy 中,Rt △OAB 的直角顶点B 在x 轴的正半轴上,点A在第一象限,反比例函数y =n n (x >0)的图象经过OA 的中点C .交AB 于点D ,连结CD .若△ACD 的面积是2,则k 的值是 .22.(2019•衢州)如图,在平面直角坐标系中,O 为坐标原点,①ABCD 的边AB 在x 轴上,顶点D 在y 轴的正半轴上,点C 在第一象限,将△AOD 沿y 轴翻折,使点A 落在x 轴上的点E 处,点B 恰好为OE 的中点,DE 与BC 交于点F .若y =n n (k ≠0)图象经过点C ,且S △BEF =1,则k 的值为 .八.反比例函数图象上点的坐标特征(共3小题)23.(2020•金华)已知点(﹣2,a),(2,b),(3,c)在函数y=n n(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a24.(2020•衢州)如图,将一把矩形直尺ABCD和一块含30°角的三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,三角板的直角边EF交BC于点M,反比例函数y=n n(x >0)的图象恰好经过点F,M.若直尺的宽CD=3,三角板的斜边FG=8√3,则k=.25.(2019•绍兴)如图,矩形ABCD的两边分别与坐标轴平行,顶点A,C都在双曲线y=n n(常数k>0,x>0)上,若顶点D的坐标为(5,3),则直线BD的函数表达式是.九.待定系数法求反比例函数解析式(共1小题)26.(2019•舟山)如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A在反比例函数y=n n的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移a个单位长度,对应得到△O'A'B'当这个函数图象经过△O'A'B'一边的中点时,求a的值.一十.反比例函数与一次函数的交点问题(共3小题)27.(2020•宁波)如图,经过原点O的直线与反比例函数y=n n(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=nn(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD 的面积为32,则a ﹣b 的值为 ,n n 的值为 . 28.(2019•宁波)如图,过原点的直线与反比例函数y =n n (k >0)的图象交于A ,B 两点,点A 在第一象限.点C 在x 轴正半轴上,连结AC 交反比例函数图象于点D .AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E ,连结DE .若AC =3DC ,△ADE 的面积为8,则k 的值为 .29.(2019•湖州)如图,已知在平面直角坐标系xOy 中,直线y =12x ﹣1分别交x 轴,y 轴于点A 和点B ,分别交反比例函数y 1=n n (k >0,x >0),y 2=2n n (x <0)的图象于点C 和点D ,过点C 作CE ⊥x 轴于点E ,连结OC ,OD .若△COE 的面积与△DOB 的面积相等,则k 的值是 .一十一.反比例函数的应用(共3小题)30.(2019•温州)验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表,根据表中数据,可得y 关于x 的函数表达式为( )近视眼镜的度数y (度)200 250 400 500 1000 镜片焦距x(米)0.50 0.40 0.25 0.20 0.10 A .y =100n B .y =n 100 C .y =400n D .y =n 40031.(2020•台州)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1﹣y2)与(y2﹣y3)的大小:y1﹣y2y2﹣y3.32.(2019•杭州)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.①方方能否在当天11点30分前到达B地?说明理由.参考答案与试题解析一.一次函数的图象(共2小题)1.【解答】解:由题意知,k=2>0,b=﹣1<0时,函数图象经过一、三、四象限.故选:B.2.【解答】解:A、由图可知:直线y1=ax+b,a>0,b>0.∴直线y2=bx+a经过一、二、三象限,故A正确;B、由图可知:直线y1=ax+b,a<0,b>0.∴直线y2=bx+a经过一、四、三象限,故B错误;C 、由图可知:直线y 1=ax +b ,a <0,b >0.∴直线y 2=bx +a 经过一、二、四象限,交点不对,故C 错误; D 、由图可知:直线y 1=ax +b ,a <0,b <0,∴直线y 2=bx +a 经过二、三、四象限,故D 错误.故选:A .二.一次函数的性质(共1小题)3.【解答】解:设该函数的解析式为y =kx +b ,∵函数满足当自变量x =1时,函数值y =0,当自变量x =0时,函数值y =1, ∴{n +n =0n =1 解得:{n =−1n =1, 所以函数的解析式为y =﹣x +1,故答案为:y =﹣x +1(答案不唯一).三.一次函数图象上点的坐标特征(共3小题)4.【解答】解:∵函数y =ax +a (a ≠0)的图象过点P (1,2),∴2=a +a ,解得a =1,∴y =x +1,∴直线交y 轴的正半轴于点(0,1),且过点(1,2),故选:A .5.【解答】解:∵直线y =2x +2和直线y =23x +2分别交x 轴于点A 和点B . ∴A (﹣1,0),B (﹣3,0)A 、y =x +2与x 轴的交点为(﹣2,0);故直线y =x +2与x 轴的交点在线段AB 上;B 、y =√2x +2与x 轴的交点为(−√2,0);故直线y =√2x +2与x 轴的交点在线段AB 上;C 、y =4x +2与x 轴的交点为(−12,0);故直线y =4x +2与x 轴的交点不在线段AB 上;D 、y =2√33x +2与x 轴的交点为(−√3,0);故直线y =2√33x +2与x 轴的交点在线段AB 上; 故选:C .6.【解答】解:设经过(1,4),(2,7)两点的直线解析式为y =kx +b , ∴{4=n +n 7=2n +n ∴{n =3n =1, ∴y =3x +1,将点(a ,10)代入解析式,则a =3;故选:C .四.一次函数的应用(共10小题)7.【解答】解:令150t =240(t ﹣12),解得,t =32,则150t =150×32=4800,∴点P 的坐标为(32,4800),故答案为:(32,4800).8.【解答】解:(1)设函数表达式为y =kx +b (k ≠0),把(1.6,0),(2.6,80)代入y =kx +b ,得{0=1.6n +n 80=2.6n +n , 解得:{n =80n =−128, ∴y 关于x 的函数表达式为y =80x ﹣128;由图可知200﹣80=120(千米),120÷80=1.5(小时),1.6+1.5=3.1(小时),∴x 的取值范围是1.6≤x ≤3.1.∴货车乙在遇到货车甲前,它离开出发地的路程y 关于x 的函数表达式为y =80x ﹣128(1.6≤x ≤3.1);(2)当y =200﹣80=120时,120=80x ﹣128,解得x =3.1,由图可知,甲的速度为801.6=50(千米/小时),货车甲正常到达B 地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),5﹣3.1﹣0.3=1.6(小时),设货车乙返回B 地的车速为v 千米/小时,∴1.6v ≥120,解得v ≥75.答:货车乙返回B 地的车速至少为75千米/小时.9.【解答】解:(1)C 点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h .∴游轮在“七里扬帆”停靠的时长=23﹣(420÷20)=23﹣21=2(h ).(2)①280÷20=14h ,∴点A (14,280),点B (16,280),∵36÷60=0.6(h ),23﹣0.6=22.4,∴点E (22.4,420),设BC 的解析式为s =20t +b ,把B (16,280)代入s =20t +b ,可得b =﹣40,∴s =20t ﹣40(16≤t ≤23),同理由D (14,0),E (22.4,420)可得DE 的解析式为s =50t ﹣700(14≤t ≤22.4),由题意:20t ﹣40=50t ﹣700,解得t =22,∵22﹣14=8(h ),∴货轮出发后8小时追上游轮.①相遇之前相距12km 时,20t ﹣40﹣(50t ﹣700)=12,解得t =21.6.相遇之后相距12km 时,50t ﹣700﹣(20t ﹣40)=12,解得t =22.4,当游轮在刚离开杭州12km 时,此时根据图象可知货轮就在杭州,游轮距离杭州12km ,所以此时两船应该也是想距12km ,即在0.6h 的时候,两船也相距12km∴0.6h 或21.6h 或22.4h 时游轮与货轮相距12km .10.【解答】解:(1)观察图象可知:x =7,y =2.75这组数据错误.(2)设y =kx +b ,把x =1,y =0.75,x =2,y =1代入可得{n +n =0.752n +n =1, 解得{n =14n =12, ∴y =14x +12, 当x =16时,y =4.5,答:秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤.11.【解答】解:(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(℃),∴13.2﹣1.2=12(℃),∴高度为5百米时的气温大约是12℃;(2)设T 关于h 的函数表达式为T =kh +b ,则:{3n +n =13.25n +n =12, 解得{n =−0.6n =15, ∴T 关于h 的函数表达式为T =﹣0.6h +15(h >0);(3)当T =6时,6=﹣0.6h +15,解得h =15.∴该山峰的高度大约为15百米,即1500米.12.【解答】解:(1)设3月份购进x 件T 恤衫,18000n +10=390002n ,解得,x =150,经检验,x =150是原分式方程的解,则2x =300,答:4月份进了这批T 恤衫300件;(2)①每件T 恤衫的进价为:39000÷300=130(元),(180﹣130)a +(180×0.8﹣130)(150﹣a )=(180﹣130)a +(180×0.9﹣130)b +(180×0.7﹣130)(150﹣a ﹣b )化简,得b =150−n 2; ①设乙店的利润为w 元,w =(180﹣130)a +(180×0.9﹣130)b +(180×0.7﹣130)(150﹣a ﹣b )=54a +36b ﹣600=54a +36×150−n 2−600=36a +2100, ∵乙店按标价售出的数量不超过九折售出的数量, ∴a ≤b , 即a ≤150−n 2,解得,a ≤50,∴当a =50时,w 取得最大值,此时w =3900,答:乙店利润的最大值是3900元.13.【解答】解:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米. 1千瓦时的电量汽车能行驶的路程为:15060−35=6千米;(2)设y =kx +b (k ≠0),把点(150,35),(200,10)代入,得{150n +n =35200n +n =10, ∴{n =−0.5n =110, ∴y =﹣0.5x +110,当x =180时,y =﹣0.5×180+110=20,答:当150≤x ≤200时,函数表达式为y =﹣0.5x +110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.14.【解答】解:(1)设y 关于x 的函数解析式是y =kx +b ,{n =615n +n =3,解得,{n =−15n =6, 即y 关于x 的函数解析式是y =−15x +6;(2)当h =0时,0=−310x +6,得x =20, 当y =0时,0=−15x +6,得x =30,∵20<30,∴甲先到达地面.15.【解答】解:(1)由题意得,可设函数表达式为:y =kx +b (k ≠0), 把(20,0),(38,2700)代入y =kx +b ,得{0=20n +n 2700=38n +n ,解得{n =150n =−3000, ∴第一班车离入口处的路程y (米)与时间x (分)的函数表达为y =150x ﹣3000(20≤x ≤38);(2)把y =1500代入y =150x ﹣3000,解得x =30,30﹣20=10(分),∴第一班车从入口处到达塔林所需时间10分钟;(3)设小聪坐上了第n 班车,则30﹣25+10(n ﹣1)≥40,解得n ≥4.5,∴小聪坐上了第5班车,等车的时间为5分钟,坐班车所需时间为:1200÷150=8(分),步行所需时间:1200÷(1500÷25)=20(分),20﹣(8+5)=7(分),∴比他在塔林游玩结束后立即步行到草甸提早了7分钟.16.【解答】解:(1)由图可得,甲步行的速度为:2400÷30=80(米/分),乙出发时甲离开小区的路程是10×80=800(米),答:甲步行的速度是80米/分,乙出发时甲离开小区的路程是800米;(2)设直线OA 的解析式为y =kx ,30k =2400,得k =80,∴直线OA 的解析式为y =80x ,当x =18时,y =80×18=1440,则乙骑自行车的速度为:1440÷(18﹣10)=180(米/分),∵乙骑自行车的时间为:25﹣10=15(分钟),∴乙骑自行车的路程为:180×15=2700(米),当x =25时,甲走过的路程为:80×25=2000(米),∴乙到达还车点时,甲乙两人之间的距离为:2700﹣2000=700(米),答:乙骑自行车的速度是180米/分,乙到达还车点时甲、乙两人之间的距离是700米;(3)乙步行的速度为:80﹣5=75(米/分),乙到达学校用的时间为:25+(2700﹣2400)÷75=29(分),当25≤x ≤30时s 关于x 的函数的大致图象如右图所示.五.一次函数综合题(共2小题)17.【解答】解:(1)令y =0,则−12x +4=0,∴x =8,∴B (8,0),∵C (0,4),∴OC =4,OB =8,在Rt △BOC 中,BC =√82+42=4√5,又∵E 为BC 中点,∴OE =12BC =2√5; (2)如图1,作EM ⊥OC 于M ,则EM ∥CD ,∵E 是BC 的中点∴M 是OC 的中点∴EM =12OB =4,OE =12BC =2√5∵∠CDN =∠NEM ,∠CND =∠MNE∴△CDN ∽△MEN ,∴nn nn =nn nn =1,∴CN =MN =1,∴EN =√12+42=√17,∵S △ONE =12EN •OF =12ON •EM ,∴OF =3×4√17=1217√17,由勾股定理得:EF =√nn 2−nn 2=(2√5)2−(121717)2=1417√17,∴tan ∠EOF =nn nn =14√171712√1717=76, ∴nn =17×76=16, ∵n =−12m +4, ∴m =6,n =1,∴Q 2(6,1);(3)①∵动点P 、Q 同时作匀速直线运动,∴s 关于t 成一次函数关系,设s =kt +b ,∵当点P 运动到AO 中点时,点Q 恰好与点C 重合,∴t =2时,CD =4,DQ 3=2, ∴s =Q 3C =√22+42=2√5,∵Q 3(﹣4,6),Q 2(6,1),∴t =4时,s =√(6+4)2+(6−1)2=5√5,将{n =2n =2√5和{n =4n =5√5代入得{2n +n =2√54n +n =5√5,解得:{n =32√5n =−√5, ∴s =3√52n −√5,∵s ≥0,t ≥0,且32√5>0, ∴s 随t 的增大而增大, 当s ≥0时,3√52n −√5≥0,即t ≥23,当t =23时,Q 3与Q 重合,∵点Q 在线段Q 2Q 3上,综上,s 关于t 的函数表达式为:s =3√52n −√5(23≤t ≤4); ①(i )当PQ ∥OE 时,如图2,∠QPB =∠EOB =∠OBE ,作QH ⊥x 轴于点H ,则PH =BH =12PB , Rt △ABQ 3中,AQ 3=6,AB =4+8=12,∴BQ 3=√62+122=6√5, ∵BQ =6√5−s =6√5−3√52t +√5=7√5−3√52t ,∵cos ∠QBH =nn nn 3=nn nn =1265=25√5,∴BH =14﹣3t ,∴PB =28﹣6t , ∴t +28﹣6t =12,t =165;(ii )当PQ ∥OF 时,如图3,过点Q 作QG ⊥AQ 3于点G ,过点P 作PH ⊥GQ 于点H ,由△Q 3QG ∽△CBO 得:Q 3G :QG :Q 3Q =1:2:√5,∵Q 3Q =s =3√52t −√5,∴Q 3G =32t ﹣1,GQ =3t ﹣2, ∴PH =AG =AQ 3﹣Q 3G =6﹣(32t ﹣1)=7−32t ,∴QH =QG ﹣AP =3t ﹣2﹣t =2t ﹣2,∵∠HPQ =∠CDN ,∴tan ∠HPQ =tan ∠CDN =14,∴2t ﹣2=14(7−32n ),t =3019, (iii )由图形可知PQ 不可能与EF 平行,综上,当PQ 与△OEF 的一边平行时,AP 的长为165或3019. 18.【解答】解:(1)x =13(﹣1+7)=2,y =13(5+7)=4, 故点C 是点A 、B 的融合点;(2)①由题意得:x =13(t +3),y =13(2t +3),则t =3x ﹣3,则y =13(6x ﹣6+3)=2x ﹣1;①当∠DHT =90°时,如图1所示,点E (t ,2t +3),则T (t ,2t ﹣1),则点D (3,0),由点T 是点D ,E 的融合点得:t =n +33,2t ﹣1=2n +33, 解得:t =32,即点E (32,6);当∠TDH =90°时,如图2所示,则点T (3,5),由点T 是点D ,E 的融合点得:点E (6,15);当∠HTD =90°时,如图3所示,过点T 作x 轴的平行线交过点D 与y 轴平行的直线于点M ,交过点E 与y 轴的平行线于点N ,则∠MDT =∠NTE ,则tan ∠MDT =tan ∠NTE ,D (3,0),点E (t ,2t +3),则点T (n +33,2n +33)则MT =3−n +33=6−n 3,MD =2n +33,NE =2n +33−2t ﹣3=−2(2n +3)3,NT =n +33−t =3−2n 3, 由tan ∠MDT =tan ∠NTE得:6−n 32n +33=2(2n +3)33−2n 3, 解得:方程无解,故∠HTD 不可能为90°. 故点E (32,6)或(6,15). 六.反比例函数的性质(共1小题)19.【解答】解:(1)∵k >0,2≤x ≤3,∴y 1随x 的增大而减小,y 2随x 的增大而增大,∴当x =2时,y 1最大值为n 2=n ,①;当x =2时,y 2最小值为−n 2=a ﹣4,①; 由①,①得:a =2,k =4;(2)圆圆的说法不正确,理由如下:设m =m 0,且﹣1<m 0<0,则m 0<0,m 0+1>0,∴当x =m 0时,p =y 1=n n 0<0, 当x =m 0+1时,q =y 1=n n 0+1>0, ∴p <0<q ,∴圆圆的说法不正确.七.反比例函数系数k 的几何意义(共3小题)20.【解答】解:∵CD =DE =OE ,∴可以假设CD =DE =OE =a ,则P (n 3n ,3a ),Q (n 2n ,2a ),R (n n ,a ), ∴CP =n 3n ,DQ =n 2n ,ER =n n ,∴OG =AG ,OF =2FG ,OF =23GA , ∴S 1=23S 3=2S 2, ∵S 1+S 3=27,∴S 3=815,S 1=545,S 2=275, 故答案为275.21.【解答】解:连接OD ,过C 作CE ∥AB ,交x 轴于E , ∵∠ABO =90°,反比例函数y =n n (x >0)的图象经过OA 的中点C ,∴S △COE =S △BOD =12n ,S △ACD =S △OCD =2,∵CE ∥AB ,∴△OCE ∽△OAB ,∴n △nnnn △nnn=14, ∴4S △OCE =S △OAB ,∴4×12k =2+2+12k ,∴k =83, 故答案为:83.22.【解答】解:连接OC ,BD ,∵将△AOD 沿y 轴翻折,使点A 落在x 轴上的点E 处,∴OA =OE ,∵点B 恰好为OE 的中点,∴OE =2OB ,∴OA =2OB ,设OB =BE =x ,则OA =2x ,∴AB =3x ,∵四边形ABCD 是平行四边形,∴CD =AB =3x ,∵CD ∥AB ,∴△CDF ∽△BEF ,∴nn nn =nn nn =n 3n =13, ∵S △BEF =1,∴S △BDF =3,S △CDF =9,∴S △BCD =12,∴S △CDO =S △BDC =12,∴k 的值=2S △CDO =24.八.反比例函数图象上点的坐标特征(共3小题)23.【解答】解:∵k >0,∴函数y =n n (k >0)的图象分布在第一、三象限,在每一象限,y 随x 的增大而减小, ∵﹣2<0<2<3,∴b >c >0,a <0,∴a <c <b .故选:C .24.【解答】解:过点M 作MN ⊥AD ,垂足为N ,则MN =CD =3, 在Rt △FMN 中,∠MFN =30°,∴FN =√3MN =3√3,∴AN =MB =8√3−3√3=5√3,设OA =x ,则OB =x +3,∴F (x ,8√3),M (x +3,5√3),又∵点F 、M 都在反比例函数的图象上,∴8√3x =(x +3)×5√3,解得,x =5,∴F (5,8√3),∴k =5×8√3=40√3.故答案为:40√3.25.【解答】解:∵D (5,3),∴A (n 3,3),C (5,n 5),∴B (n 3,n 5),设直线BD 的解析式为y =mx +n ,把D (5,3),B (n 3,n 5)代入得{5n +n =3n 3n +n =n 5,解得{n =35n =0, ∴直线BD 的解析式为y =35x . 故答案为y =35x .九.待定系数法求反比例函数解析式(共1小题)26.【解答】解:(1)过点A 作AC ⊥OB 于点C ,∵△OAB 是等边三角形,∴∠AOB =60°,OC =12OB ,∵B (4,0),∴OB =OA =4,∴OC =2,AC =2√3. 把点A (2,2√3)代入y =n n ,得k =4√3.∴反比例函数的解析式为y =4√3n ;(2)分两种情况讨论:①点D 是A ′B ′的中点,过点D 作DE ⊥x 轴于点E . 由题意得A ′B ′=4,∠A ′B ′E =60°,在Rt △DEB ′中,B ′D =2,DE =√3,B ′E =1.∴O ′E =3,把y =√3代入y =4√3n ,得x =4,∴OE =4,∴a =OO ′=1;①如图3,点F 是A ′O ′的中点,过点F 作FH ⊥x 轴于点H . 由题意得A ′O ′=4,∠A ′O ′B ′=60°,在Rt △FO ′H 中,FH =√3,O ′H =1.把y =√3代入y =4√3n ,得x =4,∴OH =4,∴a =OO ′=3,综上所述,a 的值为1或3.一十.反比例函数与一次函数的交点问题(共3小题)27.【解答】解:如图,连接AC ,OE ,OC ,OB ,延长AB 交DC 的延长线于T ,设AB 交x 轴于K .由题意A ,D 关于原点对称,∴A ,D 的纵坐标的绝对值相等,∵AE ∥CD ,∴E ,C 的纵坐标的绝对值相等,∵E ,C 在反比例函数y =n n 的图象上,∴E ,C 关于原点对称,∴E ,O ,C 共线,∵OE =OC ,OA =OD ,∴四边形ACDE 是平行四边形,∴S △ADE =S △ADC =S 五边形ABCDE ﹣S 四边形ABCD =56﹣32=24,∴S △AOE =S △DEO =12,∴12a −12b =12,∴a ﹣b =24,∵S △AOC =S △AOB =12,∴BC ∥AD ,∴nn nn =nn nn ,∵S △ACB =32﹣24=8,∴S △ADC :S △ABC =24:8=3:1,∴BC :AD =1:3,∴TB :TA =1:3,设BT =m ,则AT =3m ,AK =TK =1.5m ,BK =0.5m ,∴AK :BK =3:1,∴n △nnn n △nnn =12n −12n =3, ∴n n =−3,即n n =−13, 故答案为24,−13. 28.【解答】解:连接OE ,CE ,过点A 作AF ⊥x 轴,过点D 作DH ⊥x 轴,过点D 作DG ⊥AF , ∵过原点的直线与反比例函数y =n n (k >0)的图象交于A ,B 两点,∴A 与B 关于原点对称,∴O 是AB 的中点,∵BE ⊥AE ,∴OE =OA ,∴∠OAE =∠AEO ,∵AE 为∠BAC 的平分线,∴∠DAE =∠AEO ,∴AD ∥OE ,∴S △ACE =S △AOC ,∵AC =3DC ,△ADE 的面积为8,∴S △ACE =S △AOC =12,设点A (m ,n n ),∵AC =3DC ,DH ∥AF ,∴3DH =AF ,∴D (3m ,n 3n ),∵CH ∥GD ,AG ∥DH ,∴△DHC ∽△AGD ,∴S △HDC =14S △ADG ,∵S △AOC =S △AOF +S梯形AFHD +S △HDC =12k +12×(DH +AF )×FH +S △HDC =12k +12×4n 3n ×2m +12×14×2n 3n ×2n =12k +4n 3+n 6=12,∴2k =12,∴k =6;故答案为6;(另解)连结OE ,由题意可知OE ∥AC ,∴S △OAD =S △EAD =8,易知△OAD 的面积=梯形AFHD 的面积,设A 的纵坐标为3a ,则D 的纵坐标为a ,∴(3a +a )(n n −n 3n )=16,解得k =6.29.【解答】解:令x =0,得y =12x ﹣1=﹣1, ∴B (0,﹣1),∴OB =1,把y =12x ﹣1代入y 2=2n n (x <0)中得,12x ﹣1=2n n (x <0), 解得,x =1−√4n +1,∴n n =1−√4n +1, ∴n △nnn =12nn ⋅|n n |=12√4n +1−12, ∵CE ⊥x 轴, ∴n △nnn =12n ,∵△COE 的面积与△DOB 的面积相等,∴12√4n +1−12=12n ,∴k =2,或k =0(舍去).经检验,k =2是原方程的解.故答案为:2.一十一.反比例函数的应用(共3小题)30.【解答】解:由表格中数据可得:xy =100,故y 关于x 的函数表达式为:y =100n . 故选:A .31.【解答】解:(1)设y 与x 之间的函数关系式为:y =n n (k ≠0,x >0), 把(3,400)代入y =n n 得,400=n 3, 解得:k =1200, ∴y 与x 之间的函数关系式为y =1200n (x >0); (2)把x =6,8,10分别代入y =1200n 得,y 1=12006=200,y 2=12008=150,y 3=120010=120, ∵y 1﹣y 2=200﹣150=50,y 2﹣y 3=150﹣120=30,∵50>30,∴y 1﹣y 2>y 2﹣y 3,故答案为:>.32.【解答】解:(1)∵vt =480,且全程速度限定为不超过120千米/小时, ∴v 关于t 的函数表达式为:v =480n ,(t ≥4). (2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时 将t =6代入v =480n 得v =80;将t =245代入v =480n 得v =100. ∴小汽车行驶速度v 的范围为:80≤v ≤100.①方方不能在当天11点30分前到达B 地.理由如下:8点至11点30分时间长为72小时,将t =72代入v =480n 得v =9607>120千米/小时,超速了. 故方方不能在当天11点30分前到达B 地.。
一、选择题1. (四川省自贡市,8,4分)小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这-过程的是 ·································· ( )【答案】C2. (四川省巴中市,7,3分)小张的爷爷每天见识体育锻炼,星期天爷爷从家里跑步到公园,打了一会儿太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y (米)与时间(分钟)之间关系的大致图象是( )【答案】 B .3. (重庆B 卷,11,4分)某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y (公里)和所用时间x (分)之间的函数关系.下列说法中错误的是 A .小强从家到公共汽车站步行了2公里 B .小强在公共汽车站等小明用了10分钟 C .公共汽车的平均速度是30公里/小时 D .小强乘公共汽车用了20分钟 【答案】D【解析】从图中可以看出:图象的第一段表示小强步行到车站,用时20分钟,步行了2公里;第二段表示小强在车站等小明,用时30-20=10分钟,此段时间行程为0;第三段表示两个一起乘公共汽车到学校,用时60-30=30分钟=0.5小时,此段时间的行程为17-2=15公里,所以公共汽车的平均速度为30公里/小时.故选D.4. (山东省聊城市,11,3分)小亮家与姥姥家相距24千米,小亮8:00从家出发,骑自行车去姥姥家,妈妈8:30从家出发,乘车沿相同路线去姥姥家,在同一直角坐标系中,小亮和妈妈的行进路程S (km )与北京时间t (时)的函数图象如图所示,根据图象得到下列结论,其中错误的是( ) A.小亮骑自行车的速度是12km/hB.妈妈比小亮提前0.5小时到达姥姥家11题图(分)ABCDC.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮【答案】D【解析】妈妈追上小亮反映在图象上就是两人行进的路程与时间关系的函数图象的交点,由图象可知交点在时间为9时,所以妈妈在9点时追上小亮。
湖南省衡阳市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.一次函数的应用(共2小题)1.(2022•衡阳)冰墩墩(BingDwenDwen)、雪容融(ShueyRhonRhon)分别是2022年北京冬奥会、冬残奥会的吉祥物.冬奥会来临之际,冰墩墩、雪容融玩偶畅销全国.小雅在某网店选中两种玩偶.决定从该网店进货并销售.第一次小雅用1400元购进了冰墩墩玩偶15个和雪容融玩偶5个,已知购进1个冰墩墩玩偶和1个雪容融玩偶共需136元,销售时每个冰墩墩玩偶可获利28元,每个雪容融玩偶可获利20元.(1)求两种玩偶的进货价分别是多少?(2)第二次小雅进货时,网店规定冰墩墩玩偶进货数量不得超过雪容融玩偶进货数量的1.5倍.小雅计划购进两种玩偶共40个,应如何设计进货方案才能获得最大利润,最大利润是多少元?2.(2021•衡阳)如图是一种单肩包,其背带由双层部分、单层部分和调节扣构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度,可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽略不计)加长或缩短,设双层部分的长度为xcm,单层部分的长度为ycm.经测量,得到表中数据.双层部分长度x(cm)281420单层部分长度y(cm)148136124112(1)根据表中数据规律,求出y与x的函数关系式;(2)按小文的身高和习惯,背带的长度调为130cm时为最佳背带长.请计算此时双层部分的长度;(3)设背带长度为Lcm,求L的取值范围.二.一次函数综合题(共1小题)3.(2021•衡阳)如图,△OAB的顶点坐标分别为O(0,0),A(3,4),B(6,0),动点P、Q同时从点O出发,分别沿x轴正方向和y轴正方向运动,速度分别为每秒3个单位和每秒2个单位,点P到达点B时点P、Q同时停止运动.过点Q作MN∥OB分别交AO、AB于点M、N,连接PM、PN.设运动时间为t(秒).(1)求点M的坐标(用含t的式子表示);(2)求四边形MNBP面积的最大值或最小值;(3)是否存在这样的直线l,总能平分四边形MNBP的面积?如果存在,请求出直线l 的解析式;如果不存在,请说明理由;(4)连接AP,当∠OAP=∠BPN时,求点N到OA的距离.三.反比例函数综合题(共1小题)4.(2022•衡阳)如图,反比例函数y=的图象与一次函数y=kx+b的图象相交于A(3,1),B(﹣1,n)两点.(1)求反比例函数和一次函数的关系式;(2)设直线AB交y轴于点C,点M,N分别在反比例函数和一次函数图象上,若四边形OCNM是平行四边形,求点M的坐标.四.二次函数综合题(共3小题)5.(2023•衡阳)如图,已知抛物线y=ax2﹣2ax+3与x轴交于点A(﹣1,0)和点B,与y 轴交于点C,连接AC,过B、C两点作直线.(1)求a的值.(2)将直线BC向下平移m(m>0)个单位长度,交抛物线于B′、C′两点.在直线B ′C′上方的抛物线上是否存在定点D,无论m取何值时,都是点D到直线B′C′的距离最大.若存在,请求出点D的坐标;若不存在,请说明理由.(3)抛物线上是否存在点P,使∠PBC+∠ACO=45°,若存在,请求出直线BP的解析式;若不存在,请说明理由.6.(2021•衡阳)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如(1,1),(2021,2021)…都是“雁点”.(1)求函数y=图象上的“雁点”坐标;(2)若抛物线y=ax2+5x+c上有且只有一个“雁点”E,该抛物线与x轴交于M、N两点(点M在点N的左侧).当a>1时.①求c的取值范围;②求∠EMN的度数;(3)如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左侧),P是抛物线y=﹣x2+2x+3上一点,连接BP,以点P为直角顶点,构造等腰Rt△BPC,是否存在点P,使点C恰好为“雁点”?若存在,求出点P的坐标;若不存在,请说明理由.7.(2022•衡阳)如图,已知抛物线y=x2﹣x﹣2交x轴于A、B两点,将该抛物线位于x轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C.(1)写出图象W位于线段AB上方部分对应的函数关系式;(2)若直线y=﹣x+b与图象W有三个交点,请结合图象,直接写出b的值;(3)P为x轴正半轴上一动点,过点P作PM∥y轴交直线BC于点M,交图象W于点N,是否存在这样的点P,使△CMN与△OBC相似?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由.五.四边形综合题(共2小题)8.(2023•衡阳)[问题探究](1)如图1,在正方形ABCD中,对角线AC、BD相交于点O.在线段AO上任取一点P(端点除外),连接PD、PB.①求证:PD=PB;②将线段DP绕点P逆时针旋转,使点D落在BA的延长线上的点Q处.当点P在线段AO上的位置发生变化时,∠DPQ的大小是否发生变化?请说明理由;③探究AQ与OP的数量关系,并说明理由.[迁移探究](2)如图2,将正方形ABCD换成菱形ABCD,且∠ABC=60°,其他条件不变.试探究AQ与CP的数量关系,并说明理由.9.(2022•衡阳)如图,在菱形ABCD中,AB=4,∠BAD=60°,点P从点A出发,沿线段AD以每秒1个单位长度的速度向终点D运动,过点P作PQ⊥AB于点Q,作PM⊥AD 交直线AB于点M,交直线BC于点F,设△PQM与菱形ABCD重叠部分图形的面积为S (平方单位),点P运动时间为t(秒).(1)当点M与点B重合时,求t的值;(2)当t为何值时,△APQ与△BMF全等;(3)求S与t的函数关系式;(4)以线段PQ为边,在PQ右侧作等边三角形PQE,当2≤t≤4时,求点E运动路径的长.六.圆周角定理(共1小题)10.(2023•衡阳)如图,AB是⊙O的直径,AC是一条弦,D是弧AC的中点,DE⊥AB于点E,交AC于点F,交⊙O于点H,DB交AC于点G.(1)求证:AF=DF.(2)若AF=,sin∠ABD=,求⊙O的半径.七.切线的判定与性质(共1小题)11.(2022•衡阳)如图,AB为⊙O的直径,过圆上一点D作⊙O的切线CD交BA的延长线于点C,过点O作OE∥AD交CD于点E,连接BE.(1)直线BE与⊙O相切吗?并说明理由;(2)若CA=2,CD=4,求DE的长.八.旋转的性质(共1小题)12.(2021•衡阳)如图,点E为正方形ABCD外一点,∠AEB=90°,将Rt△ABE绕A点逆时针方向旋转90°得到△ADF,DF的延长线交BE于H点.(1)试判定四边形AFHE的形状,并说明理由;(2)已知BH=7,BC=13,求DH的长.九.解直角三角形的应用-仰角俯角问题(共1小题)13.(2023•衡阳)随着科技的发展,无人机已广泛应用于生产生活,如代替人们在高空测量距离和高度,圆圆要测量教学楼AB的高度,借助无人机设计了如下测量方案:如图,圆圆在离教学楼底部24米的C处,遥控无人机旋停在点C的正上方的点D处,测得教学楼AB的顶部B处的俯角为30°,CD长为49.6米.已知目高CE为1.6米.(1)求教学楼AB的高度.(2)若无人机保持现有高度沿平行于CA的方向,以4米/秒的速度继续向前匀速飞行.求经过多少秒时,无人机刚好离开圆圆的视线EB.一十.列表法与树状图法(共1小题)14.(2022•衡阳)为落实“双减提质”,进一步深化“数学提升工程”,提升学生数学核心素养,某学校拟开展“双减”背景下的初中数学活动型作业成果展示现场会,为了解学生最喜爱的项目,现随机抽取若干名学生进行调查,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题:(1)参与此次抽样调查的学生人数是 人,补全统计图①(要求在条形图上方注明人数);(2)图②中扇形C的圆心角度数为 度;(3)若参加成果展示活动的学生共有1200人,估计其中最喜爱“测量”项目的学生人数是多少;(4)计划在A,B,C,D,E五项活动中随机选取两项作为直播项目,请用列表或画树状图的方法,求恰好选中B,E这两项活动的概率.湖南省衡阳市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.一次函数的应用(共2小题)1.(2022•衡阳)冰墩墩(BingDwenDwen)、雪容融(ShueyRhonRhon)分别是2022年北京冬奥会、冬残奥会的吉祥物.冬奥会来临之际,冰墩墩、雪容融玩偶畅销全国.小雅在某网店选中两种玩偶.决定从该网店进货并销售.第一次小雅用1400元购进了冰墩墩玩偶15个和雪容融玩偶5个,已知购进1个冰墩墩玩偶和1个雪容融玩偶共需136元,销售时每个冰墩墩玩偶可获利28元,每个雪容融玩偶可获利20元.(1)求两种玩偶的进货价分别是多少?(2)第二次小雅进货时,网店规定冰墩墩玩偶进货数量不得超过雪容融玩偶进货数量的1.5倍.小雅计划购进两种玩偶共40个,应如何设计进货方案才能获得最大利润,最大利润是多少元?【答案】(1)冰墩墩的进价为72元/个,雪容融的进价为64元/个;(2)冰墩墩购进24个,雪容融购进16个时才能获得最大利润,最大利润是992元.【解答】解:(1)设冰墩墩的进价为x元/个,雪容融的进价为y元/个,由题意可得:,解得,答:冰墩墩的进价为72元/个,雪容融的进价为64元/个;(2)设冰墩墩购进a个,则雪容融购进(40﹣a)个,利润为w元,由题意可得:w=28a+20(40﹣a)=8a+800,∴w随a的增大而增大,∵网店规定冰墩墩玩偶进货数量不得超过雪容融玩偶进货数量的1.5倍,∴a≤1.5(40﹣a),解得a≤24,∴当a=24时,w取得最大值,此时w=992,40﹣a=16,答:冰墩墩购进24个,雪容融购进16个时才能获得最大利润,最大利润是992元.2.(2021•衡阳)如图是一种单肩包,其背带由双层部分、单层部分和调节扣构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度,可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽略不计)加长或缩短,设双层部分的长度为xcm,单层部分的长度为ycm.经测量,得到表中数据.双层部分长度x(cm)281420单层部分长度y(cm)148136124112(1)根据表中数据规律,求出y与x的函数关系式;(2)按小文的身高和习惯,背带的长度调为130cm时为最佳背带长.请计算此时双层部分的长度;(3)设背带长度为Lcm,求L的取值范围.【答案】(1)y=﹣2x+152;(2)22cm;(3)76≤L≤152.【解答】解:(1)由表格数据规律可知y与x的函数关系为一次函数,设y与x的函数关系式为y=kx+b(k≠0),由题知,解得,∴y与x的函数关系式为y=﹣2x+152;(2)根据题意知,解得,∴双层部分的长度为22cm;(3)由题知,当x=0时,y=152,当y=0时,x=76,∴76≤L≤152.二.一次函数综合题(共1小题)3.(2021•衡阳)如图,△OAB的顶点坐标分别为O(0,0),A(3,4),B(6,0),动点P、Q同时从点O出发,分别沿x轴正方向和y轴正方向运动,速度分别为每秒3个单位和每秒2个单位,点P到达点B时点P、Q同时停止运动.过点Q作MN∥OB分别交AO、AB于点M、N,连接PM、PN.设运动时间为t(秒).(1)求点M的坐标(用含t的式子表示);(2)求四边形MNBP面积的最大值或最小值;(3)是否存在这样的直线l,总能平分四边形MNBP的面积?如果存在,请求出直线l 的解析式;如果不存在,请说明理由;(4)连接AP,当∠OAP=∠BPN时,求点N到OA的距离.【答案】(1)M的坐标是:;(2)四边形MNBP的最大面积为6;(3)存在,直线l的解析式为y=;(4)点N到OA的距离为或.【解答】解:(1)过点A作x轴的垂线,交MN于点E,交OB于点F,由题意得:OQ=2t,OP=3t,PB=6﹣3t,∵O(0,0),A(3,4),B(6,0),∴OF=FB=3,AF=4,OA=AB=,∵MN∥OB,∴∠OQM=∠OFA,∠OMQ=∠AOF,∴△OQM∽△AFO,∴,∴,∴QM=,∴点M的坐标是().(2)∵MN∥OB,∴四边形QEFO是矩形,∴QE=OF,∴ME=OF﹣QM=3﹣,∵OA=AB,∴ME=NE,∴MN=2ME=6﹣3t,∴S四边形MNBP=S△MNP+S△BNP=MN•OQ+•BP•OQ==﹣6t2+12t=﹣6(t﹣1)2+6,∵点P到达点B时,P、Q同时停止,∴0<t<2,∴t=1时,四边形MNBP的最大面积为6,四边形MNBP面积不存在最小值.(3)∵MN=6﹣3t,BP=6﹣3t,∴MN=BP,∵MN∥BP,∴四边形MNBP是平行四边形,∴平分四边形MNBP面积的直线经过四边形的中心,即MB的中点,设中点为H(x,y),∵M(),B(6,0),∴x==,y=.∴x=,化简得:y=,∴直线l的解析式为:y=.(4)①当t=0时,点M和点P均在点O处,∠BPN=∠OAP=0°,此时点N在点B处,∴点N到OA的距离为△OAB边OA上的高,记为h,∵S△OAB=OB•AF=OA•h,∴×6×4=×5h,∴点N到OA的距离为:h=;②当0<t<2时,∵OQ=2t,QM=t,∴OM=t,∵MN∥OB,∴,∴OM=BN=t,∵OA=AB,∴∠AOB=∠PBN,又∵∠OAP=∠BPN,∴△AOP∽△PBN,∴,∴,解得:t1=,t2=0(舍去).∵MN=6﹣3t,AE=AF﹣OQ,ME=3﹣,∴MN=6﹣3×,AE=,ME=,∴AM=.设点N到OA的距离为h,∵S△AMN=MN•AE=AM•h,∴,解得:h=;③当t=2时,不符合题意;综上所述:点N到OA的距离为或.三.反比例函数综合题(共1小题)4.(2022•衡阳)如图,反比例函数y=的图象与一次函数y=kx+b的图象相交于A(3,1),B(﹣1,n)两点.(1)求反比例函数和一次函数的关系式;(2)设直线AB交y轴于点C,点M,N分别在反比例函数和一次函数图象上,若四边形OCNM是平行四边形,求点M的坐标.【答案】(1)反比例函数关系式为y=,一次函数的关系式为y=x﹣2;(2)M的坐标是(,)或(﹣,﹣).【解答】解:(1)把A(3,1)代入y=得:1=,∴m=3,∴反比例函数关系式为y=;把B(﹣1,n)代入y=得:n==﹣3,∴B(﹣1,﹣3),将A(3,1),B(﹣1,﹣3)代入y=kx+b得:,解得,∴一次函数的关系式为y=x﹣2;答:反比例函数关系式为y=,一次函数的关系式为y=x﹣2;(2)在y=x﹣2中,令x=0得y=﹣2,∴C(0,﹣2),设M(m,),N(n,n﹣2),而O(0,0),∵四边形OCNM是平行四边形,∴CM、ON为对角线,它们的中点重合,,解得或,∴M(,)或(﹣,﹣);四.二次函数综合题(共3小题)5.(2023•衡阳)如图,已知抛物线y=ax2﹣2ax+3与x轴交于点A(﹣1,0)和点B,与y 轴交于点C,连接AC,过B、C两点作直线.(1)求a的值.(2)将直线BC向下平移m(m>0)个单位长度,交抛物线于B′、C′两点.在直线B ′C′上方的抛物线上是否存在定点D,无论m取何值时,都是点D到直线B′C′的距离最大.若存在,请求出点D的坐标;若不存在,请说明理由.(3)抛物线上是否存在点P,使∠PBC+∠ACO=45°,若存在,请求出直线BP的解析式;若不存在,请说明理由.【答案】(1)a=﹣1.(2)存在,D(,).(3)抛物线上存在点P,使∠PBC+∠ACO=45°,直线BP的解析式为y=﹣x+1或y =﹣3x+9..【解答】解:(1)∵抛物线y=ax2﹣2ax+3与x轴交于点A(﹣1,0),∴a+2a+3=0,∴a=﹣1.(2)存在定点D,无论m取何值时,都是点D到直线B′C′的距离最大.∵y=﹣x2+2x+3,当x=0时,y=3,∴C(0,3),当y=0时,﹣x2+2x+3=0,解得:x1=﹣1,x2=3,∴B(3,0),设直线BC的解析式为y=kx+b,则,解得:,∴直线BC的解析式为y=﹣x+3,∵将直线BC向下平移m(m>0)个单位长度,交抛物线于B′、C′两点,∴直线B′C′的解析式为y=﹣x+3﹣m,设D(t,﹣t2+2t+3),过点D作DE∥y轴,交B′C′于点E,作DF⊥B′C′于点F,设直线B′C′交y轴于点G,如图,∴E(t,﹣t+3﹣m),∴DE=﹣t2+2t+3﹣(﹣t+3﹣m)=﹣t2+3t+m,∵OB=OC=3,∠BOC=90°,∴∠BCO=∠CBO=45°,∵B′C′∥BC,∴∠B′GO=∠BCO=45°,∵DE∥y轴,∴∠DEF=∠B′GO=45°,∵∠DFE=90°,∴△DEF是等腰直角三角形,∴DF=DE=(﹣t2+3t+m)=﹣(t﹣)2+(+m),∵﹣<0,∴当t=时,DF取得最大值(+m),此时点D的坐标为(,).(3)存在.当∠PBC在BC的下方时,在y轴正半轴上取点M(0,1),连接BM交抛物线于点P,如图,∵A(﹣1,0),B(3,0),C(0,3),M(0,1),∴OB=OC=3,OM=OA=1,∠BOM=∠COA=90°,∴△BOM≌△COA(SAS),∴∠MBO=∠ACO,∵∠CBO=45°,∴∠CBP+∠MBO=45°,∴∠CBP+∠ACO=45°,设直线BM的解析式为y=k′x+b′,则,解得:,∴直线BM的解析式为y=﹣x+1,联立,得,解得:(舍去),,∴P(﹣,);当∠PBC在BC的上方时,作点M关于直线BC的对称点M′,如图,连接MM′,CM ′,直线BM′交抛物线于P,由对称得:MM′⊥BC,CM′=CM=2,∠BCM′=∠BCM=45°,∴∠MCM′=90°,∴M′(2,3),则直线BM′的解析式为y=﹣3x+9,联立,得:,解得:(舍去),,∴P(2,3);综上所述,抛物线上存在点P,使∠PBC+∠ACO=45°,直线BP的解析式为y=﹣x+1或y=﹣3x+9.6.(2021•衡阳)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如(1,1),(2021,2021)…都是“雁点”.(1)求函数y=图象上的“雁点”坐标;(2)若抛物线y=ax2+5x+c上有且只有一个“雁点”E,该抛物线与x轴交于M、N两点(点M在点N的左侧).当a>1时.①求c的取值范围;②求∠EMN的度数;(3)如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左侧),P是抛物线y=﹣x2+2x+3上一点,连接BP,以点P为直角顶点,构造等腰Rt△BPC,是否存在点P,使点C恰好为“雁点”?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)“雁点”坐标为(2,2)或(﹣2,﹣2);(2)①0<c<4;②45°;(3)存在,点P的坐标为(,)或(1+,)或(,).【解答】解:(1)由题意得:x=,解得x=±2,当x=±2时,y==±2,故“雁点”坐标为(2,2)或(﹣2,﹣2);(2)①∵“雁点”的横坐标与纵坐标相等,故“雁点”的函数表达式为y=x,∵抛物线y=ax2+5x+c上有且只有一个“雁点”E,则ax2+5x+c=x,则△=16﹣4ac=0,即ac=4,∵a>1,故0<c<4;∵M、N的存在,则△=25﹣4ac>0,而a>1,则c<,综上所述,c的取值范围为0<c<4;②∵ac=4,则ax2+5x+c=0为ax2+5x+=0,解得x=﹣或﹣,即点M的坐标为(﹣,0),由ax2+5x+c=x,ac=4,解得x=﹣,即点E的坐标为(﹣,﹣),过点E作EH⊥x轴于点H,则HE=,MH=x E﹣x M=﹣﹣(﹣)==HE,故∠EMN的度数为45°;(3)存在点P,使点C恰好为“雁点”,理由:当点C在PB的下方时,由题意知,点C在直线y=x上,故设点C的坐标为(t,t),过点P作x轴的平行线交过点C与y轴的平行线于点M,交过点B与y轴的平行线于点N,设点P的坐标为(m,﹣m2+2m+3),则BN=﹣m2+2m+3,PN=3﹣m,PM=m﹣t,CM=﹣m2+2m+3﹣t,∵∠NPB+∠MPC=90°,∠MCP+∠CPM=90°,∴∠NPB=∠PCM,∵∠CMP=∠PNB=90°,PC=PB,∴△CMP≌△PNB(AAS),∴PM=BN,CM=PN,即m﹣t=|﹣m2+2m+3|,﹣m2+2m+3﹣t=|3﹣m|,解得m=1+或1﹣,当点C在PB的上方时,过点P作PK⊥OB于K,CH⊥KP交KP的延长线于H.同法可证,△CHP≌△PKB,可得CH=PK,HP=BK,t﹣m=﹣m2+2m+3,t﹣(﹣m2+2m+3)=3﹣m,∴m=,n=,∴P(,),故点P的坐标为(,)或(1+,)或(,).7.(2022•衡阳)如图,已知抛物线y=x2﹣x﹣2交x轴于A、B两点,将该抛物线位于x轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C.(1)写出图象W位于线段AB上方部分对应的函数关系式;(2)若直线y=﹣x+b与图象W有三个交点,请结合图象,直接写出b的值;(3)P为x轴正半轴上一动点,过点P作PM∥y轴交直线BC于点M,交图象W于点N,是否存在这样的点P,使△CMN与△OBC相似?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+x+2(﹣1<x<2);(2)b的值是2或3;(3)点P的坐标为(1,0)或(,0)或(1+,0).【解答】解:(1)当x=0时,y=﹣2,∴C(0,2),当y=0时,x2﹣x﹣2=0,(x﹣2)(x+1)=0,∴x1=2,x2=﹣1,∴A(﹣1,0),B(2,0),设图象W的解析式为:y=a(x+1)(x﹣2),把C(0,2)代入得:﹣2a=2,∴a=﹣1,∴y=﹣(x+1)(x﹣2)=﹣x2+x+2,∴图象W位于线段AB上方部分对应的函数关系式为:y=﹣x2+x+2(﹣1<x<2);(2)由图象得直线y=﹣x+b与图象W有三个交点时,存在两种情况:①当直线y=﹣x+b过点C时,与图象W有三个交点,此时b=2;②当直线y=﹣x+b与图象W位于线段AB上方部分对应的函数图象相切时,如图1,﹣x+b=﹣x2+x+2,x2﹣2x+b﹣2=0,Δ=(﹣2)2﹣4×1×(b﹣2)=0,∴b=3,综上,b的值是2或3;(3)∵OB=OC=2,∠BOC=90°,∴△BOC是等腰直角三角形,如图2,CN∥OB,△CNM∽△BOC,∵PN∥y轴,∴P(1,0);如图3,CN∥OB,△CNM∽△BOC,当y=2时,x2﹣x﹣2=2,x2﹣x﹣4=0,∴x1=,x2=,∴P(,0);如图4,当∠MCN=90°时,△OBC∽△CMN,∴CN的解析式为:y=x+2,∴x+2=x2﹣x﹣2,∴x1=1+,x2=1﹣(舍),∴P(1+,0),综上,点P的坐标为(1,0)或(,0)或(1+,0).五.四边形综合题(共2小题)8.(2023•衡阳)[问题探究](1)如图1,在正方形ABCD中,对角线AC、BD相交于点O.在线段AO上任取一点P(端点除外),连接PD、PB.①求证:PD=PB;②将线段DP绕点P逆时针旋转,使点D落在BA的延长线上的点Q处.当点P在线段AO上的位置发生变化时,∠DPQ的大小是否发生变化?请说明理由;③探究AQ与OP的数量关系,并说明理由.[迁移探究](2)如图2,将正方形ABCD换成菱形ABCD,且∠ABC=60°,其他条件不变.试探究AQ与CP的数量关系,并说明理由.【答案】(1)①证明见解析;②不变化,∠DPQ=90°,理由见解析;③AQ=OP,理由见解析;(2)AQ=CP,理由见解析.【解答】(1)①证明:∵四边形ABCD是正方形,∴CD=CB,∠DCA=∠BCA=45°∵CP=CP,∴△DCP≌△BCP,∴PD=PB;②解:∠DPQ的大小不发生变化,∠DPQ=90°;理由:作PM⊥AB,PN⊥AD,垂足分别为点M、N,如图,∵四边形ABCD是正方形,∴∠DAC=∠BAC=45°,∠DAB=90°,∴四边形AMPN是矩形,PM=PN,∴∠MPN=90°∵PD=PQ,PM=PN,∴Rt△DPN≌Rt△QPM(HL),∴∠DPN=∠QPM,∴∠QPN+∠QPM=90°∴∠QPN+∠DPN=90°,即∠DPQ=90°;③解:AQ=OP;理由:作PE⊥AO交AB于点E,作EF⊥OB于点F,如图,∵四边形ABCD是正方形,∴∠BAC=45°,∠AOB=90°,∴∠AEP=45°,四边形OPEF是矩形,∴∠PAE=∠PEA=45°,EF=OP,∴PA=PE,∵PD=PB,PD=PQ,∴PQ=PB,作PM⊥AE于点M,则QM=BM,AM=EM,∴AQ=BE,∵∠EFB=90°,∠EBF=45°,∴BE=EF,∴AQ=OP;(2)解:AQ=CP;理由:四边形ABCD是菱形,∠ABC=60°,∴AB=BC,AC⊥BD,DO=BO,∴△ABC是等边三角形,AC垂直平分BD,∴∠BAC=60°,PD=PB,∵PD=PQ,∴PQ=PB,作PE∥BC交AB于点E,EG∥AC交BC于点G,如图,则四边形PEGC是平行四边形,∠GEB=∠BAC=60°,∠AEP=∠ABC=60°,∴EG=PC,△APE,△BEG都是等边三角形,∴BE=EG=PC,作PM⊥AB于点M,则QM=MB,AM=EM,∴QA=BE,∴AQ=CP.9.(2022•衡阳)如图,在菱形ABCD中,AB=4,∠BAD=60°,点P从点A出发,沿线段AD以每秒1个单位长度的速度向终点D运动,过点P作PQ⊥AB于点Q,作PM⊥AD 交直线AB于点M,交直线BC于点F,设△PQM与菱形ABCD重叠部分图形的面积为S (平方单位),点P运动时间为t(秒).(1)当点M与点B重合时,求t的值;(2)当t为何值时,△APQ与△BMF全等;(3)求S与t的函数关系式;(4)以线段PQ为边,在PQ右侧作等边三角形PQE,当2≤t≤4时,求点E运动路径的长.【答案】(1)2;(2)4或;(3);(4).【解答】解:(1)M与B重合时,如图1,∵PQ⊥AB,∴∠PQA=90°,∴PA=AB=2,∴t=2;(2)①当0≤t≤2时,∵AM=2t,∴BM=4﹣2t,∵△APQ≌△BMF,∴AP=BM,∴t=4﹣2t,∴t=;②当2<t≤4时,∵AM=2t,∴BM=2t﹣4,∵△APQ≌△BMF,∴AP=BM,∴t=2t﹣4,∴t=4;综上所述,t的值为4或;(3)①0≤t≤2时,如图2,在Rt△APQ中,PQ=t,∴MQ=t,∴S=t=;②当2<t≤4时,如图3,∵BF=t﹣2,MF=(t﹣2),∴S△BFM=BF•MF=,∴S=S△PQM﹣S△BFM=﹣;∴S=;(4)连接AE,如图4,∵△PQE为等边三角形,∴PE=t,在Rt△APE中,tan∠PAE=,∴∠PAE为定值,∴点E的运动轨迹为直线,∵AP=t,∴AE===t,当t=2时,AE=,当t=4时,AE=2,∴E点运动路径长为2﹣=.六.圆周角定理(共1小题)10.(2023•衡阳)如图,AB是⊙O的直径,AC是一条弦,D是弧AC的中点,DE⊥AB于点E,交AC于点F,交⊙O于点H,DB交AC于点G.(1)求证:AF=DF.(2)若AF=,sin∠ABD=,求⊙O的半径.【答案】(1)见解析;(2)5.【解答】(1)证明:∵D是弧AC的中点,∴,∵AB⊥DH,且AB是⊙O的直径,∴,∴,∴∠ADH=∠CAD,∴AF=DF.(2)解:∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠B=90°,∵∠DAE+∠ADE=90°,∴∠ADE=∠B,∴sin∠ADE=,∴tan∠ADE=,设AE=x,则DE=2x,∵DF=AF=,∴EF=2x﹣,∵AE2+EF2=AF2,∴x=2,∴AD==2,∴AB=,∴AB=10,∴⊙O的半径为5.七.切线的判定与性质(共1小题)11.(2022•衡阳)如图,AB为⊙O的直径,过圆上一点D作⊙O的切线CD交BA的延长线于点C,过点O作OE∥AD交CD于点E,连接BE.(1)直线BE与⊙O相切吗?并说明理由;(2)若CA=2,CD=4,求DE的长.【答案】(1)直线BE与⊙O相切,理由见解答;(2)DE的长为6.【解答】解:(1)直线BE与⊙O相切,理由:连接OD,∵CD与⊙O相切于点D,∴∠ODE=90°,∵AD∥OE,∴∠ADO=∠DOE,∠DAO=∠EOB,∵OD=OA,∴∠ADO=∠DAO,∴∠DOE=∠EOB,∵OD=OB,OE=OE,∴△DOE≌△BOE(SAS),∴∠OBE=∠ODE=90°,∵OB是⊙O的半径,∴直线BE与⊙O相切;(2)解法一:设⊙O的半径为r,在Rt△ODC中,OD2+DC2=OC2,∴r2+42=(r+2)2,∴r=3,∴AB=2r=6,∴BC=AC+AB=2+6=8,由(1)得:△DOE≌△BOE,∴DE=BE,在Rt△BCE中,BC2+BE2=CE2,∴82+BE2=(4+DE)2,∴64+DE2=(4+DE)2,∴DE=6;解法二:设⊙O的半径为r,在Rt△ODC中,OD2+DC2=OC2,∴r2+42=(r+2)2,∴r=3,∴OA=3,∵AD∥OE,∴=,∴=,∴DE=6,∴DE的长为6.八.旋转的性质(共1小题)12.(2021•衡阳)如图,点E为正方形ABCD外一点,∠AEB=90°,将Rt△ABE绕A点逆时针方向旋转90°得到△ADF,DF的延长线交BE于H点.(1)试判定四边形AFHE的形状,并说明理由;(2)已知BH=7,BC=13,求DH的长.【答案】(1)四边形AFHE是正方形,理由详见解析过程;(2)17.【解答】解:(1)四边形AFHE是正方形,理由如下:∵Rt△ABE绕A点逆时针方向旋转90°得到△ADF,∴Rt△ABE≌Rt△ADF,∴∠AEB=∠AFD=90°,∴∠AFH=90°,在四边形AFHE中,∠FAE=90°,∠AEB=90°,∠AFH=90°,∴四边形AFHE是矩形,又∵AE=AF,∴矩形AFHE是正方形;(2)设AE=x.则由(1)以及题意可知:AE=EH=FH=AF=x,BH=7,BC=AB=13,在Rt△AEB中,AB2=AE2+BE2,即132=x2+(x+7)2,解得:x=5(负值舍去),∴BE=BH+EH=5+7=12,∴DF=BE=12,又∵DH=DF+FH,∴DH=12+5=17.九.解直角三角形的应用-仰角俯角问题(共1小题)13.(2023•衡阳)随着科技的发展,无人机已广泛应用于生产生活,如代替人们在高空测量距离和高度,圆圆要测量教学楼AB的高度,借助无人机设计了如下测量方案:如图,圆圆在离教学楼底部24米的C处,遥控无人机旋停在点C的正上方的点D处,测得教学楼AB的顶部B处的俯角为30°,CD长为49.6米.已知目高CE为1.6米.(1)求教学楼AB的高度.(2)若无人机保持现有高度沿平行于CA的方向,以4米/秒的速度继续向前匀速飞行.求经过多少秒时,无人机刚好离开圆圆的视线EB.【答案】(1)教学楼AB的高度为25.6米;(2)经过12秒时,无人机刚好离开了小明的视线.【解答】解:(1)过点B作BM⊥CD于点M,则∠DBM=∠BDN=30°,在Rt△BDM中,BM=AC=24米,∠DBM=30°,∴DM=BM•tan∠DBM=24×=24(米),∴AB=CM=CD﹣DM=49.6﹣24=25.6(米).答:教学楼AB的高度为25.6米;(2)延长EB交DN于点G,则∠DGE=∠MBE,在Rt△EMB中,BM=AC=24米,EM=CM﹣CE=24米,∴tan∠MBE===,∴∠MBE=30°=∠DGE,∵∠EDG=90°,∴∠DEG=90°=30°=60°,在Rt△EDG中,ED=CE﹣CE=48米,∴DG=ED•tan60°=48(米),∴48÷4=12(秒),∴经过12秒时,无人机刚好离开了小明的视线.一十.列表法与树状图法(共1小题)14.(2022•衡阳)为落实“双减提质”,进一步深化“数学提升工程”,提升学生数学核心素养,某学校拟开展“双减”背景下的初中数学活动型作业成果展示现场会,为了解学生最喜爱的项目,现随机抽取若干名学生进行调查,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题:(1)参与此次抽样调查的学生人数是 120 人,补全统计图①(要求在条形图上方注明人数);(2)图②中扇形C的圆心角度数为 90 度;(3)若参加成果展示活动的学生共有1200人,估计其中最喜爱“测量”项目的学生人数是多少;(4)计划在A,B,C,D,E五项活动中随机选取两项作为直播项目,请用列表或画树状图的方法,求恰好选中B,E这两项活动的概率.【答案】(1)120,补全统计图详见解答;(2)90;(3)300;(4).【解答】解:(1)调查学生总数为36÷30%=120(人),选择“E.数学园地设计”的有120﹣30﹣30﹣36﹣6=18(人),故答案为:120,补全统计图如下:(2)360°×=90°,故答案为:90;(3)1200×=300(人),答:参加成果展示活动的1200名学生中,最喜爱“测量”项目的学生大约有300人;(4)在A,B,C,D,E五项活动中随机选取两项,所有可能出现的结果如下:共有20种可能出现的结果,其中恰好选中B,E这两项活动的有2种,所以恰好选中B,E这两项活动的概率为=.。
北京市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.待定系数法求一次函数解析式(共1小题)1.(2023•北京)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点A(0,1)和B(1,2),与过点(0,4)且平行于x轴的直线交于点C.(1)求该函数的解析式及点C的坐标;(2)当x<3时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值且小于4,直接写出n的值.二.一次函数的应用(共1小题)2.(2023•北京)某小组研究了清洗某种含污物品的节约用水策略,部分内容如下.每次清洗1个单位质量的该种含污物品,清洗前的清洁度均为0.800,要求清洗后的清洁度为0.990.方案一:采用一次清洗的方式:结果:当用水量为19个单位质量时,清洗后测得的清洁度为0.990.方案二:采用两次清洗的方式:记第一次用水量为x1个单位质量,第二次用水量为x2个单位质量,总用水量为(x1+x2)个单位质量,两次清洗后测得的清洁度为C.记录的部分实验数据如下:x111.09.09.07.0 5.5 4.5 3.5 3.0 3.0 2.0 1.0x20.8 1.0 1.3 1.9 2.6 3.2 4.3 4.0 5.07.111.5 x1+x211.810.010.38.98.17.77.87.08.09.112.5 C0.9900.9890.9900.9900.9900.9900.9900.9880.9900.9900.990对以上实验数据进行分析,补充完成以下内容.(Ⅰ)选出C是0.990的所有数据组,并划“√”;(Ⅱ)通过分析(Ⅰ)中选出的数据,发现可以用函数刻画第一次用水量x1和总用水量x1+x2之间的关系,在平面直角坐标系xOy中画出此函数的图象;结果:结合实验数据,利用所画的函数图象可以推断,当第一次用水量约为 个单位质量(精确到个位)时,总用水量最小.根据以上实验数据和结果,解决下列问题:(1)当采用两次清洗的方式并使总用水量最小时,与采用一次清洗的方式相比、可节水约 个单位质量(结果保留小数点后一位);(2)当采用两次清洗的方式时,若第一次用水量为6个单位质量,总用水量为7.5个单位质量,则清洗后的清洁度C 0.990(填“>”“=”或”<”).三.二次函数的性质(共3小题)3.(2023•北京)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)是抛物线y=ax2+bx+c (a>0)上任意两点,设抛物线的对称轴为x=t.(1)若对于x1=1,x2=2,有y1=y2,求t的值;(2)若对于0<x1<1,1<x2<2,都有y1<y2,求t的取值范围.4.(2022•北京)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c(a >0)上,设抛物线的对称轴为直线x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x 0,m )(x 0≠1)在抛物线上.若m <n <c ,求t 的取值范围及x 0的取值范围.5.(2021•北京)在平面直角坐标系xOy 中,点(1,m )和点(3,n )在抛物线y =ax 2+bx (a >0)上.(1)若m =3,n =15,求该抛物线的对称轴;(2)已知点(﹣1,y 1),(2,y 2),(4,y 3)在该抛物线上.若mn <0,比较y 1,y 2,y 3的大小,并说明理由.四.二次函数的应用(共1小题)6.(2022•北京)单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台.运动员起跳后的飞行路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系y =a (x ﹣h )2+k (a <0).某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x 与竖直高度y 的几组数据如下:水平距离x /m 02581114竖直高度y /m20.0021.4022.7523.2022.7521.40根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系y =a (x ﹣h )2+k (a <0);(2)第二次训练时,该运动员的竖直高度y 与水平距离x 近似满足函数关系y =﹣0.04(x ﹣9)2+23.24.记该运动员第一次训练的着陆点的水平距离为d 1,第二次训练的着陆点的水平距离为d2,则d1 d2(填“>”“=”或“<”).五.平行四边形的判定与性质(共1小题)7.(2021•北京)如图,在四边形ABCD中,∠ACB=∠CAD=90°,点E在BC上,AE∥DC,EF⊥AB,垂足为F.(1)求证:四边形AECD是平行四边形;(2)若AE平分∠BAC,BE=5,cos B=,求BF和AD的长.六.菱形的判定(共1小题)8.(2022•北京)如图,在▱ABCD中,AC,BD交于点O,点E,F在AC上,AE=CF.(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC,求证:四边形EBFD是菱形.七.矩形的判定与性质(共1小题)9.(2023•北京)如图,在▱ABCD中,点E,F分别在BC,AD上,BE=DF,AC=EF.(1)求证:四边形AECF是矩形;(2)若AE=BE,AB=2,tan∠ACB=,求BC的长.八.圆内接四边形的性质(共1小题)10.(2023•北京)如图,圆内接四边形ABCD的对角线AC,BD交于点E,BD平分∠ABC,∠BAC=∠ADB.(1)求证DB平分∠ADC,并求∠BAD的大小;(2)过点C作CF∥AD交AB的延长线于点F,若AC=AD,BF=2,求此圆半径的长.九.圆的综合题(共2小题)11.(2023•北京)在平面直角坐标系xOy中,⊙O的半径为1.对于⊙O的弦AB和⊙O外一点C给出如下定义:若直线CA,CB中一条经过点O,另一条是⊙O的切线,则称点C 是弦AB的“关联点”.(1)如图,点A(﹣1,0),B1(,),B2(,).①在点C1(﹣1,1),C2(,0),C3(0,)中,弦AB1的“关联点”是 ;②若点C是弦AB2的“关联点”,直接写出OC的长;(2)已知点M(0,3),N(,0),对于线段MN上一点S,存在⊙O的弦PQ,使得点S是弦PQ的“关联点”.记PQ的长为t,当点S在线段MN上运动时,直接写出t的取值范围.12.(2021•北京)在平面直角坐标系xOy中,⊙O的半径为1.对于点A和线段BC,给出如下定义:若将线段BC绕点A旋转可以得到⊙O的弦B′C′(B′,C′分别是B,C 的对应点),则称线段BC是⊙O的以点A为中心的“关联线段”.(1)如图,点A,B1,C1,B2,C2,B3,C3的横、纵坐标都是整数.在线段B1C1,B2C2,B3C3中,⊙O的以点A为中心的“关联线段”是 ;(2)△ABC是边长为1的等边三角形,点A(0,t),其中t≠0.若BC是⊙O的以点A 为中心的“关联线段”,求t的值;(3)在△ABC中,AB=1,AC=2.若BC是⊙O的以点A为中心的“关联线段”,直接写出OA的最小值和最大值,以及相应的BC长.一十.作图—应用与设计作图(共1小题)13.(2021•北京)《淮南子・天文训》中记载了一种确定东西方向的方法,大意是:日出时,在地面上点A处立一根杆,在地面上沿着杆的影子的方向取一点B,使B,A两点间的距离为10步(步是古代的一种长度单位),在点B处立一根杆;日落时,在地面上沿着点B 处的杆的影子的方向取一点C,使C,B两点间的距离为10步,在点C处立一根杆.取CA的中点D,那么直线DB表示的方向为东西方向.(1)上述方法中,杆在地面上的影子所在直线及点A,B,C的位置如图所示.使用直尺和圆规,在图中作CA的中点D(保留作图痕迹);(2)在如图中,确定了直线DB表示的方向为东西方向.根据南北方向与东西方向互相垂直,可以判断直线CA表示的方向为南北方向,完成如下证明.证明:在△ABC中,BA= ,D是CA的中点,∴CA⊥DB( )(填推理的依据).∵直线DB表示的方向为东西方向,∴直线CA表示的方向为南北方向.一十一.旋转的性质(共1小题)14.(2023•北京)在△ABC中,∠B=∠C=α(0°<α<45°),AM⊥BC于点M,D是线段MC上的动点(不与点M,C重合),将线段DM绕点D顺时针旋转2α得到线段DE.(1)如图1,当点E在线段AC上时,求证:D是MC的中点;(2)如图2,若在线段BM上存在点F(不与点B,M重合)满足DF=DC,连接AE,EF,直接写出∠AEF的大小,并证明.一十二.频数(率)分布直方图(共1小题)15.(2021•北京)为了解甲、乙两座城市的邮政企业4月份收入的情况,从这两座城市的邮政企业中,各随机抽取了25家邮政企业,获得了它们4月份收入(单位:百万元)的数据,并对数据进行整理、描述和分析.下面给出了部分信息.a.甲城市邮政企业4月份收入的数据的频数分布直方图如下(数据分成5组:6≤x<8,8≤x<10,10≤x<12,12≤x<14,14≤x≤16):b.甲城市邮政企业4月份收入的数据在10≤x<12这一组的是:10.0 10.0 10.1 10.9 11.4 11.5 11.6 11.8c.甲、乙两座城市邮政企业4月份收入的数据的平均数、中位数如下:平均数中位数甲城市10.8m乙城市11.011.5根据以上信息,回答下列问题:(1)写出表中m的值;(2)在甲城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为p1.在乙城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为p2.比较p1,p2的大小,并说明理由;(3)若乙城市共有200家邮政企业,估计乙城市的邮政企业4月份的总收入(直接写出结果).北京市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.待定系数法求一次函数解析式(共1小题)1.(2023•北京)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点A(0,1)和B(1,2),与过点(0,4)且平行于x轴的直线交于点C.(1)求该函数的解析式及点C的坐标;(2)当x<3时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值且小于4,直接写出n的值.【答案】(1)C(3,4);(2)2.【解答】解:(1)把点A(0,1),B(1,2)代入y=kx+b(k≠0)得:b=1,k+b=2,解得:k=1,b=1,∴该函数的解析式为y=x+1,由题意知点C的纵坐标为4,当y=x+1=4时,解得:x=3,∴C(3,4);(2)由(1)知:当x=3时,y=x+1=4,因为当x<3时,函数y=x+n的值大于函数y=x+1的值且小于4,所以当y=x+n过点(3,4)时满足题意,代入(3,4)得:4=×3+n,解得:n=2.二.一次函数的应用(共1小题)2.(2023•北京)某小组研究了清洗某种含污物品的节约用水策略,部分内容如下.每次清洗1个单位质量的该种含污物品,清洗前的清洁度均为0.800,要求清洗后的清洁度为0.990.方案一:采用一次清洗的方式:结果:当用水量为19个单位质量时,清洗后测得的清洁度为0.990.方案二:采用两次清洗的方式:记第一次用水量为x1个单位质量,第二次用水量为x2个单位质量,总用水量为(x1+x2)个单位质量,两次清洗后测得的清洁度为C.记录的部分实验数据如下:x111.09.09.07.0 5.5 4.5 3.5 3.0 3.0 2.0 1.0 x20.8 1.0 1.3 1.9 2.6 3.2 4.3 4.0 5.07.111.5x1+x211.810.010.38.98.17.77.87.08.09.112.5 C0.9900.9890.9900.9900.9900.9900.9900.9880.9900.9900.990对以上实验数据进行分析,补充完成以下内容.(Ⅰ)选出C是0.990的所有数据组,并划“√”;(Ⅱ)通过分析(Ⅰ)中选出的数据,发现可以用函数刻画第一次用水量x1和总用水量x1+x2之间的关系,在平面直角坐标系xOy中画出此函数的图象;结果:结合实验数据,利用所画的函数图象可以推断,当第一次用水量约为 4 个单位质量(精确到个位)时,总用水量最小.根据以上实验数据和结果,解决下列问题:(1)当采用两次清洗的方式并使总用水量最小时,与采用一次清洗的方式相比、可节水约 11.3 个单位质量(结果保留小数点后一位);(2)当采用两次清洗的方式时,若第一次用水量为6个单位质量,总用水量为7.5个单位质量,则清洗后的清洁度C < 0.990(填“>”“=”或”<”).【答案】(Ⅰ)答案见解析;(Ⅱ)4;(1)11.3;(2)<.【解答】解:(Ⅰ)表格如下:x111.09.09.07.0 5.5 4.5 3.5 3.0 3.0 2.0 1.0x 20.8 1.0 1.3 1.9 2.6 3.2 4.3 4.0 5.07.111.5x 1+x 211.810.010.38.98.17.77.87.08.09.112.5C0.990√0.9890.990√0.990√0.990√0.990√0.990√0.9880.990√0.990√0.990√(Ⅱ)函数图象如下:由图象可得,当第一次用水量约为4个单位质量(精确到个位)时,总用水量最小.故答案为:4;(1)当采用两次清洗的方式并使总用水量最小时,用水量为7.7个单位质量,19﹣7.7=11.3,即可节水约11.3个单位质量.故答案为:11.3;(2)由图可得,当第一次用水量为6个单位质量,总用水量超过8个单位质量,则清洗后的清洁度能达到C<0.990,第一次用水量为6个单位质量,总用水量为7.5个单位质量,则清洗后的清洁度,故答案为:<.三.二次函数的性质(共3小题)3.(2023•北京)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)是抛物线y=ax2+bx+c (a>0)上任意两点,设抛物线的对称轴为x=t.(1)若对于x1=1,x2=2,有y1=y2,求t的值;(2)若对于0<x1<1,1<x2<2,都有y1<y2,求t的取值范围.【答案】(1);(2)t≤.【解答】解:(1)∵对于x1=1,x2=2,有y1=y2,∴a+b+c=4a+2b+c,∴3a+b=0,∴=﹣3.∵对称轴为x=﹣=,∴t=.(2)∵0<x1<1,1<x2<2,∴,x1<x2,∵y1<y2,a>0,∴(x1,y1)离对称轴更近,x1<x2,则(x1,y1)与(x2,y2)的中点在对称轴的右侧,∴>t,即t≤.4.(2022•北京)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c(a >0)上,设抛物线的对称轴为直线x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上.若m<n<c,求t的取值范围及x0的取值范围.【答案】(1)t=2;抛物线与y轴交点的坐标为(0,2).(2)<t<2;x0的取值范围2<x0<3.【解答】解:(1)法一、将点(1,m),(3,n)代入抛物线解析式,∴,∵m=n,∴a+b+c=9a+3b+c,整理得,b=﹣4a,∴抛物线的对称轴为直线x=﹣=﹣=2;∴t=2,∵c=2,∴抛物线与y轴交点的坐标为(0,2).法二、当m=n时,点A(1,m),B(3,n)的纵坐标相等,由抛物线的对称性可得,抛物线的对称轴为x=,∴t=2,∵c=2,∴抛物线与y轴交点的坐标为(0,2).(2)∵m<n<c,∴a+b+c<9a+3b+c<c,解得﹣4a<b<﹣3a,∴3a<﹣b<4a,∴<﹣<,即<t<2.由题意可知,点(x0,m)与点(1,m)关于x=t对称;∴t=;当t=时,x0=2;当t=2时,x0=3.∴x0的取值范围2<x0<3.综上,t的取值范围为:<t<2;x0的取值范围2<x0<3.5.(2021•北京)在平面直角坐标系xOy中,点(1,m)和点(3,n)在抛物线y=ax2+bx (a>0)上.(1)若m=3,n=15,求该抛物线的对称轴;(2)已知点(﹣1,y1),(2,y2),(4,y3)在该抛物线上.若mn<0,比较y1,y2,y3的大小,并说明理由.【答案】(1)直线x=﹣1.(2)y2<y1<y3.【解答】解:(1)∵m=3,n=15,∴点(1,3),(3,15)在抛物线上,将(1,3),(3,15)代入y=ax2+bx得:,解得,∴y=x2+2x=(x+1)2﹣1,∴抛物线对称轴为直线x=﹣1.(2)∵y=ax2+bx(a>0),∴抛物线开口向上且经过原点,当b=0时,抛物线顶点为原点,x>0时y随x增大而增大,n>m>0不满足题意,当b>0时,抛物线对称轴在y轴左侧,同理,n>m>0不满足题意,∴b<0,抛物线对称轴在y轴右侧,x=1时m<0,x=3时n>0,即抛物线和x轴的2个交点,一个为(0,0),另外一个在1和3之间,∴抛物线对称轴在直线x=与直线x=之间,即<﹣<,∴点(2,y2)与对称轴距离2﹣(﹣)<,点(﹣1,y1)与对称轴距离<﹣﹣(﹣1)<,点(4,y3)与对称轴距离<4﹣(﹣)<∴y2<y1<y3.解法二:∵点(1,m)和点(3,n)在抛物线y=ax2+bx(a>0)上,∴a+b=m,9a+3b=n,∵mn<0,∴(a+b)(9a+3b)<0,∴a+b与3a+b异号,∵a>0,∴3a+b>a+b,∴a+b<0,3a+b>0,∵(﹣1,y1),(2,y2),(4,y3)在该抛物线上,∴y1=a﹣b,y2=4a+2b,y3=16a+4b,∵y3﹣y1=(16a+4b)﹣(a﹣b)=5(3a+b)>0,∴y3>y1,∵y1﹣y2=(a﹣b)﹣(4a+2b)=﹣3(a+b)>0,∴y1>y2,∴y2<y1<y3.四.二次函数的应用(共1小题)6.(2022•北京)单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台.运动员起跳后的飞行路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x﹣h)2+k(a<0).某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x 与竖直高度y 的几组数据如下:水平距离x /m 02581114竖直高度y /m20.0021.4022.7523.2022.7521.40根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系y =a (x ﹣h )2+k (a <0);(2)第二次训练时,该运动员的竖直高度y 与水平距离x 近似满足函数关系y =﹣0.04(x ﹣9)2+23.24.记该运动员第一次训练的着陆点的水平距离为d 1,第二次训练的着陆点的水平距离为d 2,则d 1 < d 2(填“>”“=”或“<”).【答案】(1)函数关系式为:y =﹣0.05(x ﹣8)2+23.20;(2)<.【解答】解:(1)根据表格中的数据可知,抛物线的顶点坐标为:(8,23.20),∴h =8,k =23.20,即该运动员竖直高度的最大值为23.20m ,根据表格中的数据可知,当x =0时,y =20.00,代入y =a (x ﹣8)2+23.20得:20.00=a (0﹣8)2+23.20,解得:a =﹣0.05,∴函数关系式为:y=﹣0.05(x ﹣8)2+23.20;(2)设着陆点的纵坐标为t ,则第一次训练时,t =﹣0.05(x ﹣8)2+23.20,解得:x =8+或x =8﹣,∴根据图象可知,第一次训练时着陆点的水平距离d1=8+,第二次训练时,t=﹣0.04(x﹣9)2+23.24,解得:x=9+或x=9﹣,∴根据图象可知,第二次训练时着陆点的水平距离d2=9+,∵20(23.20﹣t)<25(23.24﹣t),∴<,∴d1<d2,故答案为:<.五.平行四边形的判定与性质(共1小题)7.(2021•北京)如图,在四边形ABCD中,∠ACB=∠CAD=90°,点E在BC上,AE∥DC,EF⊥AB,垂足为F.(1)求证:四边形AECD是平行四边形;(2)若AE平分∠BAC,BE=5,cos B=,求BF和AD的长.【答案】见试题解答内容【解答】(1)证明:∵∠ACB=∠CAD=90°,∴AD∥CE,∵AE∥DC,∴四边形AECD是平行四边形;(2)解:∵EF⊥AB,∴∠BFE=90°,∵cos B==,BE=5,∴BF=BE=×5=4,∴EF===3,∵AE平分∠BAC,EF⊥AB,∠ACE=90°,∴EC=EF=3,由(1)得:四边形AECD是平行四边形,∴AD=EC=3.六.菱形的判定(共1小题)8.(2022•北京)如图,在▱ABCD中,AC,BD交于点O,点E,F在AC上,AE=CF.(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC,求证:四边形EBFD是菱形.【答案】见试题解答内容【解答】证明:(1)在▱ABCD中,OA=OC,OB=OD,∵AE=CF.∴OE=OF,∴四边形EBFD是平行四边形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠BAC=∠DCA,∵∠BAC=∠DAC,∴∠DCA=∠DAC,∴DA=DC,∴平行四边形ABCD为菱形,∴DB⊥EF,∴平行四边形EBFD是菱形.七.矩形的判定与性质(共1小题)9.(2023•北京)如图,在▱ABCD中,点E,F分别在BC,AD上,BE=DF,AC=EF.(1)求证:四边形AECF是矩形;(2)若AE=BE,AB=2,tan∠ACB=,求BC的长.【答案】(1)证明见解析;(2)3.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵BE=DF,∴AD﹣DF=BC﹣BE,即AF=EC,∴四边形AECF是平行四边形,∵AC=EF,∴平行四边形AECF是矩形;(2)解:∵四边形AECF是矩形,∴∠AEC=∠AEB=90°,∵AE=BE,AB=2,∴△ABE是等腰直角三角形,∴AE=BE=AB=,∵tan∠ACB==,∴EC=2AE=2,∴BC=BE+EC=+2=3,即BC的长为3.八.圆内接四边形的性质(共1小题)10.(2023•北京)如图,圆内接四边形ABCD的对角线AC,BD交于点E,BD平分∠ABC,∠BAC=∠ADB.(1)求证DB平分∠ADC,并求∠BAD的大小;(2)过点C作CF∥AD交AB的延长线于点F,若AC=AD,BF=2,求此圆半径的长.【答案】(1)证明见解析;(2)4.【解答】(1)证明:∵∠BAC=∠ADB,∠BAC=∠CDB,∴∠ADB=∠CDB,∴BD平分∠ADC,∵BD平分∠ABC,∴∠ABD=∠CBD,∵四边形ABCD是圆内接四边形,∴∠ABC+∠ADC=180°,∴∠ABD+∠CBD+∠ADB+∠CDB=180°,∴2(∠ABD+∠ADB)=180°,∴∠ABD+∠ADB=90°,∴∠BAD=180°﹣90°=90°;(2)解:∵∠BAE+∠DAE=90°,∠BAE=∠ADE,∴∠ADE+∠DAE=90°,∴∠AED=90°,∵∠BAD=90°,∴BD是圆的直径,∴BD垂直平分AC,∴AD=CD,∵AC=AD,∴△ACD是等边三角形,∴∠ADC=60°∵BD⊥AC,∴∠BDC=∠ADC=30°,∵CF∥AD,∴∠F+∠BAD=90°,∴∠F=90°,∵四边形ABCD是圆内接四边形,∴∠ADC+∠ABC=180°,∵∠FBC+∠ABC=180°,∴∠FBC=∠ADC=60°,∴BC=2BF=4,∵∠BCD=90°,∠BDC=30°,∴BC=BD,∵BD是圆的直径,∴圆的半径长是4.九.圆的综合题(共2小题)11.(2023•北京)在平面直角坐标系xOy中,⊙O的半径为1.对于⊙O的弦AB和⊙O外一点C给出如下定义:若直线CA,CB中一条经过点O,另一条是⊙O的切线,则称点C 是弦AB的“关联点”.(1)如图,点A(﹣1,0),B1(,),B2(,).①在点C1(﹣1,1),C2(,0),C3(0,)中,弦AB1的“关联点”是 C1,C2 ;②若点C是弦AB2的“关联点”,直接写出OC的长;(2)已知点M(0,3),N(,0),对于线段MN上一点S,存在⊙O的弦PQ,使得点S是弦PQ的“关联点”.记PQ的长为t,当点S在线段MN上运动时,直接写出t 的取值范围.【答案】(1)①C1,C2;②OC=;(2)t的取值范围为1≤t≤,.【解答】解:(1)①由关联定义可知,若直线CA、CB中一条经过点O,另一条是⊙O 的切线,则称点C是弦AB的“关联点”,∵点A(﹣1,0),B1(,),点C1(﹣1,1),C2(,0),C3(0,),∴直线AC2经过点O,且B1C2与⊙O相切,∴C2是弦AB1的“关联点”,∵C1(﹣1,1),A(﹣1,0)的横坐标相同,与B1(,)都位于直线y=﹣x 上,∴AC1与⊙O相切,B1C1经过点O,∴C1是弦AB1的“关联点”;故答案为:C1,C2;②∵A(﹣1,0),B2(,),设C(a,b),如图所示,共有两种情况,a、若C1B2与⊙O相切,AC经过点O,则C1B2,AC1所在直线为,解得,∴C1(,0),∴OC1=,b、若AC2与⊙O相切,C2B2经过点O,则直线C2B2,AC2所在直线为,解得,∴C2(﹣1,1),∴OC2=,综上所述,OC=;(2)∵线段MN上一点S,存在⊙O的弦PQ,使得点S是弦PQ的“关联点”,∵弦PQ随着S的变动在一定范围内变动,且M(0,3),N(,0),OM>ON,∴S共有2种情况,分别位于点M和经过点O的MN的垂直平分线上,如图所示,①当S位于点M(0,3)时,MP为⊙O的切线,作PJ⊥OM,∵M(0,3),⊙O的半径为1,且MP是⊙O的切线,∴OP⊥MP,∵PJ⊥OM,∴△MPO∽△POJ,∴,即,解得OJ=,∴PJ==,Q1J=,∴PQ1==,同理PQ2==,∴当S位于M(0,3)时,PQ1的临界值为和;②当S位于经过点O的MN的垂直平分线上的点K时,∵M(0,3),N(,0),∴MN=,∴=2,∵⊙O的半径为1,∴∠OKZ=30°,∴△OPQ为等边三角形,∴PQ=1或,∴当S位于经过点O且垂直于MN的直线上即点K时,PQ1的临界点为1和,∴在两种情况下,PQ的最小值在1≤t≤内,最大值在,综上所述,t的取值范围为1≤t≤,.12.(2021•北京)在平面直角坐标系xOy中,⊙O的半径为1.对于点A和线段BC,给出如下定义:若将线段BC绕点A旋转可以得到⊙O的弦B′C′(B′,C′分别是B,C 的对应点),则称线段BC是⊙O的以点A为中心的“关联线段”.(1)如图,点A,B1,C1,B2,C2,B3,C3的横、纵坐标都是整数.在线段B1C1,B2C2,B3C3中,⊙O的以点A为中心的“关联线段”是 B2C2 ;(2)△ABC是边长为1的等边三角形,点A(0,t),其中t≠0.若BC是⊙O的以点A 为中心的“关联线段”,求t的值;(3)在△ABC中,AB=1,AC=2.若BC是⊙O的以点A为中心的“关联线段”,直接写出OA的最小值和最大值,以及相应的BC长.【答案】(1)B2C2.(2)t=或﹣.(3)OA的最小值为1,此时BC的长为,OA的最大值为2,此时BC的长为.【解答】解:(1)由旋转的性质可知:AB=AB′,AC=AC′,∠BAB′=∠CAC′,由图可知点A到圆上一点的距离d的范围为﹣1≤d≤+1,∵AC1=3>d,∴点C1′不可能在圆上,∴B1C1不是⊙O的以A为中心的“关联线段”,∵AC2=1,AB2=,∴C2′(0,1),B2′(1,0),∴B2C2是⊙O的以A为中心的“关联线段”,∵AC3=2,AB3=,当B3′在圆上时,B3′(1,0)或(0,﹣1),由图可知此时C3′不在圆上,∴B3C3不是⊙O的以A为中心的“关联线段”.故答案为:B2C2.(2)∵△ABC是边长为1的等边三角形,根据旋转的性质可知△AB′C′也是边长为1的等边三角形,∵A(0,t),∴B′C′⊥y轴,且B′C′=1,∴AO为B′C′边上的高的2倍,且此高的长为,∴t=或﹣.(3)OA的最小值为1时,此时BC的长为,OA的最大值为2,此时BC的长为.理由:由旋转的性质和“关联线段”的定义,可知AB′=AB=OB′=OC′=1,AC′=AC=2,如图1,利用四边形的不稳定性可知,当A,O,C′在同一直线上时,OA最小,最小值为1,如图2,此时OA=OB′=OC′,∴∠AB′C=90°,∴B′C′===.当A,B′,O在同一直线上时,OA最大,如图3,此时OA=2,过点A作AE⊥OC′于E,过点C′作C′F⊥OA于F.∵AO=AC′=2,AE⊥OC′,∴OE=EC′=,∴AE===,∵S△AOC′=•AO•C′F=•OC′•AE,∴C′F=,∴OF===,∴FB′=OB′﹣OF=,∴B′C′===.综上OA的最小值为1,此时BC的长为,OA的最大值为2,此时BC的长为.一十.作图—应用与设计作图(共1小题)13.(2021•北京)《淮南子・天文训》中记载了一种确定东西方向的方法,大意是:日出时,在地面上点A处立一根杆,在地面上沿着杆的影子的方向取一点B,使B,A两点间的距离为10步(步是古代的一种长度单位),在点B处立一根杆;日落时,在地面上沿着点B 处的杆的影子的方向取一点C,使C,B两点间的距离为10步,在点C处立一根杆.取CA的中点D,那么直线DB表示的方向为东西方向.(1)上述方法中,杆在地面上的影子所在直线及点A,B,C的位置如图所示.使用直尺和圆规,在图中作CA的中点D(保留作图痕迹);(2)在如图中,确定了直线DB表示的方向为东西方向.根据南北方向与东西方向互相垂直,可以判断直线CA表示的方向为南北方向,完成如下证明.证明:在△ABC中,BA= BC ,D是CA的中点,∴CA⊥DB( 三线合一 )(填推理的依据).∵直线DB表示的方向为东西方向,∴直线CA表示的方向为南北方向.【答案】(1)作图见解析部分.(2)证明见解析部分.【解答】解:(1)如图,点D即为所求.(2)如图,连接BD.在△ABC中,BA=BC,D是CA的中点,∴CA⊥DB(三线合一),∵直线DB表示的方向为东西方向,∴直线CA表示的方向为南北方向.故答案为:BC,三线合一.一十一.旋转的性质(共1小题)14.(2023•北京)在△ABC中,∠B=∠C=α(0°<α<45°),AM⊥BC于点M,D是线段MC上的动点(不与点M,C重合),将线段DM绕点D顺时针旋转2α得到线段DE.(1)如图1,当点E在线段AC上时,求证:D是MC的中点;(2)如图2,若在线段BM上存在点F(不与点B,M重合)满足DF=DC,连接AE,EF,直接写出∠AEF的大小,并证明.【答案】(1)见解答.(2)∠AEF=90°,证明见解答.【解答】(1)证明:由旋转的性质得:DM=DE,∠MDE=2a,∵∠C=a,∴∠DEC=∠MDE﹣∠C=a,∴∠C=∠DEC,∴DE=DC,∴DM=DC,即D是MC的中点;(2)∠AEF=90°,证明:如图,延长FE到H使FE=EH,连接CH,AH,∵DF=DC,∴DE是FCH的中位线,∴DE∥CH,CH=2DE,由旋转的性质得:DM=DE,∠MDE=2a,∴∠FCH=2a,∵∠B=∠C=a,∴∠ACH=a,△ABC是等腰三角形,∴∠B=∠ACH,AB=AC设DM=DE=m,CD=n,则CH=2m,CM=m+n,.DF=CD=n,∴FM=DF﹣DM=n﹣m,∵AM⊥BC,∴BM=CM=m+n,∴BF=BM﹣FM=m+n﹣(n﹣m)=2m,∴CH=BF,在△ABF和△ACH中,,∴△ABF≌△ACH(SAS),∴AF=AH,∵FE=EH,∴AE⊥FH,即∠AEF=90°,一十二.频数(率)分布直方图(共1小题)15.(2021•北京)为了解甲、乙两座城市的邮政企业4月份收入的情况,从这两座城市的邮政企业中,各随机抽取了25家邮政企业,获得了它们4月份收入(单位:百万元)的数据,并对数据进行整理、描述和分析.下面给出了部分信息.a.甲城市邮政企业4月份收入的数据的频数分布直方图如下(数据分成5组:6≤x<8,8≤x<10,10≤x<12,12≤x<14,14≤x≤16):b.甲城市邮政企业4月份收入的数据在10≤x<12这一组的是:10.0 10.0 10.1 10.9 11.4 11.5 11.6 11.8c.甲、乙两座城市邮政企业4月份收入的数据的平均数、中位数如下:平均数中位数甲城市10.8m乙城市11.011.5根据以上信息,回答下列问题:(1)写出表中m的值;(2)在甲城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为p1.在乙城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为p2.比较p1,p2的大小,并说明理由;(3)若乙城市共有200家邮政企业,估计乙城市的邮政企业4月份的总收入(直接写出结果).【答案】(1)10.1;(2)p1<p2;(3)2200.【解答】解:(1)将甲城市抽取的25家邮政企业4月份的营业额从小到大排列,处在中间位置的一个数是10.1,因此中位数是10.1,即m=10.1;(2)由题意得p1=5+3+4=12(家),由于乙城市抽取的25家邮政企业4月份的营业额的平均数是11.0,中位数是11.5,因此所抽取的25家邮政企业4月份营业额在11.5及以上的占一半,也就是p2的值至少为13,∴p1<p2;(3)11.0×200=2200(百万元),答:乙城市200家邮政企业4月份的总收入约为2200百万元.。
广东省广州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.一次函数的应用(共1小题)1.(2023•广州)因活动需要购买某种水果,数学活动小组的同学通过市场调查得知:在甲商店购买该水果的费用y1(元)与该水果的质量x(千克)之间的关系如图所示;在乙商店购买该水果的费用y2(元)与该水果的质量x(千克)之间的函数解析式为y2=10x (x≥0).(1)求y1与x之间的函数解析式;(2)现计划用600元购买该水果,选甲、乙哪家商店能购买该水果更多一些?二.反比例函数综合题(共1小题)2.(2023•广州)已知点P(m,n)在函数y=﹣(x<0)的图象上.(1)若m=﹣2,求n的值;(2)抛物线y=(x﹣m)(x﹣n)与x轴交于两点M,N(M在N的左边),与y轴交于点G,记抛物线的顶点为E.①m为何值时,点E到达最高处;②设△GMN的外接圆圆心为C,⊙C与y轴的另一个交点为F,当m+n≠0时,是否存在四边形FGEC为平行四边形?若存在,求此时顶点E的坐标;若不存在,请说明理由.三.二次函数综合题(共2小题)3.(2022•广州)已知直线l:y=kx+b经过点(0,7)和点(1,6).(1)求直线l的解析式;(2)若点P(m,n)在直线l上,以P为顶点的抛物线G过点(0,﹣3),且开口向下.①求m的取值范围;②设抛物线G与直线l的另一个交点为Q,当点Q向左平移1个单位长度后得到的点Q′也在G上时,求G在≤x≤+1的图象的最高点的坐标.4.(2021•广州)已知抛物线y=x2﹣(m+1)x+2m+3.(1)当m=0时,请判断点(2,4)是否在该抛物线上;(2)该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3)已知点E(﹣1,﹣1)、F(3,7),若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.四.全等三角形的判定与性质(共1小题)5.(2023•广州)如图,B是AD的中点,BC∥DE,BC=DE.求证:∠C=∠E.五.四边形综合题(共3小题)6.(2023•广州)如图,在正方形ABCD中,E是边AD上一动点(不与点A,D重合).边BC关于BE对称的线段为BF,连接AF.(1)若∠ABE=15°,求证:△ABF是等边三角形;(2)延长FA,交射线BE于点G.①△BGF能否为等腰三角形?如果能,求此时∠ABE的度数;如果不能,请说明理由;②若,求△BGF面积的最大值,并求此时AE的长.7.(2022•广州)如图,在菱形ABCD中,∠BAD=120°,AB=6,连接BD.(1)求BD的长;(2)点E为线段BD上一动点(不与点B,D重合),点F在边AD上,且BE=DF.①当CE⊥AB时,求四边形ABEF的面积;②当四边形ABEF的面积取得最小值时,CE+CF的值是否也最小?如果是,求CE+CF的最小值;如果不是,请说明理由.8.(2021•广州)如图,在菱形ABCD中,∠DAB=60°,AB=2,点E为边AB上一个动点,延长BA到点F,使AF=AE,且CF、DE相交于点G.(1)当点E运动到AB中点时,证明:四边形DFEC是平行四边形;(2)当CG=2时,求AE的长;(3)当点E从点A开始向右运动到点B时,求点G运动路径的长度.六.圆的综合题(共2小题)9.(2023•广州)如图,在平面直角坐标系xOy中,点A(﹣2,0),B(0,2),所在圆的圆心为O.将向右平移5个单位,得到(点A平移后的对应点为C).(1)点D的坐标是,所在圆的圆心坐标是;(2)在图中画出,并连接AC,BD;(3)求由,BD,,CA首尾依次相接所围成的封闭图形的周长.(结果保留π)10.(2021•广州)如图,在平面直角坐标系xOy中,直线l:y=x+4分别与x轴,y轴相交于A、B两点,点P(x,y)为直线l在第二象限的点.(1)求A、B两点的坐标;(2)设△PAO的面积为S,求S关于x的函数解析式,并写出x的取值范围;(3)作△PAO的外接圆⊙C,延长PC交⊙C于点Q,当△POQ的面积最小时,求⊙C 的半径.七.作图—基本作图(共1小题)11.(2021•广州)如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1)尺规作图:作∠CAD的平分线AF,交CD于点F,连结EF、BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,证明:△BEF为等边三角形.八.相似形综合题(共1小题)12.(2023•广州)如图,AC是菱形ABCD的对角线.(1)尺规作图:将△ABC绕点A逆时针旋转得到△ADE,点B旋转后的对应点为D(保留作图痕迹,不写作法);(2)在(1)所作的图中,连接BD,CE.①求证:△ABD∽△ACE;②若tan∠BAC=,求cos∠DCE的值.九.解直角三角形(共1小题)13.(2022•广州)如图,AB是⊙O的直径,点C在⊙O上,且AC=8,BC=6.(1)尺规作图:过点O作AC的垂线,交劣弧于点D,连接CD(保留作图痕迹,不写作法);(2)在(1)所作的图形中,求点O到AC的距离及sin∠ACD的值.一十.解直角三角形的应用-仰角俯角问题(共1小题)14.(2022•广州)某数学活动小组利用太阳光线下物体的影子和标杆测量旗杆的高度.如图,在某一时刻,旗杆AB的影子为BC,与此同时在C处立一根标杆CD,标杆CD的影子为CE,CD=1.6m,BC=5CD.(1)求BC的长;(2)从条件①、条件②这两个条件中选择一个作为已知,求旗杆AB的高度.条件①:CE=1.0m;条件②:从D处看旗杆顶部A的仰角α为54.46°.注:如果选择条件①和条件②分别作答,按第一个解答计分.参考数据:sin54.46°≈0.81,cos54.46°≈0.58,tan54.46°≈1.40.一十一.频数(率)分布直方图(共1小题)15.(2022•广州)某校在九年级学生中随机抽取了若干名学生参加“平均每天体育运动时间”的调查,根据调查结果绘制了如下不完整的频数分布表和频数分布直方图.频数分布表运动时间t/min频数频率30≤t<6040.160≤t<9070.17590≤t<120a0.35120≤t<15090.225150≤t<1806b合计n1请根据图表中的信息解答下列问题:(1)频数分布表中的a=,b=,n=;(2)请补全频数分布直方图;(3)若该校九年级共有480名学生,试估计该校九年级学生平均每天体育运动时间不低于120min的学生人数.广东省广州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.一次函数的应用(共1小题)1.(2023•广州)因活动需要购买某种水果,数学活动小组的同学通过市场调查得知:在甲商店购买该水果的费用y1(元)与该水果的质量x(千克)之间的关系如图所示;在乙商店购买该水果的费用y2(元)与该水果的质量x(千克)之间的函数解析式为y2=10x (x≥0).(1)求y1与x之间的函数解析式;(2)现计划用600元购买该水果,选甲、乙哪家商店能购买该水果更多一些?【答案】(1)y1与x之间的函数解析式为y1=;(2)在甲商店购买更多一些.【解答】解:(1)当0≤x≤5时,设y1与x之间的函数解析式为y1=kx(k≠0),把(5,75)代入解析式得:5k=75,解得k=15,∴y1=15x;当x>5时,设y1与x之间的函数解析式为y1=mx+n(m≠0),把(5,75)和(10,120)代入解析式得,解得,∴y1=9x+30,综上所述,y1与x之间的函数解析式为y1=;(2)在甲商店购买:9x+30=600,解得x=63,∴在甲商店600元可以购买63千克水果;在乙商店购买:10x=600,解得x=60,∴在乙商店600元可以购买60千克,∵63>60,∴在甲商店购买更多一些.二.反比例函数综合题(共1小题)2.(2023•广州)已知点P(m,n)在函数y=﹣(x<0)的图象上.(1)若m=﹣2,求n的值;(2)抛物线y=(x﹣m)(x﹣n)与x轴交于两点M,N(M在N的左边),与y轴交于点G,记抛物线的顶点为E.①m为何值时,点E到达最高处;②设△GMN的外接圆圆心为C,⊙C与y轴的另一个交点为F,当m+n≠0时,是否存在四边形FGEC为平行四边形?若存在,求此时顶点E的坐标;若不存在,请说明理由.【答案】(1)1;(2)①m=﹣;②假设存在,E(﹣,﹣),或(,﹣).【解答】解:(1)把m=﹣2代入y=﹣(x<0)得n=﹣=1;故n的值为1;(2)①在y=(x﹣m)(x﹣n)中,令y=0,则(x﹣m)(x﹣n)=0,解得x=m或x=n,∴M(m,0),N(n,0),∵点P(m,n)在函数y=﹣(x<0)的图象上,∴mn=﹣2,令x=,得y=(x﹣m)(x﹣n)=﹣(m﹣n)2=﹣2﹣(m+n)2≤﹣2,即当m+n=0,且mn=﹣2,则m2=2,解得:m=﹣(正值已舍去),即m=﹣时,点E到达最高处;②假设存在,理由:对于y=(x﹣m)(x﹣n),当x=0时,y=mn=﹣2,即点G(0,﹣2),由①得M(m,0),N(n,0),G(0,﹣2),E(,﹣(m﹣n)2),对称轴为直线x=,由点M(m,0)、G(0,﹣2)的坐标知,tan∠OMG==,作MG的中垂线交MG于点T,交y轴于点S,交x轴于点K,则点T(m,﹣1),则tan∠MKT=﹣m,则直线TS的表达式为:y=﹣m(x﹣m)﹣1.当x=时,y=﹣m(x﹣m)﹣1=﹣,则点C的坐标为:(,﹣).由垂径定理知,点C在FG的中垂线上,则FG=2(y C﹣y G)=2×(﹣+2)=3.∵四边形FGEC为平行四边形,则CE=FG=3=y C﹣y E=﹣﹣y E,解得:y E=﹣,即﹣(m﹣n)2=﹣,且mn=﹣2,则m+n=,∴E(﹣,﹣),或(,﹣).三.二次函数综合题(共2小题)3.(2022•广州)已知直线l:y=kx+b经过点(0,7)和点(1,6).(1)求直线l的解析式;(2)若点P(m,n)在直线l上,以P为顶点的抛物线G过点(0,﹣3),且开口向下.①求m的取值范围;②设抛物线G与直线l的另一个交点为Q,当点Q向左平移1个单位长度后得到的点Q′也在G上时,求G在≤x≤+1的图象的最高点的坐标.【答案】(1)y=﹣x+7;(2)①m<10且m≠0;②(﹣2,9)或(2,5).【解答】解:(1)将点(0,7)和点(1,6)代入y=kx+b,∴,解得,∴y=﹣x+7;(2)①∵点P(m,n)在直线l上,∴n=﹣m+7,设抛物线的解析式为y=a(x﹣m)2+7﹣m,∵抛物线经过点(0,﹣3),∴am2+7﹣m=﹣3,∴a=,∵抛物线开口向下,∴a<0,∴a=<0,∴m<10且m≠0;②∵抛物线的对称轴为直线x=m,∴Q点与Q'关于x=m对称,∴Q点的横坐标为m+,联立方程组,整理得ax2+(1﹣2ma)x+am2﹣m=0,∵P点和Q点是直线l与抛物线G的交点,∴m+m+=2m﹣,∴a=﹣2,∴y=﹣2(x﹣m)2+7﹣m,∴﹣2m2+7﹣m=﹣3,解得m =2或m =﹣,当m =2时,y =﹣2(x ﹣2)2+5,此时抛物线的对称轴为直线x =2,图象在≤x ≤上的最高点坐标为(2,5);当m =﹣时,y =﹣2(x +)2+,此时抛物线的对称轴为直线x =﹣,图象在﹣2≤x ≤﹣1上的最高点坐标为(﹣2,9);综上所述:G 在≤x ≤+1的图象的最高点的坐标为(﹣2,9)或(2,5).4.(2021•广州)已知抛物线y =x 2﹣(m +1)x +2m +3.(1)当m =0时,请判断点(2,4)是否在该抛物线上;(2)该抛物线的顶点随着m 的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3)已知点E (﹣1,﹣1)、F (3,7),若该抛物线与线段EF 只有一个交点,求该抛物线顶点横坐标的取值范围.【答案】(1)点(2,4)不在抛物线上;(2)(2,5);(3)x 顶点<﹣或x 顶点>或x 顶点=1.【解答】解:(1)当m =0时,抛物线为y =x 2﹣x +3,将x =2代入得y =4﹣2+3=5,∴点(2,4)不在抛物线上;(2)抛物线y =x 2﹣(m +1)x +2m +3的顶点为(,),化简得(,),顶点移动到最高处,即是顶点纵坐标最大,而=﹣(m ﹣3)2+5,∴m =3时,纵坐标最大,即是顶点移动到了最高处,此时该抛物线解析式为y =x 2﹣4x +9,顶点坐标为:(2,5);(3)设直线EF 解析式为y =kx +b ,将E (﹣1,﹣1)、F (3,7)代入得:,解得,∴直线EF 的解析式为y =2x +1,由得:或,∴直线y =2x +1与抛物线y =x 2﹣(m +1)x +2m +3的交点为:(2,5)和(m +1,2m +3),而(2,5)在线段EF 上,∴若该抛物线与线段EF 只有一个交点,则(m +1,2m +3)不在线段EF 上,或(2,5)与(m +1,2m +3)重合,∴m +1<﹣1或m +1>3或m +1=2(此时2m +3=5),∴此时抛物线顶点横坐标x 顶点=<﹣或x 顶点=>或x 顶点===1.四.全等三角形的判定与性质(共1小题)5.(2023•广州)如图,B 是AD 的中点,BC ∥DE ,BC =DE .求证:∠C =∠E .【答案】证明见解析.【解答】证明:∵B 是AD 的中点,∴AB =BD ,∵BC∥DE,∴∠ABC=∠D,在△ABC和△BDE中,,∴△ABC≌△BDE(SAS),∴∠C=∠E.五.四边形综合题(共3小题)6.(2023•广州)如图,在正方形ABCD中,E是边AD上一动点(不与点A,D重合).边BC关于BE对称的线段为BF,连接AF.(1)若∠ABE=15°,求证:△ABF是等边三角形;(2)延长FA,交射线BE于点G.①△BGF能否为等腰三角形?如果能,求此时∠ABE的度数;如果不能,请说明理由;②若,求△BGF面积的最大值,并求此时AE的长.【答案】(1)见解析;(2)①22.5°;②;.【解答】(1)证明:由轴对称的性质得到BF=BC,∵四边形ABCD是正方形,∴∠ABC=90°,∵∠ABE=15°,∴∠CBE=75°,∵BC关于BE对称的线段为BF,∴∠FBE=∠CBE=75°,∴∠ABF=∠FBE﹣∠ABE=60°,∴△ABF是等边三角形;(2)解:①能,∵边BC关于BE对称的线段为BF,∴BC=BF,∵四边形ABCD是正方形,∴BC=AB,∴BF=BC=BA,∵E是边AD上一动点,∴BA<BE<BG,∴点B不可能是等腰三角形BGF的顶点,若点F是等腰三角形BGF的顶点,则有∠FGB=∠FBG=∠CBG,此时E与D重合,不合题意,∴只剩下GF=GB了,连接CG交AD于H,∵BC=BF,∠CBG=∠FBG,BG=BG,∴△CBG≌△FBG(SAS),∴FG=CG,∴BG=CG,∴△BGF为等腰三角形,∵BA=BC=BF,∴∠BFA=∠BAF,∵△CBG≌△FBG,∴∠BFG=∠BCG,∵AD∥BC,∴∠AHG=∠BCG,∴∠BAF+∠HAG=∠AHG+∠HAG=180°﹣∠BAD=90°,∴∠FGC=180°﹣∠HAG﹣∠AHG=90°,∴∠BGF=∠BGC==45°,∵GB=GC,∴∠GBC=∠GCB=(180°﹣∠BGC)=67.5°,∴∠ABE=∠ABC﹣∠GBC=90°﹣67.5°=22.5°;②由①知,△CBG≌△FBG,要求△BGF面积的最大值,即求△BGC面积的最大值,在△GBC中,底边BC是定值,即求高的最大值即可,如图2,过G作GP⊥BC于P,连接AC,取AC的中点M,连接GM,作MN⊥BC于N,设AB=2x,则AC=2x,由①知∠AGC=90°,M是AC的中点,∴GM==x,MN==x,∴PG≤GM+MN=()x,当G,M,N三点共线时,取等号,∴△BGF面积的最大值==(1)×=;如图3,设PG与AD交于Q,则四边形ABPQ是矩形,∴AQ=PB=x,PQ=AB=2x,∴QM=MP=x,GM=x,∴,∵QE+AE=AQ=x,∴,∴=2()x=2(×()=.7.(2022•广州)如图,在菱形ABCD中,∠BAD=120°,AB=6,连接BD.(1)求BD的长;(2)点E为线段BD上一动点(不与点B,D重合),点F在边AD上,且BE=DF.①当CE⊥AB时,求四边形ABEF的面积;②当四边形ABEF的面积取得最小值时,CE+CF的值是否也最小?如果是,求CE+CF的最小值;如果不是,请说明理由.【答案】(1)6(2)①7;②是,最小值为12.【解答】解:(1)过点D作DH⊥AB交BA的延长线于H,如图:∵四边形ABCD是菱形,∴AD=AB=6,∵∠BAD=120°,∴∠DAH=60°,在Rt△ADH中,DH=AD•sin∠DAH=6×=3,AH=AD•cos∠DAH=6×=3,∴BD===6;(2)①设CE⊥AB交AB于M点,过点F作FN⊥AB交BA的延长线于N,如图:菱形ABCD中,∵AB=BC=CD=AD=6,AD∥BC,∠BAD=120°,∴∠ABC+∠BAD=180°,∴∠ABC=180°﹣∠BAD=60°,在Rt△BCM中,BM=BC•cos∠ABC=6×=3,∵BD是菱形ABCD的对角线,∴∠DBA=ABC=30°,在Rt△BEM中,ME=BM•tan∠DBM=3×=,BE===2,∵BE=DF,∴DF=2,∴AF=AD﹣DF=4,在Rt△AFN中,∠FAN=180°﹣∠BAD=60°,∴FN=AF•sin∠FAN=4×=2,AN=AF•cos∠FAN=4×=2,∴MN=AB+AN﹣BM=6+2﹣3=5,∴SABEF=S△BEM+S梯形EMNF﹣S△AFN四边形=EM•BM+(EM+FN)•MN﹣AN•FN=3+(+2)×5﹣2×2=+﹣2=7;②当四边形ABEF的面积取最小值时,CE+CF的值是最小,理由:设DF=x,则BE=DF=x,过点C作CH⊥AB于点H,过点F作FG⊥CH 于点G,过点E作EY⊥CH于点Y,作EM⊥AB于M点,过点F作FN⊥AB交BA的延长线于N,如图:∴EY∥FG∥AB,FN∥CH,∴四边形EMHY、FNHG是矩形,∴FN=GH,FG=NH,EY=MH,EM=YH,由①可知:ME=BE=x,BM=BE=x,AN=AF=(AD﹣DF)=3﹣x,FN=AF=,CH=BC=3,BH=BC=3,∴AM=AB﹣BM=6﹣x,AH=AB﹣BH=3,YH=ME=x,GH=FN=,EY=MH=BM﹣BH=x﹣3,∴CY=CH﹣YH=3﹣x,FG=NH=AN+AH=6﹣,CG=CH﹣GH=3﹣=x,∴MN=AB+AN﹣BM=6+3﹣x﹣x=9﹣2x,∴SABEF=S△BEM+S梯形EMNF﹣S△AFN四边形=EM•BM+(EM+FN)•MN﹣AN•FN=x×x+(x+)•(9﹣2x)﹣(3﹣x)•=x2﹣x+9=(x﹣3)2+,∵>0,∴当x=3时,四边形ABEF的面积取得最小值,方法一:CE+CF=+•=+=+×=+×=+,∵(x﹣3)2≥0,当且仅当x=3时,(x﹣3)2=0,∴CE+CF=+≥12,当且仅当x=3时,CE+CF=12,即当x=3时,CE+CF的最小值为12,∴当四边形ABEF的面积取最小值时,CE+CF的值也最小,最小值为12.方法二:如图:将△BCD绕点B逆时针旋转60°至△BAG,连接CG,在Rt△BCG中,CG=2BC=12,∵==,∠CDF=∠GBE=60°,∴△BEG∽△DFC,∴==,即GE=CF,∴CE+CF=CE+GE≥CG=12,即当且仅当点C、E、G三点共线时,CE+CF的值最小,此时点E为菱形对角线的交点,BD中点,BE=3,DF=3,∴当四边形ABEF的面积取最小值时,CE+CF的值也最小,最小值为12.解法二:如图,在BD上截取DM,使得DM=2,在DA上取点F,连接DF,使得△DFM∽△BEC.则有CE=FM,作点M关于AD的对称点M′,∴CE+CF=FM+CF=(CF+FM)=(CF+FM′),∴C,F,M′共线时,最小,此时DF=3,可得CE+CF的值也最小,最小值为12.8.(2021•广州)如图,在菱形ABCD中,∠DAB=60°,AB=2,点E为边AB上一个动点,延长BA到点F,使AF=AE,且CF、DE相交于点G.(1)当点E运动到AB中点时,证明:四边形DFEC是平行四边形;(2)当CG=2时,求AE的长;(3)当点E从点A开始向右运动到点B时,求点G运动路径的长度.【答案】见试题解答内容【解答】解:(1)证明:连接DF,CE,如图所示:,∵E为AB中点,∴AE=AF=AB,∴EF=AB=CD,∵四边形ABCD是菱形,∴EF∥CD,∴四边形DFEC是平行四边形.(2)作CH⊥BH,设AE=FA=m,如图所示,,∵四边形ABCD是菱形,∴CD∥EF,∴△CDG∽△FEG,∴,∴FG=2m,在Rt△CBH中,∠CBH=60°,BC=2,sin60°=,CH=,cos60°=,BH=1,在Rt△CFH中,CF=2+2m,CH=,FH=3+m,CF2=CH2+FH2,即(2+2m)2=()2+(3+m)2,整理得:3m2+2m﹣8=0,解得:m1=,m2=﹣2(舍去),∴.(3)G点轨迹为线段AG,证明:如图,(此图仅作为证明AG轨迹用),延长线段AG交CD于H,作HM⊥AB于M,作DN⊥AB于N,∵四边形ABCD是菱形,∴BF∥CD,∴△DHG∽△EGA,△HGC∽△AGF,∴,,∴,∵AE=AF,∴DH=CH=1,在Rt△ADN中,AD=2,∠DAB=60°.∴sin60°=,DN=.cos60°=,AN=1,在Rt△AHM中,HM=DN=,AM=AN+NM=AN+DH=2,tan∠HAM=,G点轨迹为线段AG.∴G点轨迹是线段AG.如图所示,作GH⊥AB,∵四边形ABCD为菱形,∠DAB=60°,AB=2,∴CD∥BF,BD=2,∴△CDG∽△FBG,∴,即BG=2DG,∵BG+DG=BD=2,∴BG=,在Rt△GHB中,BG=,∠DBA=60°,sin60°=,GH=,cos60°=,BH=,在Rt△AHG中,AH=2﹣=,GH=,AG2=()2+()2=,∴AG=.∴G点路径长度为.解法二:如图,连接AG,延长AG交CD于点W.∵CD∥BF,∴=,=,∴=,∵AF=AE,∴DW=CW,∴点G在AW上运动.下面的解法同上.六.圆的综合题(共2小题)9.(2023•广州)如图,在平面直角坐标系xOy中,点A(﹣2,0),B(0,2),所在圆的圆心为O.将向右平移5个单位,得到(点A平移后的对应点为C).(1)点D的坐标是(5,2),所在圆的圆心坐标是(5,0);(2)在图中画出,并连接AC,BD;(3)求由,BD,,CA首尾依次相接所围成的封闭图形的周长.(结果保留π)【答案】(1)(5,2)、(5,0);(2)见解答;(3)2π+10.【解答】解:(1)如下图,由平移的性质知,点D(5,2),所在圆的圆心坐标是(5,0),故答案为:(5,2)、(5,0);(2)在图中画出,并连接AC,BD,见下图;(3)和长度相等,均为×2πr=×2=π,而BD=AC=5,则封闭图形的周长=++2BD=2π+10.10.(2021•广州)如图,在平面直角坐标系xOy中,直线l:y=x+4分别与x轴,y轴相交于A、B两点,点P(x,y)为直线l在第二象限的点.(1)求A、B两点的坐标;(2)设△PAO的面积为S,求S关于x的函数解析式,并写出x的取值范围;(3)作△PAO的外接圆⊙C,延长PC交⊙C于点Q,当△POQ的面积最小时,求⊙C 的半径.【答案】(1)A(﹣8,0),B(0,4);(2)S=2x+16(﹣8<x<0);(3)4.【解答】解:(1)∵直线y=x+4分别与x轴,y轴相交于A、B两点,∴当x=0时,y=4;当y=0时,x=﹣8,∴A(﹣8,0),B(0,4);(2)∵点P(x,y)为直线l在第二象限的点,∴P(x,),∴SAPO==2x+16(﹣8<x<0);△∴S=2x+16(﹣8<x<0);(3)∵A(﹣8,0),B(0,4),∴OA=8,OB=4,在Rt△AOB中,由勾股定理得:AB=,在⊙C中,∵PQ是直径,∴∠POQ=90°,∵∠BAO=∠Q,∴tan Q=tan∠BAO=,∴,∴OQ=2OP,∴SPOQ=,△∴当SPOQ最小时,则OP最小,△∵点P在线段AB上运动,∴当OP⊥AB时,OP最小,∴SAOB=,△∴,∵sin Q=sin∠BAO,∴,∴,∴PQ=8,∴⊙C半径为4.七.作图—基本作图(共1小题)11.(2021•广州)如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1)尺规作图:作∠CAD的平分线AF,交CD于点F,连结EF、BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,证明:△BEF为等边三角形.【答案】(1)作图见解析部分.(2)证明见解析部分.【解答】(1)解:如图,图形如图所示.(2)证明:∵AC=AD,AF平分∠CAD,∴∠CAF=∠DAF,AF⊥CD,∵∠CAD=2∠BAC,∠BAD=45°,∴∠BAE=∠EAF=∠FAD=15°,∵∠ABC=∠AFC=90°,AE=EC,∴BE=AE=EC,EF=AE=EC,∴EB=EF,∠EAB=∠EBA=15°,∠EAF=∠EFA=15°,∴∠BEC=∠EAB+∠EBA=30°,∠CEF=∠EAF+∠EFA=30°,∴∠BEF=60°,∴△BEF是等边三角形.八.相似形综合题(共1小题)12.(2023•广州)如图,AC是菱形ABCD的对角线.(1)尺规作图:将△ABC绕点A逆时针旋转得到△ADE,点B旋转后的对应点为D(保留作图痕迹,不写作法);(2)在(1)所作的图中,连接BD,CE.①求证:△ABD∽△ACE;②若tan∠BAC=,求cos∠DCE的值.【答案】(1)作法、证明见解答;(2)①证明见解答;②cos∠DCE的值是.【解答】解:(1)如图1,作法:1.以点D为圆心,BC长为半径作弧,2.以点A为圆心,AC长为半径作弧,交前弧于点E,3.连接DE、AE,△ADE就是所求的图形.证明:∵四边形ABCD是菱形,∴AD=AB,∵DE=BC,AE=AC,∴△ADE≌△ABC(SSS),∴△ADE就是△ABC绕点A逆时针旋转得到图形.(2)①如图2,由旋转得AB=AD,AC=AE,∠BAC=∠DAE,∴=,∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,∴△ABD∽△ACE.②如图2,延长AD交CE于点F,∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∵∠BAC=∠DAE,∴∠DAE=∠DAC,∵AE=AC,∴AD⊥CE,∴∠CFD=90°,设CF=m,CD=AD=x,∵=tan∠DAC=tan∠BAC=,∴AF=3CF=3m,∴DF=3m﹣x,∵CF2+DF2=CD2,∴m2+(3m﹣x)2=x2,∴解关于x的方程得x=m,∴CD=m,∴cos∠DCE===,∴cos∠DCE的值是.九.解直角三角形(共1小题)13.(2022•广州)如图,AB是⊙O的直径,点C在⊙O上,且AC=8,BC=6.(1)尺规作图:过点O作AC的垂线,交劣弧于点D,连接CD(保留作图痕迹,不写作法);(2)在(1)所作的图形中,求点O到AC的距离及sin∠ACD的值.(2)点O到AC的距离为4,sin∠ACD=.于P、Q两点,画直线PQ交劣弧于点D,交AC于点E,即作线段AC的垂直平分线,由垂径定理可知,直线PQ一定过点O;(2)∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,且AC=8,BC=6.∴AB==10,∵OD⊥AC,∴AE=CE=AC=4,又∵OA=OB,∴OE是△ABC的中位线,∴OE=BC=3,由于PQ过圆心O,且PQ⊥AC,即点O到AC的距离为3,连接OC,在Rt△CDE中,∵DE=OD﹣CE=5﹣3=2,CE=4,∴CD===2∴sin∠ACD===.一十.解直角三角形的应用-仰角俯角问题(共1小题)14.(2022•广州)某数学活动小组利用太阳光线下物体的影子和标杆测量旗杆的高度.如图,在某一时刻,旗杆AB的影子为BC,与此同时在C处立一根标杆CD,标杆CD的影子为CE,CD=1.6m,BC=5CD.(1)求BC的长;(2)从条件①、条件②这两个条件中选择一个作为已知,求旗杆AB的高度.条件①:CE=1.0m;条件②:从D处看旗杆顶部A的仰角α为54.46°.注:如果选择条件①和条件②分别作答,按第一个解答计分.参考数据:sin54.46°≈0.81,cos54.46°≈0.58,tan54.46°≈1.40.【答案】(1)BC的长为8m;(2)旗杆AB的高度约为12.8m.【解答】解:(1)∵BC=5CD,CD=1.6m,∴BC=5×1.6=8(m),∴BC的长为8m;(2)若选择条件①:由题意得:=,∴=,∴AB=12.8,∴旗杆AB的高度为12.8m;若选择条件②:过点D作DF⊥AB,垂足为F,则DC=BF=1.6m,DF=BC=8m,在Rt△ADF中,∠ADF=54.46°,∴AF=DF•tan54.46°≈8×1.4=11.2(m),∴AB=AF+BF=11.2+1.6=12.8(m),∴旗杆AB的高度约为12.8m.一十一.频数(率)分布直方图(共1小题)15.(2022•广州)某校在九年级学生中随机抽取了若干名学生参加“平均每天体育运动时间”的调查,根据调查结果绘制了如下不完整的频数分布表和频数分布直方图.频数分布表请根据图表中的信息解答下列问题:(1)频数分布表中的a=14,b=0.15,n=40;(2)请补全频数分布直方图;(3)若该校九年级共有480名学生,试估计该校九年级学生平均每天体育运动时间不低于120min的学生人数.【答案】见试题解答内容【解答】解:(1)由题意可知,n=4÷0.1=40,∴a=40×0.35=14,b=6÷40=0.15,故答案为:14;0.15;40;(2)补全频数分布直方图如下:(3)480×=180(名),答:估计该校九年级学生平均每天体育运动时间不低于120min的学生人数为180名.。
初中数学一次函数的应用题型分类汇编——分配方案决策问题3(附答案详解) 1.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:例如,购买A 类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于40~50次之间,则最省钱的方式为( )A .购买A 类会员卡B .购买B 类会员年卡C .购买C 类会员年卡D .不购买会员年卡2.超市有A ,B 两种型号的瓶子,其容量和价格如表,小张买瓶子用来分装15升油(瓶子都装满,且无剩油);当日促销活动:购买A 型瓶3个或以上,一次性返还现金5元,设购买A 型瓶x (个),所需总费用为y (元),则下列说法不一定成立的是( )A .购买B 型瓶的个数是253x ⎛⎫- ⎪⎝⎭为正整数时的值 B .购买A 型瓶最多为6个C .y 与x 之间的函数关系式为30y x =+D .小张买瓶子的最少费用是28元 3.学校准备租用甲乙两种大客车共8辆,送师生集体外出研学,每辆甲种客车的租金是400元,每辆乙种客车的租金是280元,设租用甲种客车x 辆,租车费用为y 元. (1)求出y 与x 的函数关系式;(2)若租用甲种客车不少于6辆,应如何租用租车费用最低,最低费用是多少? 4.某草莓采摘园元旦至春节期间推出了甲、乙两种优惠方案.甲种优惠方案:游客进园需要购买40元的门票(每个家庭购买一张门票),采摘的草莓均按定价的六折卖给采摘游客;乙种优惠方案:游客进园不需购买门票,采摘的草莓按定价出售,但超过一定重量后,超过的部分打折卖给采摘的游客.优惠期间,设某游客(或一个家庭)采摘草莓的重量为x (kg ),选用甲种优惠方案采摘所需的总费用为y1(元),选用乙种优惠方案采摘所需的总费用为y2(元).已知1,y2与采摘重量x(kg)之间的函数关系如图所示.(1)分别求y1,y2与x之间的函数关系式;(2)求点A的坐标,并解释坐标的实际意义;(3)采摘重量x为多少时,游客选用甲种优惠方案采摘更合算.(直接写出答案即可)5.某市为支援灾区建设,计划向A、B两受灾地运送急需物资分别为60吨和140吨,该市甲、乙两地有急需物资分别为120吨和80吨,已知甲、乙两地运到A、B两地的每吨物资的运费如表所示:甲乙A20元/吨15元/吨B25元/吨24元/吨(1)设甲地运到A地的急需物资为x吨,求总运费y(元)关于x(吨)的函数关系式,并写出x的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.6.为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?7.为了争创全国文明卫生城市,优化城市环境,节约能源,某市公交公司决定购买一批共10台全新的混合动力公交车,现有A、B两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多10万元,购买3台A型车比购买4台B型车少30万元.(1)请求出a和b的值;(2)若购买这批混合动力公交车(两种车型都要有)每年能节省的油量不低于21.6万升,请问有几种购车方案?请写出解答过程.(3)求(2)中最省钱的购车方案及所需的购车款.8.某电视机厂要印制产品宜传材料甲印刷厂提出:每份材料收1元印制费,另收1500元制版费;乙厂提出:每份材料收2.5元印制费,不收制版费.(1)分别写出两厂的收费y元与印制数量x(份)之间的关系式(2)在同一直角坐标系内画出它们的图象;(3)根据图像回答下列问题:①印制800份宣传材料时,选择哪家印刷厂比较合算?②电视机厂拟拿出3000元用于印制宣传材料,找哪家印刷厂印制宣传材料能多一些? 9.“垃圾分类”意识已经深入人心.我校王老师准备用2000元(全部用完)购买,A B两类垃圾桶,已知A类桶单价20元,B类桶单价40元,设购入A类桶x个,B类桶y个.(1)求y关于x的函数表达式.(2)若购进的A类桶不少于B类桶的2倍.①求至少购进A类桶多少个?②根据临场实际购买情况,王老师在总费用不变的情况下把一部分A类桶调换成另一种C类桶,且调换后C类桶的数量不少于B类桶的数量,已知C类桶单价30元,则按这样的购买方式,B类桶最多可买个.(直接写出答案)10.中国移动公司开设适合普通用户的两种通讯业务分别是:“全球通”用户先缴12元月租,然后每分钟通话费用0.2元;“神州行”用户不用缴纳月租费,每分钟通话0.3元.(通话均指拨打本地电话)()1设一个月内通话时间约为x分钟(3x≥且x为整数),求这两种用户每月需缴的费用分别是多少元?(用含x的式子表示)()2若张老师一个月通话约180分钟,请你给他提个建议,应选择哪种移动通讯方式合算一些?并说明理由.11.为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具x个,求有多少种购买方案?(3)设学校投入资金W元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?12.某大剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别建立两种优惠方案中y与x的函数关系式;(2)请计算并确定出最节省费用的购票方案.13.某城市为了加强公民的节气和用气意识,按以下规定收取每月煤气费:所用煤气如果不超过50立方米,按每立方米0.8元收费;如果超过50立方米,超过部分按每立方米1.2元收费设小丽家每月所用煤气量为x立方米,应交煤气费为y元.(1)若小丽家某月所用煤气量为80立方米,则小丽家该月应交煤气费多少元?(2)试写出y与x之间的解析式.(3)若小丽家4月份的煤气费为88元,则她家4月份所用煤气量为多少立方米?(4)已知小丽家6月份所交的煤气费平均每立方米为0.95元,那么6月份小丽家用了多少立方米的煤气?14.光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.15.某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A、y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.16.为响应市政府“创建国家森林城市”的号召,某小区计划购进A,B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元。
山东省各地市2023-中考数学真题分类汇编-03解答题(较难题)知识点分类一.一次函数的应用(共1小题)1.(2023•日照)要制作200个A,B两种规格的顶部无盖木盒,A种规格是长、宽、高都为20cm的正方体无盖木盒,B种规格是长、宽、高各为20cm,20cm,10cm的长方体无盖木盒,如图1.现有200张规格为40cm×40cm的木板材,对该种木板材有甲、乙两种切割方式,如图2.切割、拼接等板材损耗忽略不计.(1)设制作A种木盒x个,则制作B种木盒 个;若使用甲种方式切割的木板材y张,则使用乙种方式切割的木板材 张;(2)该200张木板材恰好能做成200个A和B两种规格的无盖木盒,请分别求出A,B 木盒的个数和使用甲,乙两种方式切割的木板材张数;(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元.根据市场调研,A种木盒的销售单价定为a元,B种木盒的销售单价定为(20﹣a)元,两种木盒的销售单价均不能低于7元,不超过18元.在(2)的条件下,两种木盒的销售单价分别定为多少元时,这批木盒的销售利润最大,并求出最大利润.二.二次函数综合题(共5小题)2.(2023•淄博)如图,一条抛物线y=ax2+bx经过△OAB的三个顶点,其中O为坐标原点,点A(3,﹣3),点B在第一象限内,对称轴是直线x=,且△OAB的面积为18.(1)求该抛物线对应的函数表达式;(2)求点B的坐标;(3)设C为线段AB的中点,P为直线OB上的一个动点,连接AP,CP,将△ACP沿CP翻折,点A的对应点为A1.问是否存在点P,使得以A1,P,C,B为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.3.(2023•东营)如图,抛物线过点O(0,0),E(10,0),矩形ABCD的边AB在线段OE 上(点B在点A的左侧),点C,D在抛物线上.设B(t,0),当t=2时,BC=4.(1)求抛物线的函数表达式;(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形ABCD的面积时,求抛物线平移的距离.4.(2023•枣庄)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.5.(2023•日照)在平面直角坐标系xOy内,抛物线y=﹣ax2+5ax+2(a>0)交y轴于点C,过点C作x轴的平行线交该抛物线于点D.(1)求点C,D的坐标;(2)当时,如图1,该抛物线与x轴交于A,B两点(点A在点B的左侧),点P 为直线AD上方抛物线上一点,将直线PD沿直线AD翻折,交x轴于点M(4,0),求点P的坐标;(3)坐标平面内有两点E(,a+1),F(5,a+1),以线段EF为边向上作正方形EFGH.①若a=1,求正方形EFGH的边与抛物线的所有交点坐标;②当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为时,求a的值.6.(2023•聊城)如图①,抛物线y=ax2+bx﹣9与x轴交于点A(﹣3,0),B(6,0),与y 轴交于点C,连接AC,BC.点P是x轴上任意一点.(1)求抛物线的表达式;(2)点Q在抛物线上,若以点A,C,P,Q为顶点,AC为一边的四边形为平行四边形时,求点Q的坐标;(3)如图②,当点P(m,0)从点A出发沿x轴向点B运动时(点P与点A,B不重合),自点P分别作PE∥BC,交AC于点E,作PD⊥BC,垂足为点D.当m为何值时,△PED面积最大,并求出最大值.三.三角形综合题(共1小题)7.(2023•临沂)如图,∠A=90°,AB=AC,BD⊥AB,BC=AB+BD.(1)写出AB与BD的数量关系.(2)延长BC到E,使CE=BC,延长DC到F,使CF=DC,连接EF.求证:EF⊥AB.(3)在(2)的条件下,作∠ACE的平分线,交AF于点H,求证:AH=FH.四.四边形综合题(共2小题)8.(2023•淄博)在数学综合与实践活动课上,小红以“矩形的旋转”为主题开展探究活动.(1)操作判断小红将两个完全相同的矩形纸片ABCD和CEFG拼成“L”形图案,如图①.试判断:△ACF的形状为 .(2)深入探究小红在保持矩形ABCD不动的条件下,将矩形CEFG绕点C旋转,若AB=2,AD=4.探究一:当点F恰好落在AD的延长线上时,设CG与DF相交于点M,如图②.求△CMF 的面积.探究二:连接AE,取AE的中点H,连接DH,如图③.求线段DH长度的最大值和最小值.9.(2023•东营)(1)用数学的眼光观察如图①,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是AB的中点,N是DC的中点.求证:∠PMN=∠PNM.(2)用数学的思维思考如图②,延长图①中的线段AD交MN的延长线于点E,延长线段BC交MN的延长线于点F.求证:∠AEM=∠F.(3)用数学的语言表达如图③,在△ABC中,AC<AB,点D在AC上,AD=BC,M是AB的中点,N是DC 的中点,连接MN并延长,与BC的延长线交于点G,连接GD.若∠ANM=60°,试判断△CGD的形状,并进行证明.五.圆的综合题(共3小题)10.(2023•枣庄)如图,AB为⊙O的直径,点C是的中点,过点C做射线BD的垂线,垂足为E.(1)求证:CE是⊙O的切线;(2)若BE=3,AB=4,求BC的长;(3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示).11.(2023•日照)在探究“四点共圆的条件”的数学活动课上,小霞小组通过探究得出:在平面内,一组对角互补的四边形的四个顶点共圆.请应用此结论,解决以下问题:如图1,△ABC中,AB=AC,∠BAC=α(60°<α<180°).点D是BC边上的一动点(点D不与B,C重合),将线段AD绕点A顺时针旋转α到线段AE,连接BE.(1)求证:A,E,B,D四点共圆;(2)如图2,当AD=CD时,⊙O是四边形AEBD的外接圆,求证:AC是⊙O的切线;(3)已知α=120°,BC=6,点M是边BC的中点,此时⊙P是四边形AEBD的外接圆,直接写出圆心P与点M距离的最小值.12.(2023•济宁)如图,已知AB是⊙O的直径,CD=CB,BE切⊙O于点B,过点C作CF⊥OE交BE于点F,EF=2BF.(1)如图1,连接BD,求证:△ADB≌△OBE;(2)如图2,N是AD上一点,在AB上取一点M,使∠MCN=60°,连接MN.请问:三条线段MN,BM,DN有怎样的数量关系?并证明你的结论.六.相似三角形的判定与性质(共1小题)13.(2023•泰安)如图,△ABC和△CDE均是等腰直角三角形,∠BAC=∠DCE=90°,点E在线段AC上,BC,DE相交于点F,连接BE,BD,作EH⊥BD,垂足为点H,交BC与点G.(1)若点H是BD的中点,求∠BED的度数;(2)求证:△EFG∽△BFD;(3)求证:=.七.相似形综合题(共2小题)14.(2023•济南)在矩形ABCD中,AB=2,AD=2,点E在边BC上,将射线AE绕点A逆时针旋转90°,交CD延长线于点G,以线段AE,AG为邻边作矩形AEFG.(1)如图1,连接BD,求∠BDC的度数和的值;(2)如图2,当点F在射线BD上时,求线段BE的长;(3)如图3,当EA=EC时,在平面内有一动点P,满足PE=EF,连接PA,PC,求PA+PC的最小值.15.(2023•菏泽)(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.山东省各地市2023-中考数学真题分类汇编-03解答题(较难题)知识点分类参考答案与试题解析一.一次函数的应用(共1小题)1.(2023•日照)要制作200个A,B两种规格的顶部无盖木盒,A种规格是长、宽、高都为20cm的正方体无盖木盒,B种规格是长、宽、高各为20cm,20cm,10cm的长方体无盖木盒,如图1.现有200张规格为40cm×40cm的木板材,对该种木板材有甲、乙两种切割方式,如图2.切割、拼接等板材损耗忽略不计.(1)设制作A种木盒x个,则制作B种木盒 (200﹣x) 个;若使用甲种方式切割的木板材y张,则使用乙种方式切割的木板材 (200﹣y) 张;(2)该200张木板材恰好能做成200个A和B两种规格的无盖木盒,请分别求出A,B 木盒的个数和使用甲,乙两种方式切割的木板材张数;(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元.根据市场调研,A种木盒的销售单价定为a元,B种木盒的销售单价定为(20﹣a)元,两种木盒的销售单价均不能低于7元,不超过18元.在(2)的条件下,两种木盒的销售单价分别定为多少元时,这批木盒的销售利润最大,并求出最大利润.【答案】(1)(200﹣x),(200﹣y);(2)制作A种木盒100个,B种木盒100个;使用甲种方式切割的木板150张,使用乙种方式切割的木板50张;(3)A种木盒的销售单价定为18元,B种木盒的销售单价定为11元时,这批木盒的销售利润最大,最大利润为1750元.【解答】解:(1)∵要制作200个A,B两种规格的顶部无盖木盒,制作A种木盒x个,故制作B种木盒(200﹣x)个;∵有200张规格为40cm×40cm的木板材,使用甲种方式切割的木板材y张,故使用乙种方式切割的木板材(200﹣y)张;故答案为:(200﹣x),(200﹣y);(2)使用甲种方式切割的木板材y张,则可切割出4y个长、宽均为20cm的木板,使用乙种方式切割的木板材(200﹣y)张,则可切割出8(200﹣y)个长为10cm、宽为20cm 的木板;设制作A种木盒x个,则需要长、宽均为20cm的木板5x个,制作B种木盒(200﹣x)个,则需要长、宽均为20cm的木板(200﹣x)个,需要长为10cm、宽为20cm的木板4(200﹣x)个;故,解得:,故制作A种木盒100个,制作B种木盒100个,使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张;(3)∵用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元,且使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张,故总成本为150×5+8×50=1150(元);∵两种木盒的销售单价均不能低于7元,不超过18元,∴,解得:7≤a≤18,设利润为w元,则w=100a+100(20﹣a)﹣1150,整理得:w=850+50a,∵50>0,∴w随a的增大而增大,故当a=18时,有最大值,最大值为850+50×18=1750(元),则此时B种木盒的销售单价定为20﹣×18=11(元),即A种木盒的销售单价定为18元,B种木盒的销售单价定为11元时,这批木盒的销售利润最大,最大利润为1750元.二.二次函数综合题(共5小题)2.(2023•淄博)如图,一条抛物线y=ax2+bx经过△OAB的三个顶点,其中O为坐标原点,点A(3,﹣3),点B在第一象限内,对称轴是直线x=,且△OAB的面积为18.(1)求该抛物线对应的函数表达式;(2)求点B的坐标;(3)设C为线段AB的中点,P为直线OB上的一个动点,连接AP,CP,将△ACP沿CP 翻折,点A的对应点为A1.问是否存在点P,使得以A1,P,C,B为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=x2﹣3x;(2)(6,6);(3)存在,P点坐标为(,)或(﹣,﹣)或(+6,+6)或(﹣+6,﹣+6).【解答】解:(1)∵对称轴为直线x=,∴﹣=,∴b=﹣a①,将点A(3,﹣3)代入y=ax2+bx,∴9a+3b=﹣3②,联立①②可得,a=,b=﹣3,∴函数的解析式为y=x2﹣3x;(2)设B(m,m2﹣3m),如图1,过A点作EF⊥y轴交于E点,过B点作BF⊥EF交于F点,∴△OAB的面积=•m(m2﹣3m+3+3)﹣3×3﹣(m﹣3)(m2﹣3m+3)=18,解得m=6或m=﹣3(舍),∴B(6,6);(3)存在点P,使得以A1,P,C,B为顶点的四边形是平行四边形,理由如下:∵A(3,﹣3),B(6,6),∴C(,),设直线OB的解析式为y=kx,∴6k=6,解得k=1,∴直线OB的解析式为y=x,设P(t,t),如图2,当BP为平行四边形的对角线时,BC∥A1P,BC=A1P,∵AC=BC,∴AC=A1P,由对称性可知AC=A1C,AP=A1P,∴AP=AC,∴=,解得t=,∴P点坐标为(,)或(﹣,﹣);如图3,当BC为平行四边形的对角线时,BP∥A1C,BP=A1C,由对称性可知,AC=A1C,∴BP=AC,∴=,解得t=+6或t=﹣+6,∴P(+6,+6)或(﹣+6,﹣+6);综上所述:P点坐标为(,)或(﹣,﹣)或(+6,+6)或(﹣+6,﹣+6).3.(2023•东营)如图,抛物线过点O(0,0),E(10,0),矩形ABCD的边AB在线段OE 上(点B在点A的左侧),点C,D在抛物线上.设B(t,0),当t=2时,BC=4.(1)求抛物线的函数表达式;(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形ABCD的面积时,求抛物线平移的距离.【答案】(1)y=x2﹣x;(2)当t=1时,矩形ABCD的周长有最大值,最大值为;(3)抛物线向右平移的距离是4个单位.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,BC=4,∴点C的坐标为(2,﹣4),∴将点C坐标代入解析式得2a(2﹣10)=﹣4,解得:a=,∴抛物线的函数表达式为y=x2﹣x;(2)由抛物线的对称性得AE=OB=t,∴AB=10﹣2t,当x=t时,点C的纵坐标为t2﹣t,∴矩形ABCD的周长=2(AB+BC)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,连接AC,BD相交于点P,连接OC,取OC的中点Q,连接PQ,∵t=2,∴B(2,0),∴A(8,0),∵BC=4.∴C(2,﹣4),∵直线GH平分矩形ABCD的面积,∴直线GH过点P,由平移的性质可知,四边形OCHG是平行四边形,∴PQ=CH,∵四边形ABCD是矩形,∴点P是AC的中点,∴P(5,﹣2),∴PQ=OA,∵OA=8,CH=PQ=OA=4,∴抛物线向右平移的距离是4个单位4.(2023•枣庄)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,并交x轴于另一点B,点M是抛物线的顶点,直线AM与y轴交于点D.(1)求该抛物线的表达式;(2)若点H是x轴上一动点,分别连接MH,DH,求MH+DH的最小值;(3)若点P是抛物线上一动点,问在对称轴上是否存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+2x+3;(2)MH+DH的最小值为;(3)对称轴上存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形,点Q的坐标为(1,3)或(1,1)或(1,5).【解答】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,∴,解得:,∴该抛物线的表达式为y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点M(1,4),设直线AM的解析式为y=kx+d,则,解得:,∴直线AM的解析式为y=2x+2,当x=0时,y=2,∴D(0,2),作点D关于x轴的对称点D′(0,﹣2),连接D′M,D′H,如图,则DH=D′H,∴MH+DH=MH+D′H≥D′M,即MH+DH的最小值为D′M,∵D′M==,∴MH+DH的最小值为;(3)对称轴上存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形.由(2)得:D(0,2),M(1,4),∵点P是抛物线上一动点,∴设P(m,﹣m2+2m+3),∵抛物线y=﹣x2+2x+3的对称轴为直线x=1,∴设Q(1,n),当DM、PQ为对角线时,DM、PQ的中点重合,∴,解得:,∴Q(1,3);当DP、MQ为对角线时,DP、MQ的中点重合,∴,解得:,∴Q(1,1);当DQ、PM为对角线时,DQ、PM的中点重合,∴,解得:,∴Q(1,5);综上所述,对称轴上存在点Q,使得以D,M,P,Q为顶点的四边形是平行四边形,点Q的坐标为(1,3)或(1,1)或(1,5).5.(2023•日照)在平面直角坐标系xOy内,抛物线y=﹣ax2+5ax+2(a>0)交y轴于点C,过点C作x轴的平行线交该抛物线于点D.(1)求点C,D的坐标;(2)当时,如图1,该抛物线与x轴交于A,B两点(点A在点B的左侧),点P 为直线AD上方抛物线上一点,将直线PD沿直线AD翻折,交x轴于点M(4,0),求点P的坐标;(3)坐标平面内有两点E(,a+1),F(5,a+1),以线段EF为边向上作正方形EFGH.①若a=1,求正方形EFGH的边与抛物线的所有交点坐标;②当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为时,求a的值.【答案】(1)C(0,2),D(5,2);(2);(3)①(1,6),(4,6),(5,2);②a=0.5.【解答】解:(1)在y=﹣ax2+5ax+2(a>0)中,当x=0时,y=2,∴C(0,2),∵抛物线解析式为y=﹣ax2+5ax+2(a>0),∴抛物线对称轴为直线,∵过点C作x轴的平行线交该抛物线于点D,∴C、D关于抛物线对称轴对称,∴D(5,2);(2)当时,抛物线解析式为,当y=0时,,解得x=﹣1或x=6,∴A(﹣1,0),如图,设DP上与点M关于直线AD对称的点为N(m,n),由轴对称的性质可得:AN=AM,DN=DM,,∴3m+n=12,∴n=12﹣3m∴m2+2m+1+144﹣72m+9m2=25,∴m2﹣7m+12=0,解得m=3或m=4(舍去),∴n=12﹣3m=3,∴N(3,3),设直线DP的解析式为y=kx+b1,∴,解得,∴直线DP的解析式为,联立,解得或,∴P(,);(3)①当a=1时,抛物线解析式为y=﹣x2+5x+2,E(1,2),F(5,2),∴EH=EF=FG=4,∴H(1,6),G(5,6),当x=1时,y=﹣12+5×1+2=6,∴抛物线y=﹣x2+5x+2 恰好经过H(1,6);∵抛物线对称轴为直线,由对称性可知抛物线经过(4,6),∴点(4,6)为抛物线与正方形的一个交点,又∵点F与点D重合,∴抛物线也经过点F(5,2);综上所述,正方形EFGH的边与抛物线的所有交点坐标为(1,6),(4,6),(5,2);②如图,当抛物线与GH、GF分别交于T、D时,∵当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为,∴点T的纵坐标为2+2.5=4.5,∴,∴a2+1.5a﹣1=0,解得a=﹣2(舍去)或a=0.5;如图,当抛物线与GH、EF分别交于T、S,∵当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为,∴,解得a=0.4(舍去,因为此时点F在点D下方)如图,当抛物线与EH、EF分别交于T、S,∵当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为,∴﹣a()2+5a•+2=a+1+2.5,解得或(舍去);当时,y=﹣ax2+5ax+2=6.25a+2,当时,6.25a+2>6+a﹣,∴不符合题意;综上所述,a=0.5.6.(2023•聊城)如图①,抛物线y=ax2+bx﹣9与x轴交于点A(﹣3,0),B(6,0),与y 轴交于点C,连接AC,BC.点P是x轴上任意一点.(1)求抛物线的表达式;(2)点Q在抛物线上,若以点A,C,P,Q为顶点,AC为一边的四边形为平行四边形时,求点Q的坐标;(3)如图②,当点P(m,0)从点A出发沿x轴向点B运动时(点P与点A,B不重合),自点P分别作PE∥BC,交AC于点E,作PD⊥BC,垂足为点D.当m为何值时,△PED面积最大,并求出最大值.【答案】(1)y=;(2)Q(3,﹣9)或(,9)或(,9);(3)当m=时,△PDE的面积最大值为:.【解答】解:(1)设抛物线的表达式为:y=a(x+3)(x﹣6),∴﹣9=a•3×(﹣6),∴a=,∴y=(x+3)(x﹣6)=;(2)如图1,抛物线的对称轴为:直线x==,由对称性可得Q1(3,﹣9),当y=9时,=9,∴x=,∴Q2(,9),Q3(,9),综上所述:Q(3,﹣9)或(,9)或(,9);(3)设△PED的面积为S,由题意得:AP=m+3,BP=6﹣m,OB=6,OC=9,AB=9.∴BC==3,∵sin∠PBD=,∴,∴PD=,∵PE∥BC,∴△APE∽△ABC,∠EPD=∠PDB=90°,∴,∴,∴PE=,∴S=PE•PD=(m+3)(6﹣m)=﹣,∴当m=时,S最大=,∴当m=时,△PDE的面积最大值为:.三.三角形综合题(共1小题)7.(2023•临沂)如图,∠A=90°,AB=AC,BD⊥AB,BC=AB+BD.(1)写出AB与BD的数量关系.(2)延长BC到E,使CE=BC,延长DC到F,使CF=DC,连接EF.求证:EF⊥AB.(3)在(2)的条件下,作∠ACE的平分线,交AF于点H,求证:AH=FH.【答案】(1)结论:AB=(+1)BD.理由见解析部分;(2)(3)证明见解析部分.【解答】(1)解:结论:AB=(+1)BD.理由:在BC上取一点T,使得BT=BD,连接DT,AT.设AB=AC=a,则BC=a.∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵BD⊥AB,∴∠ABD=90°,∴∠DBT=45°,∵BD=BT,∴∠BDT=∠BTD=67.5°,∵BC=AB+BD=AC+BD=BT+AC,∴CT=CA=a,∴BD=BT=BC﹣CT=a﹣a,∴==+1,∴AB=(+1)BD;(2)证明:如图2中,在△BCD和△ECF中,,∴△BCD≌△ECF(SAS),∴∠CBD=∠E=45°,BD=EF,∴BD∥EF,∵BD⊥AB,∴EF⊥AB;(3)证明:延长CH交EF的延长线于点J.∵∠ACE=180°﹣∠ACB=135°,CH平分∠ACE,∴∠ACH=∠ECH=67.5°,∵∠ACB=∠E=45°,∴AC∥EJ,∴∠J=∠ACH=∠ECJ=67.5°,∴CE=EJ=CB,∵BC=BD+AB,EJ=EF+FJ,∴FJ=AB=AC,∵∠AHC=∠FHJ,∠ACH=∠J,∴△ACH≌△FJH(AAS),∴AH=FH.四.四边形综合题(共2小题)8.(2023•淄博)在数学综合与实践活动课上,小红以“矩形的旋转”为主题开展探究活动.(1)操作判断小红将两个完全相同的矩形纸片ABCD和CEFG拼成“L”形图案,如图①.试判断:△ACF的形状为 等腰直角三角形 .(2)深入探究小红在保持矩形ABCD不动的条件下,将矩形CEFG绕点C旋转,若AB=2,AD=4.探究一:当点F恰好落在AD的延长线上时,设CG与DF相交于点M,如图②.求△CMF 的面积.探究二:连接AE,取AE的中点H,连接DH,如图③.求线段DH长度的最大值和最小值.【答案】(1)等腰直角三角形;(2)探究一:;探究二:DH的最大值为+1,最小值为﹣1.【解答】解:(1)在Rt△ABC中,AC=,在Rt△CFG中,CF=,∵AB=GF,BC=CG,∴AC=CF,∴△ACF是等腰三角形,∵AB=GF,∠FGC=∠ABC=90°.BC=CG,∴△ABC≌△FGC(SAS),∴∠ACG=∠GFC,∵∠GCF+∠GFC=90°,∴∠ACG+∠GCF=90°,∴∠ACF=90°,∴△ACF是等腰直角三角形,故答案为:等腰直角三角形;(2)探究一:∵CD=GF,∠FMG=∠DMC,∠G=∠CDF=90°,∴△CDM≌△FGM(AAS),∴CM=MF,∵AC=CF,CD⊥AF,∴AD=DF,∵AB=CD=2,AD=DF=4,∴DM=4﹣CM,在Rt△CDM中,CM2=CD2+DM2,∴CM2=22+(4﹣CM)2,解得CM=,∴MF=,∴△CMF的面积=2×=;探究二:连接DE,取DE的中点P,连接HP,取AD、BC的中点为M、N,连接MN,MH,NH,∵H是AE的中点,∴MH∥DE,且MH=DE,∵CD=CE,∴CP⊥DE,DP=PE,∵MH∥DP,且MH=DP,∴四边形MHPD是平行四边形,∴MD=HP,MD∥HP,∵AD∥BC,MD=CN,∴HP∥CN,HP=CN,∴四边形HNCP是平行四边形,∴NH∥CP,∴∠MHN=90°,∴H点在以MN为直径的圆上,设MN的中点为T,∴DT==,∴DH的最大值为+1,最小值为﹣1.方法二:设AC的中点为T,连接HT,∵HT是△ACE的中位线,∴HT=CE=1,∴H在以T为圆心,1为半径的圆上,∵DT==,∴DH的最大值为+1,最小值为﹣1.9.(2023•东营)(1)用数学的眼光观察如图①,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是AB的中点,N是DC的中点.求证:∠PMN=∠PNM.(2)用数学的思维思考如图②,延长图①中的线段AD交MN的延长线于点E,延长线段BC交MN的延长线于点F.求证:∠AEM=∠F.(3)用数学的语言表达如图③,在△ABC中,AC<AB,点D在AC上,AD=BC,M是AB的中点,N是DC 的中点,连接MN并延长,与BC的延长线交于点G,连接GD.若∠ANM=60°,试判断△CGD的形状,并进行证明.【答案】(1)证明见解析;(2)证明见解析;(3)直角三角形,理由见解析.【解答】(1)证明:∵P是BD的中点,N是DC的中点,∴PN是△BCD的中位线,PM是△ABD的中位线,∴PN=BC,PM=AD,∵AD=BC,∴PM=PN,∴∠PMN=∠PNM;(2)证明:由(1)知,PN是△BDC的中位线,PM是△ABD的中位线,∴PN∥BC,PM∥AD,∴∠PNM=∠F,∠PMN=∠AEM,∵∠PNM=∠PMN,∴∠AEM=∠F;(3)解:△CGD是直角三角形,理由如下:如图③,取BD的中点P,连接PM、PN,∵N是CD的中点,M是AB的中点,∴PN是△BCD的中位线,PM是△ABD的中位线,∴PN ∥BC ,PN =BC ,PM ∥AD ,PM =AD ,∵AD =BC∴PM =PN ,∴∠PNM =∠PMN ,∵PM ∥AD ,∴∠PMN =∠ANM =60°,∴∠PNM =∠PMN =60°,∵PN ∥BC ,∴∠CGN =∠PNM =60°,又∵∠CNG =∠ANM =60°,∴△CGN 是等边三角形.∴CN =GN ,又∵CN =DN ,∴DN =GN ,∴∠NDG =∠NGD =CNG =30°,∴∠CGD =∠CGN +∠NGD =90°,∴△CGD 是直角三角形.五.圆的综合题(共3小题)10.(2023•枣庄)如图,AB 为⊙O 的直径,点C 是的中点,过点C 做射线BD 的垂线,垂足为E .(1)求证:CE 是⊙O 的切线;(2)若BE =3,AB =4,求BC 的长;(3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示).【答案】(1)证明见解答.(2)BC的长为2.(3)阴影部分的面积为.【解答】(1)证明:如图,连接OC,∵点C是的中点,∴,∴∠ABC=∠EBC,∵OB=OC,∴∠ABC=∠OCB,∴∠EBC=∠OCB,∴OC∥BE,∵BE⊥CE,∴半径OC⊥CE,∴CE是⊙O的切线.(2)解:如图,连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=∠CEB=90°,∵∠ABC=∠EBC,∴△ACB∽△CEB,∴,∴,∴.答:BC的长为2.(3)解:如图,连接OD、CD,∵AB=4,∴OC=OB=2,在Rt△BCE中,,∴,∴∠CBE=30°,∴∠COD=60°,∴∠AOC=60°,∵OC=OD,∴△COD是等边三角形,∴∠CDO=60°,∴∠CDO=∠AOC,∴CD∥AB,∴S△COD=S△CBD,∴.答:阴影部分的面积为.11.(2023•日照)在探究“四点共圆的条件”的数学活动课上,小霞小组通过探究得出:在平面内,一组对角互补的四边形的四个顶点共圆.请应用此结论,解决以下问题:如图1,△ABC中,AB=AC,∠BAC=α(60°<α<180°).点D是BC边上的一动点(点D不与B,C重合),将线段AD绕点A顺时针旋转α到线段AE,连接BE.(1)求证:A,E,B,D四点共圆;(2)如图2,当AD=CD时,⊙O是四边形AEBD的外接圆,求证:AC是⊙O的切线;(3)已知α=120°,BC=6,点M是边BC的中点,此时⊙P是四边形AEBD的外接圆,直接写出圆心P与点M距离的最小值.【答案】(1)证明见解析;(2)证明见解析,(3).【解答】(1)证明:由旋转的性质可得AE=AD,∠DAE=α,∴∠BAC=∠DAE,∴∠BAC﹣∠BAD=∠DAE﹣∠BAD,即∠BAE=∠CAD,又∵AB=AC,∴△ABE≌△ACD(SAS),∴∠AEB=∠ADC,∵∠ADC+∠ADB=180°,∴∠AEB+∠ADB=180°,∴A、B、D、E四点共圆;(2)证明:如图所示,连接OA,OD,∵AB=AC,AD=CD,∴∠ABC=∠ACB=∠DAC,∵⊙O是四边形AEBD的外接圆,∴∠AOD=2∠ABC,∴∠AOD=2∠ABC=2∠DAC,∵OA=OD,∴∠OAD=∠ODA,∵∠OAD+∠ODA+∠AOD=180°,∴2∠DAC+2∠OAD=180°,∴∠DAC+∠OAD=90°,即∠OAC=90°,∴OA⊥AC,又∵OA是⊙O的半径,∴AC是⊙O的切线;(3)解:如图所示,作线段AB的垂直平分线,分别交AB、BC于G、F,连接AM,PM,如图:∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∵点M是边BC的中点,∴,AM⊥BC,∴,,在Rt△BGF中,,∴FM=BM﹣BF=3﹣2=1,∵⊙P是四边形AEBD的外接圆,∴点P一定在AB的垂直平分线上,∴点P在直线GF上,∴当MP⊥GF时,PM有最小值,∴∠PFM=∠BFG=90°﹣∠ABC=60°,在Rt△MPF中,PM=MF•sin∠PFM=1×sin60°=,∴圆心P与点M距离的最小值为.12.(2023•济宁)如图,已知AB是⊙O的直径,CD=CB,BE切⊙O于点B,过点C作CF ⊥OE交BE于点F,EF=2BF.(1)如图1,连接BD,求证:△ADB≌△OBE;(2)如图2,N是AD上一点,在AB上取一点M,使∠MCN=60°,连接MN.请问:三条线段MN,BM,DN有怎样的数量关系?并证明你的结论.【答案】(1)证明过程见解答;(2)MN=BM+DN,理由见解答.【解答】(1)证明:∵CF⊥OE,OC是半径,∴CF是圆O的切线,∵BE是圆O的切线,∴BF=CF,∵EF=2BF,∴EF=2CF,sin E==,∴∠E=30°,∠EOB=60°,∵CD=CB,∴=,∴OC⊥BD,∵AB是直径,∴∠ADB=90°=∠EBO,∵∠E+∠EBD=90°,∠ABD+∠EBD=90°,∴∠E=∠ABD=30°,∴AD=BO=AB,∴△ABD≌△OEB(AAS);(2)解:MN=BM+DN,理由如下:延长ND至H使得DH=BM,连接CH,BD,如图2所示,∵∠CBM+∠NDC=180°,∠HDC+∠NDC=180°,∴∠HDC=∠MBC,∵CD=CB,DH=BM,∴△HDC≌△MBC(SAS),∴∠BCM=∠DCH,CM=CH,由(1)可得∠ABD=30°,∵AB是直径,∴∠ADB=90°,∴∠DCB=180°﹣∠A=120°,∵∠MCN=60°,∴∠BCM+∠NCD=120°﹣∠NCM=120°﹣60°=60°,∴∠DCH+∠NCD=∠NCH=60°,∴∠NCH=∠NCM,∵NC=NC,∴△CNH≌△CNM(SAS),∴NH=MN,∴MN=DN+DH=DN+BM,∴MN=BM+DN.六.相似三角形的判定与性质(共1小题)13.(2023•泰安)如图,△ABC和△CDE均是等腰直角三角形,∠BAC=∠DCE=90°,点E在线段AC上,BC,DE相交于点F,连接BE,BD,作EH⊥BD,垂足为点H,交BC与点G.(1)若点H是BD的中点,求∠BED的度数;(2)求证:△EFG∽△BFD;(3)求证:=.【答案】(1)60°;(2)证明过程详见解答;(3)证明过程详见解答.【解答】(1)解:∵△ABC、△CDE是两个等腰直角三角形,∴∠ACB=∠ABC=45°,∠CED=∠CDE=45°,∴∠CFE=180°﹣∠ACB﹣∠CED=90°,∴EF=DF=DE,∵BH=DH,EH⊥BD,∴BE=DE,∴EF=BE,∴cos∠BED=,∴∠BED=60°;(2)证明:由(1)得:∠CFE=90°,∴CF⊥DE,∴∠BFD=∠EFG=∠BHE=90°,∵∠BGH=∠EGF,∴∠DBF=∠FEG,∴△EFG∽△BFD;(3)证明:如图,作BQ∥AC,交EH的延长线于点Q,∴△BGQ∽△CGE,∴,∠Q=∠CEH,∠QBE=∠AEB,∴,设∠DBF=DEH=α,由(1)知:BC是DE的垂直平分线,∴BE=BD,∴∠EBF=∠DBF=α,∴∠AEB=∠ACB+∠EBF=45°+α,∠CEH=∠CED+∠FEG=45°+α,∴∠AEB=∠CEH,∴∠Q=∠QBE,∴BE=EQ,∴=.七.相似形综合题(共2小题)14.(2023•济南)在矩形ABCD中,AB=2,AD=2,点E在边BC上,将射线AE绕点A逆时针旋转90°,交CD延长线于点G,以线段AE,AG为邻边作矩形AEFG.(1)如图1,连接BD,求∠BDC的度数和的值;(2)如图2,当点F在射线BD上时,求线段BE的长;(3)如图3,当EA=EC时,在平面内有一动点P,满足PE=EF,连接PA,PC,求PA+PC 的最小值.【答案】(1)∠BDC=60°,;(2);(3)4.【解答】解:(1)∵矩形ABCD中,AB=2,,∴∠C=90°,CD=AB=2,,∴,∴∠BDC=60°,∵∠ABE=∠BAD=∠EAG=∠ADG=90°,∴∠EAG﹣∠EAD=∠BAD﹣∠EAD,即∠DAG=∠BAE,∴△ADG∽△ABE,∴;(2)如图2,过点F作FM⊥CG于点M,∵∠ABE=∠AGF=∠ADG=90°,AE=GF,∴∠BAE=∠DAG=∠CGF,∠ABE=∠GMF=90°,∴△ABE≌△GMF(AAS),∴BE=MF,AB=GM=2,∴∠MDF=∠BDC=60°,FM⊥CG,∴,∴,设DM=x,则,∴DG=GM+MD=2+x,由(1)可知:,∴,解得x=1,∴;(3)如图3,连接AC,将△AEP绕点E顺时针旋转120°,EA与EC重合,得到△CEP',连接PP',矩形ABCD中,AD=BC=,AB=2,∴tan∠ACB==,∴∠ACB=30°,∴AC=2AB=4,∵EA=EC,∴∠EAC=∠ACE=30°,∠AEC=120°,∴∠ACG=∠GAC=90°﹣30°=60°,∴△AGC是等边三角形,AG=AC=4,∴PE=EF=AG=4,∵将△AEP绕点E顺时针旋转120°,EA与EC重合,得到△CEP',∴PA=P'C,∠PEP'=120°,EP=EP'=4,∴,∴当点P,C,P′三点共线时,PA+PC的值最小,此时为.15.(2023•菏泽)(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.【答案】(1)证明见解析;(2)证明见解析;(3)3.【解答】(1)证明:∵四边形ABCD是矩形,∴∠C=∠ADE=90°,∴∠CDF+∠DFC=90°,∵AE⊥DF,∴∠DGE=90°,∴∠CDF+∠AED=90°,∴∠AED=∠DFC,∴△ADE∽△DCF;(2)证明:∵四边形ABCD是正方形,∴AD=DC,AD∥BC,∠ADE=∠DCF=90°,∵AE=DF,∴Rt△ADE≌Rt△DCF(HL),∴DE=CF,∵CH=DE,∴CF=CH,∵点H在BC的延长线上,∴∠DCH=∠DCF=90°,又∵DC=DC,∴△DCF≌△DCH(SAS),∴∠DFC=∠H,∵AD∥BC,∴∠ADF=∠DFC,∴∠ADF=∠H;(3)解:如图3,延长BC至点G,使CG=DE=8,连接DG,∵四边形ABCD是菱形,∴AD=DC,AD∥BC,∴∠ADE=∠DCG,∴△ADE≌△DCG(SAS),∴∠DGC=∠AED=60°,AE=DG,∵AE=DF,∴DG=DF,∴△DFG是等边三角形,∴FG=DF=11,∵CF+CG=FG,∴CF=FG﹣CG=11﹣8=3,即CF的长为3.。
2020-2021中考专题复习:一次函数的应用一、选择题1. (2019•陕西)在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为 A .(2,0) B .(–2,0) C .(6,0) D .(–6,0)2. 下列函数中,满足y 的值随x 的值增大而增大的是( )A. y =-2xB. y =3x -1C. y =1xD. y =x 23. 甲、乙两辆摩托车同时分别从相距20 km 的A ,B 两地出发,相向而行.图中l 1,l 2分别表示甲、乙两辆摩托车到A 地的距离s (km)与行驶时间t (h)之间的函数关系.则下列说法错误的是( )A .乙摩托车的速度较快B .经过0.3 h 甲摩托车行驶到A ,B 两地的中点C .经过0.25 h 两摩托车相遇D .当乙摩托车到达A 地时,甲摩托车距离A 地503km4. 正比例函数y=kx (k ≠0)的函数值y 随着x 的增大而减小,则一次函数y=x+k 的图象大致是( )5. (2020·陕西)在平面直角坐标系中,O为坐标原点,若直线y =x +3分别与x 轴、直线y =﹣2x 交于点A 、B ,则△AOB 的面积为( )A .2B .3C .4D .66. (2019•荆门)如果函数y kx b =+(k ,b 是常数)的图象不经过第二象限,那么k ,b 应满足的条件是A.0k≥且0b≤B.0k>且0b≤C.0k≥且0b<D.0k>且0b<7. (2019•辽阳)一条公路旁依次有,,A B C三个村庄,甲乙两人骑自行车分别从A村、B村同时出发前往C村,甲乙之间的距离(km)s与骑行时间t(h)之间的函数关系如图所示,下列结论:①A B,两村相距10km;②出发1.25 h后两人相遇;③甲每小时比乙多骑行8 km;④相遇后,乙又骑行了15min或65min时两人相距2 km.其中正确的个数是A.1个B.2个C.3个D.4个8. 如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且ACCB=13,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,2)B.52,52C.83,83D.(3,3)二、填空题9. 直线y=2x-1与x轴的交点坐标为.10. 元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之”,如图K11-3是两匹马行走路程s关于行走时间t 的函数图象,则两图象交点P的坐标是.图K11-311. 已知关于x 的方程mx +3=4的解为x =1,则直线y =(m -2)x -3一定不经过第________象限.12. (2019•湘潭)函数16y x =-中,自变量x 的取值范围是__________.13. (2019•上海)在登山过程中,海拔每升高1千米,气温下降6 °C ,已知某登山大本营所在的位置的气温是2 °C ,登山队员从大本营出发登山,当海拔升高x 千米时,所在位置的气温是y °C ,那么y 关于x 的函数解析式是__________.14. (2019•黔东南州)如图所示,一次函数y ax b =+(a 、b 为常数,且0a >)的图象经过点(41)A ,,则不等式1ax b +<的解集为__________.15. (2019•河池)如图,在平面直角坐标系中,2,0,()()0,1A B ,AC 由AB 绕点A 顺时针旋转90︒而得,则AC 所在直线的解析式是__________.16. 将函数y =2x +b (b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y =|2x +b |(b 为常数)的图象,若该图象在直线y =2下方的点的横坐标x 满足0<x <3,则b 的取值范围为____________.三、解答题17. (2020•丽水)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.18. 如图,直线y=2x与反比例函数y=kx(k≠0,x>0)的图象交于点A(m,8),AB⊥x轴,垂足为B.(1)求k的值;(2)点C在AB上,若OC=AC,求AC的长;(3)点D为x轴正半轴上一点,在(2)的条件下,若S△OCD=S△ACD,求点D的坐标.19. 春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.20. (2019•陕西)根据记录,从地面向上11 km 以内,每升高1 km ,气温降低6 °C ;又知在距离地面11 km 以上高空,气温几乎不变.若地面气温为m(°C),设距地面的高度为x(km)处的气温为y(°C) (1)写出距地面的高度在11 km 以内的y 与x 之间的函数表达式;(2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻,她从机舱内屏幕显示的相关数据得知,飞机外气温为-26 °C 时,飞机距离地面的高度为7 km ,求当时这架飞机下方地面的气温;小敏想,假如飞机当时在距离地面12 km 的高空,飞机外的气温是多少度呢?请求出假如当时飞机距离地面12 km 时,飞机外的气温.21. 如图所示,已知正比例函数y x =和3y x =,过点()20A ,作x 轴的垂线,与这两个正比例函数的图象分别交与B C ,两点,求三角形OBC 的面积(其中O 为坐标原点)。
中考数学复习《一次函数的应用练习题(解答题)》专项检测卷(附带答案) 1.蓄电池发展水平是制约新能源汽车发展的关键要素.小明爸爸根据自家电动汽车仪表显示,感觉蓄电池充满电后,用前半部分电量所行驶的路程,总要比用后半部分电量行驶的路程更远一些.于是小明细心观察了充满电后汽车的行驶情况,并将蓄电池剩余电量y(千瓦时)和已行驶路程x(千米)的相关数据,用函数图象表示如下.(1)根据图象,直接写出剩余电量为35千瓦时时,汽车已行驶的路程为千米;(2)求该汽车剩余电量为30千瓦时时,已行驶的路程是多少?(3)根据小明提供的数据,这辆汽车用前半部分电量比用后半部分电量,能多行驶千米.2.如图,l1反映了某品牌手机一天的销售收入与销售量之间的函数关系,l2反映了该品牌手机一天的销售成本与销售量之间的函数关系,请根据图象回答下列问题:(1)分别求出l1与l2所对应的函数解析式;(2)当销售量为20部时,该品牌手机所获利润为多少元?(利润=销售收入﹣销售成本)3.为鼓励实习员工工作积极性,某公司提供了两种实习员工月工资方案,方案一如图所示,方案二每生产一件产品25元,实习员工可以任选一种方案与公司签订合同.(1)方案一中,当x≥30时,求月工资y(元)与生产产品x(件)的关系式;(2)某实习员工发现,当月选择方案一比选择方案二月工资多450元,求该实习员工生产产品的件数.4.某校与部队联合开展红色之旅研学活动,上午7:00,部队官兵乘坐军车从营地出发,同时学校师生乘坐大巴从学校出发,沿公路(如图1)到爱国主义教育基地进行研学.上午8:00,军车在离营地60km的地方追上大巴并继续前行,到达仓库后,部队官兵下车领取研学物资,然后乘坐军车按原速前行,最后和师生同时到达基地,军车和大巴离营地的路程s(km)与所用时间t(h)的函数关系如图2所示.(1)求大巴离营地的路程s与所用时间t的函数表达式及a的值.(2)求部队官兵在仓库领取物资所用的时间.5.一辆巡逻车从A地出发沿一条笔直的公路匀速驶向B地,小时后,一辆货车从A地出发,沿同一路线每小时行驶80千米匀速驶向B地,货车到达B地填装货物耗时15分钟,然后立即按原路匀速返回A地.巡逻车、货车离A地的距离y(千米)与货车出发时间x(小时)之间的函数关系如图所示,请结合图象解答下列问题:(1)A,B两地之间的距离是千米,a=;(2)求线段FG所在直线的函数解析式;(3)货车出发多少小时两车相距15千米?(直接写出答案即可)6.2023年,哈尔滨的“冰雪大世界”吸引了众多游客,小明的爸爸将容量为60升的私家车油箱加满后,带着全家从大连自驾到哈尔滨游玩.行驶过程中,车离哈尔滨的路程s(千米)与行驶时间t(小时)的关系如图所示(中途休息、加油的时间不计).当油箱中剩余油量不超过10升时,车会自动显示加油提醒.设车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出大连到哈尔滨的路程千米;(2)求s关于t的函数表达式;(3)当车显示加油提醒后,问行驶时间t在怎样的范围内车应进站加油?7.2023年12月18日,甘肃积石山县发生6.2级地震,全国各地连夜出发实施紧急救援.一辆货车先从甲地出发运送赈灾物资到灾区,稍后一辆轿车从甲地急送医疗团队到灾区,已知甲地与灾区的路程是330km,货车行驶时的速度是60km/h.两车离甲地的路程s(km)与时间t(h)的函数图象如图.(1)求出a的值;(2)求轿车离甲地的路程s(km)与时间t(h)的函数表达式;(3)问轿车比货车早多少时间到达灾区?8.小强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快.在一段时间内,水温y(℃)与加热时间x(s)之间近似满足一次函数关系.根据记录的数据,画函数图象如图.(1)求乙壶中水温y关于加热时间x的函数解析式;(2)当甲壶中水温刚达到80℃时,求此刻乙壶中水的温度?9.“低碳生活,绿色出行”是一种环保、健康的生活方式,小丽从甲地匀速步行前往乙地,同时,小明从乙地沿同一路线匀速步行前往甲地,两人之间的距离y(m)与步行时间x(min)之间的函数关系式如图中折线段AB﹣BC﹣CD所示.(1)小丽与小明出发min相遇;(2)在步行过程中,若小明先到达甲地.①求小丽和小明步行的速度各是多少?②计算出点C的坐标,并解释点C的实际意义.10.洛阳牡丹饼是河南省洛阳市的一道传统小吃,入口酥松绵软,而且具有促进人体代谢,降低胆固醇及防止细胞老化功能,深受老百姓喜爱.刘小姐假期去洛阳游玩,准备回去时带点牡丹饼给家人和朋友品尝.已知甲、乙两家超市都以20元/盒的价格销售同一种牡丹饼,并且同时在做促销活动:甲超市:办理本超市会员卡(卡费50元),食品全部打七折销售;乙超市:购买同种商品超过一定数量后,超过的部分打折销售.活动期间,若刘小姐购买牡丹饼x袋,在甲、乙超市所需费用分别为y1元、y2元,y2与x之间的函数图象如图所示,回答下列问题:(1)分别求出y1、y2与x之间的函数关系式;(2)当x的值为多少时,在两家超市购买的费用一样?(3)若刘小姐准备购买20盒牡丹饼,你认为在哪家超市购买更划算?参考答案1.解:(1)由图象可知,B点表示充满电后行驶150千米时,剩余电量为35千瓦时;故答案为:150;(2)当150≤x≤200时,设y关于x的函数表达式y=kx+b(k≠0),把点(150,35),(200,10)代入得,∴∴y=﹣0.5x+110即当150≤x≤200时,函数表达式为y=﹣0.5x+110当x=30时,﹣0.5x+110=30,解得x=160答:该汽车剩余电量为30千瓦时时,已行驶的路程是160千米;(3)当y=0时,﹣0.5x+110=0,解得x=220160﹣(220﹣160)=100(千米)即这辆汽车用前半部分电量比用后半部分电量,能多行驶100千米.故答案为:100.2.解:(1)设l1所对应的函数解析式为y=k1x(k1为常数,且k1≠0).将坐标(5,1000)代入y=k1x得5k1=1000解得k1=200∴l1所对应的函数解析式为y=200x;设l2所对应的函数解析式为y=k2x+b(k2、b为常数,且k2≠0).将坐标(0,800)和(5,1000)代入y=k2x+b得,解得∴l2所对应的函数解析式为y=40x+800.(2)当x=20时,y=200x=200×20=4000;当x=20时,y=40x+800=40×20+800=1600;4000﹣1600=2400(元)∴销售20部分该品牌的手机获利润为2400元.3.解:(1)方案一中,当x≥30时,设月工资y(元)与生产产品x(件)的关系式为y=kx+b(k ≠0)将A(30,600),(50,1400)代入y=kx+b得:,解得:∴方案一中,当x≥30时,月工资y(元)与生产产品x(件)的关系式为y=40x﹣600;(2)根据题意得:40x﹣600﹣25x=450解得:x=70∴该实习员工生产产品的件数为70件.4.解:(1)由函数图象可得,大巴速度为=40(km/h)∴s=20+40t;当s=100时,100=20+40t解得t=2∴a=2;∴大巴离营地的路程s与所用时间t的函数表达式为s=20+40t,a的值为2;(2)由函数图象可得,军车速度为60÷1=60(km/h)设部队官兵在仓库领取物资所用的时间为x h根据题意得:60(2﹣x)=100解得:x=答:部队官兵在仓库领取物资所用的时间为h.5.解:(1)∵80×=60(千米)∴A,B两地之间的距离是60千米;∵货车到达B地填装货物耗时15分钟∴a=+=1故答案为:60,1;(2)设线段FG所在直线的解析式为y=kx+b(k≠0),将F(1,60),G(2,0)代入得:,解得∴线段FG所在直线的函数解析式为y=﹣60x+120;(3)巡逻车速度为60÷(2+)=25(千米/小时)∴线段CD的解析式为y=25x+25×=25x+10(0≤x≤2)当货车第一次追上巡逻车后,80x﹣(25x+10)=15解得x=;当货车返回与巡逻车未相遇时,(﹣60x+120)﹣(25x+10)=15解得x=;当货车返回与巡逻车相遇后,(25x+10)﹣(﹣60x+120)=15解得x=;综上所述,货车出发小时或小时或小时,两车相距15千米.6.解:(1)由图象,得t=0时,s=900工厂离目的地的路程为900千米答:工厂离目的地的路程为900千米;故答案为:900;(2)设s=kt+b(k≠0)将(0,900)和(4,600)代入解得:∴s关于t的函数表达式:s=﹣75t+900(0≤x≤12)答:s关于t的函数表达式:s=﹣75t+900(0≤t≤12);(3)当油箱中剩余油量为10升时s=900﹣(60﹣10)÷0.1=400(千米)∴400=﹣75t+900解得:t=(小时)当油箱中剩余油量为0升时s=900﹣60÷0.1=300(千米)300=﹣75t+900解得:t=8∵k=﹣75<0∴s随t的增大而减小∴t的取值范围为≤t<8.7.解:(1)∵货车的速度是60km/h∴a==1.5(h);(2)由图象可得点(1.5,0),(3,150)设直线的表达式为s=kt+b,把(1.5,0),(3,150)代入得:,解得∴s=100t﹣150(1.5≤t≤4.8);(3)由图象可得货车走完全程需要+0.5=6(h)∴货车到达乙地需6h∵s=100t﹣150,s=330解得t=4.8∴两车相差时间为6﹣4.8=1.2(h)∴货车还需要1.2h才能到达即轿车比货车早1.2h到达灾区.8.解:(1)设乙壶中水温y关于加热时间x的函数解析式为y=kx+b将(0,20),(160,80)代入y=kx+b得,解得∴y=x+20.(2)甲水壶的加热速度为(60﹣20)÷80=℃/s∴甲水壶中温度为80℃时,加热时间为(80﹣20)÷=120s将x=120代入y=x+20得y=65即此刻乙壶中水的温度为65℃.9.解:(1)由图象可得小丽与小明出发30min相遇故答案为:30;(2)①设小丽步行的速度为V1m/min,小明步行的速度为V2m/min,且V2>V1 则,解得:答:小丽步行的速度为80m/min,小明步行的速度为100m/min;②解法一:设点C的坐标为(x,y)则可得方程(100+80)(x﹣30)+80(67.5﹣x)=5400解得x=54,y=(100+80)(54﹣30)=4320m解法二:5400÷100=54,54×80=4320∴点C(54,4320)点C表示:两人出发54min时,小明到达甲地,此时两人相距4320m.10.解:(1)根据题意得:y1=50+20×0.7x=14x+50;当0≤x≤10时,y2=20x;当x>10时,y2=200+(x﹣10)=12x+80;∴y1=14x+50;y2=;(2)当x≤10时,14x+50=20x解得:x=(不符合题意,舍去);当x≥10时,14x+50=12x+80解得:x=15∴x的值为15时,在两家超市购买的费用一样;(3)当x=20时,y1=14×20+50=330,y2=12×20=80=320 ∵330>320∴在乙超市购买更划算.。
中考数学一次函数的实际应用专题训练(含答案)1.一鱼池有一进水管和一出水管,出水管每小时可排出5 m3 的水,进水管每小时可注入3 m3 的水,现鱼池中约有60 m3 的水.(1) 当进水管、出水管同时打开时,请写出鱼池中的水量y ( m3 ) 与打开的时间x ( 小时) 之间的函数关系式;(2) 根据实际情况,鱼池中的水量不得少于40 m3 . 如果管理人员在上午8:00 同时打开两水管,那么最迟不得超过几点,就应关闭两水管?【参考答案】解:(1) 由题意,可知y=60-5x+3x .∴y=60-2x ( 0 ≤x ≤30 );(2)根据题意,得60-2x ≥40,∴x ≤10 .∴最迟应在下午6:00 关闭两水管.2.艺术节期间,我校乐团在曲江音乐厅举行专场音乐会,成人票每张50 元,学生票每张10 元,为了丰富广大师生的业余文化生活,制定了两种优惠方案:方案1:购买一张成人票赠送一张学生票;方案2:按总价的90% 付款.我校现有4 名老师与若干名( 不少于4 人) 学生准备去听音乐会.(1) 设学生人数为x (人),付款总金额为y (元),请分别确定两种优惠方案中y 与x 的函数关系式;(2) 你认为哪种方案较节省费用?为什么?【参考答案】解:(1) 按优惠方案1 可得:y1=50 ×4+( x-4 ) ×10=10x+160 ( x ≥4 ),按优惠方案2 可得:y2=(10x+50 ×4) ×90%=9x+180 ( x ≥4 );(2) ∵y1-y2=x-20 ( x ≥4 ),①当y1-y2=0 时,得x-20=0,解得x=20,∴当x=20 时,两种优惠方案付款一样多;②当y1-y2<0 时,得x-20<0,解得x<20,∴当4 ≤x<20 时,y1<y2,选方案1 较划算;③当y1-y2>0 时,得x-20>0,解得x>20,∴当x>20 时,y1>y2,选方案2 较划算.3.某工厂计划生产甲、乙两种产品共2500 吨,每生产1 吨甲产品可获得利润0.3 万元,每生产1 吨乙产品可获得利润0.4 万元,设该工厂生产了甲产品x ( 吨),生产甲、乙两种产品获得的总利润为y ( 万元).(1) 求y 与x 之间的函数表达式;(2) 若每生产1 吨甲产品需要A 原料0.25 吨,每生产1 吨乙产品需要A 原料0.5 吨,受市场影响,该厂能获得的A 原料至多为1000 吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.【参考答案】解:(1) y=x ×0.3+( 2500-x ) ×0.4=-0.1x+1000 ( 0 ≤x ≤2500 );(2) 由题意得:x ×0.25+( 2500-x ) ×0.5 ≤1000,解得x ≥1000 .又∵x ≤2500,∴1000 ≤x ≤2500 .∵-0.1<0,∴y 的值随着x 的增加而减小,∴当x=1000 时,y 取最大值,此时生产乙种产品2500-1000=1500 ( 吨).答:工厂生产甲产品1000 吨,乙产品1500 吨时,能获得最大利润.4.随着科技的飞速发展,智能产品慢慢普及到人们的生活,给人们的生活带来极大的便利.智能拖地机也逐渐受到人们的青睐,走进人们的生活.某经销商决定购买甲、乙两种类型的智能拖地机共8 台进行试销.已知一台乙型智能拖地机的价格是一台甲型智能拖地机价格的1.5 倍;购买甲型智能拖地机3 台,乙型智能拖地机2 台,共需6000 元.(1) 求甲、乙两种类型的智能拖地机每台的价格各是多少元;(2)该公司实际购买时,厂家将甲型智能拖地机的价格下调10% 元,乙型智能拖地机的价格不变.设该公司购买甲型智能拖地机x ( 台),购买两种类型的智能拖地机的总费用为y ( 元),求出y 与x 的函数关系式;若要使总费用不超过9500 元,则该公司如何购买才能使总费用最低?【参考答案】解:(1) 设甲型智能拖地机每台的价格是a 元,乙型智能拖地机每台的价格是b 元,答:甲型智能拖地机每台的价格是1000 元,乙型智能拖地机每台的价格是1500 元;(2) 由题知该公司购买甲型智能拖地机x 台,则购买乙型智能拖地机( 8-x ) 台,则根据题意得,y=1000x ×0.9+1500 ( 8-x )=12000-600x,∵y ≤9500,解得x ≥25/6 ,又∵0 ≤x ≤8,∴25/6 ≤x ≤8,∵x 为整数,∴x 可取5,6,7,8,∵-600<0,∴y 随x 的增大而减小,∴当x=8 时,y 值最小,∴y 与x 的函数关系式为y=12000-600x,要使总费用不超过9500 元,且总费用最低,则该公司应购买8 台甲型智能拖地机,0 台乙型智能拖地机.5.延安是中国优秀旅游城市之一,有着“中国革命博物馆城”的美誉.小明和爸爸在节假日准备去延安革命纪念馆游玩,在去高铁站的途中准备网络呼叫专车.据了解,在非高峰期时,某种专车所收取的费用y ( 元) 与行驶里程x ( km ) 之间的函数关系如图所示,请根据图象解答下列问题:(1) 求y 与x 之间的函数关系式;(2) 若专车低速行驶( 时速≤12 km/h),每分钟另加0.4 元的低速费( 不足1 分钟的部分按1 分钟计算).若小明和爸爸在非高峰期乘坐专车,途中低速行驶了6 分钟,共付费32 元,求专车的行驶里程.【参考答案】解:(1)①当0<x<3 时,y=12;②当x ≥3 时,设y 与x 之间的函数关系式为y=kx+b ( k ≠0 ),将点(3,12),(8,23) 代入,∴y=2.2x+5.4,综上所述,y 与x 之间的函数关系式为(2) ∵车费为32 元,∴行驶里程超过3 km,∴由题意得2.2x+5.4+0.4 ×6=32,解得x=11.答:专车的行驶里程为11 km.6.周六上午8 点,小颖同爸爸妈妈一起从西安出发回安康看望姥姥,途中他们在一个服务区休息了半小时,然后直达姥姥家.如图是小颖一家这次行程中距姥姥家的距离y ( 千米) 与他们路途所用的时间x ( 时) 之间的函数图象,请根据以上信息,解答下列问题:(1)求直线AB 所对应的函数关系式;(2)已知小颖一家出服务区后,行驶30 分钟时,距姥姥家还有80 千米,问小颖一家当天几点到达姥姥家?【参考答案】解:(1) 设直线AB 所对应的函数关系式为y=kx+b,把(0,320) 和(2,120) 代入y=kx+b,∴直线AB 所对应的函数关系式为y=-100x+320;(2) 设直线CD 所对应的函数关系式为y=mx+n,把(2.5,120) 和(3,80) 代入y=mx+n,∴直线CD 所对应的函数关系式为y=-80x+320,当y=0 时,x=4,∴小颖一家当天12 点到达姥姥家.7.已知A、B 两地之间有一条270 千米的公路,甲、乙两车同时出发,甲车以60 千米/时的速度沿此公路从A 地匀速开往B 地,乙车从B 地沿此公路匀速开往A 地,两车分别到达目的地后停止.甲、乙两车相距的路程y ( 千米) 与甲车的行驶时间x ( 时) 之间的函数关系如图所示.(1) 求甲、乙两车相遇后y 与x 之间的函数关系式;(2) 当甲车到达距B 地70 千米处时,求甲、乙两车之间的路程.【参考答案】解:(1) 乙车的速度为( 270-60 ×2 ) ÷2=75 千米/时,a=270 ÷75=3.6,b=270 ÷60=4.5.设甲、乙两车相遇后y 与x 之间的函数关系式为y=kx+m ( k ≠0 ),当2<x ≤3.6 时,斜率k 为两车速度和135,∴y=135x+m,又∵x=2 时,y=0,∴m=-270,∴y=135x-270;当3.6<x ≤4.5 时,斜率k 为甲车速度60,∴y=60x+n,又∵x=4.5 时,y=270,∴n=0,∴y=60x .综上,(2) 甲车距B 地70 千米时,两车行驶的时间为(270-70)/60=10/3 时,∵10/3 >2,∴当x=10/3 时,y=135 ×10/3-270=180.∴当甲车距B 地70 千米时,甲、乙两车之间的路程为180 千米.8.某校计划组织750 名师生外出参加集体活动,经研究,决定租用当地租车公司A、B 两种型号的客车共30 辆作为交通工具.下表是租车公司提供给学校有关这两种型号客车的载客量、租金单价和押金信息:设租用A 型号客车x 辆,租车总费用为y 元.(注:载客量指的是每辆客车最多可载的乘客数)(1) 求y 与x 之间的函数关系式;(2) 若要使租车总费用不超过17500 元,应如何租车才能使总费用最少.【参考答案】解:(1) 由题意,得y=360x+260×(30-x)+8000=100x+15800,∴y 与x 之间的函数关系式为y=100x+15800 ( 0 ≤x ≤30 );(2)∵30x+20(30-x) ≥750,∴x ≥15,∴15 ≤x ≤30,且x 为正整数.由题意得100x+15800 ≤17500,∴x ≤17,∴15 ≤x ≤17,∵在y=100x+15800 中,y 随x 的增大而增大,∴当x=15 时,y 取得最小值,此时30-x=15,∴租用A、B 两种型号客车各15 辆时,总费用最少.9.李大爷有大小相同的土地20 块和现金4000 元,计划2019 年种植水稻和豌豆这两种农作物,预计每块地种植两种农作物的成本、产量及每千克的收益如下表:若李大爷用x 块地种植水稻,一个收获季的纯收益为y 元.(纯收益=收益-成本)(1) 请写出y 与x 之间的函数关系式;(2) 李大爷应如何分配种植土地( 取整数),才能获得最大纯收益?最大纯收益为多少元?【参考答案】解:(1) 若李大爷用x 块地种植水稻,则用( 20-x ) 块地种植豌豆.由题意得,y=(800x ×3-240x)+[200(20-x) ×5-80(20-x)=1240x+18400 ( 0 ≤x ≤20 );(2) 由题意得,240x+80( 20-x ) ≤4000,解得x ≤15.由(1) 中的函数关系式知,y 随x 的增大而增大,∴当x=15 时,y 取得最大值,最大值为1240×15+18400=37000 (元).则20-15=5 (块).答:当李大爷用15 块地种植水稻、5块地种植豌豆时,才能获得最大纯收益,最大纯收益为37000元.。
天津市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.一次函数的应用(共1小题)1.(2023•天津)已知学生宿舍、文具店、体育场依次在同一条直线上,文具店离宿舍0.6km,体育场离宿舍1.2km,张强从宿舍出发,先用了10min匀速跑步去体育场,在体育场锻炼了30min,之后匀速步行了10min到文具店买笔,在文具店停留10min后,用了20min匀速散步返回宿舍,下面图中x表示时间,y表示离宿舍的距离.图象反映了这个过程中张强离宿舍的距离与时间之间的对应关系.请根据相关信息,回答下列问题:(1)①填表:张强离开宿舍的时间/min1102060张强离宿舍的距离/km 1.2②填空:张强从体育场到文具店的速度为 km/min;③当50≤x≤80时,请直接写出张强离宿舍的距离y关于时间x的函数解析式;(2)当张强离开体育场15min时,同宿舍的李明也从体育场出发匀速步行直接回宿舍,如果李明的速度为0.06km/min,那么他在回宿舍的途中遇到张强时离宿舍的距离是多少?(直接写出结果即可)二.二次函数综合题(共4小题)2.(2021•天津)在平面直角坐标系中,O为原点,△OAB是等腰直角三角形,∠OBA=90°,BO=BA,顶点A(4,0),点B在第一象限,矩形OCDE的顶点E(﹣,0),点C在y轴的正半轴上,点D在第二象限,射线DC经过点B.(Ⅰ)如图①,求点B的坐标;(Ⅱ)将矩形OCDE沿x轴向右平移,得到矩形O′C′D′E′,点O,C,D,E的对应点分别为O′,C′,D′,E′.设OO′=t,矩形O′C′D′E′与△OAB重叠部分的面积为S.①如图②,当点E′在x轴正半轴上,且矩形O′C′D′E′与△OAB重叠部分为四边形时,D′E′与OB相交于点F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤t≤时,求S的取值范围(直接写出结果即可).3.(2023•天津)已知抛物线y=﹣x2+bx+c(b,c为常数,c>1的顶点为P,与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C,抛物线上的点M的横坐标为m,且,过点M作MN⊥AC,垂足为N.(1)若b=﹣2,c=3.①求点P和点A的坐标;②当时,求点M的坐标;(2)若点A的坐标为(﹣c,0),且MP∥AC,当时,求点M的坐标.4.(2022•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,a>0)的顶点为P,与x轴相交于点A(﹣1,0)和点B.(Ⅰ)若b=﹣2,c=﹣3,①求点P的坐标;②直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,当MG取得最大值时,求点M,G的坐标;(Ⅱ)若3b=2c,直线x=2与抛物线相交于点N,E是x轴的正半轴上的动点,F是y 轴的负半轴上的动点,当PF+FE+EN的最小值为5时,求点E,F的坐标.5.(2021•天津)已知抛物线y=ax2﹣2ax+c(a,c为常数,a≠0)经过点C(0,﹣1),顶点为D.(Ⅰ)当a=1时,求该抛物线的顶点坐标;(Ⅱ)当a>0时,点E(0,1+a),若DE=2DC,求该抛物线的解析式;(Ⅲ)当a<﹣1时,点F(0,1﹣a),过点C作直线l平行于x轴,M(m,0)是x轴上的动点,N(m+3,﹣1)是直线l上的动点.当a为何值时,FM+DN的最小值为2,并求此时点M,N的坐标.三.四边形综合题(共2小题)6.(2023•天津)在平面直角坐标系中,O为原点,菱形ABCD的顶点A(,0),B(0,1),D(2,1),矩形EFGH的顶点E(0,),,H(0,).(1)填空:如图①,点C的坐标为 ,点G的坐标为 ;(2)将矩形EFGH沿水平方向向右平移,得到矩形E′FG′H′,点E,F,G,H的对应点分别为E′,F′,G′,H′,设EE′=t,矩形E′F′G′H′与菱形ABCD重叠部分的面积为S.①如图②,当边E′F′与AB相交于点M、边G′H′与BC相交于点N,且矩形E′F′G′H′与菱形ABCD重叠部分为五边形时,试用含有t的式子表示S,并直接写出t的取值范围;②当时,求S的取值范围(直接写出结果即可).7.(2022•天津)将一个矩形纸片OABC放置在平面直角坐标系中,点O(0,0),点A(3,0),点C(0,6),点P在边OC上(点P不与点O,C重合),折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且∠OPQ=30°,点O的对应点O′落在第一象限.设OQ=t.(Ⅰ)如图①,当t=1时,求∠O′QA的大小和点O′的坐标;(Ⅱ)如图②,若折叠后重合部分为四边形,O′Q,O′P分别与边AB相交于点E,F,试用含有t的式子表示O′E的长,并直接写出t的取值范围;(Ⅲ)若折叠后重合部分的面积为3,则t的值可以是 (请直接写出两个不同的值即可).四.切线的性质(共1小题)8.(2023•天津)在⊙O中,半径OC垂直于弦AB,垂足为D,∠AOC=60°,E为弦AB 所对的优弧上一点.(1)如图①,求∠AOB和∠CEB的大小;(2)如图②,CE与AB相交于点F,EF=EB,过点E作⊙O的切线,与CO的延长线相交于点G,若OA=3,求EG的长.五.解直角三角形的应用-仰角俯角问题(共1小题)9.(2023•天津)综合与实践活动中,要利用测角仪测量塔的高度,如图,塔AB前有一座高为DE的观景台,已知CD=6m,∠DCE=30°,点E,C,A在同一条水平直线上.某学习小组在观景台C处测得塔顶部B的仰角为45°,在观景台D处测得塔顶部B的仰角为27°.(1)求DE的长;(2)设塔AB的高度为h(单位:m);①用含有h的式子表示线段EA的长(结果保留根号);②求塔AB的高度(tan27°取0.5,取1.7,结果取整数).六.解直角三角形的应用-方向角问题(共1小题)10.(2021•天津)如图,一艘货船在灯塔C的正南方向,距离灯塔257海里的A处遇险,发出求救信号.一艘救生船位于灯塔C的南偏东40°方向上,同时位于A处的北偏东60°方向上的B处,救生船接到求救信号后,立即前往救援.求AB的长.(结果取整数)参考数据:tan40°≈0.84,取1.73.七.条形统计图(共1小题)11.(2023•天津)为培养青少年的劳动意识,某校开展了剪纸、编织、烘焙等丰富多彩的活动,该校为了解参加活动的学生的年龄情况,随机调查了a名参加活动的学生的年龄(单位:岁).根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(1)填空:a的值为 ,图①中m的值为 ;(2)求统计的这组学生年龄数据的平均数、众数和中位数.天津市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.一次函数的应用(共1小题)1.(2023•天津)已知学生宿舍、文具店、体育场依次在同一条直线上,文具店离宿舍0.6km,体育场离宿舍1.2km,张强从宿舍出发,先用了10min匀速跑步去体育场,在体育场锻炼了30min,之后匀速步行了10min到文具店买笔,在文具店停留10min后,用了20min匀速散步返回宿舍,下面图中x表示时间,y表示离宿舍的距离.图象反映了这个过程中张强离宿舍的距离与时间之间的对应关系.请根据相关信息,回答下列问题:(1)①填表:张强离开宿舍的时间/min1102060张强离宿舍的距离/km 1.2②填空:张强从体育场到文具店的速度为 0.06 km/min;③当50≤x≤80时,请直接写出张强离宿舍的距离y关于时间x的函数解析式;(2)当张强离开体育场15min时,同宿舍的李明也从体育场出发匀速步行直接回宿舍,如果李明的速度为0.06km/min,那么他在回宿舍的途中遇到张强时离宿舍的距离是多少?(直接写出结果即可)【答案】(1)①0.12,1.2;0.6;②0.06;③y关于x的函数解析式为y=;(2)离宿舍的距离是0.3km.【解答】解:(1)①由图象可知,张强从宿舍到体育场的速度为1.2÷10=0.12(km/min),∴当张强离开宿舍1min时,张强离宿舍的距离为0.12×1=0.12(km);当张强离开宿舍20min时,张强离宿舍的距离为1.2km;当张强离开宿60舍min时,张强离宿舍的距离为0.6km;张强离开宿舍的时间/min1102060张强离宿舍的距离/km0.12 1.2 1.20.6故答案为:0.12,1.2;0.6;②由图象知,张强从体育场到文具店的速度为=0.06(km/h),故答案为:0.06;③当50<x≤60时,y=0.6;张强从文具店到宿舍时的速度为=0.03(km/h),∴当60<x≤80时,y=2.4﹣0.03x;综上,y关于x的函数解析式为y=;(2)根据题意,当张强离开体育场15min时,张强到达文具店并停留了5min,设李明从体育场出发x分钟后与张强相遇,则0.06x=0.03(x﹣5)+0.6,解得x=15,∴1.2﹣0.06×15=0.3(km),∴离宿舍的距离是0.3km.二.二次函数综合题(共4小题)2.(2021•天津)在平面直角坐标系中,O为原点,△OAB是等腰直角三角形,∠OBA=90°,BO=BA,顶点A(4,0),点B在第一象限,矩形OCDE的顶点E(﹣,0),点C在y轴的正半轴上,点D在第二象限,射线DC经过点B.(Ⅰ)如图①,求点B的坐标;(Ⅱ)将矩形OCDE沿x轴向右平移,得到矩形O′C′D′E′,点O,C,D,E的对应点分别为O′,C′,D′,E′.设OO′=t,矩形O′C′D′E′与△OAB重叠部分的面积为S.①如图②,当点E′在x轴正半轴上,且矩形O′C′D′E′与△OAB重叠部分为四边形时,D′E′与OB相交于点F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤t≤时,求S的取值范围(直接写出结果即可).【答案】(Ⅰ)(2,2);(Ⅱ)①S=﹣t2+t﹣(4≤t<);②≤S≤.【解答】解:(Ⅰ)如图①,过点B作BH⊥OA,垂足为H,由点A(4,0),得OA=4,∵BO=BA,∠OBA=90°,∴OH=BH=OA==2,∴点B的坐标为(2,2);(Ⅱ)①由点E(﹣,0),得OE=,由平移知,四边形O'C'D'E'是矩形,得∠O'E'D'=90°,O'E'=OE=,∴OE'=OO'﹣O'E'=t﹣,∠FE'O=90°,∵BO=BA,∠OBA=90°,∴∠BOA=∠BAO=45°,∴∠OFE'=90°﹣∠BOA=45°,∴∠FOE'=∠OFE',∴FE '=OE '=t ﹣,∴S △FOE '=OE '•FE '=(t ﹣)2,∴S =S △OAB ﹣S △FOE '=,即S =﹣t 2+t ﹣(4≤t <);②a .当4<t ≤时,由①知S =﹣t 2+t ﹣=﹣(t ﹣)2+4,∴当t =4时,S 有最大值为,当t =时,S 有最小值为,∴此时≤S <;b .当<t ≤4时,如图2,令O 'C '与AB 交于点M ,D 'E '与DB 交于点N ,∴S =S △OAB ﹣S △OE 'N ﹣S △O 'AM =4﹣(t ﹣)2﹣(4﹣t )2=﹣t 2+t ﹣=﹣(t﹣)2+,此时,当t =时,S 有最大值为,当t =4时,S 有最小值为,∴≤S ≤;c .当≤t ≤时,如图3,令O 'C '与AB 交于点M ,此时点D '位于第二象限,∴S =S △OAB ﹣S △O 'AM =4﹣(4﹣t )2=﹣t 2+4t ﹣4=﹣(t ﹣4)2+4,此时,当t =时,S 有最小值为,当t =时,S 有最大值为,∴≤S ≤;综上,S 的取值范围为≤S ≤;∴S 的取值范围为≤S ≤.3.(2023•天津)已知抛物线y=﹣x2+bx+c(b,c为常数,c>1的顶点为P,与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C,抛物线上的点M的横坐标为m,且,过点M作MN⊥AC,垂足为N.(1)若b=﹣2,c=3.①求点P和点A的坐标;②当时,求点M的坐标;(2)若点A的坐标为(﹣c,0),且MP∥AC,当时,求点M的坐标.【答案】(1)①P点的坐标为(﹣1,4),A点的坐标为(﹣3,0).②点M的坐标为(﹣2,3).(2)点M的坐标为(﹣).【解答】解:(1)①∵b=﹣2,c=3,∴抛物线的解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,∴P(﹣1,4),当y=0时,﹣x2﹣2x+3=0,解得x1=﹣3,x2=1,∵点A在点B的左侧,∴A(﹣3,0).答:P点的坐标为(﹣1,4),A点的坐标为(﹣3,0).②如图,过点M作ME⊥x轴于点E,于直线AC交于点F,∵A(﹣3,0),C(0,3),∴OA=OC,∴在Rt△AOC中,∠OAC=45°,∴在Rt△AEF中,EF=AE,∵抛物线上的点M的横坐标为m,其中﹣3<m<﹣1,∴M(m,﹣m2﹣2m+3),E(m,0),∴EF=AE=m﹣(﹣3)=m+3,∴F(m,m+3),∴FM=(﹣m2﹣2m+3)﹣(m+3)=﹣m2﹣3m,∴在Rt△FMN中,∠MFN=45°,∴,∴﹣m2﹣3m=2,解得m1=﹣2,m2=﹣1(舍去),∴M(﹣2,3).答:点M的坐标为(﹣2,3).(2)∵点A(﹣c,0)在抛物线y=﹣x2+bx+c上,其中c>1,∴﹣c2﹣bc+c=0,得b=1﹣c,∴抛物线的解析式为y=﹣x2+(1﹣c)x+c,∴M(m,﹣m2+(1﹣c)m+c),其中.∴顶点P的坐标为(),对称轴为直线l:x=.如图,过点M作MQ⊥l于点Q,则,∵MP∥AC,∴∠PMQ=45°,∴MQ=QP,∴,即(c+2m)2=1,解得c1=﹣2m﹣1,c2=﹣2m+1(舍去),同②,过点M作ME⊥x轴于点E,与直线AC交于点F,则点E(m,0),点F(m,﹣m﹣1),点M(m,m2﹣1),∴,∴,即2m2+m﹣10=0,解得(舍去),∴点M的坐标为(﹣).答:点M的坐标为(﹣).4.(2022•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,a>0)的顶点为P,与x轴相交于点A(﹣1,0)和点B.(Ⅰ)若b=﹣2,c=﹣3,①求点P的坐标;②直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,当MG取得最大值时,求点M,G的坐标;(Ⅱ)若3b=2c,直线x=2与抛物线相交于点N,E是x轴的正半轴上的动点,F是y 轴的负半轴上的动点,当PF+FE+EN的最小值为5时,求点E,F的坐标.【答案】(Ⅰ)①顶点P的坐标为(1,﹣4);②点M(2,﹣3),则G(2,﹣2);(Ⅱ)点E(,0),点F(0,﹣).【解答】解:(Ⅰ)①若b=﹣2,c=﹣3,则抛物线y=ax2+bx+c=ax2﹣2x﹣3,∵抛物线y=ax2+bx+c与x轴相交于点A(﹣1,0),∴a+2﹣3=0,解得a=1,∴抛物线为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点P的坐标为(1,﹣4);②当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴B(3,0),设直线BP的解析式为y=kx+n,∴,解得,∴直线BP的解析式为y=2x﹣6,∵直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,设点M(m,m2﹣2m﹣3),则G(m,2m﹣6),∴MG=2m﹣6﹣(m2﹣2m﹣3)=﹣m2+4m﹣3=﹣(m﹣2)2+1,∴当m=2时,MG取得最大值1,此时,点M(2,﹣3),则G(2,﹣2);(Ⅱ)∵抛物线y=ax2+bx+c与x轴相交于点A(﹣1,0),∴a﹣b+c=0,又3b=2c,b=﹣2a,c=﹣3a(a>0),∴抛物线的解析式为y=ax2﹣2ax﹣3a.∴y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴顶点P的坐标为(1,﹣4a),∵直线x=2与抛物线相交于点N,∴点N的坐标为(2,﹣3a),作点P关于y轴的对称点P',作点N关于x轴的对称点N',得点P′的坐标为(﹣1,﹣4a),点N'的坐标为(2,3a),当满足条件的点E,F落在直线P'N'上时,PF+FE+EN取得最小值,此时,PF+FE+EN=P'N'=5.延长P'P与直线x=2相交于点H,则P'H⊥N'H.在Rt△P'HN'中,P'H=3,HN'=3a﹣(﹣4a)=7a.∴P'N′2=P'H2+HN′2=9+49a2=25.解得a1=,a2=﹣(舍).∴点P'的坐标为(﹣1,﹣),点N′的坐标为(2,).∴直线P'N′的解析式为y=x﹣.∴点E(,0),点F(0,﹣).5.(2021•天津)已知抛物线y=ax2﹣2ax+c(a,c为常数,a≠0)经过点C(0,﹣1),顶点为D.(Ⅰ)当a=1时,求该抛物线的顶点坐标;(Ⅱ)当a>0时,点E(0,1+a),若DE=2DC,求该抛物线的解析式;(Ⅲ)当a<﹣1时,点F(0,1﹣a),过点C作直线l平行于x轴,M(m,0)是x轴上的动点,N(m+3,﹣1)是直线l上的动点.当a为何值时,FM+DN的最小值为2,并求此时点M,N的坐标.【答案】(Ⅰ)(1,﹣2);(Ⅱ)y=x2﹣x﹣1或y=x2﹣3x﹣1;(Ⅲ)点M的坐标为(﹣,0)、点N的坐标为(,﹣1).【解答】解:抛物线y=ax2﹣2ax+c(a,c为常数,a≠0)经过点C(0,﹣1),则c=﹣1,(Ⅰ)当a=1时,抛物线的表达式为y=x2﹣2x﹣1=(x﹣1)2﹣2,故抛物线的顶点坐标为(1,﹣2);(Ⅱ)∵y=ax2﹣2ax﹣1=a(x﹣1)2﹣a﹣1,故点D(1,﹣a﹣1),由DE=2DC得:DE2=8CD2,即(1﹣0)2+(a+1+a+1)2=8[(1﹣0)2+(﹣a﹣1+1)2],解得a=或,故抛物线的表达式为y=x2﹣x﹣1或y=x2﹣3x﹣1;(Ⅲ)将点D向左平移3个单位,向上平移1个单位得到点D′(﹣2,﹣a),作点F关于x轴的对称点F′,则点F′的坐标为(0,a﹣1),当满足条件的点M落在F′D′上时,由图象的平移知DN=D′M,故此时FM+ND最小,理由:∵FM+ND=F′M+D′M=F′D′为最小,即F′D′=2,则F′D′2=F′H2+D′H2=(1﹣2a)2+4=(2)2,解得a=(舍去)或﹣,则点D′、F′的坐标分别为(﹣2,)、(0,﹣),由点D′、F′的坐标得,直线D′F′的表达式为y=﹣3x﹣,当y=0时,y=﹣3x﹣=0,解得x=﹣=m,则m+3=,即点M的坐标为(﹣,0)、点N的坐标为(,﹣1).三.四边形综合题(共2小题)6.(2023•天津)在平面直角坐标系中,O为原点,菱形ABCD的顶点A(,0),B(0,1),D(2,1),矩形EFGH的顶点E(0,),,H(0,).(1)填空:如图①,点C的坐标为 (,2) ,点G的坐标为 (﹣,) ;(2)将矩形EFGH沿水平方向向右平移,得到矩形E′FG′H′,点E,F,G,H的对应点分别为E′,F′,G′,H′,设EE′=t,矩形E′F′G′H′与菱形ABCD重叠部分的面积为S.①如图②,当边E′F′与AB相交于点M、边G′H′与BC相交于点N,且矩形E′F′G′H′与菱形ABCD重叠部分为五边形时,试用含有t的式子表示S,并直接写出t的取值范围;②当时,求S的取值范围(直接写出结果即可).【答案】(1)(,2),(﹣,);(2)①<t≤,②.【解答】(1)解:四边形EFGH是矩形,且E(0,).F(﹣,)(0,),∴EF=GH=,EH=FG=1,∴G(﹣,);连接AC,BD,交于一点H,如图所示:∵四边形ABCD是菱形,且A(,0),B(0,1),D(2,1),AB=AD=,AC⊥BD,CM=AM=OB=1,BM﹣MD=OA=,∴AC=2,∴C(,2),故答案为(,2),(﹣,);(2)解:①∵点E(0,),点F(﹣,),点H(0,),∴矩形EFGH中,EF∥x轴,E'H'⊥x轴,EF=,EH=1,∴矩形E'F'G'H'中,E'F'∥x轴,E'H'⊥x轴,E'F'=,E'H'=1,由点A(,0),点B(0,1),得OA=,OB=1,在Rt△ABO中,tan∠ABO=,得∠ABO=60°,在Rt△BME中,由EM=EB×tan60°,EB=1﹣=,得EM=,∴S△BME=EB×EM=,同理,得S△BNH=,∵EE'=t,得S矩形EE'H'H=EE'×EH=t,又S=S矩形EE'H'H﹣S△BME﹣S△BNH,∴S=t﹣,当EE'=EM=时,则矩形E'F'G'H'和菱形ABCD重叠部分为△BE'H',∴t的取值范围是<t≤,②由①及题意可知当≤t时,矩形E'F'G'H'和菱形ABCD重叠部分的面积S是增大的,当时,矩E'F'G'H'和菱形ABCD重叠部分的面积S是减小的,∴当t=时,矩形E'F'G'H'和菱形ABCD重叠部分如图所示:此时面积S最大,最大值为S=1×=;当t=时,矩形E'F'G'H'和菱形ABCD重叠部分如图所示:由(1)可知B、D之间的水平距离为2,则有点D到G'F'的距离为,由①可知:∠D=∠B=60°,∴矩形E'F'G'H'和菱形ABCD重叠部分为等边三角形,∴该等边三角形的边长为2×,∴此时面积S最小,最小值为,综上所述:当时,则.7.(2022•天津)将一个矩形纸片OABC放置在平面直角坐标系中,点O(0,0),点A(3,0),点C(0,6),点P在边OC上(点P不与点O,C重合),折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且∠OPQ=30°,点O的对应点O′落在第一象限.设OQ=t.(Ⅰ)如图①,当t=1时,求∠O′QA的大小和点O′的坐标;(Ⅱ)如图②,若折叠后重合部分为四边形,O′Q,O′P分别与边AB相交于点E,F,试用含有t的式子表示O′E的长,并直接写出t的取值范围;(Ⅲ)若折叠后重合部分的面积为3,则t的值可以是 3或 (请直接写出两个不同的值即可).【答案】(Ⅰ)60°,(,);(Ⅱ)EO′=3t﹣6(2<t<3);(Ⅲ)3或(答案不唯一).【解答】解:(Ⅰ)如图①中,过点O′作O′H⊥OA于点H.在Rt△POQ中,∠OPQ=30°,∴∠PQO=60°,由翻折的性质可知QO=QO′=1,∠PQO=∠PQO′=60°,∴∠O′QH=180°﹣60°﹣60°=60°,∴QH=QO′•cos60°=,O′H=QH=,∴OH=OQ+QH=,∴O′(,);(Ⅱ)如图②中,∵A(3,0),∴OA=3,∵OQ=t,∴AQ=3﹣t.∵∠EQA=60°,∴QE=2QA=6﹣2t,∵OQ′=OQ=t,∴EO′=t﹣(6﹣2t)=3t﹣6(2<t<3);(Ⅲ)如图③中,当点Q与A重合时,重叠部分是△APF,过点P作PG⊥AB于点G.在Rt△PGF中,PG=OA=3,∠PFG=60°,∴PF==2,∵∠OPA=∠APF=∠PAF=30°,∴FP=FA=2,∴S△APF=•AF•PG=××3=3,观察图象可知当3≤t<2时,重叠部分的面积是定值3,∴满足条件的t的值可以为3或(答案不唯一).故答案为:3或.四.切线的性质(共1小题)8.(2023•天津)在⊙O中,半径OC垂直于弦AB,垂足为D,∠AOC=60°,E为弦AB 所对的优弧上一点.(1)如图①,求∠AOB和∠CEB的大小;(2)如图②,CE与AB相交于点F,EF=EB,过点E作⊙O的切线,与CO的延长线相交于点G,若OA=3,求EG的长.【答案】(1)120°,30°;(2).【解答】解:(1)∵半径OC垂直于弦AB,∴=,∴∠BOC=∠AOC=60°,∴∠AOB=∠AOC+∠BOC=120°,∵∠CEB=∠BOC,∴∠CEB=30°;(2)如图,连接OE,∵半径OC⊥AB,∵=,∴∠CEB=∠AOC=30°,∵EF=EB,∴∠EFB=∠B=75°,∴∠DFC=∠EFB=75°,∠DCF=90°﹣∠DFC=15°,∵OE=OC,∴∠C=∠OEC=15°,∴∠EOG=∠C+∠OEC=30°,∵GE切圆于E,∴∠OEG=90°,∴tan∠EOG==,∵OE=OA=3,∴EG=.五.解直角三角形的应用-仰角俯角问题(共1小题)9.(2023•天津)综合与实践活动中,要利用测角仪测量塔的高度,如图,塔AB前有一座高为DE的观景台,已知CD=6m,∠DCE=30°,点E,C,A在同一条水平直线上.某学习小组在观景台C处测得塔顶部B的仰角为45°,在观景台D处测得塔顶部B的仰角为27°.(1)求DE的长;(2)设塔AB的高度为h(单位:m);①用含有h的式子表示线段EA的长(结果保留根号);②求塔AB的高度(tan27°取0.5,取1.7,结果取整数).【答案】(1)DE的长为3m;(2)①线段EA的长为(3+h)m;②塔AB的高度约为11m【解答】解:(1)由题意得:DE⊥EC,在Rt△DEC中,CD=6m,∠DCE=30°,∴DE=CD=3(m),∴DE的长为3m;(2)①由题意得:BA⊥EA,在Rt△DEC中,DE=3m,∠DCE=30°,∴CE=DE=3(m),在Rt△ABC中,AB=hm,∠BCA=45°,∴AC==h(m),∴AE=EC+AC=(3+h)m,∴线段EA的长为(3+h)m;②过点D作DF⊥AB,垂足为F,由题意得:DF=EA=(3+h)m,DE=FA=3m,∵AB=hm,∴BF=AB﹣AF=(h﹣3)m,在Rt△BDF中,∠BDF=27°,∴BF=DF•tan27°≈0.5(3+h)m,∴h﹣3=0.5(3+h),解得:h=3+6≈11,∴AB=11m,∴塔AB的高度约为11m.六.解直角三角形的应用-方向角问题(共1小题)10.(2021•天津)如图,一艘货船在灯塔C的正南方向,距离灯塔257海里的A处遇险,发出求救信号.一艘救生船位于灯塔C的南偏东40°方向上,同时位于A处的北偏东60°方向上的B处,救生船接到求救信号后,立即前往救援.求AB的长.(结果取整数)参考数据:tan40°≈0.84,取1.73.【答案】168海里.【解答】解:如图,过点B作BH⊥AC,垂足为H,由题意得,∠BAC=60°,∠BCA=40°,AC=257海里,在Rt△ABH中,∵tan∠BAH=,cos∠BAH=,∴BH=AH•tan60°=AH,AB==2AH,在Rt△BCH中,∵tan∠BCH=,∴CH==(海里),又∵CA=CH+AH,∴257=+AH,所以AH=(海里),∴AB=≈=168(海里),答:AB的长约为168海里.七.条形统计图(共1小题)11.(2023•天津)为培养青少年的劳动意识,某校开展了剪纸、编织、烘焙等丰富多彩的活动,该校为了解参加活动的学生的年龄情况,随机调查了a名参加活动的学生的年龄(单位:岁).根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(1)填空:a的值为 40 ,图①中m的值为 15 ;(2)求统计的这组学生年龄数据的平均数、众数和中位数.【答案】(1)40;15;(2)14;15;14.【解答】解:(1)a=5+6+13+16=40;∵m%=100%﹣12.5%﹣40%﹣32.5%=15%,∴m=15.故答案为:40;15;(2)平均数为=;∵15岁的学生最多,∴众数为15;∵一共调查了40名学生,12岁的有5人,13岁的6人,∴中位数为14.。
2013中考全国100份试卷分类汇编一次函数应用题1、(2013•十堰)张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.以下说法错误的是()得,解得<2、(2013哈尔滨)梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含l0千克)的种子,超过l0千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示.下列四种说法:①一次购买种子数量不超过l0千克时,销售价格为5元/千克;②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过l0千克的那部分种子的价格打五折:④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱.其中正确的个数是( ).(A)1个(B)2个(C)3个(D) 4个考点:一次函数的应用。
分析:考查一次函数的应用;得到超过10千克的费用的计算方式是解决本题的关键点.(1)0≤x≤10时,付款y=5×相应千克数;数量不超过l0千克时,销售价格为5元/千克;(2)x>10时,付款y=2.5x+25相应千克数,超过l0千克的那部分种子的价格解答:由0≤x≤10时,付款y=5×相应千克数,得数量不超过l0千克时,销售价格为5元/千克①是正确;当x=30代入y=2.5x+25y=100,故②是正确;由(2)x>10时,付款y=2.5x+25相应千克数,得每千克2.5元,故③是正确;当x=40代入y=2.5x+25y=125,当x=20代入y=2.5x+25=75,两次共150元,两种相差25元,故④是正确;四个选项都正确,3、(2013•孝感)如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起8分钟该容器内的水恰好放完.,30÷4、(2013•黄冈)钓鱼岛自古就是中国领土,中国政府已对钓鱼岛开展常态化巡逻.某天,为按计划准点到达指定海域,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,则该巡逻艇原计划准点到达的时刻是7:00.5、(2013•十堰)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?6、(13年安徽省8分、18)我们把正六边形的顶点及其对称中心称作如图(1)所示基本图的特征点,显然这样的基本图共有7个特征点。
将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图(2)、图(3),……。
(1)观察以上图形并完成下表:猜想:在图(n)中,特征点的个数为(用n表示)(2)如图,将图(n)放在直角坐标系中,设其中第一个基本图的对称中心O1的坐标为(x1,2),则x1= ;图(2013)的对称中心的横坐标为7、(20XX 年广东湛江)周末,小明骑自行车从家里出发到野外郊游.从家出发 1小时后到达南亚所(景点),游玩一段时间后按原速前 往湖光岩.小明离家1小时50分钟,妈妈驾车沿相同 路线前往湖光岩,如图是他们离家的路程()y km 与小明离家时间()x h 的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间; (2)若妈妈在出发后25分钟时,刚好在湖光岩门口追上 小明,求妈妈驾车的速度及CD 所在直线的函数解析式. 解:(1)由图象知,小明1小时骑车20km ,所以小明骑车的速度为:20201= /km h 图象中线段AB 表明小明游玩的时间段,所以小明在南亚所游玩的时间为:211-= h(2)由题意和图象得,小明从南亚所出发到湖光岩门口所用的时间为:502511260604+-= h ,所以从南亚所出发到湖光岩门口的路程为:12054⨯= km 于是从家到湖光岩门口的路程为:20525+=,故妈妈驾车的速度为:25256060÷= /km h 设CD 所在直线的函数解析式为:y kx b =+ 由题意知,点911,25,,046C D ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ 92541106k b k b ⎧+=⎪⎪∴⎨⎪+=⎪⎩ 解得,60110k b =⎧⎨=-⎩∴CD 所在直线的函数解析式为:60110y x =-8、(2013•恩施州)一个不透明的袋子里装有编号分别为1、2、3的球(除编号以为,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为. (1)求袋子里2号球的个数.(2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为x ,乙摸出球的编号记为y ,用列表法求点A (x ,y )在直线y =x 下方的概率. 个.根据题意得:=,解此方程即可求根据题意得:=下方的概率为:.9、(2013•包头)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?10、(2013•南宁)在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地直接的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.,的坐标为(,表示,,,所以,当≤或11、(2013•黔东南州)某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒的数量x(个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元.(1)根据图象,求y与x之间的函数关系式;(2)求甲、乙两种品牌的文具盒进货单价;(3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元?解得:,12、(2013•遵义)20XX年4月20日,四川雅安发生7.0级地震,给雅安人民的生命财产带来巨大损失.某市民政部门将租用甲、乙两种货车共16辆,把粮食266吨、副食品169吨全部运到灾区.已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元;乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的费用最少?最少费用是多少元?根据题意得,13、(2013•牡丹江)甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,下图是两车距A市的路程S(千米)与行驶时间t(小时)之间的函数图象.请结合图象回答下列问题:(1)A、B两市的距离是120千米,甲到B市后,5小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t 的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相距15千米.解得:解得:;14、(2013•牡丹江)某农场的一个家电商场为了响应国家家电下乡的号召,准备用不超过105700元购进40台电脑,其中A型电脑每台进价2500元,B型电脑每台进价2800元,A 型每台售价3000元,B型每台售价3200元,预计销售额不低于123200元.设A型电脑购进x台、商场的总利润为y(元).(1)请你设计出进货方案;(2)求出总利润y(元)与购进A型电脑x(台)的函数关系式,并利用关系式说明哪种方案的利润最大,最大利润是多少元?(3)商场准备拿出(2)中的最大利润的一部分再次购进A型和B型电脑至少各两台,另一部分为地震灾区购买单价为500元的帐篷若干顶.在钱用尽三样都购买的前提下请直接写出购买A型电脑、B型电脑和帐篷的方案.=15、(2013•绥化)5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?∴解得∴解得16、(2013•绥化)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?)依题意得,=根据题意得,17、(2013•徐州)为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:(1)若甲用户3月份的用气量为60m3,则应缴费150元;(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式;(3)在(2)的条件下,若乙用户2、3月份共用1气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?解得:解得:18、(2013•绍兴)某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:(1)出租车的起步价是多少元?当x>3时,求y关于x的函数关系式.(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.解得:,19、(2013•鄂州)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD 表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.(3)轿车到达乙地后,马上沿原路以CD段速度返回,求轿车从甲地出发后多长时间再与货车相遇(结果精确到0.01).=60∴,解得=20、(2013•衡阳)为了响应国家节能减排的号召,鼓励市民节约用电,我市从20XX年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题;(1)档用地阿亮是180千瓦时时,电费是108元;(2)第二档的用电量范围是180<x≤450;(3)“基本电价”是0.6元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?解得:,21、(2013•常德)某地为改善生态环境,积极开展植树造林,甲、乙两人从近几年的统计数据中有如下发现:(1)求y2与x之间的函数关系式?(2)若上述关系不变,试计算哪一年该地公益林面积可达防护林面积的2倍?这时该地公益林的面积为多少万亩?解得:,22、(2013•湖州)某农庄计划在30亩空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务.小张种植每亩蔬菜的工资y(元)与种植面积m(亩)之间的函数如图①所示,小李种植水果所得报酬z(元)与种植面积n(亩)之间函数关系如图②所示.(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是140元,小张应得的工资总额是2800元,此时,小李种植水果10亩,小李应得的报酬是1500元;(2)当10<n≤30时,求z与n之间的函数关系式;(3)设农庄支付给小张和小李的总费用为w(元),当10<m≤30时,求w与m之间的函数关系式.∴解得∴解得=23、(2013•荆门)为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.24、(2013山西,24,8分)(本题8分)某校实行学案式教学,需印制若干份数学学案。