均匀物质的热力学性质热力学
- 格式:ppt
- 大小:629.50 KB
- 文档页数:16
第二章 均匀物质的热力学性质1.18.麦克斯韦关系在第一章中,我们根据热力学的基本规律引进了三个基本的热力学函数物态方程、内能和熵,并得到在两个邻近的平蘅状态之间内能、熵和体积之差的关系dU=TdS-pdV (18.1)(18.1)式是热力学的基本微分方程。
在本章中我们将从这基本微分方程出发,通过数学推演得出系统各种平衡性质的相互关系。
这是热力学应用的一个重要方面。
我们将会看到所得到的热力学关系是非常普遍的,可以应用于处在平衡状态的任何热力学系统。
将U 看作变量S,V 的函数U=(S,V),其全微分为dV V U dS S U dU S V ⎟⎠⎞⎜⎝⎛∂∂+⎟⎠⎞⎜⎝⎛∂∂= 上式和(18.1)式对于任意的dS 和dV 都相等,故有P V U T S U S V−=⎟⎠⎞⎜⎝⎛∂∂=⎟⎠⎞⎜⎝⎛∂∂, (18.2) 考虑到求偏导数的次序可以交换,即SV U V S U ∂∂∂=∂∂∂22,还可以得到以下关系 V SS p V T ⎟⎠⎞⎜⎝⎛∂∂−=⎟⎠⎞⎜⎝⎛∂∂ (18.3) 在上面的推导中我们取S,V 为自变量。
我们可以通过勒让德(Legendre),将自变量换为其它变量。
这里先对勒让德变换作一简单的介绍。
设L 是变量x,y 的因数,L=L(x,y).函数L 的全微分为(18.4)Ydy Xdx dL +=其中yL Y X L X ∂∂=∂∂=,一般来说也是X, y 的函数。
作变换 Xx L L −= (18.5)求(18.5)式的微分,有xdX Xx dL L d −−=将(18.4)式代入,得函数L 的全微分为Ydy xdX L d +−= (18.6)根据(18.6)式,可以把L 看作是以X 和y 为自变量的函数。
其偏导数为Y yL X X L =∂∂−=∂∂, (18.7) 变换(18.5)称为勒让德变换。
·如果作勒让德变换H=U+Pv (18.8)H 就是在1.6所引进的焓。
28 第二章 均匀物质的热力学性质2.1 已知在体积保持不变时,一气体的压强正比于其热力学温度. 试证明在温度保质不变时,该气体的熵随体积而增加.解:根据题设,气体的压强可表为 (),p f V T = (1)式中()f V 是体积V的函数. 由自由能的全微分dF SdT pdV=--得麦氏关系.T VS p V T ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 将式(1)代入,有 ().T VS p p f V V T T ∂∂⎛⎫⎛⎫===⎪ ⎪∂∂⎝⎭⎝⎭ (3) 由于0,0p T >>,故有0TS V ∂⎛⎫> ⎪∂⎝⎭. 这意味着,在温度保持不变时,该气体的熵随体积而增加.2.2 设一物质的物态方程具有以下形式:(),p f V T =试证明其内能与体积无关.解:根据题设,物质的物态方程具有以下形式: (),p f V T = (1)故有().Vp f V T ∂⎛⎫= ⎪∂⎝⎭ (2) 但根据式(2.2.7),有,T VU p T p V T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭(3)所以()0.TU Tf V p V ∂⎛⎫=-= ⎪∂⎝⎭ (4)这就是说,如果物质具有形式为(1)的物态方程,则物质的内能与体积无关,只是温度T 的函数.2.3 求证:()0;HS a p ⎛⎫∂< ⎪∂⎝⎭()0.US b V ∂⎛⎫> ⎪∂⎝⎭ 解:焓的全微分为 .dH TdS Vdp =+ (1) 令0dH=,得0.HS Vp T ⎛⎫∂=-< ⎪∂⎝⎭ (2) 内能的全微分为 .dU TdS pdV =- (3) 令0dU=,得0.US p V T ∂⎛⎫=> ⎪∂⎝⎭ (4)2.4 已知0T U V ∂⎛⎫=⎪∂⎝⎭,求证0.TU p ⎛⎫∂= ⎪∂⎝⎭解:对复合函数(,)(,(,))U T P U T V T p =(1)求偏导数,有.T T T U U V p V p ⎛⎫⎛⎫∂∂∂⎛⎫= ⎪⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ (2)如果0TU V ∂⎛⎫=⎪∂⎝⎭,即有0.TU p ⎛⎫∂= ⎪∂⎝⎭ (3) 式(2)也可以用雅可比行列式证明:(,)(,)(,)(,)(,)(,)T U U T p p T U T V T V T p T ⎛⎫∂∂= ⎪∂∂⎝⎭∂∂=∂∂.T TU V V p ⎛⎫∂∂⎛⎫=⎪ ⎪∂∂⎝⎭⎝⎭ (2)292.5 试证明一个均匀物体的在准静态等压过程中熵随体积的增减取决于等压下温度随体积的增减.解:热力学用偏导数pS V ∂⎛⎫⎪∂⎝⎭描述等压过程中的熵随体积的变化率,用pT V ∂⎛⎫⎪∂⎝⎭描述等压下温度随体积的变化率. 为求出这两个偏导数的关系,对复合函数(,)(,(,))S S p V S p T p V ==(1)求偏导数,有.p p p p pC S S T T V T V T V ∂∂∂∂⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭(2) 因为0,0p C T >>,所以p S V ∂⎛⎫ ⎪∂⎝⎭的正负取决于pT V ∂⎛⎫⎪∂⎝⎭的正负.式(2)也可以用雅可经行列式证明:(,)(,)(,)(,)(,)(,)∂∂∂∂⎛⎫== ⎪∂∂∂∂⎝⎭P S S p S p T p V V p T p V p P PS T T V ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭(2)2.6 试证明在相同的压强降落下,气体在准静态绝热膨胀中的温度降落大于在节流过程中的温度降落.解:气体在准静态绝热膨胀过程和节流过程中的温度降落分别由偏导数S T p ⎛⎫∂ ⎪∂⎝⎭和HT p ⎛⎫∂ ⎪∂⎝⎭描述. 熵函数(,)S T p 的全微分为.P TS S dS dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 在可逆绝热过程中0dS=,故有.TP p SPS V T p T T S p C T ⎛⎫∂∂⎛⎫ ⎪ ⎪∂⎛⎫∂∂⎝⎭⎝⎭=-=⎪∂∂⎛⎫⎝⎭ ⎪∂⎝⎭ (1) 最后一步用了麦氏关系式(2.2.4)和式(2.2.8).焓(,)H T p 的全微分为.P TH H dH dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 在节流过程中0dH=,故有.T Pp HPH V T V p T T H p C T ⎛⎫∂∂⎛⎫- ⎪ ⎪∂⎛⎫∂∂⎝⎭⎝⎭=-= ⎪∂∂⎛⎫⎝⎭ ⎪∂⎝⎭ (2)最后一步用了式(2.2.10)和式(1.6.6).将式(1)和式(2)相减,得 0.pS H T T V p p C ⎛⎫⎛⎫∂∂-=> ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 所以在相同的压强降落下,气体在绝热膨胀中的温度降落大于节流过程中的温度降落. 这两个过程都被用来冷却和液化气体.由于绝热膨胀过程中使用的膨胀机有移动的部分,低温下移动部分的润滑技术是十分困难的问题,实际上节流过程更为常用. 但是用节流过程降温,气体的初温必须低于反转温度. 卡皮查(1934年)将绝热膨胀和节流过程结合起来,先用绝热膨胀过程使氦降温到反转温度以下,再用节流过程将氦液化.2.7 实验发现,一气体的压强p 与体积V 的乘积以及内能U 都只是温度的函数,即(),().pV f T U U T ==试根据热力学理论,讨论该气体的物态方程可能具有什么形式.解:根据题设,气体具有下述特性:(),pV f T = (1)().U U T = (2)由式(2.2.7)和式(2),有0.T VU p T p V T ∂∂⎛⎫⎛⎫=-= ⎪ ⎪∂∂⎝⎭⎝⎭(3)而由式(1)可得30 .Vp T df T T V dT ∂⎛⎫= ⎪∂⎝⎭ (4) 将式(4)代入式(3),有,dfTf dT= 或.df dT f T= (5) 积分得ln ln ln ,f T C =+或,pV CT = (6)式中C 是常量. 因此,如果气体具有式(1),(2)所表达的特性,由热力学理论知其物态方程必具有式(6)的形式. 确定常量C 需要进一步的实验结果.2.8 证明2222,,p V T Vp TC C p V T T V T p T ∂⎛⎫⎛⎫⎛⎫∂∂∂⎛⎫==- ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭并由此导出00220022,.⎛⎫⎛⎫∂∂=+=- ⎪ ⎪∂∂⎝⎭⎝⎭⎰⎰VpV V p p V p V pp p C C T dV C C T dp T T根据以上两式证明,理想气体的定容热容量和定压热容呈只是温度T 的函数.解:式(2.2.5)给出.V VS C T T ∂⎛⎫= ⎪∂⎝⎭ (1)以T ,V 为状态参量,将上式求对V 的偏导数,有2222,V T VC S S S T T T V V T T V T ⎛⎫⎛⎫⎛⎫∂∂∂∂⎛⎫===⎪ ⎪ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ (2)其中第二步交换了偏导数的求导次序,第三步应用了麦氏关系(2.2.3). 由理想气体的物态方程 pV nRT =知,在V 不变时,p 是T 的线性函数,即220.Vp T ⎛⎫∂= ⎪∂⎝⎭ 所以 0.V TC V ∂⎛⎫=⎪∂⎝⎭ 这意味着,理想气体的定容热容量只是温度T 的函数. 在恒定温度下将式(2)积分,得0202.VV VV Vp C C T dV T ⎛⎫∂=+ ⎪∂⎝⎭⎰ (3)式(3)表明,只要测得系统在体积为0V 时的定容热容量,任意体积下的定容热容量都可根据物态方程计算出来.同理,式(2.2.8)给出.p pS C T T ∂⎛⎫= ⎪∂⎝⎭ (4)以,T p 为状态参量,将上式再求对p 的偏导数,有2222.p p TC S S S T T T p p T T p T ∂⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂===- ⎪ ⎪ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭(5)其中第二步交换了求偏导数的次序,第三步应用了麦氏关系(2.2.4). 由理想气体的物态方程pV nRT =知,在p 不变时V是T 的线性函数,即220.pV T ⎛⎫∂= ⎪∂⎝⎭ 所以0.p TC p ∂⎛⎫= ⎪∂⎝⎭ 这意味着理想气体的定压热容量也只是温度T 的函数. 在恒定温度下将式(5)积分,得 0202.pp pp pV C C T dp T ⎛⎫∂=+ ⎪∂⎝⎭⎰式(6)表明,只要测得系统在压强为0p 时的定压热容量,任意31压强下的定压热容量都可根据物态方程计算出来.2.9 证明范氏气体的定容热容量只是温度T 的函数,与比体积无关.解:根据习题2.8式(2)22,V T VC p T V T ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 范氏方程(式(1.3.12))可以表为22.nRT n a p V nb V=-- (2)由于在V 不变时范氏方程的p 是T 的线性函数,所以范氏气体的定容热容量只是T 的函数,与比体积无关.不仅如此,根据2.8题式(3)0202(,)(,),VV V V Vp C T V C T V T dV T ⎛⎫∂=+ ⎪∂⎝⎭⎰(3)我们知道,V →∞时范氏气体趋于理想气体. 令上式的0V →∞,式中的0(,)V C T V 就是理想气体的热容量. 由此可知,范氏气体和理想气体的定容热容量是相同的.顺便提及,在压强不变时范氏方程的体积V 与温度T 不呈线性关系. 根据2.8题式(5)22,V T VC p V T ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 这意味着范氏气体的定压热容量是,T p 的函数.2.10 证明理想气体的摩尔自由能可以表为,,00,002ln ln =⎰+-⎰--=-⎰⎰+--V m m V m m m m V m m m mC dTF C dT U T dT RT V TS T C dT U TS RT V TT解:式(2.4.13)和(2.4.14)给出了理想气体的摩尔吉布斯函数作为其自然变量,T p 的函数的积分表达式. 本题要求出理想气体的摩尔自由能作为其自然变量,m T V 的函数的积分表达式. 根据自由能的定义(式(1.18.3)),摩尔自由能为,m m m F U TS =- (1)其中m U 和mS 是摩尔内能和摩尔熵. 根据式(1.7.4)和(1.15.2),理想气体的摩尔内能和摩尔熵为,0,m V m m U C dT U =+⎰ (2),0ln ,V m mm m C S dT R V S T=++⎰ (3)所以,,00ln .V m m V m m m m C F C dT T dT RT V U TS T=--+-⎰⎰(4)利用分部积分公式,xdy xy ydx =-⎰⎰令,1,,==⎰V m x y C dT T可将式(4)右方头两项合并而将式(4)改写为,002ln .m V mm m m dTF T C dT RT V U TS T=--+-⎰⎰ (5)2.11 求范氏气体的特性函数m F ,并导出其他的热力学函数.解:考虑1mol 的范氏气体. 根据自由能全微分的表达式(2.1.3),摩尔自由能的全微分为 ,m m m dF S dT pdV =-- (1)故2,m m m m TF RT ap V V b V ⎛⎫∂=-=-+ ⎪∂-⎝⎭ (2) 积分得()(),ln ().m m m maF T V RT V b f T V =---+ (3)由于式(2)左方是偏导数,其积分可以含有温度的任意函数()f T . 我们利用V →∞时范氏气体趋于理想气体的极限条件定出函数()f T . 根据习题2.11式(4),理想气体的摩尔自32 由能为,,00ln .V m m V m m m m C F C dT dT RT V U TS T=--+-⎰⎰(4)将式(3)在m V →∞时的极限与式(4)加以比较,知,,00().V m V m m m C f T C dT T dT U TS T=-+-⎰⎰(5)所以范氏气体的摩尔自由能为()(),,00,ln .V m m m V m m m m m C a F T V C dT T dT RT V b U TS TV =----+-⎰⎰(6)式(6)的(),mm F T V 是特性函数范氏气体的摩尔熵为(),0ln .V m m m m m C F S dT R V b S T T ∂=-=+-+∂⎰(7)摩尔内能为,0.m m m V m m maU F TS C dT U V =+=-+⎰(8)2.15 计算热辐射在等温过程中体积由1V 变到2V 时所吸收的热量.解:根据式(1.14.3),在可逆等温过程中系统吸收的热量为.Q T S =∆ (1)式(2.6.4)给出了热辐射的熵函数表达式34.3S aT V =(2) 所以热辐射在可逆等温过程中体积由1V 变到2V 时所吸收的热量为 ()4214.3Q aT V V =- (3)2.16 试讨论以平衡辐射为工作物质的卡诺循环,计算其效率. 解:根据式(2.6.1)和(2.6.3),平衡辐射的压强可表为41,3p aT = (1)因此对于平衡辐射等温过程也是等压过程. 式(2.6.5)给出了平衡辐射在可逆绝热过程(等熵过程)中温度T 与体积V 的关系3().T V C =常量(2)将式(1)与式(2)联立,消去温度T ,可得平衡辐射在可逆绝热过程中压强p 与体积V的关系43pV C '=(常量). (3)下图是平衡辐射可逆卡诺循环的p V-图,其中等温线和绝热线的方程分别为式(1)和式(3).下图是相应的TS -图. 计算效率时应用T S -图更为方便.在由状态A 等温(温度为1T )膨胀至状态B 的过程中,平衡辐射吸收的热量为()1121.Q T S S =- (4)在由状态C 等温(温度为2T )压缩为状态D 的过程中,平衡辐射放出的热量为()2221.Q T S S =-循环过程的效率为()()2212211211111.T S S Q T Q T S S T η-=-=-=-- (6)2.18 试证明磁介质H C 与M C 之差等于3320H M M TH M C C T T H μ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭解:当磁介质的磁化强度有dM 的改变时,外界所做的功是0đ,W V HdM μ=(1)式中H 是电场强度,V 是介质的体积.不考虑介质体积的改变,V 可看作常量. 与简单系统đW pdV =-比较,在变换0p H,V VM μ→-→(2)下,简单系统的热力学关系同样适用于磁介质. 式(2.2.11)给出.p V V pp V C C T T T ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭ (3)在代换(2)下,有0H M M HH M C C T T T μ∂∂⎛⎫⎛⎫-=- ⎪ ⎪∂∂⎝⎭⎝⎭(4)式中H C 是磁场强度不变时介质的热容量,M C 是磁化强度不变时介质的热容量. 考虑到1H M TM T H T H M ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ (5)(5)式解出HM T ∂⎛⎫⎪∂⎝⎭,代入(4)式,得 20H M M TH M C C T T H μ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭2.19 已知顺磁物质遵从居里定律:().CM H T=居里定律 若维物质的温度不变,使磁场由0增至H ,求磁化热.解:式(1.14.3)给出,系统在可逆等温过程中吸收的热量Q 与其在过程中的熵增加值∆S 满足.Q T S =∆ (1)在可逆等温过程中磁介质的熵随磁场的变化率为(式(2.7.7))0.T HS m H T μ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2)如果磁介质遵从居里定律(),CVm H C T=是常量 (3) 易知2Hm CV H T T ∂⎛⎫=- ⎪∂⎝⎭, (4) 所以0.TCV H S H T μ∂⎛⎫=- ⎪∂⎝⎭2(5) 在可逆等温过程中磁场由0增至H 时,磁介质的熵变为202.2HTCV H S S dH H T μ∂⎛⎫∆==- ⎪∂⎝⎭⎰(6)吸收的热量为20.2CV H Q T S Tμ=∆=- (7)补充题1 温度维持为25C,压强在0至1000n p 之间,测得水的实验数据如下:()363114.510 1.410cm mol K .pV p T ----∂⎛⎫=⨯+⨯⋅⋅ ⎪∂⎝⎭ 若在25C的恒温下将水从1n p 加压至1000n p ,求水的熵增加值和从外界吸收的热量.解:将题给的pV T ∂⎛⎫⎪∂⎝⎭记为.pV a bp T ∂⎛⎫=+ ⎪∂⎝⎭ (1) 由吉布斯函数的全微分dG SdT Vdp =-+得麦氏关系34.p TV S T p ⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 因此水在过程中的熵增加值为()222111∂∂⎛⎫⎛⎫∆==-=-+ ⎪ ⎪∂∂⎝⎭⎝⎭⎰⎰⎰p p p P p p Tp S V S dp dp a bp dp P T ()()222121.2b a p p p p ⎡⎤=--+-⎢⎥⎣⎦(3)将11,1000n n n p p p p ==代入,得110.527J mol K .S --∆=-⋅⋅根据式(1.14.4),在等温过程中水从外界吸收的热量Q 为 ()112980.527J mol 157J mol .Q T S--=∆=⨯-⋅=-⋅补充题2 试证明范氏气体的摩尔定压热容量与摩尔定容热容量之差为(),,23.21p m V m m m R C C a V b V RT-=--解:根据式(2.2.11),有,,.m m p m V m V pV p C C T T T ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭ (1)由范氏方程2m mRT ap V b V =--易得()232,.⎛⎫∂∂⎛⎫==-+ ⎪ ⎪∂-∂⎝⎭-⎝⎭m V m m mT m p R p RT a T V b V V V b(2)但1,m m V m Tp V p T T V p ⎛⎫⎛⎫∂∂∂⎛⎫=-⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ 所以()()323,2∂⎛⎫⎪∂-⎝⎭∂⎛⎫=-= ⎪∂⎛⎫∂⎝⎭-- ⎪∂⎝⎭m V m m m p m m m Tp T RV V b V T p RTV a V b V(3)代入式(1),得 (),,23.21p mV m m mR C C a V b RTV -=--(4)补充题3 承前1.6和第一章补充题3,试求将理想弹性体等温可逆地由0L 拉长至02L 时所吸收的热量和内能的变化.解:式(2.4.4)给出,以,T V 为自变量的简单系统,熵的全微分为.V VC p dS dT dV T T ∂⎛⎫=+ ⎪∂⎝⎭ (1) 对于本题的情形,作代换 ,,V L p →→-J (2)即有.L LJ TdS C dT T dL T ∂⎛⎫=- ⎪∂⎝⎭ (3)将理想弹性体等温可逆地由0L 拉长至02L 时所吸收的热量Q 为2.L L LQ TdS T dL T ∂⎛⎫==- ⎪∂⎝⎭⎰⎰J (4) 由2020L L J bT L L ⎛⎫=- ⎪⎝⎭可得220002200021,L L L dL J L L b bT T L L L L L dT ⎛⎫⎛⎫∂⎛⎫=--+ ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭(5)代入式(4)可得0002222200022002L L L L L L L L Q bT dL bT a dL L L L L ⎛⎫⎛⎫=--++ ⎪ ⎪⎝⎭⎝⎭⎰⎰350051,2bTL a T ⎛⎫=-- ⎪⎝⎭(6) 其中001.dL L dTα=过程中外界所做的功为2220020,L L L L L L W JdL bT dL bTL L L ⎛⎫==-= ⎪⎝⎭⎰⎰(7) 故弹性体内能的改变为2005.2U W Q bT L α∆=+= (8)补充题4 承上题. 试求该弹性体在可逆绝热过程中温度随长度的变化率.解:上题式(3)已给出.L LJ TdS C dT T dL T ∂⎛⎫=- ⎪∂⎝⎭ (1)在可逆绝热过程中0dS =,故有.S L L T T J L C T ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭(2)将习题2.15式(5)求得的LJ T ∂⎛⎫⎪∂⎝⎭代入,可得2200022002.S L L L T bT L L T L C L L L L α⎡⎤⎛⎫⎛⎫∂⎛⎫=--+⎢⎥ ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭⎣⎦(3)补充题5 实验测得顺磁介质的磁化率()T χ. 如果忽略其体积变化,试求特性函数(,)f M T ,并导出内能和熵.解:在磁介质的体积变化可以忽略时,单位体积磁介质的磁化功为(式(2.7.2))0đ.W HdM μ= (1)其自由能的全微分为0.df SdT MdM μ=-+将()χ=T M H代入,可将上式表为.Mdf SdT dM μχ=-+ (2)在固定温度下将上式对M 积分,得20(,)(,0).2()M f T M f T T μχ=+ (3)(,)f T M 是特性函数. 单位体积磁介质的熵为(),MS f T M T ∂⎡⎤=-⎢⎥∂⎣⎦2021(,0).2d M S T dTμχχ=+ (4)单位体积的内能为220002.22M d U f TS M T U dTμμχχχ=+=++ (5)。