当 t 为参变量时,函数 为 d dx dy
x y
x , y ,t
的全微分
对比(2)(3)式可得
vy x vx y
(3)
符合上式条件的函数 称为二维 不可压缩流场的流函数。不可压缩流体的 平面流动,无论其是无旋流动还是有旋流 动,以及流体有、无粘性,均存在流函数, 可见流函数比速度势函数更具普遍性。
理想流体动力学
院系:机电工程学院 专业:动力机械及工程 姓名:潘翠丽 学号:s12001025
第一节 平面势流
1、平面流动是指对任一时刻,流场中所 有决定运动的函数仅与两个坐标及时间 有关,也称为二维流动。 2、有势流动(无旋流动):流场中,若 任意流体质点的旋转角速度ω 为零,这 种流动称为有势流动或无旋流动。 3、平面势流:若平面流动有势流动,则 称之为平面势流。
或者: 由数学分析可知,上面三个微分关系式的存在正是
v x dx v y dy v z dz
vz v y vx vz v y vx ; ; y z z x x y
成为某一函数 x , y , z , t
d 全微分的充要条件,即: v x dx v y dy v z dz (1)
而当 t 为参变量时,函数 x , y , z , t 的全 微 分为:
d x dx y dy z dz ( 2)
比较(1)式(2)式可知:
vx ;vy ;vz (3) x y z
x , y , z , t 为速度势函数 由(3)式可知当流动有势时,流体力学的问题 将会得到很大简化,只要求出 x , y , z , t , 即可求出速度分布,再根据能量方程进而求出 流场中的压强分布。