高一必修1数学期中考试卷
- 格式:docx
- 大小:693.97 KB
- 文档页数:7
高一必修一考试卷数学高一必修一数学考试卷一、选择题(每题3分,共30分)1. 函数\( f(x) = 2x^2 - 3x + 1 \)的对称轴方程是:A. \( x = 1 \)B. \( x = -1 \)C. \( x = \frac{3}{4} \)D. \( x = 0 \)2. 若\( a \),\( b \),\( c \)是三角形的三边长,且满足\( a^2 + b^2 = c^2 \),则三角形是:A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等边三角形3. 已知\( \sin \alpha = \frac{3}{5} \),\( \alpha \)为锐角,求\( \cos \alpha \)的值:A. \( \frac{4}{5} \)B. \( -\frac{4}{5} \)C. \( \frac{3}{4} \)D. \( -\frac{3}{4} \)4. 集合\( A = \{1, 2, 3\} \),\( B = \{2, 3, 4\} \),求\( A \cup B \):A. \( \{1, 2, 3, 4\} \)B. \( \{1, 2, 3\} \)C. \( \{2, 3, 4\} \)D. \( \{1, 4\} \)5. 已知\( x \),\( y \)满足约束条件\( \begin{cases} x + y\leq 3 \\ x - y \geq 0 \end{cases} \),目标函数\( Z = 2x + y \)的最大值是:A. 4B. 5C. 6D. 76. 函数\( f(x) = x^3 - 3x \)的导数是:A. \( 3x^2 - 3 \)B. \( x^2 - 3 \)C. \( 3x^2 + 3 \)D. \( x^3 - 3 \)7. 已知等差数列\( \{a_n\} \)的首项为\( a_1 = 3 \),公差为\( d = 2 \),求第5项:A. 11B. 13C. 15D. 178. 已知\( \log_{10} 100 = 2 \),求\( \log_{10} 0.01 \)的值:A. -1B. -2C. 1D. 29. 已知\( \frac{1}{a} + \frac{1}{b} = \frac{5}{6} \),\( a >0 \),\( b > 0 \),求\( a + b \)的值:A. \( \frac{6}{5} \)B. \( \frac{5}{6} \)C. \( \frac{7}{5} \)D. \( \frac{6}{7} \)10. 函数\( y = x^2 \)在点\( (1, 1) \)处的切线斜率是:A. 0B. 1C. 2D. 3二、填空题(每题4分,共20分)11. 若\( \cos \theta = \frac{\sqrt{3}}{2} \),则\( \sin\theta \)的值为________。
黄石六中高一数学上学期期中考试卷答案一、选择题BCBD BCAD DCBC二、填空题13、1 14、{-2,1/3} 15)2()()3(f f f >>-π16、6,4,1,7,三、解答题17 B A ={x |1<x ≤8};C U A={x |x <2或x >8} B A C U )(={x |1<x <2}根据题意可得a 的取值范围是a<818 (1)定义域{}21≠-≥x x x 且(2)定义域{}143≤<x x 19(Ⅰ)原式=lg 22+(1- lg2)(1+lg2)—1 =lg 22+1- lg 22- 1 =0(Ⅱ)原式=14111633224(23)(22)1⨯+⨯-=22×33+2— 1 =10920.解:(1)依题意得1010x x +>⎧⎨->⎩ -1<x <1 ∴定义域为{x |-1<x <1}(2)x ∈(-1,1) F(-x )=log a (1-x )-log a (1+x )=-F(x )∴F(x )为奇函数-21.解:(1)由题意,标价为1000元的商品消费金额为10000.8800⨯=元,故优惠额为10000.288288⨯+=元,则优惠率为28828.8%1000=. (2)由题意,当消费金额为188元时,其标价为235元;当消费金额为388元时,其标价为485元;当消费金额为588元时,其标价为735元由此可得,当商品的标价为[]100600,元时,顾客得到的优惠率y 关于标价x 元之间的函数关系式为[)[](]0.20.2,100,2350.228280.2,235,4850.258580.2,485,600x x x x y x x x x x x x ⎧=∈⎪⎪+⎪==+∈⎨⎪+⎪=+∈⎪⎩22、解:(1)由题得:a x a x x f ++=)(,设211x x <≤, 则2121221121)()()()(x a x a x x a x a x a x a x x f x f -+-=++-++=- 212121)()(x x a x x x x --= ,121x x <≤ 1,02121><-∴x x x x ,又1<a ,得021>-a x x 0)()(21<-∴x f x f ,即)(x f 在[)+∞,1上为增函数。
高一数学(必修1)期中模拟试卷一、填空题:(共14小题,每题5分,共70分)1.设非空集合{}1,2,3,4,5,6,7A ⊆ 且当a A ∈ 时,必有8a A -∈则这样的A 共有 个2.已知集合(){},2M x y x y =+=,(){},4N x y x y =-=,那么集合M N ⋂= 3.A 、B 是两个非空集合,定义集合{}A B x x A x B -=∈∉且,若{}{}231,,11M x x N y y x x =-≤≤==-≤≤,则M N -= 4.若()()2212f x ax a x =+-+在()3,3-为单调函数,则a 的取值范围是 5.函数()21,(0)()log ,(0)f x x f x x x ⎧+≤⎪=⎨>⎪⎩ ,则(2)f -=6.已知,a b 为常数,若()()2243,1024f x x x f ax b x x =+++=++,则5a b -=7.若关于x 的方程()22220x m x m +-+=的两根一个比1大一个比1小,则m 的范围是 8.设lg 2a =,lg3b =,则5log 12等于 9.函数2231y x x =-+的单调递减区间为10.函数[]141,3,22xxy x -⎛⎫=-+∈- ⎪⎝⎭,则它的值域为11.若已知()()21,1,1f x x x =+∈-则函数()21x y f =-的值域是 12.若函数()()22224y a x a x =-+-+的定义域为R ,则a 的取值范围是13.{}{}3,4,5,4,5,6,7P Q ==,定义(){},,P Q a b a P b Q *=∈∈则P Q *中元素的个数为 14.阅读下列一段材料,然后解答问题:对于任意实数x ,符号[]x 表示 “不超过x 的最大 整数”,在数轴上,当x 是整数,[]x 就是x ,当x 不是整数时,[]x 是点x 左侧的第一个 整数点,这个函数叫做“取整函数”,也叫高斯(Gauss )函数.如 []22-=-,[]1.52-=-,[]2.52=则2222222111[log ][log ][log ][log 1][log 2][log 3][log 4]432++++++的值为二、解答题:(共6道题,共90分) 15.计算下列各题:①41320.753440.0081(4)(8)16---++- ②211log 522lg 5lg 2lg 502+++16.已知集合(){}22240A x R x a x a =∈---+=,(){}2223230B x R x a x a a =∈+-+--=, 若A B ≠∅,求实数a 的取值范围.17.已知奇函数()y f x =为定义在(1,1)-上的减函数,且2(1)(1)0f a f a ++-<,求实数a 的 取值范围。
高一数学必修第一册期中模拟试卷(新高考版提高卷1)考试范围:第一章集合与常用逻辑用语;第二章一元二次函数、方程和不等式;第三章函数的概念与性质一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)第二空3分.)由题意可得()(3228x x -++-故答案为:20.14.(2022·浙江·温州市第二十二中学高一开学考试)已知函数(1)1f -=-,则函数(),y f x =①当1a <时,则()220f a a a =-=,()()201f f a f a =⎦=⎤⎣=⎡,解得:1a =-;当1a ≥时,则()220f a a a =-=,()()201f f a f a =⎦=⎤⎣=⎡,解得:1a =;综上得:1a =±.②由题可知,()11f a =-,由不等式()()1f x f ≥对任意x ∈R 都成立,所以有211a ax a x ⎧-≥-⎨<⎩恒成立且211x ax a x ⎧-≥-⎨≥⎩恒成立,对于211a ax a x ⎧-≥-⎨<⎩恒成立时,即2101ax a a x ⎧-++-≥⎨<⎩恒成立,则2010a a a a -<⎧⎨-+-+≥⎩,解得:1a ≥;对于211x ax a x ⎧-≥-⎨≥⎩恒成立时,即()2111a x x x ⎧-≤-⎨≥⎩恒成立,当1x =时,明显成立,当1x >时,1a x ≤+恒成立,又1,12x x ≥+≥,解得:2a ≤;综上得:12a ≤≤.所以a 的取值范围是:[]1,2故答案为:①±1;②[]1,2.四、解答题(本题共6小题,共70分,其中第17题10分,其它每题12分,解答应写出文字说明、证明过程或演算步骤.)。
北师大版高一数学必修1上期中试题及答案高一数学期中试卷(满分120分,考试时间90分钟)一、选择题(共12小题,每小题4分,共48分)1.设集合 $A=\{(x,y)|y=-4x+6\}$,$B=\{(x,y)|y=5x-3\}$,则 $A\cap B=$()A。
$\{1,2\}$ B。
$\{x=1,y=2\}$ C。
$\{(1,2)\}$ D。
$(1,2)$2.已知函数 $f(x)$ 是定义在 $[1-a,5]$ 上的偶函数,则$a$ 的值是()A。
0 B。
1 C。
6 D。
-63.若 $a>0$ 且 $a\neq1$,则函数 $y=ax-1$ 的图像一定过点()A。
$(0,1)$ B。
$(0,-1)$ C。
$(1,0)$ D。
$(1,1)$4.若 $f(x)=x+1$,则 $f^{-1}(2)=$()A。
3 B。
2 C。
1 D。
$-1/3$5.下列四个图像中,是函数图像的是()A。
B。
C。
D。
6.下列函数中既是奇函数,又在区间 $(0,+\infty)$ 上单调递增的是()A。
$y=-x^2$ B。
$y=1/x$ C。
$y=x+1/x$ D。
$y=e^{|x|}$7.若方程 $2ax^2-x-1=0$ 在 $(0,1)$ 内恰好有一个解,则$a$ 的取值范围是()A。
$a1$ C。
$-1<a<1$ D。
$a\leq1$8.已知函数 $f(x)=\begin{cases} \log_2x & (x>1) \\ x^3 & (x\leq1) \end{cases}$,则 $f[f(9)]=$()A。
1 B。
3 C。
4 D。
99.为了得到函数 $y=3x$ 的图像,可以把函数 $y=3|x|$ 的图像()。
A。
向左平移3个单位长度 B。
向右平移3个单位长度C。
向左平移1个单位长度 D。
向右平移1个单位长度10.设 $a=\log_{0.3}4$,$b=\log_43$,$c=0.3^{-2}$,则$a$、$b$、$c$ 的大小关系为()A。
考试时间:100分钟,满分100分.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列关系正确的是:A .Q ∈2B .}2{}2|{2==x x x C .},{},{a b b a = D .)}2,1{(∈∅2.已知集合}6,5,4,3,2,1{=U ,}5,4,2{=A ,}5,4,3,1{=B ,则)()(B C A C U U ⋃A .}6,3,2,1{B .}5,4{C .}6,5,4,3,2,1{D .}6,1{ 3.下列函数中,图象过定点)0,1(的是A .xy 2= B .x y 2log = C .21x y = D .2x y =4.若b a ==5log ,3log 22,则59log 2的值是: A .b a -2B .b a -2C .b a 2D .ba25.函数3log )(3-+=x x x f 的零点所在的区间是A .(0,1)B .(1,2)C .(2,3)D .(3,+∞) 6.已知函数ax x x f +=2)(是偶函数,则当]2,1[-∈x 时,)(x f 的值域是: A .]4,1[ B .]4,0[ C .]4,4[- D .]2,0[8.某林场计划第一年造林10 000亩,以后每年比前一年多造林20%,则第四年造林 A .14400亩 B .172800亩 C .17280亩 D .20736亩9.设c b a ,,均为正数,且a a21log 2=,b b 21log 21=⎪⎭⎫ ⎝⎛,c c2log 21=⎪⎭⎫ ⎝⎛.则A .c b a <<B .a b c <<C .b a c <<D .c a b <<10.已知函数()log a f x x =(0,1a a >≠),对于任意的正实数,x y 下列等式成立的是A .()()()f x y f x f y +=B .()()()f x y f x f y +=+C .()()()f xy f x f y =D . ()()()f xy f x f y =+二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卷中的横线上.11.若幂函数()f x 的图象过点2,2⎛⎫⎪ ⎪⎝⎭,则()9f = _________12.函数()f x =的定义域是13. 用二分法求函数)(x f y =在区间]4,2[上零点的近似解,经验证有0)4()2(<⋅f f 。
班级 ________ 姓名___________ .学号__________ 分数《必修一期中备考综合测试卷(一)》(A卷)(测试时问:120分钟满分:150分)第I卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分•在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列给出的命题正确的是()A.高中数学课本中的难题可以构成集合B.有理数集Q是最大的数集C.空集是任何非空集合的真子集D.自然数集N中最小的数是1【答案】C【解析】难题不具有确定性,不能构造集合,A错误;实数集R就比有理数集Q犬,疗错误;空集是任何非空集合的真子集,C正确;自然数集N中最小的数是0, D错误;故选C・2.若P={x|x<l),Q={x|x>-l},则()A. PcQB. QcpC. C(! P cQD. Qc Q, P【答案】C【解析】C v P={x|x^l},而Q二{x|x>T},故有C v PCQ故选C.3.已知集合N, P为全集U的子集,且满足McpcN,则下列结论不正确的是()A. [uNcQPB. C N P C GMC. (C U P) AM=0D. ((>M) AN=0【答案】D【解析】因为PUN,所以C V N C QP,故A正确;因为Mcp,所以C N P C C N M,故B正确;因为MCP,所以(CiP) AM=0,故C正确;因为MG N,所以(C U M)DNH0.故D不正确. 故选D.4.[2018届黑龙江省佳木斯市鸡东县第二中学高三第一次月考】若集合A = {l,2,4,8},B = {x|2x<5}, 则A c B =()A. {1}B. {2}C. {1,2}D. {1,2,3}【答案】C【解析】B = {x|2A <5} =(^o,log25)/.AnB = {l,2},选B.5.【2018届福建省数学基地校高三联考】下列函数屮,定义域是R且为增函数的是()A. y = e~xB. y = x^C. y = larD. y = x【答案】B【解析】分别画出四个函数的图象,如图:故选B.6.【2018届广西钦州市高三第一次检测】已知集合A = {1, 2, 3, 4},集合B = {3,4, 5, 6},集合C=AnB, 则集合C的子集的个数为()A. 1B. 2C. 3D. 4【答案】D【解析】2, 3, 4}, B={3, 4, 5, 6},/.C=AnB={l, 2, 3, 410(3, 4, 5, 6} = {3, 4打•:集合C的子集为0, {3},⑷,{3, 4} f共4个.故选:D・7.集合A= {-1,0,1}, A的子集中含有元素0的子集共有()A. 2个B. 4个C. 6个D. 8个【答案】B【解析】含有元素0的子集有{0}, {0,-1}, {0,1}, {0,-1, 1},共4个.故选B.8.[2018届福建省数学基地校高三联考】函数/(对二 _ 的定义域为()71og2x-lA. (0,2)B.「(0,2]C. (2,4W)D. [2,-H X))【答案】C【解析】因为log 2x>l=>x>2,所以选C.X 2,XG [-1,0]9. 函数/(%) = { 1 ([的最值情况为()-,xe(O,ll x A.最小值0,最大值1 B.最小值0,无最大值 C.最小值0,最大值5 D.最小值1,最大值5【答案】B【解析1 xe [-1,0], f(x)的最大值为1,最小值为0; xe(o,l]时,f(x)e [1,+8)无最大值,有最小{Hl,所以f(x)有最小值0,无最大值.故选B.10. 若函数/(尢)的定义域为[—2,2],则函数/(x+l) + /(l-2x)的定义域为() 1 ~| [ 1 ~| 1~ 3~A. —, 1B. —, 2C. [—2,21rD. —3,—_ 2」 L 2」 L 」|_ 2_【答案】A【解析】因为函数/(x)的定义域为[-2=2],所以函数/(x+l)+/(l-2x)中有:-2<x+l<2 -2<l-2x<2故选A.( )A. 4B. —4C. 1 r 1 _D.―一 4 4【答案】 C【解析】 /(-2)= 2-2 =1 _ 4故选C.即函数/(x+l) + /(l-2x)的定义域为11.【2018届新疆呼图壁县第一屮学高三9月】设/(x) = {-J x + 22Xx>0 x<0,求f(-2)的值12. 【2018届甘肃省武威市第六屮学高三第一次】若a 满足a + lga = 4, b 满足b + 10b = 4,函数 f (x )=F + (a ;:)::2zO 则关于x 的方程f (x )=x 解的个数是() A. 1 B. 2 C. 3 D. 4【答案】C【解析】Ta 满足a + 1駅=4, b 满足b + 10b = 4,.・・a, b 分别为函数y = 4-泻函数y = lgx, y = 10週象 交点的横坐标,由于y = x^y = 4-X @象交点的横坐标为2,函数y = lgx, y = 10啲图象关于y = x 对称, y2 1 Ay -L 0 丈 V・・.a + b = 4, .I 函数f (x )=' 一 ,当XMO 时,关于x 的方程f (x ) = x,即P + 4X+2二須 2, x> 0即疋+ 3x4-2=0, /.X = -2或x = -1,满足题鼠 当x > 0时,关于x 的方程f (x ) = x,即x = 2,满足题意, ・•・关于x 的方程f (x ) = x 的解的个数是3,故选C.第II 卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 【2018届浙江省温州市高三9月测试】(J log2S = ___________ ・【答案】;【解析】@10§23= 2』諮=210g23 = |,故答案为*(1 \14.【2018届河北省石家庄二中八月模拟】已知幕函数/(兀)的图彖经过点-,V2,M/(x ) = 丿_1【答案】x 4[ 1 1V2=>c^ = --,所以/(x) = x 4,应填答案兀J 15. 【2018届宁夏育才中学高三第一次月考】函数y = lo&(x+l ) + 2(d>0且dHl )恒过定点A,则A 的坐【解析】由题意- 丿标为____ .【答案】(0, 2)【解析】log 」=0.・.x = 0R 寸y = 2,即A 的坐标为(0, 2).(3X - 1 x > 016. [2018届贵•州省贵阳市第一中学高三月考一】已知函,数f (x )=L ;x2_;;;:0'若方程£(*)=皿有3个不等的实根,则实数m 的取值范围是 __________ . 【答案】(0, 2)【解析】画出函数图像,得二次函数最高•点位(-12),常函数y = m 和曲线有三个交点,则位于x 轴上方, 最高点「下方即可•故得m e (0,2).三、解答题(本大题共6小题,共70分•解答应写出文字说明、证明过程或演算步骤・)17. (本小题 10 分)计算:(1)(0.064戶 + (-2)‘ 3+16_0-75+(0.25)251 19 【答案】(1) —;(2)—16 4【解析】试题分析:(1)主要利用指数幕的运算法则(a ,n )n =a ,,ut 即可得出;(2)利用对数的运算法则、换 底公式即可得出.2 2 16 8 2 16(2)原式ulogQ 石+lgl00+2 +些•坐=—丄 + 4 + 1= —lg2 21g3 4418. (本小题12分)已知函数/(x) = {x 2+l,-l<x<l2x + 3,x v -1(1) 求 /(/(/(-2)))的值。
考试时间:100分钟,满分100分.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列关系正确的是:A .Q ∈2B .}2{}2|{2==x x x C .},{},{a b b a = D .)}2,1{(∈∅2.已知集合}6,5,4,3,2,1{=U ,}5,4,2{=A ,}5,4,3,1{=B ,则)()(B C A C U U ⋃A .}6,3,2,1{B .}5,4{C .}6,5,4,3,2,1{D .}6,1{ 3.下列函数中,图象过定点)0,1(的是A .x y 2=B .x y 2log =C .21x y = D .2x y =4.若b a ==5log ,3log 22,则59log 2的值是: A .b a -2B .b a -2C .b a 2D .ba25.函数3log )(3-+=x x x f 的零点所在的区间是A .(0,1)B .(1,2)C .(2,3)D .(3,+∞) 6.已知函数ax x x f +=2)(是偶函数,则当]2,1[-∈x 时,)(x f 的值域是: A .]4,1[ B .]4,0[ C .]4,4[- D .]2,0[8.某林场计划第一年造林10 000亩,以后每年比前一年多造林20%,则第四年造林 A .14400亩 B .172800亩 C .17280亩 D .20736亩9.设c b a ,,均为正数,且a a21log 2=,b b 21log 21=⎪⎭⎫ ⎝⎛,c c2log 21=⎪⎭⎫ ⎝⎛.则A .c b a <<B .a b c <<C .b a c <<D .c a b <<10.已知函数()log a f x x =(0,1a a >≠),对于任意的正实数,x y 下列等式成立的是A .()()()f x y f x f y +=B .()()()f x y f x f y +=+C .()()()f xy f x f y =D . ()()()f xy f x f y =+二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卷中的横线上.11.若幂函数()f x 的图象过点2,2⎛ ⎝⎭,则()9f = _________12.函数()f x =的定义域是13. 用二分法求函数)(x f y =在区间]4,2[上零点的近似解,经验证有0)4()2(<⋅f f 。
2022-2023学年第一学期期中考试高一数学试题考试范围:必修一1 1 4 1说明:1.本试卷共4页,考试时间120分钟,满分150分.2.请将所有答案都涂写在答题卡上,答在试卷上无效.一㊁单项选择题(本大题共9个小题,每小题5分,共45分)1.已知集合U ={-3,-2,-1,0,1,2,3},A ={-1,0,1},B ={0,1,2},则C U (A ɘB )=(㊀㊀)A.{-3,-2,3}B .{-3,-2,-1,2,3}C .{2,3}D.{-1,2,3}2. a >b 是 a >b 的(㊀㊀)A.充分不必要条件B .充要条件C .必要不充分条件D.既不充分也不必要条件3.已知不等式x 2+2a x +a +2<0的解集为空集,则a 的取值范围是(㊀㊀)A.(-1,2)B .(-ɕ,-1)ɣ(2,+ɕ)C .(-ɕ,-1]ɣ[2,+ɕ)D.[-1,2]4.已知函数f (2x +1)=3x +2,则f (3)的值等于(㊀㊀)A.11B .2C .5D.-15.已知x ɪR ,则使得2|x |+32|x |+2取得最小值时x 的值为(㊀㊀)A.2B .4C .ʃ4D.ʃ26.十六世纪中叶,英国数学家雷科德在«砺智石»一书中首先把 = 作为等号使用,后来英国数学家哈利奥特首次使用 < 和 > 符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.下列说法正确的是(㊀㊀)A.若a <b ,c <d ,则a c <b d B .若a <b ,则1a +1>1b +1C .若a 2b >a 2c ,则1b >1cD.若a >b ,c >d ,则a +c b +c >a +db +d7.函数f (x )=2x 2-7x +3的单调递减区间为(㊀㊀)A.-ɕ,74æèçöø÷B .-ɕ,12æèçöø÷C .7,+ɕæèçöø÷(,)8.设a 为实数,定义在R 上的偶函数f (x )满足:f (x )在[0,+ɕ)上的表达式为f (x )=3x 2+2x -4,则使得f (2a )>f (a +1)成立的a 的取值范围为(㊀㊀)A.-ɕ,-13æèçöø÷ɣ(1,+ɕ)B .-13,1æèçöø÷C .-1,13æèçöø÷D.(-ɕ,1)9.定义在R 上的奇函数f (x )满足f (2+x )=f (-x ),若当0<x ɤ1时,f (x )=x 2-2x +9,则f 72æèçöø÷=(㊀㊀)A.-334B .334C .-8D.8二㊁多项选择题(本大题共5个小题,每小题5分,共25分,全部选对的得5分,部分选对的得2分,有选错的得0分)10.已知函数f (x )=x +5,x <-1x 2,-1ɤx <2{,关于函数f (x )的结论正确的是(㊀㊀)A.f (x )的定义域为R B .f (x )的值域为(-ɕ,4)C .f (-1)=1D.若f (x )=3,则x 的值是311.若函数f (1-2x )=1-x 2x 2(x ʂ0),则(㊀㊀)A.f 12æèçöø÷=15B .f (2)=-34C .f (x )=4(x -1)2-1(x ʂ0)D.f 1x æèçöø÷=4x 2(x -1)2-1(x ʂ0且x ʂ1)12.给定数集M ,若对于任意a ,b ɪM ,有a +b ɪM ,a -b ɪM ,则称集合M 为闭集合.则下列说法中正确的是(㊀㊀)A.集合M ={n |n =3k ,k ɪZ }为闭集合B .集合M ={-6,-3,0,3,6}为闭集合C .正整数集不是闭集合D.若集合A 1㊁A 2为闭集合,则A 1ɣA 2为闭集合13.已知a ,b ɪR ,4a =b 2=9,则2a -b的值可能为(㊀㊀)A.83B .38C .24D.12414.已知函数f (x )的定义域为D ,若存在区间[m ,n ]⊆D 使得f (x ):(1)f (x )在[m ,n ]上是单调函数;(2)f (x )在[m ,n ]上的值域是[2m ,2n ],则称区间[m ,n ]为函数f (x )的 倍值区间 .下列函数中存在 倍值区间 的有(㊀㊀)A.f (x )=x +1x B .f (x )=1xC .f (x )=x 2D.f (x )=3x x 2三㊁填空题(本大题共4个小题,每小题5分,共20分)15.函数f(x)=x x-1+x2-1的定义域为㊀㊀㊀㊀㊀.16.计算:1 5-13ˑ67æèçöø÷0+80 25ˑ42+32ˑ3()6-23æèçöø÷23=㊀㊀㊀㊀㊀.17.函数f(x)为定义在(-1,1)上的奇函数,f(x+2)为减函数,若f(m-1)+f(3-2m)<0,则实数m的取值范围为㊀㊀㊀㊀㊀.{},且a>b,则18.已知关于x的一元二次不等式a x2+2x+bɤ0的解集为x x=-1aa-ba2+b2+2的最大值为㊀㊀㊀㊀㊀.四㊁解答题(本大题共5个小题,每小题12分,共60分,解答应写出文字说明㊁证明过程或演算步骤)19.已知命题p:关于x的方程x2-2a x+2a2-a-6=0有实数根,命题q:m-1ɤaɤm+3.(1)若命题¬p是真命题,求实数a的取值范围;(2)若p是q的必要不充分条件,求实数m的取值范围.20.已知幂函数f(x)=(m2+3m-3)x m+1在(0,+ɕ)上是减函数,mɪR.(1)求f(x)的解析式;(2)若(5-a)1m>(2a-1)1m,求a的取值范围.21.某电子公司生产某种智能手环,其固定成本为2万元,每生产一个智能手环需增加投入100元,已知总收入R (单位:元)关于日产量x (单位:个)满足函数:R =400x -12x 2,0ɤx ɤ400,80000,x >400.ìîíïïïï(1)将利润f (x )(单位:元)表示成日产量x 的函数;(2)当日产量x 为何值时,该电子公司每天所获利润最大,最大利润是多少?(利润+总成本=总收入)22.已知函数f (x )=2x 2+3x +ax,a ɪR .(1)若函数g (x )=f (x )-3,判断g (x )的奇偶性并加以证明;(2)当a =2时,先用定义法证明函数f (x )在[1,+ɕ)上单调递增,再求函数f (x )在(0,+ɕ)上的最小值;(3)若对任意x ɪ[1,+ɕ),f (x )>0恒成立,求实数a 的取值范围.23.设函数h (x )=x 2+1,g (x )=a x -b (a ,b ɪR ),令函数f (x )=h (x )-g (x ).(1)若函数y =f (x )为偶函数,求实数a 的值;(2)若a =1,求函数y =f (x )在区间[0,3]上的最大值.2022-2023学年第一学期期中考试高一数学参考答案1.B 2.C 3.D 4.C 5.D 6.C 7.B 8.A 9.A 10.BC 11.AD 12.AC 13.BC 14.BCD15.{}11>−≤x x x 或 16. 110 17.1,2 18.1419.答案:(1)),3()2,(+∞⋃−−∞ (2)01≤≤−m解析:(1)因为命题p ⌝是真命题,所以命题p 是假命题.............................2 所以方程062222=−−+−a a ax x 无实根有02444)62(4)2(222<++−=−−−−=∆a a a a a (4)062>−−⇒a a 解得),3()2,(+∞⋃−−∞,所以实数a 的取值范围是),3()2,(+∞⋃−−∞ (6)(2)由(1)可知p :32≤≤−a .............................8 因为p 是q 的必要不充分条件,所以1233m m −≥−⎧⎨+≤⎩, (11)则,解得01≤≤−m ,所以实数m 的取值范围是01≤≤−m ............12 20.答案:(1)31)(x x f =(2)(2,5). 解析:(1)由题意得:根据幂函数的性质可知1332=−+m m ,..............2 即0432=−+m m ,解得4−=m 或1=m . (3)因为()f x 在()0,∞+上是减函数,所以10+<m ,即1m <−,则4−=m ...................5 故331)(x xx f ==−...................6 (2)由(1)可得4−=m ,设函数4411)(xx x g ==−,........................7 则()g x 的定义域为()0,+∞,且()g x 在定义域上为减函数 (9)因为4141)12()5(−−−>−a a ,所以50,210,521,a a a a −>⎧⎪−>⎨⎪−<−⎩ (11)解得25a <<.故a 的取值范围为(2,5) (12)21.答案:(1)2130020000,0400()260000100,400x x x f x x x ⎧−+−≤≤⎪=⎨⎪−>⎩(2)当日产量为300个时,公司所获利润最大,最大利润是25000 解析:(1)由题意可得:当0400x ≤≤时,2211()400200001003002000022f x x x x x x =−−−=−+−; (2)当400x >时,()800002000010060000100f x x x =−−=−;..........................4 所以2130020000,0400()260000100,400x x x f x x x ⎧−+−≤≤⎪=⎨⎪−>⎩.......................6 注意:分段函数写对一段给2分,全部写对可得6分。
高一数学必修一期中试卷及答案1、已知,当时,求(). [单选题] * A.7B.-7(正确答案)C.0D.无法确定2. 下列语句中是集合的是() [单选题] *A.浙江的所有高楼大厦的全体B.面积较小的三角形的全体C.与0相差不多的数的全体D.中国队的女排运动员的全体(正确答案)3.的定义域是(). [单选题] *A.(-∞,0)B.(0,+∞)C.(-∞,+∞)(正确答案)D.∅4.函数,则当时,(). [单选题] *A.1B.10(正确答案)C.-10D.-35.已知 A={a,0},B={1,2}, A∩B={1},则(). [单选题] * A.1(正确答案)B.1,2C.2D.06.,此函数是()函数. [单选题] *A.一次函数B.二次函数(正确答案)C.反比例函数D.正比例函数7.选出下列选项中正确的一项,4(). [单选题] * A.∈(正确答案)B.∉C.D.8.,,则的结果是(). [单选题] *A.{1,2,3,4,5,6}B.{1,2,3,4,6}C.{2,6}(正确答案)D.∅9.集合,用区间的形式表示出来是(). [单选题] *A. (-∞,7)B. (0,7)C. (7, +∞)(正确答案)D.∅10.已知m,n为实数,则∣m∣=∣n∣是的()条件. [单选题] * A.充分B.必要C.既不充分也不必要D.充分必要(正确答案)11.比较大小() [单选题] *A.>B.<(正确答案)C.≥D.≤12. 下列关系正确的是() [单选题] *A.0∈c80937d345258f239c80937d345258f239b630bd428ad-20221229-13401620.png' />B.π∈QC. ∈R(正确答案)D. ∈Q13.下列关系中,正确的是() [单选题] *A. ∅∈{a}B.a∉{a}C.{a}∈{a,b}D.a∈{a,b}(正确答案)14. 设集合M={x|x},a=4,则下列正确的关系是() [单选题] *A.a∉M(正确答案)B.{a}∈MC. a∈MD.{a}∉M15. 集合M={x|2≤x≤8,且x Z},则集合M元素个数为() [单选题] *A.6B.64C.7(正确答案)D.12816. 集合A={1,2,4,7,9},B={1,3,5,6,7,9},则A B=() [单选题] *A.{1,2,3,4,5,6,7,9}B.{1,7,9}(正确答案)C.{2,4,3,5}D. ∅17. 若M={2,4,6},N={1,3},则M N=() [单选题] *A.{1,2,4}B.{1,2,3,4,6}(正确答案)C. ∅D.{ ∅}18. 集合M={(x ,y)|x+y=2},N={(x ,y)|x-y=4},则集合M N为() [单选题] *A.x=3,y=-1B.(3,-1)C.{3, -1}D.{(3,-1)}(正确答案)19. 设集合A={1},B={1,2},C={1,2,3},则(A B) C=() [单选题] *A.{1,2,3}B.{1,2}(正确答案)C.{1}D.{3}20. 已知全集U=R,A={x|x1},则=() [单选题] *A.{x|x>1}B.{x|0C.{x|x<1}(正确答案)D. ∅21.下列命题正确的是() [单选题] *A. 若a>-(正确答案)b,则c+a>c-bB.若a>b,则a-b>2d则ac>bdD.若a>b,c>b,则a>c22.若a>b,则(). [单选题] *A.b ²≤a ²B.a²>b²C.a²≤b²D.以上都不对(正确答案)23.若,则下列关系式中正确的是(). [单选题] * A. 2x>x²>xB. x²>2x>xC. 2x>x>x²(正确答案)D. x²>x>2x24.不等式的解集为(). [单选题] *A. (-∞,2)∪(3, +∞)B. (-∞,-1) ∪(6, +∞)(正确答案)C.(2,3)D.(-1,6)25.不等式+->0的解集为(). [单选题] *A.(–1,3)(正确答案)B.(–3,1)C.(-∞,–1 )∪(3,+ ∞)D.(-∞,3)26.解集为{x|x<–2或x>3}的不等式为(). [单选题] * A.(x+1)(x-2)<0B.(x+2)(x-3)>0(正确答案)C.x2–2x–3>0D.x2-2x-3<027.若不等式的解集是(-4,3),则c的值等于(). [单选题] * A.12B.-12(正确答案)C.11D.-1128.若|m-5|=5-m,则m的取值是(). [单选题] *A.m >5B.m≥5C.m<5D.m≤5.(正确答案)29.求不等式︱-1︱≤2的解集为(). [单选题] *A.(-∞,3]B.[-1,+∞)C.[-1,3](正确答案)D.(-∞,-1)∪(3,+∞)30.设不等式的解集为(-1,2),则=(). [单选题] *A.1/4B.1/2C.2/3D.3/2(正确答案)31.已知函数的定义域是() [单选题] * A.{x|x≥1}(正确答案)B.{x|x≤1}C. {x|x>1}D. {x|x<1}32.与函数相等的函数是() [单选题] * A. y=(x+1) ºB. y=t+1(正确答案)C.D. y=|x+1|33.设函数f(x)=则f(3)=() [单选题] * A.0.2B.3C.2/3(正确答案)D.13/934.函数的定义域为() [单选题] * A. (1, +∞)B. [1, +∞)C. [1,2)D.[1,2) ∪(2, +∞)(正确答案)35.已知函数,其定义域为() [单选题] *A.{x|x≥1或x≤-3}B. {x|-1≤x≤3}C.{x|x≥3或x≤-1}(正确答案)D. {x|-3≤x≤1}36.已知函数,则f(f(4))=() [单选题] *A.-2B.0C.4(正确答案)D.1637.已知函数f(x)=ax³+bx+4(a,b不为零),且,则等于() [单选题] *A.-10B.-2(正确答案)C.-6D.1438.设函数f(x)=x²+2(4-a)x+2在区间 (-∞,3]上是减函数,则实数a的取值范围是() [单选题] *A.a≥-7B.a≥7(正确答案)C.a≥3D.a≤-739.已知函数,若,则的值是(). [单选题] * A.-2(正确答案)B.2或-2.5C.2或-2D.2或-2或-2.540.一个偶函数定义在[-7,7]上,它在[0,7]上的图象如图所示,下列说法正确的是()[单选题] *A.这个函数仅有一个单调增区间B.这个函数有两个单调减区间C.这个函数在其定义域内有最大值是7(正确答案)D.这个函数在其定义域内有最小值是-741.如果偶函数在区间(0,1)上是减函数且最大值为3,则在区间(-1,0)上是() [单选题] *A.增函数且最大值为3(正确答案)B.增函数且最小值为3C.减函数且最大值为3D.减函数且最小值为342.本场考试需要2小时,在本场考试中,钟表的时针转过的弧度数为() [单选题] *A.B.(正确答案)C.D.43.930°=() [单选题] *A.B.C.D.(正确答案)44.将轴正半轴绕原点逆时针旋转30°,得到角α,则下列与α终边相同的角是() [单选题] *A.330°B.-330°(正确答案)C.210°D.-210二、判断题,正确的打√,错误的打×(每小题2分,共6题,共12分)1. 集合可以写成. [判断题] *对(正确答案)错2.是一个函数解析式. [判断题] *对错(正确答案)3.集合,集合,则集合. [判断题] *对错(正确答案)4.是空集. [判断题] *对错(正确答案)5.. [判断题] *对(正确答案)错6.,其中元素一共有5个. [判断题] *对(正确答案)错。
高一数学必修一期中考试试题及答案一、选择题1.(20 13年高考四川卷)设集合a={1,2,3},集合b={ -2,2},则a∩b等于( b )(a) (b){2}(c){-2,2} (d){-2,1,2,3}解析:a∩b={2},故挑选b.(a){2} (b){0,2}(c){-1,2} (d){-1,0,2}解析:依题意得集合p={-1,0,1},(a)1个 (b)2个 (c)4个 (d)8个4.(年高考全国新课标卷ⅰ)已知集合a={x|x2-2x>0},b={x|-(a)a∩b= (b)a∪b=r解析:a={x|x>2或x<0},∴a∪b=r,故挑选b.5.已知集合m={x ≥0,x∈r},n={y|y=3x2+1,x∈r},则m∩n等于( c )(a) (b){x|x≥1}(c){x|x>1} (d){x|x≥1或x<0}解析:m={x|x≤0或x>1},n={y|y≥1}={x|x≥1}.∴m∩n={x|x>1},故选c.6.设子集a={x + =1},子集b={y - =1},则a∩b等同于( c )(a)[-2,- ] (b)[ ,2](c)[-2,- ]∪[ ,2] (d)[-2,2]解析:集合a表示椭圆上的点的横坐标的取值范围a=[-2,2],集合b表示双曲线上的点的纵坐标的取值范围b=(-∞,- ]∪[ ,+∞),所以a∩b=[-2,- ]∪[ ,2].故选c.二、填空题7.( 年高考上海卷)若集合a={x|2x+1>0},b={x||x-1|<2},则a∩b=.解析:a={x x>- },b={x|-1所以a∩b={x -答案:{x -解析:因为2∈a,所以 <0,即(2a-1)(a- 2)>0,Champsaura>2或a< .①若3∈a,则 <0,即为( 3a-1)(a-3)>0,解得a>3或a< ,①②挑关连得实数a的值域范围就是∪(2,3].答案: ∪(2,3]若a≠0,b=(- ),∴- =-1或- =1,∴a=1或a=-1.所以a=0或a=1或a=-1组成的集合为{-1,0,1}.答案:{-1,0,1}10.已知集合a={x|x2+ x+1=0},若a∩r= ,则实数m的取值范围是.解析:∵a∩r= ,∴a= ,∴δ=( )2-4<0,∴0≤m<4.答案:[0,4)11.已知集合a={x|x2-2x-3>0},b={x|x2+ax+b≤0},若a∪b=r,a∩b={x| 3解析:a={x|x<-1或x>3},∵a∪b=r,a∩b={x|3∴b={x|-1≤x≤4},即方程x2+ax+b=0的两根为x1=-1,x2=4.∴a=-3,b=-4,∴a+b=-7.答案:-7三、解答题12.未知子集a={-4,2a-1,a2},b={a-5,1-a,9},分别谋适宜以下条件的a的值.(1)9∈(a∩b);(2){9}=a∩b.解:(1) ∵9∈(a∩b),∴2a-1= 9或a2=9,∴a=5或a=3或a=-3.当a=5时,a={-4,9,25},b={0,-4,9};当a=3时,a-5=1-a=-2,不满足集合元素的互异性;当a=-3时,a={-4,-7,9},b={-8,4,9},所以a=5或a=-3.(2)由(1)所述,当a=5时,a∩b={-4,9},相左题意,当a=-3时,a∩b={9}.所以a=- 3.13.已知集合a={x|x2-2x-3≤0};b={x|x2-2mx+m2-4≤0,x∈r,m∈r}.(1)若a∩b=[0,3],谋实数m的值;解:由已知得a={x|-1≤x≤3},b={x|m-2≤x≤m+2}.(1)∵a∩b=[0,3],∴∴m=2.∴m-2>3或m+2<-1,即m>5或m<-3.14.设u=r,子集a={x |x2+3x+2=0},b={x|x2+(m+1)x+m=0},若解:a={x|x=-1或x=-2},方程x2+(m+1)x+m=0的根是x1=-1,x2=-m,当-m=-1,即m=1时,b={-1},当-m≠-1,即m≠1时,b={-1,-m},∴-m=-2,即m=2.所以m=1或m=2.集合的三个特性(1)无序性指集合中的元素排列没有顺序,如集合a={1,2},集合b={2,1},则集合a=b。
高一数学必修一必刷题一、选择题1。
已知集合,则集合中的元素的个数为()A。
B。
C. D。
2。
已知集合M={(x,y)|x+y=3},N={(x,y)|x-y=5},那么集合M∩N为A。
x=4,y=-1 B.(4,-1)C。
{4,-1}D。
{(4,-1)}3、与函数有相同图象的一个函数是()A. B. C. D.4.若集合{0,a2,a+b}={1,a,},则a2012 +b2011的值为A。
0 B。
1 C.—1 D.±15。
已知,,则()。
. 。
6.设函数f(x)=x2+2(a-1)x+2在区间(-∞,上是减函数,则实数a的范围是A.a≥-3B.a≤-3C。
a≥3 D.a≤57.已知函数在上递增,则的取值范围是A. B。
C. D.8.已知函数f(x)=2x2﹣mx+5,m∈R,它在(﹣∞,﹣2]上单调递减,则f(1)的取值范围是()A.f(1)=15 B.f(1)>15 C.f(1)≤15D.f(1)≥15 9。
已知f(x)=x5+ax3+bx-8,且f(-2)=10,那么f(2)等于A.-26B。
-18 C.-10D。
1010.已知,且则的值为A. 4 B. 0 C.2m D.11.已知函数,现有,则=A。
2 B。
-2 C.D.12.设函数,若,则的值等于 A.4 B.8C.16D.13.函数y=log(x2-6x+17)的值域是A。
R B。
[8,+ C.(-∞,-D。
[-3,+∞)14.当时,函数的值域是()A. B. C。
D.15.函数的值域是()A.B.C.D.16。
函数在区间上的最大值为5,最小值为1,则实数m的取值范围是()A。
B。
[2,4] C. [0,4] D.17.已知函数y=f(2x)定义域为[1,2],则y=f(log2x)的定义域为A。
[1,2] B.[4,16]C。
[0,1] D.(-∞,0]18、已知函数f(x)=的定义域是R,则实数a的取值范围是( )A.a>B.-12<a≤0 C.-12<a<0 D.a≤19.已知函数,则的值是()A.6 B.24 C.120 D.72020.已知,则等于A.-1 B.0 C.1 D.321。
A高一数学(必修1)第I 卷 选择题(共60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U ={0,1,2,3,4},M ={0,1,2},N ={2,3},则(C u M )∩N =A .B .C .D .{}4,3,2{}2{}3{}4,3,2,1,02.设集合,,给出如下四个图形,其中能表示从集{}02M x x =≤≤{}02N y y =≤≤合到集合的函数关系的是M NA .B .C .D .3. 设,用二分法求方程内近似解的过程中()833-+=x x f x()2,10833∈=-+x x x在得,则方程的根落在区间()()()025.1,05.1,01<><f f f A. B. C. D. 不能确定(1,1.25)(1.25,1.5)(1.5,2)4. 二次函数的值域为])5,0[(4)(2∈-=x x x x f A. B. C. D.),4[+∞-]5,0[]5,4[-]0,4[-5. =+--3324log ln 01.0lg 2733e A .14 B .0C .1 D . 66. 在映射,,且,则中B A f →:},|),{(R y x y x B A ∈==),(),(:y x y x y x f +-→A 中的元素在集合B 中的像为)2,1(-A . B .C .D . )3,1(--)3,1()1,3()1,3(-7.三个数,,之间的大小关系为231.0=a 31.0log 2=b 31.02=c A .a <c <b B .a <b <c C .b <a <cD .b <c <a8.已知函数在上为奇函数,且当时,,则当时,()y f x=R0x≥2()2f x x x=-0x<函数的解析式为()f xA. B.()(2)f x x x=-+()(2)f x x x=-C. D.()(2)f x x x=--()(2)f x x x=+9.函数与在同一坐标系中的图像只可能是xy a=log(0,1)ay x a a=->≠且A. B. C. D.10.设,则2log2log<<baA. B.10<<<ba10<<<abC . D.1>>ba1>>ab11.函数在区间上的最大值为5,最小值为1,则实数m的取值54)(2+-=xxxf],0[m范围是A. B.[2,4] C. [0,4] D.),2[+∞]4,2(12.若函数()f x为定义在R上的奇函数,且在(0,)+∞内是增函数,又(2)f0=,则不等式的解集为)(<xxfA.(2,0)(2,)-+∞B.(,2)(0,2)-∞-C.(,2)(2,)-∞-+∞D.)2,0()0,2(-高一数学(必修1)答题卷题 号一二三总分得 分一、选择题:(本大题小共12题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号123456789101112答案第II 卷 非选择题(共90分)二、填空题:(本大题共4小题,每小题4分,共16分)13.函数,则的值为.⎩⎨⎧≥<--=-)2(2)2(32)(x x x x f x )]3([-f f 14.计算:.=⋅8log 3log 9415.二次函数在区间上是减少的,则实数k 的取值范围为 842--=x kx y ]20,5[.16.给出下列四个命题:①函数与函数表示同一个函数;||x y =2)(x y =②奇函数的图像一定通过直角坐标系的原点;③函数的图像可由的图像向右平移1个单位得到;2)1(3-=x y 23x y =④若函数的定义域为,则函数的定义域为;)(x f ]2,0[)2(x f ]4,0[⑤设函数是在区间上图像连续的函数,且,则方程()x f []b a ,()()0<⋅b f a f 在区间上至少有一实根;()0=x f []b a ,得分评卷人得分评卷人其中正确命题的序号是 .(填上所有正确命题的序号)三、解答题:(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)已知全集,集合,,R U ={}1,4>-<=x x x A 或{}213≤-≤-=x x B (1)求、;B A )()(BC A C U U (2)若集合是集合A 的子集,求实数k 的取值范围.{}1212+≤≤-=k x k x M 18. (本题满分12分)已知函数.1212)(+-=x x x f ⑴判断函数的奇偶性,并证明;)(x f ⑵利用函数单调性的定义证明:是其定义域上的增函数.)(x f 19. (本题满分12分)已知二次函数在区间上有最大值,求实数的值2()21f x x ax a =-++-[]0,12a 20. (本题满分12分)函数)1,0)(3(log )(≠>-=a a ax x f a (1)当时,求函数的定义域;2=a )(x f (2)是否存在实数,使函数在递减,并且最大值为1,若存在,求出的值;a )(x f ]2,1[a 若不存在,请说明理由.21. (本题满分13分)广州亚运会纪念章委托某专营店销售,每枚进价5元,同时每销售一枚这种纪念章需向广州亚组委交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则得分评卷人增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为元.x (1)写出该专营店一年内销售这种纪念章所获利润(元)与每枚纪念章的销售价格(元)y x 的函数关系式(并写出这个函数的定义域);(2)当每枚纪念章销售价格为多少元时,该特许专营店一年内利润(元)最大,并求出x y 最大值.22. (本题满分13分)设是定义在R 上的奇函数,且对任意a 、b ,当时,都有)(x f R ∈0≠+b a .0)()(>++ba b f a f (1)若,试比较与的大小关系;b a >)(a f )(b f (2)若对任意恒成立,求实数k 的取值范围.0)92()329(>-⋅+⋅-k f f xx x ),0[+∞∈x 高一数学参考答案一、选择题:题号123456789101112答案CDBCBDCAABBD二、填空题:13.14. 15. 16. ③⑤8143101,0()0,( -∞三、解答题:17. (1){}{}32213≤≤-=≤-≤-=x x x x B ………2分,∴{}31≤<=x x B A ………4分{}3,1)()(>≤=x x x B C A C U U 或 ………6分(2)由题意:或, 112>-k 412-<+k ………10分解得:或. 1>k 25-<k ………12分18. (1)为奇函数.)(x f ………1分 的定义域为,,012≠+x∴)(x f R ………2分又 )(121221211212)(x f x f x x x x xx -=+--=+-=+-=--- 为奇函数.)(x f ∴………6分(2)1221)(+-=x x f 任取、,设,1x R x ∈221x x <)1221(1221()()(2121+--+-=-x x x f x f )121121(212+-+=x x )12)(12()22(22121++-=x x x x , 又,022********<-∴<∴<x x x x x x 或 12210,210x x +>+>.在其定义域R 上是增函数.)()(0)()(2121x f x f x f x f <∴<-∴或)(x f ∴………12分19. 函数的对称轴为:,)(x f x a =当时,在上递减,,即; 0<a ()f x ]1,0[2)0(=∴f 1,21-=∴=-a a ………4分当时,在上递增,,即; 1>a ()f x ]1,0[2)1(=∴f 2=a ………8分当时,在递增,在上递减,,即,01a ≤≤()f x ],0[a ]1,[a 2)(=∴a f 212=+-a a 解得:与矛盾;综上:或 251±=a 01a ≤≤1a =-2=a ………12分20. (1)由题意:,,即,)23(log )(2x x f -=023>-∴x 23<x 所以函数的定义域为;)(x f 23,(-∞………4分(2)令,则在上恒正,,在ax u -=3ax u -=3]2,1[1,0≠>a a ax u -=∴3上单调递减,]2,1[,即023>⋅-∴a )23,1()1,0( ∈a ………7分又函数在递减,在上单调递减,,即)(x f ]2,1[ax u -=3 ]2,1[1>∴a )23,1(∈a ………9分又函数在的最大值为1,, )(x f ]2,1[1)1(=∴f 即,1)13(log )1(=⋅-=a f a 23=∴a ………11分与矛盾,不存在. 23=a )23,1(∈a a ∴………12分21. (1)依题意⎩⎨⎧∈<<---∈≤<--+=++N x x x x N x x x x y ,4020),7)](20(1002000[,207),7)](20(4002000[ ∴, ⎪⎩⎪⎨⎧∈<<---∈≤<---=++N x x x N x x x y ,4020],41089)247[(100,207],81)16[(40022………5分定义域为{}407<<∈+x N x ………7分 (2) ∵,⎪⎩⎪⎨⎧∈<<---∈≤<---=++N x x x N x x x y ,402041089247[(100,207],81)16[(40022∴ 当时,则,(元)020x <≤16x =max 32400y =………10分当时,则,(元)2040x <<472x =max 27225y =综上:当时,该特许专营店获得的利润最大为32400元. 16x =………13分22. (1)因为,所以,由题意得:b a >0>-b a ,所以,又是定义在R 上的奇函数,0)()(>--+ba b f a f 0)()(>-+b f a f )(x f ,即.)()(b f b f -=-∴0)()(>-∴b f a f )()(b f a f >………6分(2)由(1)知为R 上的单调递增函数,)(x f ………7分对任意恒成立,0)92()329(>-⋅+⋅-k f f x x x ),0[+∞∈x ,即,)92()329(k f f x x x -⋅->⋅-∴)92()329(x x x k f f ⋅->⋅-………9分,对任意恒成立,x x x k 92329⋅->⋅-∴x x k 3293⋅-⋅<∴),0[+∞∈x 即k 小于函数的最小值. ),0[,3293+∞∈⋅-⋅=x u xx………11分令,则,xt 3=),1[+∞∈t 13131(323329322≥--=-=⋅-⋅=∴t t t u x x .1<∴k (13)。
阳光中学2014-2015学年第一学期期中考试高一年级数学试题一、选择题(共10道小题,每道小题6分,共60分.请将正确答案填涂在答题卡上) 1.已知U 为全集,集合P ⊆Q ,则下列各式中不成立...的是 ( ) A . P ∩Q =P B. P ∪Q =QC. P ∩(ðU Q ) =∅D. Q ∩(ðU P )=∅2. 函数()lg(31)f x x =-的定义域为 ( )A .RB .1(,)3-∞C .1[,)3+∞D .1(,)3+∞3.如果二次函数21y ax bx =++的图象的对称轴是1x =,并且通过点(1,7)A -,则( )A .a =2,b = 4B .a =2,b = -4C .a =-2,b = 4D .a =-2,b = -4 4.函数||2x y =的大致图象是 ( )5(01)b a a =>≠且,则 ( )A .2log 1a b =B .1log 2ab = C .12log a b = D .12log b a = 6.已知定义在R 上的函数f (x )的图象是连续不断的,且有如下对应值表:那么函数f (x )一定存在零点的区间是 ( ) A . (-∞,1) B . (1,2) C . (2,3) D . (3,+∞) 7.下列说法中,正确的是 ( )A .对任意x ∈R ,都有3x >2x ;B .y =(3)-x 是R 上的增函数;C .若x ∈R 且0x ≠,则222log 2log x x =;D .在同一坐标系中,y =2x 与2log y x =的图象关于直线y x =对称.8.如果函数2(1)2y x a x =+-+在区间(-∞,4]上是减函数,那么实数a 的取值范围是( ) A .a ≥9 B .a ≤-3 C .a ≥5 D .a ≤-79.一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为( )A 、(1%)na b -B 、(1%)a nb -C 、[1(%)]n a b -D 、(1%)na b -10.若23log 3log 4P =⋅,lg 2lg5Q =+,0M e =,ln1N =,则正确的是 A .P Q = B .Q M = C .M N = D .N P =二、填空题(共5道小题,每道小题4分,共20分。