第二课时一次函数的性质(二)
- 格式:doc
- 大小:87.50 KB
- 文档页数:3
一次函数的图像和性质(二)----增减性一、单选题(共21题;共42分)1.(2020八上·中宁期中)下列一次函数中,y随x的增大而减小的是()A. y=10x+4B. y=x-3C. y=-2xD. y=0.3x2.(2020八下·醴陵期末)下列一次函数中,y随x值的增大而减小的是()A. y=3﹣2xB. y=3x+1C. y= x+6D. y=(﹣2)x3.(2020八下·来宾期末)下列一次函数中,y随x值的增大而减小的是( )A. y=2x+1B. y=3-4xC. y= x+2D. y=( -2)x4.(2021八下·杭州开学考)在一次函数的图象上,随的增大而减小,则的取值范围是()A. B. C. D.5.(2021八上·连云港期末)已知一次函数,函数值随自变量的增大而减小,那么m 的取值范围是()A. B. C. D.6.(2020八下·江阴月考)已知一次函数y=kx+b,y随x的增大而减小,那么反比例函数满足()A. 当x>0时,y>0B. y随x的增大而增大C. 图象分布在第一、三象限D. 图象分布在第二、四象限7.(2021八上·建邺期末)若一次函数的图象经过点,且函数值随着增大而减小,则点的坐标可能为()A. B. C. D.8.(2020八上·潜山期末)下列一次函数中,的值随着的值增大而减小的是()A. B. C. D.9.(2020八上·慈溪月考)正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A. B. C. D.10.(2021八上·甘州期末)正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx﹣k 的图象大致是()A. B. C. D.11.(2020八上·平阴期末)已知函数中y随的增大而减小,则一次函数的图象大致是()A. B. C. D.12.(2020八上·运城期中)如果一次函数的图象随的增大而减小,且图象经过第三象限,则下列函数符合上述条件的是()A. B. C. D.13.(2020八下·商州期末)下列一次函数中,y随x值增大而增大的是()A. B. C. D.14.(2020八上·庐阳期末)在一次函数中,随的增大而增大,那么的值可以是()A. 1B. 0C.D.15.(2021八上·丹徒期末)一次函数的图象过点(0,4),且y随x的增大而增大,则m的值为()A. ﹣2B. ﹣2或2C. 1D. 216.(2020八下·永春期末)在一次函数中,随的增大而增大,则的取值范围是()A. B. C. D.17.(2021七上·莱州期末)正比例函数()的函数值y随x的增大而减小,则一次函数的图象大致是()A. B. C. D.18.(2020八下·金昌期末)已知一次函数y=(2m﹣1)x+3,如果函数值y随x的增大而减小,那么m的取值范围为()A. m<2B.C.D. m>019.(2020·珠海模拟)在一次函数y=(2m﹣1)x+1中,y的值随着x值的增大而减小,则它的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限20.(2019八上·辽阳期中)一次函数y=ax+b,b>0,且y随x的增大而减小,则其图象可能是()A. B. C. D.21.(2020八上·龙泉驿期末)正比例函数的函数值随的增大而减小,则一次函数的图象大致是()A. B.C. D.二、填空题(共11题;共11分)22.(2021八上·海州期末)在一次函数y=(k﹣3)x+2中,y随x的增大而减小,则k的取值________.23.(2021八下·上海期中)已知一次函数的函数值随着自变量的值增大而减小,那么实数的取值范围是________.24.(2020八下·巴中月考)一次函数y=4x﹣2的函数值y随自变量x值的增大而________(填“增大”或“减小”).25.(2020八下·焦作期末)写出一个具体的y随x的增大而减小的一次函数解析式________26.(2021·成都模拟)已知一次函数y=kx+k,若y随x的增大而增大,则它的图象经过第________象限.27.(2020八上·镇海期中)写一个经过点(-1,0),且y随x增大而增大的一次函数________.28.(2021九下·盐城月考)若一次函数的函数值y随自变量x的增大而增大,则实数k的取值范围是________.29.(2021八下·浦东期中)已知一次函数y=kx+b的图象不经过第三象限,那么函数值y随自变量x的值增大而________(填“增大”或“减小”).30.(2020·成都模拟)若一次函数y=(1-m)x+2,函数值y随x的增大而减小,则m的取值范围是________.31.(2020八下·西华期末)如果一次函数(是常数,)的图象过点,那么的值随的增大而________(填“增大”或“减小”).32.(2020八下·西吉期末)写出同时具备下列两个条件:(1)y随着x的增大而减小;(2)图象经过点(0,-3)的一次函数表达式(写出一个即可)________.答案解析部分一、单选题1.【答案】C【解析】【解答】解:在y=10x+4、y=x-3和y=0.3x中k分别为10,1,0.3,y随x的增大而增大;在y=-2x中,k=-2,y随x的增大而减小.故答案为:C.【分析】形如“y=kx+b(k,b为常数,且k≠0)”的函数就是一次函数,一次函数中k大于0的时候,y随x 的增大而增大;k小于0的时候,y随x的增大而减小,从而即可一一判断得出答案.2.【答案】A【解析】【解答】A.∵k=-2<0,∴y随x的增大而减小,故本选项符合题意;B.∵k=3>0,∴y随x的增大而增大,故本选项不符合题意;C.∵k= >0,∴y随x的增大而增大,故本选项不符合题意;D.∵k= ﹣2>0,∴y随x的增大而增大,故本选项不符合题意.故答案为:A.【分析】根据一次函数的性质对各选项进行逐一分析即可.关键看x的系数的正负.3.【答案】B【解析】【解答】解:A、y=2x+1,k=2,y随x的增大而增大,故A不符合题意;B、y=3-4x,k=-4<0,y随x的增大而减小,故B符合题意;C、y= x+2 ,k=>0,y随x的增大而增大,故C不符合题意;D、y=( -2)x ,k=-2>0,y随x的增大而增大,故D不符合题意;故答案为:B.【分析】根据直线y=kx+b,当k>0时y随x的增大而增大,当k<0时,y随x增大而减小;再对各选项逐一判断,可得答案。
14.2.2 一次函数(第二课时)主备人:王彦东一、学习目标:1.会用简单方法画一次函数图象.2.理解一次函数图象特征与解析式的联系规律.正确理解k、b的几何意义.3. 利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力.重点:1.一次函数图象的画法.2.一次函数图象特征与k、b联系规律.难点:一次函数图象特征与k、b联系规律.二、预习提纲:活动一、自我回顾上节课所学习的知识。
1、什么叫做正比例函数、一次函数?它们之间有什么关系?2、正比例函数的图象形状是什么样的?3、正比例函数y=kx(k是常数,k≠0)中,k的正负数对函数的图象有什么影响?活动二、画图:用描点法在同一坐标系中画出函数y=-6x,y=—6x+5的图象。
第一步:列表第二步:第三步:观察上面两个函数图象的相同点与不同点,与同学交流一下,谈谈自己的见解。
相同点:这两个函数的图象形状都是,并且倾斜程度。
不同点:函数y=-6x的图象经过原点,而函数y= -6x+5的图象没有经过原点,但与y轴交于点,即它可以看作由直线y= -6x向平移个单位长度而得到。
活动三、猜想、验证、归纳1、所有的一次函数图象都是直线吗?2、直线y=kx与直线y=kx+b的图象存在什么样的位置关系?3、由直线y=kx可经过怎样的平移得到直线y=kx+b?活动四、讨论:1.根据作图,观察、讨论这些函数的图象是什么形状?2.几个点确定一条直线?画一次函数图象时,只要取几个点?活动五、例:在同一直角坐标系中,画出下列函数的图象:y=2x-1与y=-0.5x+1活动六、探究:试比较下列各对一次函数的图象有什么共同点,有什么不同点?(1)y=x+1与y=-x+1; (2)y=2x+1与y=-2x+1;能否从中发现一些规律?对于直线y=kx+b(k 、b 是常数,k ≠0),常数k 、b 的取值对于直线的位置各有什么影响?规律:当k>0时,直线y=kx+b 由左至右 ;当k<0时,直线y=kx+b 由左至右 . 当k>0时,y 随x 增大而 . 当k<0时,y 随x 增大而 .由此可以得到直线)0(≠+=k b kx y 中,k ,b 的取值决定直线的位置:(1)⇔>>0,0b k 直线经过___________象限;(2)⇔<>0,0b k 直线经过___________象限;(3)⇔><0,0b k 直线经过___________象限;(4)⇔<<0,0b k 直线经过___________象限;三、讨论与交流要求:以小组为单位对预习提纲的内容展开交流,并准备展示内容。
第二十章一次函数专题20.2 一次函数的图像与性质(第2课时)基础巩固一、单选题(共6小题)1.如图,直线y1=x+b与y2=kx﹣1相交于点P,若点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集是()A.x≥﹣1B.x>﹣1C.x≤﹣1D.x<﹣1【答案】B【分析】观察函数图象得到当x>﹣1时,函数y=x+b的图象都在y=kx﹣1的图象上方,所以不等式x+b >kx﹣1的解集为x>﹣1.【解答】解:当x>﹣1时,x+b>kx﹣1,即不等式x+b>kx﹣1的解集为x>﹣1.故选:B.【知识点】一次函数与一元一次不等式2.下列四个函数中,y随x的增大而减小的是()A.y=3x B.y=1+2x C.y=1﹣2x D.y=﹣1+x【答案】C【分析】根据k小于零时,y随x的增大而减小,可得答案.【解答】解:A、k=3>0,y随x的增大而增大,故A不符合题意;B、k=2>0,y随x的增大而增大,故B不符合题意;C、k=﹣2<0,y随x的增大而减小,故C符合题意;D、k=1>0,y随x的增大而增大,故C不符合题意;故选:C.【知识点】一次函数的性质、正比例函数的性质3.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.【答案】D【分析】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三、四象限.【解答】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三、四象限,故选:D.【知识点】正比例函数的性质、一次函数的性质、一次函数的图象4.如图,一次函数y=kx+b的图象经过点(﹣3,0),则()A.b<0B.方程kx+b=0的解是x=﹣3C.k<0D.y随x的减小而增大【答案】B【分析】利用函数图象和一次函数的性质得到k>0,b>0,y随x的增大而增大,则可对A、C、D选项进行判断;利用自变量为﹣3对应的函数值为0可对B选项进行判断.【解答】解:∵一次函数图象经过第一、二、三象限,∴k>0,b>0,y随x的增大而增大,所以A、C、D选项错误;∵一次函数y=kx+b的图象经过点(﹣3,0),∴x=﹣3时,y=0,即x=﹣3为方程kx+b=0的解,所以B选项正确.故选:B.【知识点】一次函数图象与系数的关系、一次函数与一元一次方程5.在直角坐标系中,点A(2,﹣3)、B(4,3)、C(5,a)在同一条直线上,则a的值是()A.﹣6B.6C.6或3D.6或﹣6【答案】B【分析】根据点A,B的坐标,利用待定系数法可求出直线AB的解析式,再利用一次函数图象上点的坐标特征即可求出a的值.【解答】解:设直线AB的解析式为y=kx+b(k≠0).将A(2,﹣3),B(4,3)代入y=kx+b得:,解得:,∴直线AB的解析式为y=3x﹣9.当x=5时,y=3×5﹣9=6,∴a=6.故选:B.【知识点】一次函数图象上点的坐标特征、待定系数法求一次函数解析式6.若直线y=kx+3与直线y=2x+b关于直线x=1对称,则k、b值分别为()A.k=2、b=﹣3B.k=﹣2、b=﹣3C.k=﹣2、b=1D.k=﹣2、b=﹣1【答案】D【分析】先求出一次函数y=kx+3与y轴交点关于直线x=1的对称点,得到b的值,再求出一次函数y=2x+b与y轴交点关于直线x=1的对称点,代入一次函数y=kx+3,求出k的值即可.【解答】解:∵一次函数y=kx+3与y轴交点为(0,3),∴点(0,3)关于直线x=1的对称点为(2,3),代入直线y=2x+b,可得4+b=3,解得b=﹣1,一次函数y=2x﹣1与y轴交点为(0,﹣1),(0,﹣1)关于直线x=1的对称点为(2,﹣1),代入直线y=kx+3,可得2k+3=﹣1,解得k=﹣2.故选:D.【知识点】一次函数图象与几何变换二、填空题(共8小题)7.如图两条相交直线y1与y2的图象如图所示,当x时,y1<y2.【答案】>a【分析】观察函数图象,找出一次函数y1在y2的图象下方所对应的自变量的范围即可.【解答】解:观察图象得:当x>a时,y1<y2;故答案为>a.【知识点】一次函数与一元一次不等式8.已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象相交于点P(4,﹣6),则二元一次方程组的解是.【分析】两个一次函数的交点坐标为P(4,﹣6),那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:∵一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P(4,﹣6),∴点P(4,﹣6)满足二元一次方程组,∴方程组的解是.故答案为.【知识点】一次函数与二元一次方程(组)9.若关于x的一次函数y=kx+b的图象经过点A(﹣1,0),则方程k(x+2)+b=0的解为.【答案】-3【分析】把点A(﹣1,0)代入y=kx+b,求得b=k,所以方程变为k(x+2)+k=0,即可求得方程的解.【解答】解:∵关于x的一次函数y=kx+b的图象经过点A(﹣1,0),∴﹣k+b=0,∴b=k,∴方程k(x+2)+b=0化为方程k(x+2)+k=0,∴k(x+3)=0,∴x=﹣3.故答案为﹣3.【知识点】一次函数与一元一次方程10.点P(a,b)在函数y=3x+2的图象上,则代数式3a﹣b+1的值等于.【答案】-1【分析】把P(a,b)代入一次函数解析式得到b=3a+2,然后把b=3a+2代入3a﹣b+1后进行整式的加减运算即可.【解答】解:∵点P(a,b)在函数y=3x+2的图象上,∴b=3a+2,∴3a﹣b+1=3a﹣(3a+2)+1=3a﹣3a﹣2+1=﹣1.故答案为﹣1.【知识点】一次函数图象上点的坐标特征11.如图,将直线OA向上平移2个单位长度,则平移后的直线的表达式为.【答案】y=2x+2【分析】利用待定系数法确定直线OA解析式,然后根据平移规律填空.【解答】解:设直线OA的解析式为:y=kx,把(1,2)代入,得k=2,则直线OA解析式是:y=2x.将其上平移2个单位长度,则平移后的直线的表达式为:y=2x+2.故答案是:y=2x+2.【知识点】一次函数图象与几何变换12.点P为直线y=x+2上的任意一点,O为原点,则OP的最小值为.【分析】设直线y=x+2与y轴交于点A,与x轴交于点B,过点O作直线AB的垂线,垂足为点P,此时线段OP最小,分别将x=0、y=0代入一次函数解析式中求出与之对应的y、x值,进而即可得出OA、OB的长度,利用勾股定理即可得出AB的长度,再利用面积法即可求出OP的长度.【解答】解:设直线y=x+2与y轴交于点A,与x轴交于点B,过点O作直线AB的垂线,垂足为点P,此时线段OP最小.当x=0时,y=2,∴点A(0,2),∴OA=2;当y=0时,求得x=﹣2,∴点B(﹣2,0),∴OB=2,∴AB=2.∴OP===.故答案为.【知识点】一次函数图象上点的坐标特征、垂线段最短13.已知:a、b、c是三个非负数,并且满足3a+2b+c=6,2a+b﹣3c=1,设m=3a+b﹣7c,设s为m的最大值,则s的值为.【分析】先把c看作已知数,分别用c表示出a和b,让a≥0,b≥0列式求出c的取值范围,再求得m用c表示的形式,结合c的取值范围即可求得s的值.【解答】解:3a+2b+c=6,2a+b﹣3c=1,解得a=7c﹣4,b=9﹣11c;∵a≥0、b≥0,∴7c﹣4≥0,9﹣11c≥0,∴≤c≤.∵m=3a+b﹣7c=3c﹣3,∴m随c的增大而增大,∵c≤.∴当c取最大值,m有最大值,∴m的最大值为s=3×﹣3=﹣.故答案为﹣.【知识点】解三元一次方程组、一次函数的性质14.已知y是x的函数,其函数图象经过(1,2),并且当x>0时,y随x的增大而减小.请写出一个满足上述条件的函数表达式:﹣.【答案】y=-x+3【分析】答案不唯一,根据已知写出一个即可.【解答】解:答案不唯一,如:y=﹣x+3,故答案为:y=﹣x+3.【知识点】反比例函数的性质、正比例函数的性质、一次函数的性质拓展提升三、解答题(共6小题)15.已知y=y1+y2,且y1与x成反比例,y2与x﹣2成正比例,当x=1时,y=1;当x=﹣3时,y=13,求:(1)y与x之间的函数解析式;(2)当x=3时,求y的值.【分析】(1)根据题意分别设出y1,y2,代入y=y1+y2,表示出y与x的解析式,将已知两对值代入求出k 与b的值,确定出解析式;(2)将x=3代入计算即可求出值.【解答】解:(1)根据题意设y1=,y2=b(x﹣2),即y=y1+y2=+b(x﹣2),将x=1时,y=1;x=﹣3时,y=13分别代入得:,解得:k=﹣,b=﹣,则y=﹣﹣(x﹣2);(2)当x=3时,y=﹣﹣=﹣3.【知识点】待定系数法求一次函数解析式、一次函数的性质16.已知点(﹣4,2)在正比例函数y=kx的图象上.(1)求该正比例函数的解析式;(2)若点(﹣1,m)在该函数的图象上,求出m的值.【分析】(1)把(﹣4,2)代入正比例函数y=kx即可得出k的值;(2)把点(﹣1,m)代入y=kx的图象上,即可求出m的值;【解答】解:(1)∵点(﹣4,2)在正比例函数y=kx的图象上,∴﹣4k=2,∴k=﹣;∴该正比例函数的解析式为y=﹣x;(2)∵点(﹣1,m)在函数y=﹣x的图象上,∴m=﹣×(﹣1),∴m=.【知识点】一次函数图象上点的坐标特征、待定系数法求正比例函数解析式17.小颖根据学习函数的经验,对函数y=|x﹣1|+1进行探讨.x…﹣2﹣101234…y…4321234…(1)若点A(m,6)和点B(b,6)是该函数图象上的两点,则a+b=.(2)在平面直角型标系中画出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象;(3)由图象可知,函数y=|x﹣1|+1的最小值是;(4)由图象可知,当y≤4时,x的取值范围是.【答案】【第1空】2【第2空】1【第3空】-2≤x≤4【分析】(1)把y=6代入=|x﹣1|+1,即可求出a、b的值;(2)画出该函数的图象即可;(3)观察函数图象,可知函数的最小值;(4)根据图象即可求出当y≤4时,x的取值范围.【解答】解:(1)把y=6代入=|x﹣1|+1,得6=|x﹣1|+1,解得x=﹣4或6,∵A(﹣4,6),B(6,6)为该函数图象上不同的两点,∴a=﹣4,b=6,∴a+b=2.故答案为2;(2)该函数的图象如图:(3)该函数的最小值为1;故答案为1;(4)∵y=4时,则4=|x﹣1|+1,解得,x=﹣2或x=4,由图象可知,当y≤4时,x的取值范围是﹣2≤x≤4.故答案为﹣2≤x≤4.【知识点】一次函数的性质、一次函数图象上点的坐标特征、一次函数的图象18.已知直线y=kx+b经过点(2,3)和(﹣4,1),求该直线的表达式.【分析】把点(2,3)和(﹣4,1)代入一次函数的解析式,列出方程组,解方程组便可求出其解析式.【解答】解:∵直线y=kx+b经过点(2,3)和(﹣4,1),∴,解得.故该直线的解析式为y=x+.【知识点】一次函数图象上点的坐标特征、待定系数法求一次函数解析式19.已知直线a过点M(﹣1,﹣4.5),N(1,﹣1.5).(1)求此直线的函数解析式;(2)求出此函数图象与x轴、y轴的交点A,B的坐标;(3)若直线a与b相交于点P(4,n),a,b与x轴围成的△P AC的面积为6,求出点C的坐标.【分析】(1)利用待定系数法即可求得函数的解析式;(2)在解析式中令x=0求得y,即可求得与y轴的交点坐标,在解析式中令y=0,求得x的值,即可求得与x轴的交点坐标;(3)设C的横坐标是m,利用三角形的面积公式即可得到关于m的方程,即可求解.【解答】解:(1)设直线a的解析式为y=kx+b,把M(﹣1,﹣4.5),N(1,﹣1.5)代入得:,解得:,则直线解析式为y=1.5x﹣3;(2)令x=0,得到y=﹣3;令y=0,得到x=2,则A(2,0),B(0,﹣3);(3)把P(4,n)代入y=1.5x﹣3得:n=3,即P(4,3),设C的横坐标是m,∵a,b与x轴围成的△P AC的面积为6,∴|m﹣2|×3=6,解得:m=﹣2,或m=6.则C的坐标是:(﹣2,0)或(6,0).【知识点】待定系数法求一次函数解析式、一次函数图象上点的坐标特征20.已知直线y=kx+b(k≠0)过点(1,2)(1)填空:b=(用含k代数式表示);(2)将此直线向下平移2个单位,设平移后的直线交x于点A,交y于点B,x轴上另有点C(1+k,0),使得△ABC的面积为2,求k值;(3)当1≤x≤3,函数值y总大于零,求k取值范围.【答案】2-k【分析】(1)把点(1,2)代入y=kx+b(k≠0),得出k+b=2,即b=2﹣k;(2)把b=2﹣k代入y=kx+b,得y=kx+2﹣k,根据上加下减的平移规律得出向下平移2个单位所得直线的解析式为y=kx﹣k,求出A(1,0),B(0,﹣k),根据△ABC的面积为2列出方程k2=2,解方程即可;(3)依题意,分两种情况讨论:ⅰ)当k>0时,y随x增大而增大,得出k+2﹣k=2>0;ⅱ)当k<0时,y随x增大而减小,得出3k+2﹣k=2k+2>0;分别解不等式即可.【解答】解:(1)∵直线y=kx+b(k≠0)过点(1,2),∴k+b=2,∴b=2﹣k.故答案为2﹣k;(2)由(1)可得y=kx+2﹣k,向下平移2个单位所得直线的解析式为y=kx﹣k,令x=0,得y=﹣k,令y=0,得x=1,∴A(1,0),B(0,﹣k),∵C(1+k,0),∴AC=|1+k﹣1|=|k|,∴S△ABC=AC•|y B|=|k|•|﹣k|=k2,∴k2=2,解得k=±2;(3)依题意,当自变量x在1≤x≤3变化时,函数值y的最小值大于0.分两种情况:ⅰ)当k>0时,y随x增大而增大,∴当x=1时,y有最小值,最小值为k+2﹣k=2>0,∴当k>0时,函数值总大于0;ⅱ)当k<0时,y随x增大而减小,∴当x=3时,y有最小值,最小值为3k+2﹣k=2k+2,由2k+2>0得k>﹣1,∴﹣1<k<0.综上,当k>0或﹣1<k<0时,函数值y总大于0.【知识点】一次函数图象与几何变换、一次函数图象上点的坐标特征。
八年级数学一次函数的性质第一课时一次函数的性质(一)教学目标1、探索一次函数图象观察、分析等过程,提高学生数形结合意识,培养数形结合的能力.2、掌握一次函数y=kx+b的性质。
教学过程一、观察、分析一次函数图象特点1.画出一次函数y=23x+1的图象.让学生动手画出一次函数,y=23x+l的图象,复习一次函数的怍图方法.教师在黑板上画出一次函数y=23x+1的图象。
2.观察,分析函数y=23x+l图象的变化规律.师生共同观察分析,当一个点在直线上从左向右移动(自变量x从小到大)时,它的位置也在逐渐从低到高变化(函数y的值也从小到大)问题2中的函数y=50+12x是否这样?这就是说,函数值y随自变量x增大而_______在同一直角坐标系中画出函数y=3x-2的图象(如图中的虚线)是否也有这种现象.进—步引导学生观察、分析得出与上面相同的结论.3、画出函数y=-x+2和y=-32x-1的图象。
学生动手画出以上一次函数图象,教师指导并纠正学生可能出现的错误画法.同时,教师在黑板面出这两个一次函数的图象.4、观察、分析函数y=-x+2和y=-32x-1图象的变化规律.问题l:仿照以上研究方法,研究它们是否也有相应的性质,有什么不同?你能否发现什么规律?让学生分组讨论.发表意见,教师评析并归纳为:当一个点在直线上从左到右(自变量x变量x的增大而减小.再联想问题1中的函数y=570-95t,是否也有这样的规律,发表你的看法.让学生讨论回答,问题1中的函数y=570-95t也有与上面得出的同样规律。
二、归纳、概括根据以上研究的结果,你能表述一次函数y=kx+b的性质吗?让学生归纳、概括、表述如下性质:1.当k>0时,y随x的增大而增大,这时函数的图象从左到右上升;2.当k<0时,y随x的增大而减小,这时函数的图象从左到右下降.这些性质在P40问题1和P41问题2中,反映怎样的实际意义?让学生思考后回答.三、做一做画出函数y=-2x+2的图象,结合图象回答下列问题:1.这个函数中,随着x的增大y将增大还是减小?它的图象从左到右怎样变化?2.当x取何值时,y=0?3.当x取何值时,y>0?四、课堂练习P45页练习l、2.五、小结一次函数y=kx+b有哪些性质?六、作业P47页习题17.3 8、9(1)第二课时一次函数的性质(二) 教学目标1.使学生理解待定系数法。
《一次函数的图象和性质》第二课时说课稿各位评委,老师大家好,今天我要说课内容是新课标人教版八年级下册《一次函数的图象和性质》,下面我将从:教材分析,教法学法分析,程序设计评价分析四个方面来完成我的说课。
一、教材分析:1、地位和作用本节课是一次函数的图象和性质的第二课时,它是在正比例函数的图像和性质,一次函数的概念教学内容之后学习的。
它是对前面所学知识的深化和运用,又为以后的学习奠定了基础。
2、教学目标:[知识技能目标]:理解直线y=kx+b与y=kx之间的位置关系;会利用两个特殊的点画出一次函数的图象;掌握一次函数的性质。
[过程与方法]:主要是培养学生的画图、识图能力;通过对一次函数的图象和性质的探究,培养学生数形结合数学思想方法。
[情感与态度]:通过对一次函数的图象和性质的自主探究,让学生获得亲自参与研究探索的情感体验,从而增强学习数学的热情。
3、教学重,难点一次函数的图象和性质的理解和应用。
二、教法、学法分析在教学过程中,通过自主学习、小组交流、合作探究的方法,不仅可以使学生感受到主体地位,达到使学生学会知识,而且让学生会学,想学的目的。
为了突出重点,突破难点,增大课堂容量,提高课堂效率,采用了多媒体教学,激发学生的学习兴趣,达到事半功倍的效果,帮助学生理解一次函数的图象和性质。
三、程序设计1、新课讲授实施目标2、课堂小结总结新知3、当堂检测发现问题4、布置作业1、新课讲授探究一:1、画函数图象发现函数图象的特征?归纳画函数图象的方法?让同学们动手操作,画出y=x,的图象。
这是我们上节课的内容,我们先一起回忆一下我们的画图过程:师问:准备好了吗?生答:准备好了。
(这时,学生会把手里的笔放下,闭上嘴,等待我给出提示。
)师问:我们先画好x轴并画好正方向,画好了吗?生答:画好了,师问:我们接着画什么?生答:y轴和正方向,师问:找到原点和单位长度了吗?生答:找到了,师问:好,那么我们开始画y=x的图象咯,先找哪个点生答:(0,0)师问:好,接着呢?生答(1,1)师问:好,准备工作我们已经做好了,下面我们连线,你的脑海中得到图象了吗?生答:得到了【设计意图】我和同学们刚才这么做让我们的心也感受到了这条直线的存在,只有心灵受感动才能印象深刻,才能心领神会。
3.一次函数的性质
第二课时 一次函数的性质(二)
教学目标 知识技能目标
1.进一步掌握一次函数y =kx +b (k ≠0)的性质.
2.能灵活利用一次函数的有关性质解决简单的实际问题.
3.学会利用一次函数的图象解决一次方程、一次不等式问题. 过程性目标
1.提高学生运用知识解决问题的能力,培养数形结合能力. 教学重点与难点
教学重点:灵活利用一次函数的有关性质解决简单的实际问题. 教学难点
利用一次函数的图象解决一次方程、一次不等式问题. 教学方法 讲授法 教学过程: 一,复习引入:
1、一次函数y =kx +b 有哪些性质?
2.某个一次函数的图象位置大致如下图所示,试分别确定k 、b 的符号,并说出函数的性质.
二新课教学
例1 已知一次函数y =(2m -1)x +m +5,当m 是什么数时,函数值y 随x 的增大而减小? 分析 一次函数y =kx +b (k ≠0),若k <0,则y 随x 的增大而减小. 解 因为一次函数y =(2m -1)x +m +5,函数值y 随x 的增大而减小. 所以,2m -1<0,即2
1<
m
.
例2 已知一次函数y =(1-2m )x +m -1,若函数y 随x 的增大而减小,并且函数的图象经过二、三、四象限,求m 的取值范围.
分析 一次函数y =kx +b (k ≠0),若函数y 随x 的增大而减小,则k <0,若函数的图象经过二、三、四象限,则k <0,b <0. 解 由题意得:⎩
⎨
⎧<-<-010
21m m ,
解得,
12
1
<<m 练习1.已知函数m x m y m m
+-=--1
2
)1(,当m 为何值时,这个函数是一次函数.并且图象经过第二、
三、四象限?
2.已知关于x 的一次函数y =(-2m +1)x +2m 2
+m -3.
(1)若一次函数为正比例函数,且图象经过第一、第三象限,求m 的值; (2)若一次函数的图象经过点(1,-2),求m 的值.
例3 已知一次函数y =(3m -8)x +1-m 图象与y 轴交点在x 轴下方,且y 随x 的增大而减小,其中m 为整数. (1)求m 的值;(2)当x 取何值时,0<y <4?
分析 一次函数y =kx +b (k ≠0)与y 轴的交点坐标是(0,b ),而交点在x 轴下方,则b <0,而y 随x 的增大而减小,则k <0.
解 (1)由题意得:⎩
⎨⎧<-<-01083m m ,
解之得,3
8
1<
<
m ,又因为m 为整数,所以m =2. (2)当m =2时,y =-2x -1. 又由于0<y <4.所以0<-2x -1<4. 解得:2
125<<-
m . 例4 画出函数y =-2x +2的图象,结合图象回答下列问题:
(1)这个函数中,随着x 的增大,y 将增大还是减小?它的图象从左到右怎样变化? (2)当x 取何值时,y =0? (3)当x 取何值时,y >0?
分析 (1)由于k =-2<0,y 随着x 的增大而减小.
(2) y =0,即图象上纵坐标为0的点,所以这个点在x 轴上. (3) y >0,即图象上纵坐标为正的点,这些点在x 轴的上方.
解 (1)由于k =-2<0,所以随着x 的增大,y 将减小. 当一个点在直线上从左向右移动时,点的位置也在逐步从高到低变化,即图象从左到右呈下降趋势. (2)当x =1时, y =0 . (3)当x <1时, y >0.
练习;1已知函数
2+-=x y (1)画出其图像
(2)根据图像求①当x 取何值时 y ≥2 ②当x 取何值时 y =0 ③当x 取何值时 y ≤0 ④当x 取何值时 0 ≤ y ≤2 三课内小结: (1)一次函数的性质. (2)方法归纳
利用函数图象归纳函数的性质或解决方程、•不等式问题是我们经常使用的方法,是数形结合的具体体现.
四作业: 1已知函数
()()436-++=n x m y 求
(1)当m 时,y 随x 的增大而减小。
(2)当m n ;时它是正比例函数,切过一 三象限。
(3)当m n 时它它的图像过二 四象限,交x 轴下方。
(4)当m =-1 n=-2时,求图像与坐标轴围成的三角形的面积 五板书设计: 教学后记:。