九年级数学(说课稿)二次函数
- 格式:doc
- 大小:41.50 KB
- 文档页数:5
人教版九年级数学上册22.1.1《二次函数》说课稿一. 教材分析人教版九年级数学上册22.1.1《二次函数》是整个初中数学的重要内容,也是九年级数学的重点和难点。
这部分内容主要介绍了二次函数的定义、性质和图象。
二次函数是实际问题中常见的函数之一,对于学生来说,掌握二次函数的知识,不仅能够提高他们解决实际问题的能力,还能够为高中阶段的数学学习打下坚实的基础。
二. 学情分析九年级的学生已经掌握了函数的基本知识,对一次函数和二次函数有一定的了解。
然而,他们对二次函数的深入理解和运用还存在一定的困难。
因此,在教学过程中,我们需要关注学生的认知基础,引导学生逐步理解和掌握二次函数的知识。
三. 说教学目标1.知识与技能目标:使学生理解二次函数的定义,掌握二次函数的性质和图象,能够运用二次函数解决实际问题。
2.过程与方法目标:通过观察、分析、归纳等方法,让学生体会数学与生活的紧密联系,提高学生解决实际问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生对数学的信心,培养学生积极思考、合作交流的良好学习习惯。
四. 说教学重难点1.教学重点:二次函数的定义、性质和图象。
2.教学难点:二次函数的性质和图象的理解与应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,激发学生的学习兴趣,提高学生的学习参与度。
2.教学手段:利用多媒体课件、教学卡片、黑板等,直观展示二次函数的图象和性质,帮助学生理解和掌握知识。
六. 说教学过程1.导入:通过生活中的实例,引导学生关注二次函数,激发学生的学习兴趣。
2.新课导入:介绍二次函数的定义,引导学生观察二次函数的图象,分析二次函数的性质。
3.案例分析:通过具体的案例,让学生运用二次函数解决实际问题,巩固所学知识。
4.小组讨论:让学生分组讨论,分享各自的解题思路和经验,提高学生的合作交流能力。
5.课堂小结:总结本节课的主要内容,强调二次函数的性质和图象的重要性。
《二次函数的图像与性质》(第三课时)说课稿一、教材的地位与作用《二次函数的图像与性质》是九年级上册第22章的内容,在学生已经学习过一次函数(包括正比例函数)、反比例函数的图像与性质,以及会建立二次函数模型和理解二次函数的相关概念的基础上实行的,它既是前面所学知识的应用、拓展,是对前面所学一次函数、反比例函数图像与性质的一次升华,又是今后学习《二次函数的应用》、《二次函数与一元二次方程的联系》的预备知识,又是学生高中阶段数学学习的基础知识。
它在教材中起着非常重要的作用。
另外,本节课,最大特点,是结合图形来研究二次函数的性质,这充分表达了一个很重要的数学思想——数形结合数学思想。
所以,这个节课,无论是在知识上,还是对学生动手水平培养上都有着十分重要的作用。
二、教学重点与难点通过度析,我们知道,《二次函数的图像与性质》在整个教材体系中,起着承上启下的作用,有着广泛的应用。
我认为这节课的重点是:作出函数y=ax2+c的图象,比较函数y=ax2和函数y=ax2+c的异同,理解它们的性质;函数y=ax2+c的图象与性质的理解,掌握抛物线的上下平移规律是本节课的难点。
教学目标设计:知识目标(1)会做函数y=ax2和y=ax2+c的图象,并能比较它们的异同;理解a,c对二次函数图象的影响,能准确说出两函数的开口方向,对称轴和顶点坐标;(2)理解抛物线y=ax2上下平移规律。
水平目标本节课,过程是由抽象到直观,再由直观到抽象(既二次函数y=ax2+c的关系式——作出图像——说出二次函数y=ax2+c的图像与性质),培养学生分析问题、解决问题的水平,培养学生观察、探讨、分析、分类讨论的水平。
情感目标引导学生养成全面看问题、分类讨论的学习习惯,通过直观多媒体演示和学生动手作图、分析,激发学生学习数学的积极性。
教学结构设计建立以“实施主体性教学,培养学生自主探究的水平”为主的课堂教学结构模式——学教结合式。
让学生先自己动手画图,然后由老师来演示,这样从直观的看图观察,思考,提问,容易激发学生的求知欲望,调动学生学习的兴趣。
人教版九年级数学上册22.1.3《二次函数的图象和性质》比赛说课稿一. 教材分析《二次函数的图象和性质》是人教版九年级数学上册第22.1.3节的内容。
本节主要介绍二次函数的图象和性质,是学生在学习了二次函数的定义、标准式、顶点式的基础上进行的。
通过本节的学习,使学生掌握二次函数的图象特征,了解二次函数的增减性、对称性、周期性等性质,为学生进一步解决实际问题打下基础。
二. 学情分析九年级的学生已经具备了一定的数学基础,对二次函数的基本概念和性质有所了解。
但学生在学习过程中,对二次函数的图象和性质的理解还不够深入,尤其对一些概念的内涵和外延认识不清晰。
因此,在教学过程中,要注重引导学生从直观的图象中感知二次函数的性质,让学生在动手实践、合作交流中理解知识,提高学生的数学思维能力。
三. 说教学目标1.知识与技能目标:让学生掌握二次函数的图象特征,了解二次函数的增减性、对称性、周期性等性质。
2.过程与方法目标:通过观察、分析、归纳等方法,让学生从图象中感知二次函数的性质,提高学生的数学观察能力和逻辑思维能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,激发学生探究数学问题的热情,培养学生的团队协作精神。
四. 说教学重难点1.教学重点:二次函数的图象特征,二次函数的增减性、对称性、周期性等性质。
2.教学难点:二次函数性质的灵活运用,对一些特殊函数图象的理解。
五. 说教学方法与手段1.教学方法:采用“引导发现法”、“案例教学法”和“合作学习法”。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学手段,结合学习卡、练习题等辅助教学手段。
六. 说教学过程1.导入新课:通过展示一些实际问题,引导学生关注二次函数的图象和性质,激发学生的学习兴趣。
2.知识讲解:讲解二次函数的图象特征,引导学生从图象中感知二次函数的性质。
通过典型案例,使学生了解二次函数的增减性、对称性、周期性等性质。
3.课堂练习:设计一些具有针对性的练习题,让学生在实践中巩固所学知识。
浙教版数学九年级上册2.4《二次函数的应用》说课稿一. 教材分析《二次函数的应用》是浙教版数学九年级上册第2.4节的内容。
这部分内容是在学生已经掌握了二次函数的图象和性质的基础上进行学习的,主要让学生了解二次函数在实际生活中的应用,培养学生的数学应用能力。
教材通过生动的实例,使学生感受到二次函数与生活的密切联系,提高学生学习数学的兴趣。
二. 学情分析九年级的学生已经具备了一定的数学基础,对二次函数的概念、图象和性质有了初步的认识。
但学生在解决实际问题时,往往不能将数学知识与生活实际相结合,对二次函数在实际生活中的应用还不够了解。
因此,在教学过程中,教师需要注重引导学生将数学知识运用到实际生活中,提高学生的数学应用能力。
三. 说教学目标1.知识与技能目标:使学生掌握二次函数在实际生活中的应用,学会解决与二次函数相关的生活问题。
2.过程与方法目标:通过观察、分析实际问题,培养学生运用二次函数解决问题的能力。
3.情感、态度与价值观目标:培养学生对数学的兴趣,感受数学与生活的紧密联系,提高学生的数学素养。
四. 说教学重难点1.教学重点:二次函数在实际生活中的应用。
2.教学难点:如何将实际问题转化为二次函数问题,并运用二次函数解决。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、合作交流。
2.教学手段:利用多媒体课件、实物模型等辅助教学,提高学生的学习兴趣和效果。
六. 说教学过程1.导入新课:通过展示生活中的一些实例,如抛物线形的篮球筐、跳水板等,引导学生发现二次函数在实际生活中的应用,激发学生的学习兴趣。
2.讲解新课:讲解二次函数在实际生活中的具体应用,如最大(小)值问题、抛物线与几何图形的关系等,让学生了解二次函数在实际问题中的作用。
3.案例分析:分析具体的生活案例,如商品定价、农业生产等,引导学生将二次函数运用到实际问题中,解决实际问题。
4.练习与拓展:布置一些与生活相关的练习题,让学生独立完成,巩固所学知识,并进一步拓展学生的思维。
二次函数说课稿11篇整理二次函数说课稿11篇作为一名老师,通常会被要求编写说课稿,说课稿有助于提高老师理论素养和驾驭教材的力量。
那么大家知道正规的说课稿是怎么写的吗?下面是我为大家整理的二次函数说课稿,仅供参考,盼望能够关心到大家。
二次函数说课稿1一、说课内容:苏教版九年级数学下册第六章第一节的二次函数的概念及相关习题二、教材分析:1、教材的地位和作用这节课是在同学已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。
二次函数是学校阶段讨论的最终一个详细的函数,也是最重要的,在历年来的中考题中占有较大比例。
同时,二次函数和以前学过的一元二次方程、一元二次不等式有着亲密的联系。
进一步学习二次函数将为它们的解法供应新的方法和途径,并使同学更为深刻的理解“数形结合”的重要思想。
而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。
所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:(1)学问与技能:使同学理解二次函数的概念,把握依据实际问题列出二次函数关系式的方法,并了解如何依据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经受二次函数概念的探究过程,提高同学解决问题的力量.(3)情感、态度与价值观:通过观看、操作、沟通归纳等数学活动加深对二次函数概念的理解,进展同学的数学思维,增加学好数学的愿望与信念.3、教学重点:对二次函数概念的理解。
4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。
三、教法学法设计:1、从创设情境入手,通过学问再现,孕伏教学过程2、从同学活动动身,通过以旧引新,顺势教学过程3、利用探究、讨论手段,通过思维深化,领悟教学过程四、教学过程:(一)复习提问1.什么叫函数?我们之前学过了那些函数?(一次函数,正比例函数,反比例函数)2.它们的形式是怎样的?(=x+b,≠0;=x ,≠0;= , ≠0)3.一次函数(=x+b)的自变量是什么?函数是什么?常量是什么?为什么要有≠0的条件?值对函数性质有什么影响?【设计意图】复习这些问题是为了关心同学弄清自变量、函数、常量等概念,加深对函数定义的理解.强调≠0的条件,以备与二次函数中的a进行比较.(二)引入新课函数是讨论两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。
人教版数学九年级上册26.3《实际问题与二次函数》说课稿一. 教材分析人教版数学九年级上册26.3《实际问题与二次函数》这一节的内容,是在学生学习了二次函数的图像和性质的基础上进行授课的。
教材通过引入一些实际问题,让学生运用所学的二次函数知识解决这些问题,从而培养学生的解决问题的能力。
教材内容主要包括实际问题与二次函数模型的建立,二次函数模型在实际问题中的应用,以及如何根据实际问题的特点选择合适的二次函数模型。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对于二次函数的图像和性质有一定的了解。
但是,学生在解决实际问题时,往往不知道如何将实际问题转化为二次函数模型,对于如何选择合适的二次函数模型也存在一定的困惑。
因此,在教学过程中,我需要引导学生将实际问题转化为二次函数模型,并教给学生选择合适模型的方法。
三. 说教学目标1.知识与技能目标:使学生能够将实际问题转化为二次函数模型,并能够运用二次函数模型解决实际问题。
2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,使学生认识到数学在实际生活中的重要作用。
四. 说教学重难点1.教学重点:将实际问题转化为二次函数模型,并运用二次函数模型解决实际问题。
2.教学难点:如何根据实际问题的特点选择合适的二次函数模型。
五. 说教学方法与手段在教学过程中,我将采用讲授法、引导发现法、讨论法等多种教学方法。
同时,我会利用多媒体课件、实际问题案例等教学手段,帮助学生更好地理解和掌握二次函数在实际问题中的应用。
六. 说教学过程1.导入:通过引入一些实际问题,激发学生的学习兴趣,引导学生思考如何利用二次函数知识解决这些问题。
2.新课导入:讲解二次函数模型在实际问题中的应用,引导学生学习如何将实际问题转化为二次函数模型。
3.案例分析:分析一些具体的实际问题,引导学生运用二次函数模型解决这些问题。
二次函数的图像说课稿(精选6篇)二次函数的图像说课稿 1尊敬的各位评委、各位老师:大家好!今天我说课的题目是《二次函数的图像》,这是北师大版必修1第二章的第四节课。
下面我将围绕本节课“教什么?”、“怎样教?”、“为什么这样教?”三个问题,从教材内容、教法学法、教学过程这三个方面逐一分析说明。
一、教材内容分析:1、本节课内容在整个教材中的地位和作用。
概括地讲,二次函数的图像在教材中起着承上启下的作用,它的地位体现在它的思想的基础性。
一方面,本节课是对初中有关内容的深化,为后面进一步学习二次函数的性质打下基础;另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。
2、教学目标定位。
根据教学大纲要求、新课程标准精神和高一学生心理认知特征,我确定了三个层面的教学目标。
第一个层面是基础知识与能力目标:理解二次函数的图像中a、b、c、k、h的作用,能熟练地对二次函数的一般式进行配方,会对图像进行平移变换,领会研究二次函数图像的方法,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力;第二个层面是过程和方法:让学生经历作图、观察、比较、归纳的学习过程,使学生掌握类比、化归等数学思想方法,养成即能自主探索,又能合作探究的良好学习习惯;第三个层面是情感、态度和价值观:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。
3、教学重难点。
重点是二次函数各系数对图像和形状的影响,利用二次函数图像平移的特例分析过程,培养学生数形结合的思想和划归思想。
难点是图像的平移变换,关键是二次函数顶点式中h、k的正负取值对函数图像平移变换的影响。
二、教法学法分析:数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,感受数学的自然美。
九年级《二次函数的最值问题》说课稿各位老师好:下面我将从教材分析、教学目标分析、教学方法分析、学情分析、教学过程分析、教学反思六大方面来阐述我对这节课的分析和设计:一、教材分析1.教材所处的地位和作用本节课是在学习了二次函数的图像和性质的基础上进一步研究二次函数在闭区间上的最值问题,因为最值是函数非常重要的一个性质,尤其是含参二次函数的最值问题在历年陕西高考中出现,而这个知识既是学生学习的一个重点又是一个难点,所以上好这节课显得尤为重要。
本节课使得学生能更深刻地理解函数的单调性、最值,并深刻体会分类讨论思想与数形结合思想在解决数学问题中的重要作用,本节课中渗透的分类讨论思想及数形结合思想,也为学生继续学习高中数学打下坚实的基础。
2.教学的重点和难点教学重点:寻求二次函数在闭区间上最值问题的一般解法和规律。
教学难点:含参二次函数在闭区间上的最值的求法以及分类讨论思想的正确运用。
二、教学目标分析1.知识目标:初步掌握解决二次函数在闭区间上最值问题的一般解法,总结归纳出二次函数在闭区间上最值的一般规律,学会运用二次函数在闭区间上的图像研究和理解相关问题。
2.能力目标:通过图像,观察影响二次函数在闭区间上的最值的因素,在此基础上讨论探究出解决二次函数在闭区间上最值问题的一般解法和规律。
3.情感目标:通过探究,让学生体会分类讨论思想与数形结合思想在解决数学问题中的重要作用,培养学生分析问题、解决问题的能力,同时培养学生合作与交流的能力。
三、教学方法分析根据教学实际,我将本节课设计为数学探究课,所以我给自己定位的角色是教学的组织者、引导者、合作者、在教学过程中充分调动学生的积极性、主动性,让学生成为课堂的主人。
在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、学生展示等。
在探究的过程中,借助多媒体教学手段,让学生观察几何画板中的动态演示,通过对二次函数图像的“再认识”,探究二次函数在闭区间上的最值。
二次函数说课稿(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、合同协议、条据文书、规章制度、策划方案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, work plans, contract agreements, documents, rules and regulations, planning plans, experiences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数说课稿二次函数说课稿在教学工作者实际的教学活动中,就难以避免地要准备说课稿,说课稿有利于教学水平的提高,有助于教研活动的开展。
北师大版数学九年级下册2.4《二次函数应用》说课稿1一. 教材分析北师大版数学九年级下册2.4《二次函数应用》这一节的内容,是在学生已经掌握了二次函数的图像和性质的基础上进行授课的。
本节课的主要内容是让学生学会如何运用二次函数解决实际问题,提高学生运用数学知识解决实际问题的能力。
教材通过引入实际问题,引导学生运用二次函数的知识进行解答,培养学生的数学应用意识。
二. 学情分析九年级的学生已经具备了一定的数学基础,对二次函数的概念和性质有了初步的了解。
但是,学生在解决实际问题时,往往不知道如何将实际问题转化为数学问题,运用二次函数进行解答。
因此,在教学过程中,教师需要引导学生将实际问题与数学知识相结合,提高学生的数学应用能力。
三. 说教学目标1.知识与技能目标:让学生掌握二次函数在实际问题中的应用方法,提高学生运用二次函数解决实际问题的能力。
2.过程与方法目标:通过解决实际问题,培养学生将实际问题转化为数学问题,运用二次函数进行解答的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,提高学生学习数学的积极性。
四. 说教学重难点1.教学重点:让学生掌握二次函数在实际问题中的应用方法。
2.教学难点:如何引导学生将实际问题转化为数学问题,运用二次函数进行解答。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生通过解决实际问题,学会运用二次函数进行解答。
2.教学手段:利用多媒体课件,展示实际问题,引导学生进行思考和解答。
六. 说教学过程1.导入新课:通过展示一个实际问题,引发学生的思考,引出本节课的主题。
2.讲解新课:引导学生将实际问题转化为数学问题,运用二次函数进行解答。
在此过程中,教师要注意讲解二次函数在实际问题中的应用方法。
3.巩固新课:通过一些练习题,让学生巩固所学知识,提高运用二次函数解决实际问题的能力。
4.课堂小结:对本节课的内容进行总结,让学生明确二次函数在实际问题中的应用方法。
2020-2021学年
二次函数
一、说课内容:
北师版九年级下册第二章第一节二次函数
二、教材分析:
1、教材的地位和作用
这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。
二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。
同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。
进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想。
而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。
所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:
(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.
(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.
3、教学重点:对二次函数概念的理解。
4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。
三、教法学法设计:
1、从创设情境入手,通过知识再现,孕伏教学过程
2、从学生活动出发,通过以旧引新,顺势教学过程
3、利用探索、研究手段,通过思维深入,领悟教学过程
四、教学过程:
(一)复习提问
1.什么叫函数?我们之前学过了那些函数?
2.它们的形式是怎样的?
3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响?
【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k≠0的条件,以备与二次函数中的a进行比较.
(二)引入新课
函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。
看下面三个例子中两个变量之间存在怎样的关系
例1、(1)圆的半径是r(cm)时,面积s (cm²)与半径之间的关系是什么?
例2、用周长为20m的篱笆围成矩形场地,场地面积y(m²)与矩形一边长x(m)之间的关系是什么?
例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。
如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?
教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?
【设计意图】通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。
(2)自变量的最高次数是2(这与一次函数不同)。
(三)讲解新课
以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。
二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。
巩固对二次函数概念的理解:
1、强调“形如”,即由形来定义函数名称。
二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。
2、在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。
但在实际问题中,自变量的取值范围是使实际问题有意义的值。
(如例1中要求r>0)
3、为什么二次函数定义中要求a≠0 ?
(若a=0,ax2+bx+c就不是关于x的二次多项式了)
4、在例3中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以为零?
由例1可知,b和c均可为零.
若b=0,则y=ax2+c;
若c=0,则y=ax2+bx;
若b=c=0,则y=ax2.
注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.
【设计意图】这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。