等腰三角形(一)导学案
- 格式:doc
- 大小:21.50 KB
- 文档页数:3
CAB1.1 等腰三角形的性质和判定班级 姓名 学号 家长签字 完成时间45分钟 【学习目标】1.能证明等腰三角形的性质定理和判定定理.2.了解分析的思考方法.3.经历思考、猜想,并对操作活动的合理性进行证明过程,不断感受证明的必要性、感受合情推 理和演绎推理都是人们认识事物的重要途径.【重点、难点】了解分析的思考方法;合理添加辅助线. 【新知预习】1.以前,我们曾经学习过等腰三角形,你还记得等腰三角形的一些性质吗?不妨我们来回忆一下. 等腰三角形的性质:①等腰三角形的 角相等.(简称“ ”) ②等腰三角形的 、 、 互相重合.(简称“ ”) ③等腰三角形是 对称图形,它的对称轴是: .2.你能用刻度尺画一个等腰三角形,并用作垂线的方法画出它的顶角的平分线吗?若能,请画出并加以证明.【导学过程】活动一:证明:等腰三角形的两个底角相等. 已知:如图,在△ABC 中,AB=AC. 求证:∠B=∠C活动二:证明:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.思考:如何证明文字命题的正确性?活动三:如何证明“等腰三角形的两个底角相等”的逆命题是正确的? 要求:(1)写出它的逆命题: .(2)画出图形,写出已知、求证,并进行证明.例1.已知:如图∠EAC 是△ABC 的外角,AD 平分∠EAC,且AD∥BC . 求证:AB =AC2.拓展:在上图中,如果AB =AC ,AD∥BC,那么AD 平分∠EAC 吗?为什么?【反馈练习】1.完成第7页《练习》第1、2、3题.2.等腰三角形的一个角为50°,那么它的一个底角为______.3.在平面直角坐标系xOy 中,已知点P (2,2),点Q 在y 轴上,△PQO 是等腰三角形,则满足条件的点Q 共有______个.4.已知:如图,锐角△ABC 的两条高BE 、CD 相交于点O ,且OB=OC. 求证:△ABC 是等腰三角形.☆5.如图,等腰三角形ABC 中,AB=AC ,一腰上的中线BD•将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长.【作业布置】1.1习题 第2、3、4、题.AB C D E2011-2012学年度第二学期八年级数学校本作业(41)1.1 等腰三角形的性质和判定 编写:宋爱霞 审阅:张元国班级 姓名 学号 家长签字 完成时间40分钟 1.若等腰三角形的周长为12,一边长为5,那么另两边长分别为 . 2.若等腰三角形有两边长为2和5,那么周长 为 .3.若等腰三角形有一个外角等于50°,那么另两个角为 .4.若等腰三角形有一个角等于120°,那么另两个角为 . ★5.若等腰三角形一腰上的高与另一腰的夹角等于30°,那么这个等腰三角形的顶角为 . ★6.若等腰三角形的周长等于12cm ,那么腰长x 的取值范围是 .7.如图在△ABC 中,AB =AC ,∠A=50°,BD 为∠ABC 的平分线,则∠BDC=_ ____°. 8.如图在△ABC 中,AB =AC ,D 为AC 边上一点,且BD =BC =AD .•则∠A 等于 ( )A .30° B.36° C.45° D.72°9.已知:如图,AB=AC .(1)若CE=BD ,求证:GE=GD ;(2)若CE=mBD (m 为正数),试猜想GE 与GD 有何关系(只写结论,不证明).10.如图,在△ABC 中,点O 在AC 上,过点O 作MN ∥BC ,CE与MN 分别交于E 、F ,求证:OE=OF.11.已知△ABC 中,AB =AC ,过△ABC 的一个顶点的一条直线,把△ABC 分成两个小三角形,使得这两个小三角形也是等腰三角形.试画出所有符合条件的图形,并写出被分成的两个小等腰三角形中相等的线段及△ABC 各内角的度数.第9题图 第7题图 第8题图。
第五章生活中的轴对称5.3 简单的轴对称图形(1)【今日导学】1. 等腰三角形的定义:的三角形叫等腰三角形;2等腰三角形是轴对称图形,对称轴是;3 等边三角形是特殊的等腰三角形,对称轴有条;★4由对称性易知,等腰三角形的性质:(1)简称((2)等腰三角形的、、,三线合一例如:如左图,已知等腰三角形△ABC中,AB=AC.则有:∠B=∠C(等边对等角);且如果知道AD是BC边上的中线或者高线或者顶角∠BAC的角平分线三线中的任意一条,那么AD也是另外的两条【典型例题】例1.一个等腰三角形两内角的度数比为1:2,这个等腰三角形顶角的度数为---------度例2.如果等腰三角形两边长是6cm和3cm,那么它的周长是()A、9cmB、12cmC、15cm或12cmD、15cm例3如同,矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=EC.若将纸片沿AE折叠,点B恰好与AC上的点'B重合,则AC=▲cm.【答案】4解:∵AE=CE ∴△AEC是等腰三角形(等腰三角形的定义)又∵纸片沿AE折叠,∴∠AB’E=∠B=90°(轴对称的性质)∴EB’是△AEC底边AC上的中线(三线合一)∴AC=2AB’=2AB=4【课时达标】A级(基础过关)1.如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()3如图,在△ABC 中,AB=AC ,点D 、E 分别在BC 、AC 边上,∠CDE=15°,且AD=AE , 则∠BAD 的度数为 _________ .4如图,已知:AB=AC=AD ,∠BAC=50°,∠DAC=30°,则∠BDC= _________ .5如图,在△ABC中,AB=AC ,AD ⊥BC 于D ,E 、F 是AD 上任意两点,S △ABC =8 cm 2,则图中阴影部分的面积=____cm 2.6如图,△ABC 中,AB=AC ,BD ⊥AC 于D ,求证:∠DBC=21∠A7如图,在等腰△ABC 中,AB=AC ,点D 在BC 上,且AD=AE . (1)若∠BAC=90°,∠BAD=30°,求∠EDC 的度数? (2)若∠BAC=a (a >30°),∠BAD=30°,求∠EDC 的度数? (3)猜想∠EDC 与∠BAD 的数量关系?(不必证明)DCBAB级(能力提升)8如图所示,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,则最多能添加这样的钢管_________根.9如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.10如图,点D在AC上,点E在AB上,且AB=AC,BC=BD,AD=DE=BE,求∠A的度数.11.如图,△ABC中,AB=BC=AD,D在BC的延长线上,求角α和β的关系。
等腰三角形导学案(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--等腰三角形导学案第一课时教学目标:1、理解等腰三角形的性质和判定定理2、利用定理证明解决实际问题任务一:1、自主学习:(独立完成,组内交流,课堂展示)如图1,已知△ABC中,AB=AC,AD是底边上的中线.(1)求证:∠B=∠C;(2)AD平分∠A,AD⊥BC.图1归纳:等腰三角形的性质有:①性质1:等腰三角形的两底角(简单叙述为:)∵∴②性质2:等腰三角形的互相重合∵∴∵∴∵∴2、课堂练习:①、等腰三角形一个底角为70°,它的顶角为______.A②、等腰三角形一个角为70°,它的另外两个角为。
③如图3,在△ABC 中AB=AD=DC,∠BAD=26°,求∠B和∠C度数。
图3④如图4,∠BAD=1000,ADBC,垂足为点D,AB=AC,求:∠B, ∠1图423任务二1、自主学习:如图:△ABC 中,∠B=∠C ,求证;AB=AC归纳:等腰三角形判定定理: (简单叙述为: )∵ ∴ 思考:要证明△ABC 是等腰三角形,你都有哪些方法?3、巩固练习:如图,已知:△ABC 中,AB=AC ,BD 和CE 分别是∠ABC 和∠ACB 的角平分线,且相交于O 点。
⑴ 试说明△OBC 是等腰三角形;⑵ 连接OA ,试判断直线OA 与线段BC 的关系?并说明理由。
课堂检测:1、等腰三角形有两条边长为4cm 和9cm ,则该三角形的周长是( ) A .17cm B .22cm C .17cm 或22cm D .18cm2、等腰三角形的顶角是80°,则一腰上的高与底边的夹角是( ) A .40° B .50° C .60° D .30°3.如图,已知∠1=∠2=∠3,∠B=∠C 则图中相等的线段有( )A .2对B .3对C .4对D .5对4、如图所示,∠CAB=∠DBA ,AC=BD,点O 是AD,BC 的交点,点E 是AB 的中点.试判断OE 和AB 的位置关系,并给出证明.CE ABD4等腰三角形导学案第二课时一、 知识回顾:1.如图:△ABC 中,⑴若AB=AC,则___ ____; ⑵若AB=AC, ∠BAD=∠CAD,则 ____ ___,____若AB=AC, BD=CD,则___ __,__ ____; 若AB=AC, AD ⊥BC,则__ ___,__ ____。
12.3.1《等腰三角形》导学案责任学校 责任教师一、学习目标1、 巩固等腰三角形的概念,掌握等腰三角形的性质,并能灵活应用等腰三角形的性质解决一些实际问题。
2、 通过独立思考,交流合作,体会探索数学结论的过程,发展推理能力。
二、预习内容自学课本49页至51页,完成下列问题:1、动手操作:把一张长方形的纸片按课本中虚线对折,然后沿实线剪开,再把它展开,得到什么三角形?2、有两边相等的三角形叫 ,相等的两边叫 ,另一边叫 ,两腰的夹角叫 ,腰和底边的夹角叫 。
3、如图,在△ABC 中,AB=AC ,标出各部分名称。
4、(1) 观察剪出的等腰三角形是否为轴对称图形?它的对称轴在哪里?(2) 将等腰三角形沿折痕对折,观察重合的线段和角,你有什么发现?猜想: 。
5、如图,在△ABC 中, (1)如果AB=AC,且∠1=∠2,那么 = ,且 。
(2)如果AB=AC,且BD=DC ,那么 = ,且 。
(3)如果AB=AC,且AD ⊥BC ,那么 = ,且 。
等腰三角形性质: 性质1 等腰三角形的两个 相等(简写成“ ”)。
性质2 等腰三角形 、 、 互相重合。
三、探究学习1、证明等腰三角形性质1、2:B DAC1 22、如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD.求△ABC 各角的度数。
.四、巩固测评1、(1)如图.在△ABC 中,如果AB=AC,那么∠________=∠_______; (2)如图.在△ABC 中, AB=AC,点D 在BC 上。
如果∠BAD=∠CAD,那么 AD ⊥BC , BD=CD 。
如果BD=CD,那么∠________=∠_______, _______⊥______; 如果AD ⊥BC,那么_______________, _____________。
2、(1)如图,在下列等腰三角形中,分别求出其它两角的度数。
(2)等腰三角形一个角为130°,它的另外两个角为 。
《等腰三角形》第一课时学案青州市东夏初级中学高春燕学习目标: 1.了解等腰三角形概念,理解等腰三角形的性质;2.运用等腰三角形的概念及性质解决相关问题。
学习重点:等腰三角形的概念及性质。
学习难点:等腰三角形“三线合一”性质的理解与应用学习方法:自主----合作------精讲-----巩固一.自主学习:自主预习课本P12----P13完成下列问题:(一)1、的三角形叫等腰三角形,2、相等的两边叫,另一边叫。
两腰的夹角叫,腰和底边的夹角叫。
3、如图,在△ABC中,AB=AC,标出各部分名称。
(二)等腰三角形是轴对称图形吗?试采用下图方法,探究图△ABC有什么发现?二.合作探究(各小组同学讨论,集体完成下列题目)(一)如图,在△ABC中,AB=AC,∠B AC=60°,AD是BC边上的高线,(1)求∠ADC的度数;(2)求∠ BAD 、∠B 、∠C的度数。
(二)在△ABC中,如果三角形的三边相等,你能发现什么结论?结论:1.2.。
练习:如图:点B、C、D、E、F在∠MAN的边上,∠A=15°,AB=BC=CD=DE=EF,求∠MEF的度数。
三、精讲点拨1.如图,在△ABC中,AB=AC,AD=BD=BC,则∠A多少度。
2.如图,AB=AC,BD⊥AC于D,求证:∠DBC= 1/2∠A。
四.课堂小结同学们通过这节课的学习你收获了什么?五.达标检测•1、若等腰三角形的周长为29cm,一条边长为 9cm,则这个等腰三角形的腰长为;•2、如图,在等腰三角形ABC中,AC=BC,腰AC的中垂线EF 交BC于E,交AC于F,已知△ABC的周长为11,AC=4cm,则△ABE 的周长是;A B3.一等腰三角的一个角是另一个角的2倍,则此三角形的各角的度数分别是多少?4.如图,是房梁的一部分,其中BC⊥AC,∠A=30°,AB=7.4,点D是AB的中点,DE⊥AC,垂足为E,求BC,DE的长.BDA CEA BCDEFMNCCB。
第一章三角形的证明1.1等腰三角形导学案基础知识基本技能1.等腰三角形(1)概念:有两边相等的三角形叫等腰三角形,其中相等的两边叫腰,另一条边叫底边,两腰的夹角叫做顶角,腰与底边的夹角叫做底角.(2)理解:①等腰三角形是特殊的三角形,它具备三角形所有的性质,如内角和是180°,两边之和大于第三边等.②等腰三角形是轴对称图形,这既是等腰三角形的特点也是研究它的重要方法.破疑点等腰三角形有关概念的认识(1)对于等腰三角形问题,我们说角或边时,一般都要指明是顶角还是底角,是底边还是腰,没说明则都有可能,要讨论解决,这是解决等腰三角形最容易忽视和错误的地方;(2)等腰三角形顶角可以是直角,是钝角或锐角,而底角只能是锐角.【例1】等腰三角形两边长分别是5 cm和11 cm,则它的周长是().A.27 cm B.22 cmC.27 cm或22 cm D.无法确定2.等腰三角形性质1(1)性质1:等腰三角形的两个底角相等(简写成“等边对等角”).(2)理解:这是等腰三角形的重要性质,它是证明角相等常用的方法,它的应用可省去三角形全等的证明,因而更简便.(3)适用条件:必须在同一个三角形中.(4)应用模式:在△ABC中,因为AB=AC,所以∠B=∠C.【例2-1】已知等腰三角形的一个角为40°,则其顶角为().A.40°B.80°C.40°或100°D.100°哦,不指明是底角还是顶角时,要分类讨论,还要看三角形内角和是否是180°啊!【例2-2】如图,AD、BC相交于O,AB∥CD,OA=OB,求证:∠C=∠D.3.等腰三角形性质2(1)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.习惯上称作等腰三角形“三线合一”性质.(2)含义:这是等腰三角形所特有的性质,它实际上是一组定理,应用过程中,只要是在等腰三角形前提下,知道是其中“一线”,就可以说明是其他的“两线”,性质中包含有线段相等、角相等、垂直等关系,所以应用非常广泛.(3)对称性:等腰三角形是轴对称图形,顶角平分线(或底边上的高、底边上的中线)所在的直线是它的对称轴.(4)应用模式:如图,在△ABC中,解技巧“三线合一”的应用因为题目的证明或计算所求结果大多都是单一的,所以“三线合一”性质实际的应用也是单一的,一般得出一个结论,因此应用要灵活.【例3】如图,在△ABC中,AB=AC,AD⊥BC,交BC于D,BD=5 cm,求底边BC的长.分析:因为是等腰三角形,所以底边上的高也是底边上的中线,所以BC=2BD,即可求出BC的长.4.等腰三角形的判定(1)判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).(2)与性质的关系:判定定理与性质定理是互逆的,性质:→;判定:→.(3)理解:性质和判定应用的前提都是在同一三角形中,并且不经过三角形全等的证明,直接由等边得等角或由等角得等边,所以应用起来更简单、便捷.破疑点等腰三角形的判定方法的理解教材中涉及等腰三角形的判定方法主要有两种:一是判定定理;二是定义.另外还有很多方法,如在同一个三角形中,三线中两线重合,也能说明是等腰三角形.但不常用,一般是通过推理得出角相等或边相等,再得出是等腰三角形.【例4】如图,BE平分∠ABC,交AC于E,过E作DE∥BC,交AB于D.试证明△BDE是等腰三角形.5.等边三角形的概念和性质(1)等边三角形①概念:三边都相等的三角形是等边三角形.②认识:它是特殊的等腰三角形,具备等腰三角形的所有性质.(2)性质:等边三角形的三个内角都相等,并且每一个角都等于60°.(3)拓展:等边三角形是轴对称图形,它有三条对称轴,它三边相等,三个内角相等,各边上的高、中线,对应的角平分线重合,且长度相等.【例5】如图,点M、N分别在等边△ABC的边BC、AC上,且BM=CN,AM、BN交于点Q.求证:∠BQM=60°.6.等边三角形的判定(1)判定定理:①三个角都相等的三角形是等边三角形;②有一个角是60°的等腰三角形是等边三角形.(2)判定方法:等边三角形的判定方法有三种:一是定义,另运用两个定理.(3)拓展理解:对于判定定理①,有时候在一个三角形中只要有两个角是60°也可判定是等边三角形.解技巧巧用条件证明等边三角形在证明三角形是等边三角形时,根据所给已知条件确定选择用哪个方法证明.若已知三边关系,一般选定义法;若已知三角关系,一般选判定定理①;若已知该三角形是等腰三角形,则选判定定理②.【例6】如图,等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP =CQ,问△APQ是什么形状的三角形?试说明你的结论.基本方法基本能力7.等腰三角形性质和判定的综合应用类似于全等三角形的性质和判定的关系,等腰三角形的性质和判定很多时候也是综合运用的.一方面等腰三角形是特殊的三角形,由等腰三角形性质,可以知道许多相等的线段,相等的角,还能知道垂直关系,成倍数关系的线段或角,所以有时通过判定是等腰三角形来证明角相等、线段相等或垂直关系等;另一方面通过等腰三角形性质和判定的运用,直接由线段相等得到角相等,由角相等到线段相等,省去了全等的证明,简化了过程,因此很多时候,等腰三角形性质和判定的应用更广泛.注意:等腰三角形性质和判定的应用前提是在同一个三角形中.【例7】如图1,在△ABC中,∠B=2∠C,AD是BC边上的高,求证:CD=AB+BD.图1 图28.巧用“三线合一”性质解题(1)性质:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称“三线合一”性质;(2)应用:它是等腰三角形特有的性质,这条线段是中线、高,也是角平分线,它包含有线段相等、角相等、垂直等关系,涉及量多,应用广泛,是证明线段相等、线段的倍数关系、角相等、角的倍数关系、垂直等常用的方法.构造“三线合一”解决等腰三角形问题在等腰三角形问题中,最常添加的辅助线就是作底边上的高,或作顶角的平分线,或作底边上的中线,这样就可以由其中一线得到其他两线,从而知道更多的条件,以便更好地完成计算、证明.【例8】已知:如图a所示,△ABC中,AB=AC,BF是AC边上的高,求证:∠FBC=∠BAC.图a 图b9.等边三角形的应用等边三角形也称正三角形,它是最特殊的三角形,它除了三边相等,三个内角相等,且每个角都是60°外,还具有很多特殊的性质:如,证明两个等边三角形全等只要有一边相等即可;同一个等边三角形的高、中线、角平分线都相等,并且任何一条高(或中线、顶角的平分线)将等边三角形都分成全等的两个含有30°角的直角三角形;它的高和边长也存在着特殊的比例关系,因此已知是等边三角形,就可以知道其中的许多等量关系.等边三角形的判定也具有自己独特的特点,可以由普通三角形满足条件直接判定,也可以在等腰三角形的基础上进行判定.【例9】(学科内综合题)如下图所示,在等边三角形ABC中,∠B、∠C的角平分线交于点O,OB和OC的垂直平分线分别交BC于E、F,试用你所学的知识说明BE=EF=FC的道理.思维拓展创新应用10.面积法证明等腰三角形的性质面积法是解决几何问题常用的一种的方法,它巧妙地运用面积之间的关系,通过计算的方式,求线段的长度,或用来证明线段之间的数量关系,有时它比运用线段之间的等量关系证明、计算更简捷,更巧妙,因而在特定条件下能出奇制胜,是一种很好的方法.面积法的运用,一般以同一个三角形的面积是相等的为基础,运用不同求法,即底不同、高不同、但面积都等于底×高的一半,或将一个图形分解成不同的图形来求面积,但面积之和相等.通过面积相等联系起各量之间的关系,再运用等式的性质,通过化简求出某些线段的长,或计算出某些线段之间的数量(如比例)关系.解技巧巧用面积法证明线段的关系因为直角三角形的特殊性,所以面积法最常用在直角三角形中求斜边上的高,有时也用在等腰三角形中证明线段相等或求线段的和.11.等腰三角形中的“二推一”模式应用在等腰三角形问题中,“等边、角平分线(等角)、平行”是出现最多,最常见的数量与位置关系,若这三个关系出现在同一图中,一般以其中任意两个条件为题设,推导、证明出第三个条件成立,因此我们称它为等腰三角形中的“二推一”.(1)基本图形:等腰三角形中的“二推一”一般有两种情况,一种是角平分线在外,要用到一个外角等于和它不相邻的两内角和;另一种是角平分线在内,基本图形如图①和图②所示,演变图形类型较多,主要有以下几种:(2)方法:通过角相等作为纽带,将线段相等、线段平行联系起来,在此过程中要用到等量代换得出的角相等,方式一般是:→→;→→.【例11-1】如图1,已知,在△ABC中,AB=AC,BD为腰AC上的高,G为底边BC上任一点,GF⊥AB,GE⊥AC,垂足分别为F、E.求证:GF+GE=BD.分析:要证明BD=GF+GE,按常规思路将BD分成两段,如图2,证明BH=GF,DH=GE.所以过G作BD的垂线,通过证明三角形全等和判定是矩形完成,既复杂又超出现在所学,但用面积法却简单得多.如图3,连接AG,运用面积法,分别表示出△ABG和△ACG的面积,由于同一三角形面积是相等的,所以S△ABC=S△ABG+S△ACG,所以AB·GF+AC·GE=AC·BD,由于AB =AC,经过等量代换和化简即可得到GF+GE=BD.【例11-3】如图,已知△ABC中,AC+BC=24,AO、BO分别是∠BAC、∠ABC的角平分线,MN过O点,且MN∥BA,分别交AC于N、BC于M,则△CMN的周长为___.【例11-4】如图,△ABC中,∠ABC、∠ACB的平分线BO、CO相交于点O,OE∥AB,OF ∥AC,△OEF的周长=10,求BC的长.直角三角形学习过程:一、课前准备1.每个命题都是由、两部分组成。
大化坪中心学校八年级数学导学案课题:16.1 轴对称图形(1)主备人:吴家兴审核人:刘堂高时间:2012.12 【学习目标】1.感受生活中的轴对称图形,理解轴对称图形的概念、性质(重点)2.能识别简单的轴对称图形,并指出其对称轴(难点)。
【学习过程】一、学前准备1.观察教材第113面图案,用自己的话说说这些图形的特征。
2.列举生活中常见的轴对称图形(至少3个)。
3.画出下面图形的对称轴。
4.画一个轴对称图形,并画出它的对称轴。
二.合作探究1.按教材第114面图16-3右边文字提示折叠蜻蜓图案,如果一个图形沿着____________折叠,_______两旁的_____能够__________,那么这个图形叫做_______________,这条______叫做这个图形的_____________。
2.完成教材第114面“操作”,再完成第116面练习2,轴对称图形有哪些性质?3.完成教材第114面练习1,与同学交流完成情况。
4.试一试如图,把一张纸片对折后,用笔尖在纸上扎出图(3)所示的图案,•将纸打开后铺平,观察你所得的图案.位于折痕两侧的部分有什么关系?•与同伴交流你的想法.【学习检测】1.计算器中的十个数字中,是轴对称图形的有____________________________。
2.26个字母中是轴对称图形的有________________________________________。
3.线段有____条对称轴,是_______________________________,角的对称轴是__________________,等腰三角形的对称轴______________________________。
4.如图,其中是轴对称图形的是()。
5.图中的图形都是轴对称图形,请你试着画出它们的对称轴。
6.完成下面图案创作。
7.习题16.1第2、3题。
【学习小结】1、我的收获:2、我的困惑大化坪中心学校八年级数学导学案课题:16.1 轴对称图形(2)主备人:吴家兴审核人:刘堂高时间:2012.12【学习目标】理解轴对称的概念、性质(重点),轴对称和轴对称图形的区别和联系(难点),能作出简单的平面图形经过一次轴对称变换后的图形,了解线段的垂直平分线的概念。
13.3.1等腰三角形(1)导学案
学习目标:
1.探索并掌握等腰三角形的两个性质.
2.会运用等腰三角形的概念和性质解决有关问题.
重点:等腰三角形性质及其简单应用.
难点:等腰三角形的“三线合一”的性质的理解及其应用.
温故知新
等腰三角形定义:有两边相等的三角形是等腰三角形.
相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角
叫做顶角,底边与腰的夹角叫做底角.
互动探究
剪一剪:把一张长方形的纸按图中的红线对折,并剪去阴影
部分(一个直角三角形),再把得到的直角三角形展开,得
到的三角形ABC有什么特点?
折一折:△ABC 是轴对称图形吗?它的对称轴是什么?
等腰三角形是轴对称图形.
折痕所在的直线是它的对称轴.
等腰三角形性质
上面剪出的等腰三角形是轴对称图形吗?
把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角,填入下表:
重合的线段重合的角
设问:你发现了什么现象,
猜想等腰△ABC有哪些性质?
猜想与验证
已知:△ABC 中,AB=AC,
求证:∠B=∠C .
应用格式:
性质表达
文字语言:
性质1:
符号语言:
注意:在同一个三角形中
猜想与验证
如图,在△ABC中,AB=AC,AD平分∠BAC,
求证:AD⊥BC,BD=CD .
性质的表达
性质2
几何语言:
例题
如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.
针对练习
如图,在△ABC中,AB = AC,AD是BC边上的中线,
课堂小结
作业布置见精准作业。
八年级数学下册《等腰三角形三边关系》第一课导学案1、理解等腰三角形腰、底边之间的关系,并会初步应用它们来解决问题、2、掌握等腰三角形边的分类方法,并会初步应用它们来判断能否形成等腰三角形3、通过观察、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力重点:等腰三角形边的分类方法、难点:等腰三角形边的分类方法,并会初步应用它们来判断能否形成等腰三角形一、预备知识(复习以前的知识,为后续学习作准备)DEF1、三角形三边关系:2、判断三条线段能否组成三角形的方法:3、三角形第三边的取值范围:4、等腰三角形的相关概念:等腰三角形的腰:等腰三角形的底:二、自我检测(小组内合作探究,组间讨论或寻求老师的帮助)1、等腰三角形一条边等于5,一条边等于6,求它的周长2、①等腰三角形一条边长是4,一条边长是7,求它的周长。
②等腰三角形的周长是13,一条边长是3,求它的另两条边的长度。
当边是时当边是时归纳总结:对等腰三角形的边先要再进行三、更进一步(独立完成后小组内讨论,互助,4、5、6号同学请求老师)3、一个等腰三角形的周长为28cm、①已知腰长是底边长的3倍,求各边的长;②已知其中一边的长为6cm,求其它两边的长、4、一个等腰三角形的周长为16cm、①已知一边长是另一边长的3倍,求各边的长;②已知其中一边的长为6cm,求其它两边的长、5、导航30页5、4、超越梦想:(分层次选做,每组的1、2号同学完成后辅导3、4、5、6号)1、小曾同学有两根长度为40cm、90cm的木条,①他想钉一个三角形的木框,那他第三根应该如何选择?下列的几根木条有适合的吗?(40cm,50cm,60cm,90cm,130 cm)②他想钉一个等腰三角形的木框,那他第三根应该如何选择?为什么?5、个人小结:六、课后作业:必做题:1、小册子42页教后记:。
第六课时 13.3.1等腰三角形(1)【学习目标】1、了解等腰三角形的概念,掌握等腰三角形的性质; 2、会运用等腰三角形的概念及性质解决相关问题。
【学习重点】等腰三角形性质的探索及应用【学习难点】等腰三角形性质的应用 一、学前准备1、下列图形不一定是轴对称图形的是( ) A 、圆 B 、长方形 C 、线段D 、三角形2、怎样的三角形是轴对称图形?答:3、有两边相等的三角形叫 ,相等的两边叫 ,另一边叫 ; 两腰的夹角叫,腰和底边的夹角叫 4、如图,在△ABC 中,AB=AC ,标出各部分名称 5、用一张长方形的纸剪一个等腰三角形。
二、探索思考 (一)1、操作、实践: 将你剪得等腰三角形,照图折叠,找出其中重合的线段和角,填入右表:2、根据上表你能得出哪些结论?并将你的结论与同学交流。
3、请用学过的知识证明以上结论。
(二)归纳:等腰三角形的性质:(1)等腰三角形的 。
(简写成“ ”) 符号语言:如图1∵ ∴(2)等腰三角形的 、 、 相互重合(简写成“ ”)符号语言①:如图2∵ , ∴ 符号语言②:如图2∵ , ∴ 符号语言③:如图2∵ , ∴ 练习1、填空:(1)等腰三角形一个底角为70°,它的顶角为 . (2)等腰三角形一个角为70°,它的另外两个角为三、典例分析例2:如图所示,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,求△ABC 各角的度数.例2:如图3,在△ABC 中,AB=AC ,点D 、E 在BC 上,且AD=AE.,求证:BD=CE四、当堂反馈1、(1) 等腰三角形的一边长为3cm ,另一边长为4cm,则它的周长是 ; (2) 等腰三角形的一边长为3cm ,另一边长为8cm,则它的周长是 。
2、在△ABC 中,AB =AC ,(1)如果∠A =70°,则∠C =_______,∠B =_______ (2)如果∠A =90°,则∠B =_______,∠C =________ (3)如果有一个角等于120°,则其余两个角分别是 度 (4)如果有一个角等于55°,则其余两个角分别是 度3、如图(3)所示,△ABC 是等腰直角三角形(AB =AC ,∠BAC =90°),AD 是底边BC 上的高, 标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?4、如图,在△ABC 中,AB =AD =DC ,∠BAD =26°,求∠B 和∠C 的度数.五、学习反思(请你对照学习目标,谈一下这节课的收获及困惑。
精选全文完整版(可编辑修改)13.3.1 等腰三角形的性质一,学习目标:1 了解等腰三角形的有关概念;2 通过操作,观察、分析、归纳得出等腰三角形性质;3 理解并运用等腰三角形性质。
二,教学过程(1)学习目标,了解等腰三角形的有关概念第一次自学,时间2min,要求:1, 看课本78页,找到等腰三角形的有关概念。
2动手在练习本上画出一个等腰三角形。
第一次自学检测,时间3min。
(1)有______相等的三角形叫做等腰三角形。
(2)在等腰三角形中,相等的两边都叫做_____,另一边叫做_____ ,两腰的夹角叫做_____ ,腰和底边的夹角叫做_____。
(3)等腰三角形一腰为3cm,底为4cm,则它的周长是_____cm。
(4)等腰三角形的一边长为3cm,另一边长为4cm,则它的周长是_____cm。
(5)等腰三角形的一边长为3cm,另一边长为8cm,则它的周长是_____cm。
(2)学习目标,通过动手操作,观察、分析、归纳得出等腰三角形性质1第二次自学,时间5min,要求:1, 看课本78页,完成做一做2,熟悉定理,等边对等角。
3,看例1的解题过程。
第二次自学检测,时间5min。
1,等腰三角形一个底角为75°,它的另一个底角为____。
2,等腰三角形一个底角为70°,它的另外两个角为_________3,等腰三角形一个角为100°, 它的另外两个角为____________ 4,等腰三角形有一个角是80°,它的顶角是____________________(3)学习目标,理解并运用“三线合一”第三次自学,时间5min,要求:1, 看课本80页,熟悉“三线合一”2,理解例2的解题过程3,简单认识等边三角形。
第三次自学检测,时间5min。
(1)等腰三角形的顶角的______、底边上的____、底边上的____互相重合。
(三线合一)《1》∵AB=AC,BD=CD(已知)∴《2》∵AB=AC,∠BAD=∠CAD (已知)∴《3》∵AB=AC,AD⊥BC (已知)∴当堂训练(10min)一,判断下列语句是否正确(1)等腰三角形的角平分线、中线和高互相重合。
13.3.1等腰三角形(一)$等腰三角形(一)导学案乙:丙:丁:三、合作学习探索新知(约15分钟)1、小组合作分析问题2、小组合作答疑解惑3、师生合作解决问题(1)下列图形不一定是轴对称图形的是()A、圆B、长方形C、线段D、三角形(2)怎样的三角形是轴对称图形?答:(3)有两边相等的三角形叫,相等的两边叫,另一边叫两腰的夹角叫,腰和底边的夹角叫(4)如图,在△ABC中,AB=AC,标出各部分名称$等腰三角形(一)导学案学习活动设计意图(5)探究:教材P75把活动中剪出的△ABC沿折痕AD对折,找出其中重合的线段和角,填入下表重合的线段重合的角四、归纳总结巩固新知(约15分钟)1、知识点的归纳总结:性质1: 等腰三角形的两个相等(简写成“”)性质2 :等腰三角形、、、互相重合。
2、运用新知解决问题:(重点例习题的强化训练)(1)证明性质1、性质2:$等腰三角形(一)导学案学习活动设计意图$等腰三角形(一)导学案2、本节课我对自己最不满意的一件事是:作业独立完成()求助后独立完成()未及时完成()未完成()五、课堂小测(约5分钟)1、等腰三角形的一个角是110°,它的另外两个角的度数是2、等腰三角形的一个角是80°,它的另外两个角的度数是3、如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证BD=CE第一章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图,直线l 1∥l 2,以直线l 1上的点A 为圆心,适当长为半径画弧,分别交直线l 1,l 2于点B ,C ,连接AC ,BC.若∠ABC =67°,则∠1的度数为(B )A .23°B .46°C .67°D .78°,第1题图) ,第2题图) ,第3题图)2.如图,在△ABC 中,AB =AC ,D 为BC 的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F.则下列结论错误的是(D )A .AD ⊥BCB .∠BAD =∠CADC .DE =DFD .BE =DE3.(福建中考)如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC =45°,则∠ACE 等于(A )A .15°B .30°C .45°D .60°4.(达州二模)如图,在△ABC 中,∠C =90°,∠ABC 的平分线交AC 于点D ,DE 垂直平分AB ,垂足为E ,若BC =3,则AD 的长为(C )A . 3B .2C .2 3D .4,第4题图) ,第5题图) ,第10题图)5.(雅安中考)如图,四边形ABCD 中,∠A =∠C =90°,∠B =60°,AD =1,BC =2,则四边形ABCD 的面积是(A )A .332B .3C .2 3D .4 6.已知三角形三内角之间有∠A =12∠B =13∠C ,它的最长边为10,则此三角形的面积为(D )A .20B .10 3C .5 3D .25327.已知△ABC 的三边长分别为4、4、6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画(B )A .3条B .4条C .5条D .6条8.已知等边△ABC 的边长为12,D 是AB 上的动点,过D 作DE ⊥AC 于点E ,过E 作EF ⊥BC 于点F ,过F 作FG ⊥AB 于点G.当G 与D 重合时,AD 的长是(C )A .3B .4C .8D .99.下列说法:①斜边和一条直角边分别相等的两个直角三角形全等;②两个锐角分别相等的两个直角三角形全等;③有一个角和底边分别相等的两个等腰三角形全等;④一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等.其中正确的有(B )A .1个B .2个C .3个D .4个10.如图,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 在同一条直线上,连接BD ,BE.下列四个结论:①BD =CE ;②BD ⊥CE ;③∠ACE +∠DBC =45°;④BE 2=2(AD 2+AB 2).其中结论正确的个数是(C )A .1B .2C .3D .4二、填空题(每小题3分,共18分)11.(南通中考)一个等腰三角形的两边长分别为4 cm 和9 cm ,则它的周长为22cm . 12.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,CD =4,则点D 到AB 的距离为4.,第12题图) ,第13题图) ,第14题图)13.如图,已知点B ,C ,F ,E 在同一条直线上,∠1=∠2,BC =EF ,要使△ABC ≌△DEF ,还需添加一个条件,这个条件可以是AC =DF(答案不唯一).(只需写出一个)14.如图,△ABC 的周长为22 cm ,AB 的垂直平分线交AC 于点E ,垂足为D ,若△BCE 的周长为14 cm ,则AB =8 cm .15.如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边上的中点,E 是AB 边上一动点,则EC +ED 的最小值是 5.,第15题图) ,第16题图)16.(葫芦岛中考)如图,∠MON =30°,点B 1在边OM 上,且OB 1=2,过点B 1作B 1A 1⊥OM 交ON 于点A 1,以A 1B 1为边在A 1B 1右侧作等边三角形A 1B 1C 1;过点C 1作OM 的垂线分别交OM ,ON 于点B 2,A 2,以A 2B 2为边在A 2B 2的右侧作等边三角形A 2B 2C 2;过点C 2作OM 的垂线分别交OM ,ON 于点B 3,A 3,以A 3B 3为边在A 3B 3的右侧作等边三角形A 3B 3C 3,…;按此规律进行下去,则△A n A n +1C n 的面积为(32)2n -2×33.(用含正整数n 的代数式表示)点拨:由题意△A 1A 2C 1是等边三角形,边长为233,△A 2A 3C 2是等边三角形,边长为32×233,△A 3A 4C 3是等边三角形,边长为32×32×233=(32)2×233,△A 4A 5C 4是等边三角形,边长为32×32×32×233=(32)3×233,…,△A n A n +1C n 的边长为(32)n -1×233,∴△A n A n +1C n 的面积为34×[(32)n-1×233]2=(32)2n-2×33三、解答题(共72分)17.(6分)如图,点D,E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.证明:过点A作AP⊥BC于P.∵AB=AC,∴BP=PC,∴AD=AE,∴DP=PE,∴BP-DP =PC-PE,∴BD=CE18.(7分)(成都期末)如图,在△ABC中,∠B=30°,边AB的垂直平分线分别交AB 和BC于点D,E,且AE平分∠BAC.(1)求∠C的度数;(3分)(2)若CE=1,求AB的长.(4分)解:(1)∵DE是线段AB的垂直平分线,∠B=30°,∴∠BAE=∠B=30°,∵AE平分∠BAC,∴∠EAC=∠BAE=30°,即∠BAC=60°,∴∠C=180°-∠BAC-∠B=180°-60°-30°=90°(2)∵∠C=90°,∠B=30°,AE平分∠BAC,CE=1,∴AC=3,∴AB=2 319.(7分)(达州期末)如图,在△ABC中,AD平分∠BAC,DE∥AC,EF⊥AD交BC延长线于F.求证:∠FAC=∠B.证明:∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE∥AC,∴∠EDA=∠CAD,∴∠EDA=∠EAD,∴AE=ED,又∵EF⊥AD,∴EF是AD的垂直平分线,∴AF=DF,∴∠FAD=∠FDA.又∵∠FAD=∠CAD+∠FAC,∠FDA=∠B+∠BAD,∴∠FAC=∠B20.(7分)如图,已知等腰三角形ABC中,AB=AC,点D,E分别在边AB,AC上,且AD=AE,连接BE,CD,交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(3分)(2)求证:过点A,F的直线垂直平分线段BC.(4分)解:(1)∠ABE =∠ACD.理由:在△ABE 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,∠A =∠A ,AE =AD ,∴△ABE ≌△ACD ,∴∠ABE =∠ACD(2)连接AF.∵AB =AC ,∴∠ABC =∠ACB ,由(1)可知∠ABE =∠ACD ,∴∠FBC =∠FCB ,∴FB =FC ,∵AB =AC ,∴点A ,F 均在线段BC 的垂直平分线上,即直线AF 垂直平分线段BC21.(7分)如图,在△ABC 中,∠A =60°,点D 是BC 边的中点,DE ⊥BC ,∠ABC 的平分线BF 交DE 于△ABC 内一点P ,连接PC.(1)若∠ACP =24°,求∠ABP 的度数;(4分)(2)若∠ACP =m °,∠ABP =n °,请直接写出m ,n 满足的关系式:________________.(3分)解:(1)∵点D 是BC 边的中点,DE ⊥BC ,∴PB =PC ,∴∠PBC =∠PCB.∵BP 平分∠ABC ,∴∠PBC =∠ABP ,∴∠PBC =∠PCB =∠ABP ,∵∠A =60°,∠ACP =24°,∴∠PBC +∠PCB +∠ABP =180°-60°-24°,∴3∠ABP =120°-24°,∴∠ABP =32° (2)m +3n =12022.(8分)如图,为了测出某塔CD 的高度,在塔前的平地上选择一点A ,用测角仪测得塔顶D 的仰角为30°,在A ,C 之间选择一点B(A ,B ,C 三点在同一直线上).用测角仪测得塔顶D 的仰角为75°,且AB 间的距离为40 m .(1)求点B 到AD 的距离;(2)求塔高CD.(结果用根号表示)解:(1)过点B 作BE ⊥AD ,垂足为E ,∴∠AEB =90°,又∵∠A=30°,∴BE=12AB =12×40=20(m )(2)AE =AB 2-BE 2=203,∵∠A+∠ADB=∠DBC=75°,∴∠ADB=75°-∠A=45°,∵BE⊥AD,∴∠BED=90°,∴∠DBE=∠ADB=45°,∴DE=BE =20,∴AD=AE +DE =203+20,∵CD⊥AC,∴∠C=90°,又∵∠A=30°,∴CD =12AD =12(203+20)=(103+10) m23.(8分)在△ABC 中,∠B =22.5°,边AB 的垂直平分线DP 交AB 于点P ,交BC 于点D ,且AE ⊥BC 于点E ,DF ⊥AC 于点F ,DF 与AE 交于点G ,求证:EG =EC.解:如图所示:连接AD ,∵∠B =22.5°,且DP 为AB 的垂直平分线,∴DB =DA ,∴∠B =∠BAD ,∴∠ADE =2∠B =45°,在Rt △ADE 中,∠ADE =45°,∴∠DAE =45°,∴AE =DE ,∵AE ⊥DE ,∴∠1+∠2=90°,∵DF ⊥AC ,∴∠2+∠C =90°,∴∠1=∠C.在△DEG 和△AEC 中,⎩⎪⎨⎪⎧∠1=∠C ,∠DEG =∠AEC =90°,DE =AE ,∴△DEG ≌△AEC(AAS ),∴EG =EC24.(10分)如图,已知△ABC 是边长为6 cm 的等边三角形,动点P ,Q 同时从A ,B 两点出发,分别沿AB ,BC 方向匀速运动,其中点P 运动的速度是1 cm /s ,点Q 运动的速度是2 cm /s ,当点Q 到达点C 时,P ,Q 两点都停止运动,设运动时间为t s ,解答下列问题:(1)当点Q 到达点C 时,PQ 与AB 的位置关系如何?请说明理由;(2)在点P 与点Q 的运动过程中,△BPQ 是否能成为等边三角形?若能,请求出t 的值;若不能,请说明理由.解:(1)当点Q 到达点C 时,PQ 与AB 垂直,即△BPQ 为直角三角形.理由:∵AB =AC =BC =6 cm ,∴当点Q 到达点C 时,AP =3 cm ,∴点P 为AB 的中点.∴QP ⊥BA(等腰三角形三线合一的性质) (2)假设在点P 与点Q 的运动过程中,△BPQ 能成为等边三角形,则有BP =BQ ,∴6-t =2t ,解得t =2,又∠B =60°,∴当t =2时,△BPQ 是等边三角形25. (12分)如图1,已知点B(0,6),点C为x轴上一动点,连接BC,△ODC和△EBC 都是等边三角形.(1)求证:DE=BO;(3分)(2)如图2,当点D恰好落在BC上时.①求OC的长及点E的坐标;(3分)②在x轴上是否存在点P,使△PEC为等腰三角形?若存在,写出点P的坐标;若不存在,说明理由;(3分)③如图3,点M是线段BC上的动点(点B,C除外),过点M作MG⊥BE于点G,MH⊥CE 于点H,当点M运动时,MH+MG的值是否发生变化?若不会变化,直接写出MH+MG的值;若会变化,简要说明理由.(3分)(1)证明:∵△ODC和△EBC都是等边三角形,∴OC=DC,BC=CE,∠OCD=∠BCE=60°,∴∠BCE+∠BCD=∠OCD+∠BCD,即∠ECD=∠BCO,∴△DEC≌△OBC(SAS),∴DE=BO(2)①∵△ODC是等边三角形,∴∠OCB=60°.∵∠BOC=90°,∴∠OBC=30°.设OC =x,则BC=2x,∴x2+62=(2x)2,解得x=23,∴OC=23,BC=4 3.∵△EBC是等边三角形,∴BE=BC=4 3.又∵∠OBE=∠OBC+∠CBE=90°,∴E(43,6)②若点P在C点左侧,则CP=CE=43,OP=43-23=23,点P的坐标为(-23,0);若点P在C点右侧,CP=CE=43,则OP=23+43=63,点P的坐标为(63,0),若CP=EP,∵∠DCO=60°,∠BCE=60°,∴∠ECP=60°,∴△ECP为等边三角形,∴CP=EP=CE=43,则OP=23+43=63,点P的坐标为(63,0),综上,点P坐标为(-23,0)或(63,0)③不会变化,MH+MG=612.3 角的平分线的性质教学目标知识与技能1.能够利用三角形全等,证明角平分线的性质和判定.2.会用尺规作已知角的平分线.3.能利用角平分线性质进行简单的推理,解决一些实际问题.过程与方法经历探索、猜想、证明的过程,进一步发展学生的推理证明意识和能力.情感态度价值观在探讨作角的平分线的方法及角的平分线的性质的过程中,培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,逐步培养学生的理性精神教学重点角平分线画法、性质和判定.教学难点角的平分线的性质的探究教学准备平分角的仪器(自制)三角尺、多媒体课件等.教学过程(师生活动)设计理念创设情境,导入新课1.在纸上任意画一个角,用剪刀剪下,用折纸的方法,如何确定角的平分线?2. 有一个简易平分角的仪器(如图),其中AB=AD,BC=DC,将A点放角的顶点,AB和AD沿AC画一条射线AE,AE就是∠BAD的平分线,为什么?复习旧知识,回忆角的平分线的定义让学生体验利用证明三角形全等的方法来对画法做出说明.要求学生能说明所作的射线是角平分线的理由.探索新知,建立模型探究1.(1)从上面对平分角的仪器的探究中,可以得出作已知角的平分线的方法。
第一章三角形的证明第一节等腰三角形(一)【学习目标】1、进一步了解作为证明基础的几条基本事实的内容,并用这些基本事实证明等腰三角形的性质定理;2、熟悉证明的基本步骤和书写格式;【学习方法】自主探究与小组合作交流相结合.【学习重难点】重点:探索证明等腰三角形性质定理的思路与方法,掌握证明的基本要求和方法。
难点:明确推理证明的基本要求如明确条件和结论,能否用数学语言正确表达等。
【学习过程】模块一预习反馈1:回忆已经学过的几何基本知识(1)证明的基本步骤:①②③(2)我们已知道的8条基本事实:①两点确定一条直线。
②两点之间线段最短。
③同一平面内,过一点有且有一条直线与已知直线垂直。
④同位角相等,两直线平行。
⑤过直线外一点有且有一条直线与这条直线平行。
⑥两边及其夹角分别相等的两个三角形全等。
⑦两角及其夹边分别相等的两个三角形全等。
⑧三边分别相等的两个三角形全等。
还有等式的性质和等量代换也可以作为证明的依据。
(3)请同学们阅读教材2页~3的内容,并完成教材4页的随堂练习(4)预习过程中请注意:⑴不懂的地方要用红笔标记符号;⑵完成你力所能及的随堂练习和习题;⑶数学小组长认真检查,做好记录,上课前把本组的预习情况向老师汇报。
2.预习交流:能用所学知识进行规范证明(1)利用已有的公理和定理证明:两角及其中一角的对边对应相等的两个三角形全等。
”(画图、写出已知、求证、证明过程)已知:求证:证明:(2)等腰三角形性质定理:(等边对等角);(画图、写出已知、求证、证明过程)(3)推论(三线合一):;(画图、写出已知、求证、证明过程)D C B AD C B AF E 12BC D A E A B C D 模块二 合作探究1.如图,已知∠D =∠C ,∠A =∠B ,且AE = BF 。
求证:AD = BC 。
2.如图,在△ABC 中,D 为AC 上一点,并且AB = AD ,DB = DC ,若∠C = 29°,求∠A 。
《等腰三角形的判定》导学案第一课时学习目标知识与技能通过动手操作探索并掌握判定一个三角形是等腰三角形的方法。
过程与方法理解并掌握“等角对等边”,体会与“等边对等角”的互逆关系,能够利用三角形的判定方法去解决问题。
情感、态度与价值观提高学生的动手能力,学会数学说理,发展初步的演绎推理能力,进一步体会等腰三角形的对称美。
预习学案1、等腰三角形的性质:(1)从边看:等腰三角形的相等.(2)从角看:等腰三角形的相等.简写成“”。
(3)从重要线段看:等腰三角形底边上的、与顶角的互相重合.简称“”。
2、如果一个三角形有相等,那么它就是等腰三角形。
3、如果一个三角形有相等,那么这两个角所对的边也相等,简写成“”。
一、情景激疑我们知道,由等腰三角形的性质可知等腰三角形的两个底角相等;反过来,在一个三角形中,如果有两个角相等,那么它是等腰三角形吗?探究1:为了回答这个问题,请同学们拿出一张半透明纸,做一个实验,按以下方法进行操作:1、在半透明纸上画一条线段BC。
2、以BC为始边,分别以点B和点C为顶点,在BC的同侧用量角器画两个相等的角,两角终边的交点为A3、用刻度尺找出BC的中点D,连接AD,然后沿AD对折。
问题1:AB与AC是否重合?问题2:本实验的条件与结论如何用文字语言加以叙述?二、知识点归纳等腰三角形的判定方法:(1)如果一个三角形有相等,那么它就是等腰三角形。
(2)如果一个三角形有相等,那么这两个角所对的边也相等,简写成“等角对等边”。
探究2:对于等腰三角形的两种判定方法,请同学们画图并说出已知、求证。
目的是让同学们进一步熟悉将文字转化为数学语言的方法。
三、典型例题例1: 在△ABC中,已知∠A=40°,∠B=70°,判断△ABC是什么三角形,为什么?解:∵∠A+∠B+∠C=180°∠A=40°,∠B=70∴∠C=180°-∠A-∠B=180°-40°-70°=70°∴∠C=∠B∴△ABC为等腰三角形四、变式练习1、如图,AC 和BD 相交于点O ,且AB ∥DC ,OA=OB ,试说明:OC=OD2、如图示,∠CAE 是ΔABC 的外角,∠EAD =∠DAC ,AD ∥BC 。
13.3.1 等腰三角形的性质授课人:中九校 李波 学习目标:1、知识目标:了解等腰三角形的概念,掌握等腰三角形的性质。
(重点)2、技能目标:运用等腰三角形的概念及性质解决相关问题,进一步体会方程思想和转化思想,分类讨论思想。
(难点)3、情感目标:引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。
学习过程:(一)、自主学习:1、等腰三角形的定义: 腰: 底边: 顶角: 底角: (二)、合作探究:利用三角形纸片,探究完成下列填空:1、△ABC 是轴对称图形吗?若果是,对称轴是什么?△ABC2、相等的边:3、相等的角:4、归纳总结等腰三角形的性质:几何语言:性质1:在△ABC 中 ∵AB=AC∴ = 。
性质2:在△ABC 中1 、 ∵AB=AC ,∠BAD=∠CAD∴ BD = , ⊥ 。
2 、 ∵AB=AC ,BD=CD∴∠BAD= = , ⊥ . 3 、 ∵ AB=AC ,AD ⊥BC∴∠BAD= = , BD= .(三)典例讲解:例1 已知:在△ABC 中AB=AC ,点DE 为AC 上一点,连接BD ,AD=BD=BC 。
(1)求△ABC 各个角的度数。
(2)若△ABC 的周长为26cm ,△BCD 的周长为16cm ,求AB,BC 的长。
例2 如图所示,在等腰△ABC 中AB=AC ,AD 是BC 边上的中线,点E 在AD 上,连接BE ,CE 。
求证:BE=CE(四)、课堂小结:今天我们学习了那些知识点和那些数学思想?(五)、拓展提升:如图,线段AB 的一个端点A 在直线l 上,以AB 为一边画等腰△ABC ,并且使点C 在直线l 上,这样的等腰三角形能画多少个?并作出这样的点C 。
(六)、当堂检测:1、完成下列填空题:(1)已知等腰三角形的两边长分别是4和6,则它的周长是_________(2)已知等腰三角形的两边长分别是2和4,则它的周长是_________(3)已知顶角为70°,其余两个角分别为(4)已知底角为70°,其余两个角分别为(5)已知一个角为80°,其余两个角分别为2、已知一个等腰三角形的两角分别为(2x-2)°,(3x-5)°,求这个等腰三角形各角的度数.3、已知:点D、E在△ABC中, AB=AC, AD=AE. 求证:BD=CE。
等腰三角形(一)导学案
【教学目标】
1.教学知识点
(1)等腰三角形的概念。
(2)等腰三角形的性质。
(3)等腰三角形的概念及性质的应用。
2.能力训练要求
(1)经历作(画)出等腰三角形的过程,从轴对称的角度去体会等腰三角形的特点。
(2)探索并掌握等腰三角形的性质。
【教学重点】
1.等腰三角形的概念及性质。
2.等腰三角形性质的应用。
【教学难点】
等腰三角形三线合一的性质的理解及其应用。
【教学方法】
探究归纳法。
【教学过程】
ⅰ.提出问题,创设情境
1.复习轴对称和轴对称图形的知识。
2.三角形是轴对称图形吗?什么样的三角形是轴对称图形?ⅱ.导入新课,合作探究
满足轴对称图形条件的三角形是轴对称图形——等腰三角形。
1.你会画等腰三角形吗?学生动手,教师适当提示,并演示。
2.等腰三角形有什么性质?(提示:可从以下几个方面探索:a.等腰三角形是轴对称图形吗?请找出它的对称轴.b.等腰三角形的两底角有什么关系?c.顶角的平分线所在的直线是等腰三角形的
对称轴吗?d.底边上的中线所在的直线是等腰三角形的对称轴
吗?底边上的高所在的直线呢?)
经过学生的探索、归纳及提示,我们得出等腰三角形的性质。
等腰三角形的性质:
(1)等腰三角形的两个底角相等(简写成“等边对等角”)。
(2)等腰三角形的顶角平分线、底边上的中线底边上的高互相重合(通常称作“三线合一”)。
你会证明这些性质吗?教师引导学生进行规范的证明。
看我大显身手:
1.如图,在△abc中,ab=ac,点d在ac上,且bd=bc=ad,求△abc各角的度数。
2.在等腰△abc中,ab=ac,∠b=75°,求∠a和∠c的度数。
3.在等腰三角形中,已知两边的长为3 cm和4 cm,求它的周长。
ⅲ.随堂练习
1.课本p51练习1、2、3。
2.解答下列各题。
(1)在等腰三角形中,有一个角为75°,求其余两角的度数。
(2)在等腰三角形中,已知两边的长为4 cm和5 cm,求它的周长。
(3)在等腰三角形中,已知两边的长为8 cm和3 cm,求它的周长。
ⅳ.课堂小结
1.知识小结
等腰三角形的定义、等腰三角形的性质。
2.学习技能小结
探究学习、合作学习、实践能力等。
ⅴ.课后作业
1.课本p56第1,4,7题。
2.预习课本p51~p53。
3.预习等腰三角形的判定学案。
(作者单位湖北省十堰市第五中学)。