高中数学北师大版选修1-2练习:第一章 统计案例 章末复习课1 含解析
- 格式:docx
- 大小:675.06 KB
- 文档页数:8
回归分析题目击破
一、基本概念
函数关系是一种确定关系,而相关关系是一种非确定关系,回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.
例下列变量之间的关系是相关关系的是.
()正方形的边长与面积之间的关系;
()水稻产量与施肥量之间的关系;
()人的身高与年龄之间的关系;
()降雪量与交通事故发生率之间的关系.
分析两变量之间的关系有两种:函数关系和带有随机性的相关关系.
解析()是函数关系;()不是严格的函数关系,但是具有相关性,因而是相关关系;()既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而它们不具有相关关系;()降雪量与交通事故发生率之间具有相关关系.
答案()()
点评该例主要考查对变量相关关系概念的掌握.
二、线性回归方程
设与是具有相关关系的两个变量,且相应于个观测值的个点大致分布在一条直线的附近,这条直线就叫作回归直线.
例假设关于某设备的使用年限(年)和所支出的维修费用(万元)有如下的统计资料:
使用年限
维修费用
若由资料知对呈线性相关关系,试求:
()回归方程=+;
()估计使用年限年时,维修费用是多少?
分析因为对呈线性相关关系,所以可以用线性相关的方法解决问题.
解()制表
合计
=,=,=,=
于是有==,
=-=-×=.
∴回归方程为=+.
()当=时,=×+=(万元),。
一、选择题1.某校学生会为研究该校学生的性别与语文、数学、英语成绩这3个变量之间的关系,随机抽查了100名学生,得到某次期末考试的成绩数据如表1至表3,根据表中数据可知该校学生语文、数学、英语这三门学科中( )A .语文成绩与性别有关联性的可能性最大,数学成绩与性别有关联性的可能性最小B .数学成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小C .英语成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小D .英语成绩与性别有关联性的可能性最大,数学成绩与性别有关联性的可能性最小 2.某市通过随机询问100名不同年级的学生是否能做到“扶跌倒老人”,得到如下列联表:则下列结论正确的是( ) 附参照表:参考公式:22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++A .在犯错误的概率不超过90%的前提下,认为“学生能否做到‘扶跌倒老人’与年级高低有关”B .在犯错误的概率不超过1%的前提下,“学生能否做到‘扶跌倒老人’与年级高低无关”C .有90%以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低有关”D .有90%以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低无关”3.在“新零售”模式的背景下,自由职业越来越流行,诸如:淘宝网店主、微商等等,现调研某自由职业者的工资收入情况,记x 表示该自由职业者的平均水平每天工作的小时数,y 表示平均每天工作x 个小时的月收入.假设y 与x 具有线性相关关系,则y 关与x 的线性回归方程ˆˆˆy bx a =+必经过点( )A .()33,B .()34,C .()44,D .()45,4.某射手射击一次命中的概率为0.8,连续两次射击均命中的概率是0.6,已知该射击手某次射中,则随后一次射中的概率是( ) A .34B .45C .35D .7105.从混有4张假钞的10张一百元纸币中任意抽取3张,若其中一张是假币的条件下,另外两张都是真币的概率为( ) A .512B .58C .35D .126.一射手对同一目标独立地进行4次射击,且射击结果之间互不影响.已知至少命中一次的概率为8081,则此射手的命中率为( ) A .19 B .13 C .23D .8 97.若对于变量x 的取值为3,4,5,6,7时,变量y 对应的值依次分别为4.0,2.5,-0.5,-1,-2;若对于变量u 的取值为1,2,3,4时,变量v 对应的值依次分别为2,3,4,6,则变量x 和y ,变量u 和v 的相关关系是( ) A .变量x 和y 是正相关,变量u 和v 是正相关 B .变量x 和y 是正相关,变量u 和v 是负相关 C .变量x 和y 是负相关,变量u 和v 是负相关 D .变量x 和y 是负相关,变量u 和v 是正相关8.为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下22⨯列联表:附:()()()()()22n ad bc K a b c d a c b d -=++++参照附录,得到的正确结论是( ) A .在犯错误的概率不超过5%的前提下,认为“该市居民能否做到‘光盘’与性别有关” B .在犯错误的概率不超过2.5%的前提下,认为“该市居民能否做到‘光盘’与性别有关” C .有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关” D .有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”9.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为( ) A .0.12B .0.42C .0.46D .0.8810.通过随机询问72名不同性别的学生在购买食物时是否看营养说明,得到如下列联表:参考公式:22()()()()()n ad bc K a b c d a c b d -=++++则根据以上数据:A .能够以99.5%的把握认为性别与读营养说明之间无关系;B .能够以99.9%的把握认为性别与读营养说明之间无关系;C .能够以99.5%的把握认为性别与读营养说明之间有关系;D .能够以99.9%的把握认为性别与读营养说明之间有关系;11.甲乙丙三位同学独立的解决同一个问题,已知三位同学单独正确解决这个问题的概率分别为12,13,15,则有人能够解决这个问题的概率为( ) A .130 B .415C .1115D .131512.甲、乙两位同学各自独立地解答同一个问题,他们能够正确解答该问题的概率分别是23和12,在这个问题至少被一个人正确解答的条件下,甲、乙两位同学都能正确解答该问题的概率为( ) A .27B .25C .15D .19二、填空题13.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为35和p,且甲、乙两人各射击一次得分之和为2的概率为920.假设甲、乙两人射击互不影响,则p 值为______. 14.有甲、乙两台机床生产某种零件,甲获得正品乙不是正品的概率为14,乙获得正品甲不是正品的概率为16,且每台获得正品的概率均大于12,则甲乙同时生产这种零件,至少一台获得正品的概率是___________.15.一个不透明的箱中原来装有形状、大小相同的1个绿球和3个红球.甲、乙两人从箱中轮流摸球,每次摸取一个球,规则如下:若摸到绿球,则将此球放回箱中可继续再摸;若摸到红球,则将此球放回箱中改由对方摸球,甲先摸球,则在前四次摸球中,甲恰好摸到两次绿球的概率是________. 16.有如下四个命题:①甲乙两组数据分别为甲:28,31,39,42,45,55,57,58,66;乙:29,34,35,48,42,46,55,53,55,67.则甲乙的中位数分别为45和44.②相关系数0.83r =-,表明两个变量的相关性较弱.③若由一个2⨯2列联表中的数据计算得2K 的观测值 4.103k ≈,那么有95%的把握认为两个变量有关.④用最小二乘法求出一组数据(,),(1,,)i i x y i n =的回归直线方程ˆˆˆy bx a =+后要进行残差分析,相应于数据(,),(1,,)i i x y i n =的残差是指()ˆˆˆi i ie y bx a =-+. 以上命题“错误”的序号是_________________ 17.下列命题中,正确的命题有__________.①回归直线ˆˆˆy bx a =+恒过样本点的中心(),x y ,且至少过一个样本点;②将一组数据的每个数据都加一个相同的常数后,方差不变;③用相关指数2R来刻面回归效果;表示预报变量对解释变量变化的贡献率,越接近于1,说明模型的拟合效果越好;④若分类变量X和Y的随机变量2K的观测值K越大,则“X与Y相关”的可信程度越小;⑤.对于自变量x和因变量y,当x取值一定时,y的取值具有一定的随机性,x,y间的这种非确定关系叫做函数关系;⑥.残差图中残差点比较均匀的地落在水平的带状区域中,说明选用的模型比较合适;⑦.两个模型中残差平方和越小的模型拟合的效果越好.18.在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁,为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下联表:参考公式:()()()()()22n ad bcKa b c d a c b d-=++++参照附表,在犯错误的概率最多不超过__________(填百分比)的前提下,可认为“该种疫苗由预防埃博拉病毒感染的效果”.19.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.20.现有A,B两队参加关于“十九大”知识问答竞赛,每队3人,每人回答一个问题,答对者为本队赢1分,答错得0分;A队中每人答对的概率均为23,B队中3人答对的概率分别为23,23,13,且各答题人答题正确与否之间互不影响,若事件M表示“A队得2分”,事件N表示“B队得1分”,则()P MN=______.三、解答题21.中国探月工程自2004年立项以来,聚焦“自主创新、重点跨越、支撑发展、引领未来”的目标,创造了许多项中国首次.2020年12月17日凌晨,嫦娥五号返回器携带“月壤”着陆地球,又首次实现了我国地外天体无人采样返回.为了了解某中学高三学生对此新闻事件的关注程度,从该校高三学生中随机抽取了100名学生进行调查,调查样本中有40名女生.下图是根据样本的调查结果绘制的等高条形图(阴影区域表示关注“嫦娥五号”的部分).关注 没关注 合计男 女 合计(1)完成上面的2×2列联表,并计算回答是否有95%的把握认为“对‘嫦娥五号’关注程度与性别有关”?(2)若将频率视为概率,现从该中学高三的女生中随机抽取3人.记被抽取的3名女生中对“嫦娥五号”新闻关注的人数为随机变量X ,求X 的分布列及数学期望. 附:()20P K k ≥0.150 0.100 0.050 0.010 0.0050k2.072 2.7063.8416.6357.87922()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++ 22.一网络公司为某贫困山区培养了100名“乡土直播员”,以帮助宣传该山区文化和销售该山区的农副产品,从而带领山区人民早日脱贫致富.该公司将这100名“乡土直播员”中每天直播时间不少于5小时的评为“网红乡土直播员”,其余的评为“乡土直播达人”.根据实际评选结果得到了下面22⨯列联表:网红乡土直播员 乡土直播达人 合计 男 10 40 50 女203050(2)在“网红乡土直播员”中按分层抽样的方法抽取6人,在这6人中选2人作为“乡土直播推广大使”.求这两人中恰有一男一女的概率.附:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.23.中学为研究学生的身体素质与体育锻炼时间的关系,对该校200名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)将学生日均体育锻炼时间在[)40,60的学生评价为“锻炼达标”.(1)请根据上述表格中的统计数据填写下面的22⨯列联表;并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“锻炼达标”与性别有关?(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出10人,进行体育锻炼体会交流,(i)求这10人中,男生、女生各有多少人?(ii)从参加体会交流的10人中,随机选出2人作重点发言,记这2人中女生的人数为X,求X的分布列和数学期望.参考公式:()()()()()22n ad bc k a b c d a c b d -=++++,其中n a b c d =+++.临界值表24.消费者信心指数是反映消费者信心强弱的指标;它是预测经济走势和消费趋向的一个先行指标,是监测经济周期变化的重要依据.消费者信心指数值介于0和200之间.指数超过100时,表明消费者信心处于强信心区;指数等于100时,表示消费者信心处于强弱临界点;指数小于100时,表示消费者信心处于弱信心区.我国某城市从2016年到2019年各季度的消费者信心指数如下表1:记2016年至2019年年份序号为,该城市各年消费者信心指数的年均值(四舍五入取整)为y ,x 与y 的关系如下表2:的消费者信心指数不小于2017年的消费者信心指数的概率;(2)根据表2得到线性回归方程为:ˆˆ4.4yx a =+,求ˆa 的值,并预报该城市2020年消费者信心指数的年平均值.(3)根据表2计算(,)x y 的相关系数r (保留两位小数),并判断是否正相关很强.参考数据和公式:ˆˆa y bx =-;12342.54x +++==;105112114119112.54y +++==23.45≈22.47≈;()()()()12211niii nniii i x x y y r x x y y ===--=--∑∑∑;当0.751r ≤≤时,y 与x 正相关很强.25.甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.优秀 非优秀 总计甲班 10乙班30合计105已知在全部105人中抽到随机抽取1人为优秀的概率为27(Ⅰ)请完成上面的列联表;(Ⅱ)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系” . (Ⅲ)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6或10号的概率. 参考公式:22()()()()()n ad bc K a b c d a c b d -=++++26.近年来,网络电商已经悄然进入了广大市民的日常生活,并慢慢改变了人们的消费方式为了更好地服务民众,某电商在其官方APP 中设置了用户评价反馈系统,以了解用户对商品状况和优惠活动的评价现从评价系统中随机抽出200条较为详细的评价信息进行统计,商品状况和优惠活动评价的2×2列联表如下:对优惠活动好评 对优惠活动不满意 合计(I )能否在犯错误的概率不超过0.001的前提下认为优惠活动好评与商品状况好评之间有关系?(Ⅱ)为了回馈用户,公司通过APP 向用户随机派送每张面额为0元,1元,2元的三种优惠券用户每次使用APP 购物后,都可获得一张优惠券,且购物一次获得1元优惠券,2元优惠券的概率分别是12,13,各次获取优惠券的结果相互独立若某用户一天使用了APP 购物两次,记该用户当天获得的优惠券面额之和为X ,求随机变量X 的分布列和数学期望. 参考数据参考公式:K 2()()()()2()n ad bc a b c d a c b d -=++++,其中n =a +b +c +d【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】根据题目所给的数据填写2×2列联表即可;计算K 的观测值K 2,对照题目中的表格,得出统计结论. 【详解】因为()()2210014341636100103020403070505030705050⨯⨯-⨯⨯⨯-⨯<⨯⨯⨯⨯⨯⨯()2100254552530705050⨯⨯-⨯<⨯⨯⨯,所以英语成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小. 故选C 【点睛】本题考查了独立性检验的应用问题,也考查了计算能力的应用问题,是基础题目.2.C解析:C 【解析】分析:根据列联表中数据,利用公式求得2 3.03K ≈,参照临界值表即可得到正确结论. 详解:由公式()()()()()22n d bc k a b c d a c b d -=++++可得2 3.03K ≈,参照临界值表,2.7063.030 3.841<<,∴0090以上的把握认为,“学生能否做到‘扶跌倒老人’与年级高低有关”,故选C.点睛:本题考查了独立性检验的应用,属于基础题. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.3.C解析:C 【解析】分析:由题意结合回归方程的性质确定回归方程经过样本中心点即可. 详解:由题意可得:2345645x ++++==, 2.534 4.5645y ++++==,由线性回归方程的性质可知线性回归方程ˆˆˆy bx a =+经过样本中心点:()4,4.本题选择C 选项.点睛:本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.4.A解析:A 【解析】分析:某次射中,设随后一次射中的概率为p ,利用相互独立事件概率乘法公式能求出p 的值.详解:某次射中,设随后一次射中的概率为p ,∵某射击手射击一次命中的概率为0.8,连续两次均射中的概率是0.5,0.80.6p ,∴= 解得34p =.故选:A .点睛:本题考查概率的求法,涉及到相互独立事件概率乘法公式的合理运用,考查推理论证能力、运算求解能力、数据处理能力,考查化归与转化思想,是基础题.5.A解析:A【解析】分析:直接利用条件概率公式求解.详解:由条件概率公式得26291553612CPC===.故答案为A点睛:(1)本题主要考查条件概率,意在考查学生对条件概率的掌握水平.(2) 条件概率一般有“在A已发生的条件下”这样的关键词,表明这个条件已经发生,发生了才能称为条件概率.但是有时也没有,要靠自己利用条件概率的定义识别.6.C解析:C【解析】设此射手未射中目标的概率为p,则1-p4=8081,所以p=13,故此射手的命中率为1-p=2 3 .故选C7.D解析:D【解析】变量x增加,变量y减少,所以变量x和y是负相关;变量u增加,变量v增加,所以变量u和v是正相关,因此选D.8.D解析:D【解析】经计算()()()()()222100(45153010)3.030 2.70655457525n ad bcKa b c d a c b d-⨯⨯-⨯==≈> ++++⨯⨯⨯,参照附表,得到的正确结论是有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”。
可线性化的回归分析
明目标、知重点.进一步体会回归分析的基本思想.通过非线性回归分析,判断几种不同模型的拟合程度.
.常见的非线性回归模型
幂函数曲线=,指数曲线=.
倒指数曲线=,对数曲线=+.
.非线性函数可以通过变换转化成线性函数,得到线性回归方程,再通过相应变换得到非线性回归方程.
探究点一非线性回归模型
思考有些变量间的关系并不是线性相关,怎样确定回归模型?
答
首先要作出散点图,如果散点图中的样本点并没有分布在某个带状区域内,则两个变量不呈现线性相关关系,不能直接利用回归方程来建立两个变量之间的关系,这时可以根据已有的函数知识,观察样本点是否呈指数函数关系或二次函数关系,选定适当的回归模型.
思考如果两个变量呈现非线性相关关系,怎样求出回归方程?
答
可以通过对解释变量进行变换,如对数变换或平方变换,先得到另外两个变量间的回归方程,再得到所求两个变量的回归方程.
例某地区不同身高的未成年男性的体重平均值如下表:
身高
体重
身高
体重
试建立与之间的回归方程.
解根据表中数据画出散点图如图所示.
由图看出,样本点分布在某条指数函数曲线=的周围,于是令=. 画出散点图如图所示.
由表中数据可得=,=,=,=,
∴=≈,
∴=-≈,
∴与之间的线性回归方程为=+,。
陕西省榆林育才中学高中数学 第1章《统计案例》第一章(无答案)北师大版选修1-2一、选择题1、散点图在回归分析中的作用是 ( )A .查找个体数目B .比较个体数据关系C .探究个体分类D .粗略判断变量是否呈线性关系4、下列说法正确的是 ( )A .任何两个变量都具有相关系B .球的体积与球的半径具有相关关系C .农作物的产量与施肥量是一种确定性关系D .某商品的产量与销售价格之间是非确定性关系5、在画两个变量的散点图时,下面哪个叙述是正确的( )A. 预报变量在x 轴上,解释变量在 y 轴上B. 解释变量在x 轴上,预报变量在 y 轴上C. 可以选择两个变量中任意一个变量在x 轴上D. 可以选择两个变量中任意一个变量在 y 轴上6、回归直线y bx a =+必过 ( )A .(0,0)B .(,0)xC .(0,)yD .(,)x y7、三维柱形图中,主、副对角线上两个柱形高度的 相差越大,要推断的论述成立的可能性就越大 ( )A .和B .差C .积D .商8、两个变量 y 与x 的回归模型中,求得回归方程为0.232x y e -=,当预报变量10x = ( )A. 解释变量30y e -=B. 解释变量y 大于30e -C. 解释变量y 小于30e -D. 解释变量y 在30e -左右9、在回归分析中,求得相关指数20.89R =,则( )A. 解释变量解对总效应的贡献是11%B. 解释变量解对总效应的贡献是89%C. 随机误差的贡献是89%C. 随机误差的贡献是0.89%10、在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是 ( )A .若k =6.635,则有99%的把握认为吸烟与患肺病有关,那么100名吸烟者中,有99个患肺病.B .从独立性检验可知,有99%的把握认为吸烟与患肺病有关时,可以说某人吸烟,那么他有99%的可能性患肺病.C .若从统计量中求出有95%的把握认为吸烟与患肺病有关,是指有5%的可能性使得推断出现错误.D .以上三种说法都不对.11、3. 通过12,,,n e e e 来判断模拟型拟合的效果,判断原始数据中是否存在可疑数据,这种分析称为( )A .回归分析B .独立性检验分析C .残差分析 D. 散点图分析12、在独立性检验时计算的2K 的观测值k =3.99,那么我们有 的把握认为这两个分类变量有关系 ( )A .90%B .95%C .99%D .以上都不对二、填空题13、已知回归直线方程0.50.81y x =-,则25x =时,y 的估计值为 .14、如下表所示:计算2K = . 15、下列关系中: (1)玉米产量与施肥量的关系; (2)等边三角形的边长和周长; (3)电脑的销售量和利润的关系; (4)日光灯的产量和单位生产成本的关系.不是函数关系的是 .16、在一项打鼾与患心脏病的调查中,共调查1768人,经计算的2K =27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是 的.(填“有关”“无关”) 三、解答题18、为考察某种药物预防疾病的效果,进行动物试验,得到如下列联表 33能以97.5%的把握认为药物有效吗?为什么?。
(一)统计案例章末综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列各量与量的关系中是相关关系的为()①正方体的体积与棱长之间的关系;②一块农田的水稻产量与施肥量之间的关系;③人的身高与年龄之间的关系;④家庭的支出与收入之间的关系;⑤某户家庭用电量与电费之间的关系.A.①②③B.③④C.④⑤D.②③④【解析】①⑤是一种确定性关系,属于函数关系.②③④为相关关系.【答案】D2.四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且y=2。
347x-6。
423;②y与x负相关且y=-3。
476x+5.648;③y与x正相关且y=5.437x+8.493;④y与x正相关且y=-4。
326x-4。
578.其中一定不正确的结论的序号是( )A.①②B.②③C.③④D.①④【解析】y与x正(或负)相关时,线性回归直线方程y=bx+a中,x的系数b〉0(或b 〈0),故①④错.【答案】D3.电视机的使用寿命与显像管开关的次数有关.某品牌的电视机的显像管开关了10 000次后还能继续使用的概率是0.80,开关了15 000次后还能继续使用的概率是0.60,则已经开关了10 000次的电视机显像管还能继续使用到15 000次的概率是( ) A.0.75 B.0。
60C.0。
48 D.0.20【解析】记“开关了10 000次后还能继续使用”为事件A,记“开关了15 000次后还能继续使用 "为事件B,根据题意,易得P(A)=0。
80,P(B)=0.60,则P(AB)=0.60,由条件概率的计算方法,可得P(B|A)=错误!=错误!=0。
75。
【答案】A4.一位母亲记录了她儿子3岁到9岁的身高,建立了她儿子身高与年龄的回归模型y=73.93+7.19x,她用这个模型预测儿子10岁时的身高,则下面的叙述正确的是()A.她儿子10岁时的身高一定是145。
第一章 统计案例章末小结一、回归分析1.线性回归分析设样本点(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其线性回归直线方程为y =a +bx ,其中b =l xy l xx =∑i =1n x i -xy i -y ∑i =1n x i -x 2=∑i =1nx i y i -n x y ∑i =1nx 2i -n x 2, a =y -b x .2.相关系数r =l xy l xx l yy=∑i =1nx i -xy i -y ∑i =1n x i -x2∑i =1ny i -y 2=∑i =1n x i y i -n x y∑i =1n x 2i -n x 2∑i =1n y 2i -n y 2. |r |值越大,变量之间的线性相关程度越高;|r |值越接近0,变量之间的线性相关程度越低.二、条件概率1.条件概率的计算公式P (B |A )=P AB P A =n AB n A. 2.计算条件概率时,必须搞清楚欲求的条件概率是在哪一个事件发生的条件下的概率,从而选择合适的条件概率公式.三、独立事件1.独立事件的判断方法(1)定义法:对两个事件A,B,如果P(AB)=P(A)P(B),则称A,B相互独立.若A,B 相互独立,则A与B,A与B,A与B也相互独立.(2)事件A是否发生对事件B发生的概率无影响.2.相互独立事件同时发生的概率的求法P(AB)=P(A)P(B).3.相互独立事件往往与互斥事件、对立事件在题目中综合考查,要注意正确运用公式.四、独立性检验独立性检验的一般步骤(1)列出2×2列联表;(2)代入公式计算χ2=n ad-bc2a +b c+d a+c b+d;(3)根据χ2的值的大小作出判断.。
一、选择题1.甲射击时命中目标的概率为0.75,乙射击时命中目标的概率为23,则甲乙两人各自射击同一目标一次,则该目标被击中的概率为( ) A .12B .1C .56D .11122.甲、乙两人进行乒乓球比赛,假设每局比赛甲胜的概率是0.6,乙胜的概率是0.4.那么采用5局3胜制还是7局4胜制对乙更有利?( ) A .5局3胜制B .7局4胜制C .都一样D .说不清楚3.针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的12,男生追星的人数占男生人数的16,女生追星的人数占女生人数的23.若有95%的把握认为是否追星和性别有关,则男生至少有( ) 参考数据及公式如下:2()=()()()()n ad bc K a b c d a c b d -++++A .12B .11C .10D .184.A B 两支篮球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局A 队获胜的概率是12外,其余每局比赛B 队获胜的概率都是13.假设各局比赛结果相互独立.则A 队以3:2获得比赛胜利的概率为( ) A .427B .281C .1681D .8275.袋中装有10个形状大小均相同的小球,其中有6个红球和4个白球.从中不放回地依次摸出2个球,记事件A =“第一次摸出的是红球”,事件B =“第二次摸出的是白球”,则(|)P B A =( )A .25B .415C .49D .596.2018年元旦期间,某高速公路收费站的三个高速收费口每天通过的小汽车数X (单位:辆)均服从正态分布()2600,Nσ,若()5007000.6P X <<=,假设三个收费口均能正常工作,则这个收费口每天至少有一个超过700辆的概率为( )A .1125B .12125C .61125D .641257.甲、乙两人抢答竞赛题,甲答对的概率为15,乙答对的概率为14,则两人中恰有一人答对的概率为 A .720B .12 20C .1 20D .2208.四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且 2.7567.3ˆ25yx =-+. ②y 与x 负相关且 3.47654ˆ.68y x =+ ③y 与x 正相关且 1.226 6.5ˆ78yx =-- ④y 与x 正相关且8.96786ˆ.13y x =+ 其中一定不正确的结论的序号是( ) A .①②B .②③C .③④D .①④9.为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下22⨯列联表:附:()()()()()22n ad bc K a b c d a c b d -=++++参照附录,得到的正确结论是( ) A .在犯错误的概率不超过5%的前提下,认为“该市居民能否做到‘光盘’与性别有关” B .在犯错误的概率不超过2.5%的前提下,认为“该市居民能否做到‘光盘’与性别有关” C .有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关” D .有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关” 10.下列有关结论正确的个数为( )①小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点不相同”,事件B =“小赵独自去一个景点”,则()2|9P A B =; ②设,a b ∈R ,则“22log log a b >”是“21a b ->的充分不必要条件;③设随机变量ξ服从正态分布(),7N μ,若()()24P P ξξ<=>,则μ与D ξ的值分别为3,7D μξ==. A .0B .1C .2D .311.袋中有6个黄色、4个白色的乒乓球,做不放回抽样,每次任取1个球,取2次,则关于事件“直到第二次才取到黄色球”与事件“第一次取到白球的情况下,第二次恰好取得黄球”的概率说法正确的是( )A .事件“直到第二次才取到黄色球”与事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率都等于23 B .事件“直到第二次才取到黄色球”与事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率都等于415C .事件“直到第二次才取到黄色球”的概率等于23,事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率等于415D .事件“直到第二次才取到黄色球”的概率等于415,事件“第一次取得白球的情况下,第二次恰好取得黄球”的概率等于2312.甲、乙两位同学各自独立地解答同一个问题,他们能够正确解答该问题的概率分别是23和12,在这个问题至少被一个人正确解答的条件下,甲、乙两位同学都能正确解答该问题的概率为( )A .27B .25C .15D .19二、填空题13.有甲、乙两台机床生产某种零件,甲获得正品乙不是正品的概率为14,乙获得正品甲不是正品的概率为16,且每台获得正品的概率均大于12,则甲乙同时生产这种零件,至少一台获得正品的概率是___________.14.2018年春季,世界各地相继出现流感疫情,这已经成为全球性的公共卫生问题.为了考察某种流感疫苗的效果,某实验室随机抽取100只健康小鼠进行试验,得到如下列联表:总计 30 70 100关系.(参考公式:()()()()()22n ad bc K a b c d a c b d -=++++.) 20()P K k ≥ 0.100.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.82815.已知下列命题:①从匀速传递的产品生产流水线上,质检员每30分钟从生产流水线中抽取一件产品进行某项指标检测,这样的抽样方法是系统抽样;②两个变量的线性相关程度越强,则相关系数的值越接近于1;③两个分类变量X 与Y 的观测值2k ,若2k 越小,则说明“X 与Y 有关系”的把握程度越大;④随机变量X ~(0,1)N ,则(1)2(1)1P X P X <=<-. 其中为真命题的是__________.16.从包括甲乙两人的6名学生中选出3人作为代表,记事件A :甲被选为代表,事件B :乙没有被选为代表,则()P BA │等于_________. 17.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是_________.18.一盒子装有只产品,其中有只一等品,只二等品.从中取产品两次,每次任取一只,作不放回抽样.设事件为“第一次取到的是一等品”,事件为“第二次取到的是一等品”,则条件概率___.19.红队队员甲、乙、丙与蓝队队员A ,B ,C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘.已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立,则红队至少两名队员获胜的概率是____________.20.用线性回归模型求得甲、乙、丙3组不同的数据对应的2R 的值分别为0.81,0.98,0.63,其中__________(填甲、乙、丙中的一个)组数据的线性回归的效果最好.三、解答题21.某电器企业统计了近10年的年利润额y (千万元)与投入的年广告费用x (十万元)的相关数据,散点图如图,对数据作出如下处理:令ln i i u x =,ln i i v y =,得到相关数据如表所示:101i iiu v=∑101iiu=∑101iiv=∑1021iiu=∑30.5151546.5(1)从①y bx a=+;②()0,0ky m x m k=⋅>>;③2y cx dx e=++三个函数中选择一个作为年广告费用x和年利润额y的回归类型,判断哪个类型符合,不必说明理由;(2)根据(1)中选择的回归类型,求出y与x的回归方程;(3)预计要使年利润额突破1亿,下一年应至少投入多少广告费用?(结果保留到万元)参考数据:103.6788e≈,33.678849.787≈.参考公式:回归方程ˆy a bt=+中斜率和截距的最小二乘估计公式分别为()()()121ˆni iiniit t y ybt t==--=-∑∑,a y bt=-.22.一网络公司为某贫困山区培养了100名“乡土直播员”,以帮助宣传该山区文化和销售该山区的农副产品,从而带领山区人民早日脱贫致富.该公司将这100名“乡土直播员”中每天直播时间不少于5小时的评为“网红乡土直播员”,其余的评为“乡土直播达人”.根据实际评选结果得到了下面22⨯列联表:网红乡土直播员乡土直播达人合计男104050女203050合计3070100(1)根据列联表判断是否有95%的把握认为“网红乡土直播员”与性别有关系? (2)在“网红乡土直播员”中按分层抽样的方法抽取6人,在这6人中选2人作为“乡土直播推广大使”.求这两人中恰有一男一女的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥ 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.82823.在一次抽样调查中测得5个样本点,得到下表及散点图.x0.250.51 2 4 y1612521(1)根据散点图判断y a bx =+与1y c k x -=+⋅哪一个适宜作为y 关于x 的回归方程;(给出判断即可,不必说明理由)(2)根据(1)的判断结果试建立y 与x 的回归方程;(计算结果保留整数) (3)在(2)的条件下,设=+z y x 且[)4,x ∈+∞,试求z 的最小值.参考公式:回归方程ˆˆˆybx a =+中,()()()1122211ˆn niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.24.为了落实这次新冠病毒疫情防范措施,确保广大居民的防控安全,某巡视组为了掌握第一手防控资料和新方法,选择了具有代表性的A 、B 两个社区进行满意度调研(共105户),且针对各种情况设制了达标分数线,按照不少于80分的定为满意,低于80分的为不满意,为此相关人员制作了如下图的22⨯列联表.满意不满意总计A社区45b=??B社区c=?20?总计???已知从全部105户中随机抽取1户为满意的概率是57.(1)请完成上图的22⨯列联表中的?所代表的值;(2)根据列联表的数据判断能否有95%的把握认为“满意度与社区有关系”?(3)为了进一步了解社区居民对情防范措施不满意的具体情况,巡视组在A社区按下面的方法抽取一户进行详细调查了解,把A社区不满意的户主按1、2、3、4,…,开始进行编号,再先后两次抛掷一枚均匀的骰子,出现点数之和为被抽取户主的编号,试求抽到6号或10号的概率.附注:()()()()()22n ad bcKa b c d a c b d-=++++()2P K k≥0.050.01k 3.841 6.63525.为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了2018年下半年该市100名农民工(其中技术工、非技术工各50名)的月工资,得到这100名农民工的月工资均在[]25,55(百元)内,且月工资收入在[45,50)(百元)内的人数为15,并根据调查结果画出如图所示的频率分布直方图:(1)求n的值;(2)已知这100名农民工中月工资高于平均数的技术工有31名,非技术工有19名.①完成如下所示22⨯列联表②则能否在犯错误的概率不超过0.001的前提下认为是不是技术工与月工资是否高于平均数有关系?参考公式及数据:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.26.近年来,国资委党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某扶贫小组为更好的执行精准扶贫政策,为某扶贫县制定了具体的扶贫政策,并对此贫困县2015年到2019年居民家庭人均纯收入(单位:百元)进行统计,数据如下表:并调查了此县的300名村民对扶贫政策的满意度,得到的部分数据如下表所示:(1)求人均纯收入y 与年份代号t 的线性回归方程;(2)是否有99.9%的把握认为村民的年龄与对扶贫政策的满意度具有相关性? (3)若以该村的村民的年龄与对扶贫政策的满意度的情况估计贫困县的情况,则从该贫困县中任取3人,记取到不满意扶贫政策的45岁以上的村民人数为x ,求x 的分布列及数学期望.参考公式:回归直线ˆya bx =+中斜率和截距的最小二乘估计公式分别为:()121(,)(,)nii n i x x yy b x x ==--=-∑∑,a y bx =-;22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.临界值表:【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中,利用独立事件的概率乘法公式计算出事件A 的对立事件的概率,再利用对立事件的概率公式可得出事件A 的概率. 【详解】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中, 则事件:A 甲乙两人各自射击同一目标一次,两人都未击中目标,由独立事件的概率乘法公式得()321114312P A ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭,()()111111212P A P A ∴=-=-=,故选D. 【点睛】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,可以采用分类讨论,本题采用对立事件求解,可简化分类讨论,属于中等题.2.A解析:A 【分析】分别计算出乙在5局3胜制和7局4胜制情形下对应的概率,然后进行比较即可得出答案. 【详解】当采用5局3胜制时,乙可以3:0,3:1,3:2战胜甲,故乙获胜的概率为:322222340.4+0.40.60.40.40.60.40.3174C C ⨯⨯+⨯⨯≈;当采用7局4胜制时,乙可以4:0,4:1,4:2,4:3战胜甲,故乙获胜的概率为:4333323334560.4+0.40.60.40.40.60.4+0.40.60.40.2898C C C ⨯⨯+⨯⨯⨯⨯≈,显然采用5局3胜制对乙更有利,故选A. 【点睛】本题主要考查相互独立事件同时发生的概率,意在考查学生的计算能力和分析能力,难度中等.3.A解析:A 【分析】设男生人数为x ,依题意可得列联表;根据表格中的数据,代入求观测值的公式,求出观测值同临界值进行比较,列不等式即可得出结论. 【详解】设男生人数为x ,依题意可得列联表如下:则2 3.841K >,由222235236183 3.841822x x x K x x x x x ⎛⎫- ⎪⎝⎭==>⋅⋅⋅,解得10.24x >,,26x x为整数, ∴若在犯错误的概率不超过95%的前提下认为是否喜欢追星和性别有关,则男生至少有12人,故选A. 【点睛】本题主要考查独立性检验知识,考查学生的计算能力,考查学生分析解决问题的能力,属于中档题. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.4.A解析:A 【解析】分析:若“A 队以3:2胜利”,则前四局A 、B 各胜两局,第五局A 胜利,利用独立事件同时发生的概率公式可得结果. 详解:若“A 队以3:2胜利”, 则前四局A 、B 各胜两局, 第五局A 胜利,因为各局比赛结果相互独立, 所以队以3:2获得比赛胜利的概率为2224211433227P C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭,故选A. 点睛:本题主要考查阅读能力,独立事件同时发生的概率公式,意在考查利用所学知识解决实际问题的能力,属于中档题.5.C解析:C 【解析】分析:利用概率的计算公式,求解事件A 和事件A B 的概率,即可利用条件概率的计算公式,求解答案.详解:由题意,事件A =“第一次摸出的是红球”时,则63()105P A ==, 事件A =“第一次摸出的是红球”且事件B =“第二次摸出白球”时,则6412()10945P AB =⨯=, 所以()4(|)()9P AB P B A P A ==,故选C . 点睛:本题主要考查了条件概率的计算,其中熟记条件概率的计算公式和事件的概率是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与计算能力.6.C解析:C 【解析】分析:根据正态曲线的对称性求解即可.详解:根据正态曲线的对称性,每个收费口超过700辆的概率()()()111700150070010.60.2225P X P X ⎡⎤≥=-<<=⨯-==⎣⎦, ∴这三个收费口每天至少有一个超过700辆的概率 3161115125P ⎛⎫=--=⎪⎝⎭,故选C. 点睛:本题主要考查正态分布的性质与实际应用,属于中档题.有关正态分布的应用题考查知识点较为清晰,只要掌握以下两点,问题就能迎刃而解:(1)仔细阅读,将实际问题与正态分布“挂起钩来”;(2)熟练掌握正态分布的性质,特别是状态曲线的对称性以及各个区间概率之间的关系.7.A解析:A 【解析】第一种:甲答对,乙答错,此时概率为11315420⎛⎫⨯-=⎪⎝⎭;第二种:甲答错,乙答对,此时的概率为11415420⎛⎫-⨯=⎪⎝⎭. 综上,两人中恰有一人答对的概率为347202020+=. 故选A.8.B解析:B 【解析】根据题意,依次分析4个结论:对于①、y 与x 负相关且ˆy=−2.756x+7.325,此结论正确,线性回归方程符合负相关的特征;对于②、y 与x 负相关且ˆy=3.476x+5.648,此结论误,由线性回归方程知,此两变量的关系是正相关;对于③、y 与x 正相关且ˆy=−1.226x−6.578,此结论误,由线性回归方程知,此两变量的关系是负相关;对于④、y 与x 正相关且ˆy=8.967x+8.163,此结论正确,线性回归方程符合正相关的特征;故②③一定错误; 本题选择B 选项.点睛:在回归直线方程y bx a =+中,b 代表x 每增加一个单位,y 平均增加的单位数,一般来说,当回归系数b >0时,说明两个变量呈正相关关系;当回归系数b <0时,说明两个变量呈负相关关系.9.D解析:D 【解析】经计算()()()()()222100(45153010) 3.030 2.70655457525n ad bc K a b c d a c b d -⨯⨯-⨯==≈>++++⨯⨯⨯,参照附表,得到的正确结论是有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”。
明目标、知重点.理解列联表的意义,会根据列联表中数据大致判断两个变量是否独立.理解统计量χ的意义和独立性检验的基本思想.
.×列联表
设、为两个变量,每一变量都可以取两个值,得到表格
总计
+
+
总计++=+++
其中,表示变量取,且变量取时的数据,表示变量取,且变量取时的数据;表示变量取,且变量取时的数据;表示变量取,且变量取时的数据.上表在统计中称为×列联表.
.统计量χ
χ=.
.独立性检验
当χ≤时,没有充分的证据判定变量,有关联;
当χ>时,有的把握判定变量,有关联;
当χ>时,有的把握判定变量,有关联;
当χ>时,有的把握判定变量,有关联.
[情境导学]
月日是世界无烟日.有关医学研究表明,许多疾病,例如:心脏病、癌症、脑血管病、慢性阻塞性肺病等都与吸烟有关,吸烟已成为继高血压之后的第二号全球杀手.这些疾病与吸烟有关的结论是怎样得出的呢?
探究点一×列联表和统计量χ
思考什么是列联表?怎样从列联表判断两个变量有无关系?
答设、为两个变量,变量可以取两个值,,变量可以取两个值,,得下表
总计
+
+
总计+++++
若=·,则可以认为与独立;若=·,则可以认为与独立;若=·时,则可以认为与独立;若=·,则可以认为与独立.
思考统计量χ有什么作用?
答χ=,。
一、选择题1.2020年初,新型冠状病毒(19COVID -)引起的肺炎疫情爆发以来,各地医疗机构采取了各种针对性的治疗方法,取得了不错的成效,某地开始使用中西医结合方法后,每周治愈的患者人数如下表所示:由表格可得y 关于x 的二次回归方程为2ˆ6yx a =+,则此回归模型第4周的残差(实际值与预报值之差)为( ) A .5B .4C .1D .02.某校学生会为研究该校学生的性别与语文、数学、英语成绩这3个变量之间的关系,随机抽查了100名学生,得到某次期末考试的成绩数据如表1至表3,根据表中数据可知该校学生语文、数学、英语这三门学科中( )A .语文成绩与性别有关联性的可能性最大,数学成绩与性别有关联性的可能性最小B .数学成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小C .英语成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小D .英语成绩与性别有关联性的可能性最大,数学成绩与性别有关联性的可能性最小 3.小红和小明利用体育课时间进行投篮游戏,规定双方各投两次,进球次数多者获胜.已知小红投篮命中的概率为35,小明投篮命中的概率为12,且两人投篮相互独立,则小明获胜的概率为( ) A .1225B .25C .825D .6254.甲、乙、丙、丁4个人进行网球比赛,首先甲、乙一组,丙、丁一组进行比赛,两组的胜者进入决赛,决赛的胜者为冠军、败者为亚军.4个人相互比赛的胜率如右表所示,表中的数字表示所在行选手击败其所在列选手的概率.那么甲得冠军且丙得亚军的概率是( )A.0.15B.0.105C.0.045D.0.215.某学校10位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立,随机地发给4位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知的信息的概率为()A.25B.1225C.1625D.456.从1,2,3,4,5中不放回地依次选取2个数,记事件A=“第一次取到的是奇数”,事件B=“第二次取到的是奇数”,则(|)P B A=()A.12B.25C.310D.157.甲、乙两人抢答竞赛题,甲答对的概率为15,乙答对的概率为14,则两人中恰有一人答对的概率为A.720B.1220C.120D.2208.在5道题中有3道代数题和2道几何题.如果不放回地依次抽取2道题,则在第1次抽到代数题的条件下,第2次抽到代数题的概率为 ( )A.15B.25C.12D.359.学生会为了调查学生对2018年俄罗斯世界杯的关注是否与性别有关,抽样调查100人,得到如下数据:根据表中数据,通过计算统计量并参考以下临界数据:若由此认为“学生对2018年俄罗斯世界杯的关注与性别有关”,则此结论出错的概率不超过 A .B .C .D .10.下面给出四种说法:①用相关指数R 2来刻画回归效果,R 2越小,说明模型的拟合效果越好; ②命题P :“∃x 0∈R ,x 02﹣x 0﹣1>0”的否定是¬P :“∀x ∈R ,x 2﹣x ﹣1≤0”; ③设随机变量X 服从正态分布N (0,1),若P (x >1)=p 则P (﹣1<X <0)=12﹣p ④回归直线一定过样本点的中心(,x y ). 其中正确的说法有( ) A .①②③B .①②④C .②③④D .①②③④11.甲乙丙三位同学独立的解决同一个问题,已知三位同学单独正确解决这个问题的概率分别为12,13,15,则有人能够解决这个问题的概率为( ) A .130 B .415C .1115D .131512.甲、乙两队进行篮球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队不超过4场即获胜的概率是( ) A .0.18B .0.21C .0.39D .0.42二、填空题13.某人抛掷一枚均匀骰子,构造数列{}n a ,使1,()1,()n n a n ⎧=⎨-⎩当第次掷出偶数当第次掷出奇数,记12n n S a a a =+++,则20S ≠且82S =的概率为_____.14.甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为13,乙每次投中的概率为12,每人分别进行三次投篮.乙恰好比甲多投进2次的概率是______.15.两个实习生加工一个零件,产品为一等品的概率分别为23和34,则这两个零件中恰有一个一等品的概率为__________.16.某学校为了制定治理学校门口上学、放学期间家长接送孩子乱停车现象的措施,对全校学生家长进行了问卷调查.根据从中随机抽取的50份调查问卷,得到了如下的列联表:同意限定区域停车不同意限定区域停车合计男20525女101525合计302050则认为“是否同意限定区域停产与家长的性别有关”的把握约为__________.附:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.()2P K k≥0.0500.0050.001k 3.8417.87910.82817.以下4个命题中,正确命题的序号为_________.①“两个分类变量的独立性检验”是指利用随机变量2K来确定是否能以给定的把握认为“两个分类变量有关系”的统计方法;②将参数方程cossinxyθθ=⎧⎨=⎩(θ是参数,[]0,θπ∈)化为普通方程,即为221x y+=;③极坐标系中,22,3Aπ⎛⎫⎪⎝⎭与()3,0B的距离是19;④推理:“因为所有边长相等的凸多边形都是正多边形,而菱形是所有边长都相等的凸多边形,所以菱形是正多边形”,推理错误在于“大前提”错误.18.某同学通过计算机测试的概率为13,他连续测试3次,且三次测试相互独立,其中恰有1次通过的概率为__________.19.已知下列说法:①分类变量A与B的随机变量越大,说明“A与B有关系”的可信度越大;②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是和;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为,若,,,则.其中说法正确的为_____________.(填序号)20.下列说法:(),x y;①线性回归方程y bx a=+必过②命题“2x x∃<+<”1,341,34∀≥+≥”的否定是“2x x③相关系数r越小,表明两个变量相关性越弱;④在一个22⨯列联表中,由计算得28.079K=,则有99%的把握认为这两个变量间有关系;其中正确..的说法是__________.(把你认为正确的结论都写在横线上)本题可参考独立性检验临界值表:三、解答题21.某校将进行篮球定点投篮测试,规则为:每人至多投3次,先在M处投一次三分球,投进得3分,未投进不得分,以后均在N处投两分球,每投进一次得2分,未投进不得分.测试者累计得分高于3分即通过测试,并终止投篮.甲、乙两位同学为了通过测试,进行了五轮投篮训练,每人每轮在M处和N处各投10次,根据他们每轮两分球和三分球的命中次数情况分别得到如图表:若以每人五轮投篮训练命中频率的平均值作为其测试时每次投篮命中的概率.(1)求甲同学通过测试的概率;(2)在甲、乙两位同学均通过测试的条件下,求甲得分比乙得分高的概率.22.为落实中央“坚持五育并举,全面发展素质教育,强化体育锻炼”的指示精神,小明和小亮两名同学每天利用课余时间进行羽毛球比赛.规定每一局比赛中获胜方记2分,失败方记0分,没有平局,谁先获得10分就获胜,比赛结束.假设每局比赛小明获胜的概率都是2.3(1)求比赛结束时恰好打了7局的概率;(2)若现在是小明6:2的比分领先,记X表示结束比赛还需打的局数,求X的分布列及期望.23.某县为了在全县营造“浪费可耻、节约为荣”的氛围,制定施行“光盘行动”有关政策,为进一步了解此项政策对市民的影响程度,县政府在全县随机抽取了100名市民进行调查,其中男士比女士少20人,表示政策无效的25人中有10人是女士.(1)完成下列22列联表,并判断是否有99%的把握认为“政策是否有效与性别有关”;政策有效政策无效总计女士10男士合计251005名市民中任意抽取2名,对政策的有效性进行调研分析,求抽取的2人中有男士的概率.参考公式:()()()()()22n ad bcKa b c d a c b d-=++++(n a b c d=+++)24.近年来,随着互联网的发展,诸如“滴滴打车”“神州专车”等网约车服务在我国各城市迅猛发展,为人们出行提供了便利,但也给城市交通管理带来了一些困难.为掌握网约车在M省的发展情况,M省某调查机构从该省抽取了5个城市,分别收集和分析了网约车的A,B两项指标数,(1,2,3,4,5)i ix y i=,数据如下表所示:==2s==.(1)试求y与x间的相关系数r,并利用r说明y与x是否具有较强的线性相关关系(若0.75r>,则线性相关程度很高,可用线性回归模型拟合);(2)建立y关于x的回归方程,并预测当A指标数为7时,B指标数的估计值;(3)若城市的网约车A指标数x落在区间(3,3)x s x s-+之外,则认为该城市网约车数量过多,会对城市交通管理带来较大的影响,交通管理部门将介入进行治理,直至A指标数x回落到区间(3,3)x s x s-+之内.现已知2018年11月该城市网约车的A指标数为13,问:该城市的交通管理部门是否要介入进行治理?试说明理由.附:相关公式:()()ni ix x y yr--=∑,121()()()ni iiniix x y ybx x==--=-∑∑,a y bx=-.0.55≈0.95≈.25.为响应阳光体育运动的号召,某县中学生足球活动正如火如荼地展开,该县为了解本县中学生的足球运动状况,根据性别采取分层抽样的方法从全县24000名中学生(其中男生14000人,女生10000人)中抽取120名,统计他们平均每天足球运动的时间,如下表:(平均每天足球运动的时间单位为小时,该县中学生平均每天足球运动的时间范围是[0,3]).(1)请根据样本估算该校男生平均每天足球运动的时间(结果精确到0.1);(2)若称平均每天足球运动的时间不少于2小时的学生为“足球健将”,低于2小时的学生为“非足球健将”.①请根据上述表格中的统计数据填写下面22⨯列联表,并通过计算判断,能否有90%的把握认为是否为“足球健将”与性别有关?②若在足球运动时间不足1小时的男生中抽取2名代表了解情况,求这2名代表都是足球运动时间不足半小时的概率.参考公式:22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++.参考数据:20()P K k ≥ 0.050.40 0.25 0.15 0.10 0.05 0.025 0.010 0k3.8410.7081.3232.0722.7063.8415.0246.63526.2020年寒假是特殊的寒假,因为疫情全体学生只能在家进行网上在线学习,为了研究学生在网上学习的情况,某学校在网上随机抽取100名学生对于线上教育进行调查,其中男生与女生的人数之比为3:2,其中男生有50人表示对线上教育满意,女生中有15名表示对线上教育不满意(1)完成22⨯列联表,并回答能否有99%的把握认为对“线上教育是否满意与性别有关”;满意 不满意 总计男生(2)从被调查的对线上教育满意的学生中,利用分层抽样抽取9名学生,再从这9名学生中抽取2名学生,介绍线上学习的经验,求抽取的两名学生中恰有一名男生与一名女生的概率.参考公式:附:()()()()()22n ad bc K a b c d a c b d -=++++【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】设2t x =,求出t ,y 的值,由最小二乘法得出回归方程,代入4x =,即可得出答案. 【详解】 设2t x =,则()11491625115t =++++=,()12173693142585y =++++= 586118a =-⨯=-,所以2ˆ68yx =-.令4x =,得2444936485ˆe y y =-=-⨯+=. 故选:A 【点睛】本题考查回归分析的应用,属于中档题.2.C解析:C 【分析】根据题目所给的数据填写2×2列联表即可;计算K 的观测值K 2,对照题目中的表格,得出统计结论. 【详解】因为()()2210014341636100103020403070505030705050⨯⨯-⨯⨯⨯-⨯<⨯⨯⨯⨯⨯⨯()2100254552530705050⨯⨯-⨯<⨯⨯⨯,所以英语成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小. 故选C 【点睛】本题考查了独立性检验的应用问题,也考查了计算能力的应用问题,是基础题目. 3.D解析:D 【分析】由题意可知,用(,)x y 表示小明、小红的进球数 ,所以当小明获胜时,进球情况应该是(2,0),(2,1),(1,0),由相互独立事件同时发生的乘法公式以及互斥事件的概率加法公式,即可求得. 【详解】由题意可知,用(,)x y 表示小明、小红的进球数 ,所以当小明获胜时,进球情况应该是(2,0),(2,1),(1,0),小明获胜的概率是22222112213133131326111252552525252525P C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯⨯⨯-+⨯⨯-=++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭故选D . 【点睛】本题主要考查相互独立事件同时发生的乘法公式以及互斥事件的概率加法公式的应用,意在考查学生分类讨论思想意识以及运算能力.4.C解析:C 【分析】若甲得冠军且丙得亚军,则甲、乙比赛甲获胜,丙、丁比赛丙获胜,决赛甲获胜. 【详解】甲、乙比赛甲获胜的概率是0.3, 丙、丁比赛丙获胜的概率是0.5, 甲、丙决赛甲获胜的概率是0.3, 根据独立事件的概率等于概率之积,所以, 甲得冠军且丙得亚军的概率:0.30.50.30.045⨯⨯=. 故选C. 【点睛】本题考查独立事件的概率,考查分析问题解决问题的能力.5.C解析:C 【分析】甲同学收到李老师或张老师所发活动通知的信息的对立事件是甲同学既没收到李老师的信息也没收到张老师的信息,李老师的信息与张老师的信息是相互独立的,由此可计算概率. 【详解】设甲同学收到李老师的信息为事件A ,收到张老师的信息为事件B ,A 、B 相互独立,42()()105P A P B ===, 则甲同学收到李老师或张老师所发活动通知的信息的概率为33161()1(1())(1())15525P AB P A P B -=---=-⨯=.故选C . 【点睛】本题考查相互独立事件的概率,考查对立事件的概率.在求两个事件中至少有一个发生的概率时一般先求其对立事件的概率,即两个事件都不发生的概率.这样可减少计算,保证正确.6.A解析:A 【解析】分析:利用条件概率公式求(|)P B A .详解:由条件概率得(|)P B A =2311341.2A C C =故答案为A.点睛:(1)本题主要考查条件概率的求法,意在考查学生对该知识的掌握水平.(2) 条件概率的公式:()(|)()P AB P B A P A ==()()n AB n A . 7.A解析:A 【解析】第一种:甲答对,乙答错,此时概率为11315420⎛⎫⨯-=⎪⎝⎭;第二种:甲答错,乙答对,此时的概率为11415420⎛⎫-⨯=⎪⎝⎭. 综上,两人中恰有一人答对的概率为347202020+=. 故选A.8.C解析:C 【解析】记事件A: 第1次抽到代数题,事件B:第2次抽到代数题,P(A)=35,63()2010P AB ==,r 则在第1次抽到代数题的条件下,第2次抽到代数题的概率为3P(AB)110P(B |A)3P(A)25===.选C. 9.A解析:A 【解析】 由题意可得,所以, 由此认为“学生对2018年俄罗斯世界杯的关注与性别有关”,则此结论出错的概率不超过,故选A.【方法点睛】本题主要考查独立性检验的应用,属于难题.独立性检验的一般步骤:(1)根据样本数据制成列联表;(2)根据公式计算的值;(3) 查表比较与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)10.C解析:C 【解析】对于①,用相关指数2R 刻画回归效果时,2R 越大,说明模型的拟合效果越好,∴①错误;对于②,命题2000P:"x ,10"R x x ∃∈--> 的否定是2:",10"P x R x x ⌝∀∈--≤ ,②正确;对于③,根据正态分布()0,1N 的性质可得,若()1,P X p >= 则()1P X p <-= ,()()11112,102P X p P X p ∴-<<=-∴-<<=- ,③正确;对于④,回归直线一定过样本点的中心(),x y ,④正确;综上所述②③④正确,故选C .11.C解析:C 【分析】先利用相互独立事件的概率乘法公式求出“三人都未解答这个问题”的概率,利用对立事件的概率公式得到“有人能够解决这个问题”的概率即可. 【详解】三人都未解答这个问题的概率为 (112-)(113-)(115-)415=,故有人能够解决这个问题的概率为14111515-=, 故选:C .【点睛】本题考查了相互独立事件的概率乘法公式、互斥事件和对立事件的概率公式,考查了正难则反的原则,属于中档题.12.C解析:C 【分析】利用相互独立事件概率乘法公式和互斥事件概率加法公式直接求解. 【详解】解:甲、乙两队进行排球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立, 则甲队以3:1获胜的概率是:()()()10.60.610.50.50.610.60.50.510.60.60.50.50.21P =⨯⨯-⨯+⨯-⨯⨯+-⨯⨯⨯=. 甲队以3:0获胜的概率是: 20.60.60.50.18P =⨯⨯=则甲队不超过4场即获胜的概率120.210.180.39P P P =+=+= 故选:C 【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,属于中档题.二、填空题13.【分析】根据题意抛掷一枚均匀骰子出现奇数或偶数概率为则且的情况有2种:①当前2次同时出现偶数时则后6次出现3次偶数3次奇数②当前2次出现奇数时则后6次出现5次偶数1次奇数分别计算相应的概率求和即可【解析:13128. 【分析】根据题意,抛掷一枚均匀骰子,出现奇数或偶数概率为12,则20S ≠且82S =的情况有2种:①当前2次同时出现偶数时,则后6次出现3次偶数3次奇数,②当前2次出现奇数时,则后6次出现5次偶数1次奇数,分别计算相应的概率求和即可. 【详解】抛掷一枚均匀骰子,出现奇数或偶数概率为12, 构造数列{}n a ,使1,()1,()n n a n ⎧=⎨-⎩当第次掷出偶数当第次掷出奇数,记12n n S a a a =+++,则20S ≠且82S =的情况为:①当前2次同时出现偶数时,则后6次出现3次偶数3次奇数,相应的概率23336111522264C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⨯⨯⨯=, ②当前2次出现奇数时,则后6次出现5次偶数1次奇数,相应的概率为25561113222128C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⨯⨯⨯=, 所以概率为3513+12864128=. 故答案为:13128. 【点睛】本题考查二项分布概率计算,结合排列组合与数列的知识,属于综合题,解题的关键在于对所求情况进行分析,再利用二项分布进行概率计算即可,属于中等题.14.;【分析】将事件拆分为乙投进3次甲投进1次和乙投进2次甲投进0次再根据二项分布的概率计算公式和独立事件的概率计算即可求得【详解】根据题意甲和乙投进的次数均满足二项分布且甲投进和乙投进相互独立;根据题解析:16; 【分析】将事件拆分为乙投进3次,甲投进1次和乙投进2次,甲投进0次,再根据二项分布的概率计算公式和独立事件的概率计算即可求得. 【详解】根据题意,甲和乙投进的次数均满足二项分布,且甲投进和乙投进相互独立; 根据题意:乙恰好比甲多投进2次,包括乙投进3次,甲投进1次和乙投进2次,甲投进0次.则乙投进3次,甲投进1次的概率为3213112123318C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭;乙投进2次,甲投进0次的概率为232311212239C ⎛⎫⎛⎫⎛⎫⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故乙恰好比甲多投进2次的概率为111 1896+=. 故答案为:16. 【点睛】本题考查二项分布的概率计算,属综合基础题.15.【分析】利用相互独立事件概率乘法公式直接求解【详解】解:两个实习生加工一个零件产品为一等品的概率分别为和这两个零件中恰有一个一等品的概率为:故答案为:【点睛】本题考查概率的求法考查相互独立事件概率乘 解析:512【分析】利用相互独立事件概率乘法公式直接求解. 【详解】解:两个实习生加工一个零件,产品为一等品的概率分别为23和34, ∴这两个零件中恰有一个一等品的概率为:2323511343412p ⎛⎫⎛⎫=⨯-+-⨯= ⎪ ⎪⎝⎭⎝⎭. 故答案为:512. 【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于基础题.16.5【解析】分析:利用公式求得K2与临界值比较即可得到结论详解:因为K2=≈8333又P (k2≥7789)=0005=05故答案为995所以我们有995的把握恩威是否同意限定区域停车与家长的性别有关点解析:5%. 【解析】分析:利用公式求得K 2,与临界值比较,即可得到结论. 详解:因为K 2=()2502015-51025253020⨯⨯⨯⨯⨯ ≈8.333又 P (k 2≥7.789)=0.005=0.5%. 故答案为99.5%.所以,我们有99.5%的把握恩威是否同意限定区域停车与家长的性别有关.点睛:本题考查独立性检验知识,考查学生的计算能力,考查学生分析解决问题的能力,属于中档题.17.①③④【解析】①是独立性检验的应用①对②中由于所以显然是半个圆②错③中由极坐标中两点距离公式=③对④中所有边长相等的凸多边形都是正多边形为大前提是错误的因为只需要正多边形挤压变形使之仍为凸多边形即可解析:①③④ 【解析】①是独立性检验的应用,①对.②中由于[]0,θπ∈,所以01y ≤≤,显然是半个圆,②错.③中,由极坐标中两点距离公式2221212212cos()AB ρρρρθθ=+--=14912()19,2+-⨯-=19AB =,③对.④中“所有边长相等的凸多边形都是正多边形”为大前提,是错误的,因为只需要正多边形挤压变形,使之仍为凸多边形即可.④对.所以填①③④.18.【解析】由题意得根据相互独立事件发生的概率公式可得三次测试中恰有1次通过的概率为解析:49【解析】由题意得,根据相互独立事件发生的概率公式,可得三次测试中, 恰有1次通过的概率为123114(1)339P C =⨯⨯-=. 19.①②③【解析】①正确因为k2越大说明A 和B 有关系的把握性就越大;②正确因为y=cekx 那么lny=lncekx=kx+lnc 即z=kx+lnc=03x+4解得k=03lnc=4解得:k=03c=e4解析:①②③ 【解析】①正确,因为越大,说明“和有关系”的把握性就越大;②正确,因为,那么,即,解得,解得: 所以正确;③在回归直线上,所以,解得:,所以正确,那么正确的有①②③.【点睛】本题是以命题形式考查了回归方程和独立性检验的相关知识,样本中心点必在回归直线上,独立性检验中越大,说明犯错误的概率越小,即认为两个变量有关的把握性就越大.20.①④【解析】分析:根据性回归方程独立性检验相关关系以及命题的否定等知识选出正确的得到结果详解:线性回归方程必过样本中心点故①正确命题的否定是故②错误③相关系数r 绝对值越小表明两个变量相关性越弱故不正解析:①④ 【解析】分析:根据性回归方程,独立性检验,相关关系,以及命题的否定等知识,选出正确的,得到结果.详解:线性回归方程ˆˆˆybx a =+必过样本中心点(),x y ,故①正确. 命题“21,34x x ∀≥+≥”的否定是“21,34x x ∃≥+<” 故②错误③相关系数r 绝对值越小,表明两个变量相关性越弱,故不正确;④在一个22⨯列联表中,由计算得28.079K =,则有99%的把握认为这两个变量间有关系,正确.故答案为①④.点睛:本题以命题真假的判断为载体,着重考查了相关系数、命题的否定、独立性检验、回归直线方程等知识点,属于中档题.三、解答题21.(1)0.3;(2)18. 【分析】(1)记甲同学累计得分为X ,计算出甲同学两分球和三分球投篮命中的概率,进而可计算得出()4P X ≥,即为所求;(2)设“甲得分比乙得分高”为事件A ,“甲、乙两位同学均通过了测试”为事件B ,计算出()P AB 、()P B ,利用条件概率公式可求得()P A B ,即为所求.【详解】(1)甲同学两分球投篮命中的概率为5436710101010100.55++++=,甲同学三分球投篮命中的概率为11210101010100.15++++=,设甲同学累计得分为X ,则()()()4450.90.50.50.10.50.10.50.50.3P X P X P X ≥==+==⨯⨯+⨯+⨯⨯=, 所以,甲同学通过测试的概率为0.3;(2)乙同学两分球投篮命中率为2435610101010100.45++++=,乙同学三分球投篮命中率为123131*********0.25++++=. 设乙同学累计得分为Y ,则()40.80.40.40.128P Y ==⨯⨯=,()50.20.40.20.60.40.128P Y ==⨯+⨯⨯=,设“甲得分比乙得分高”为事件A ,“甲、乙两位同学均通过了测试”为事件B , 则()()()540.0750.1280.0096P AB P X P Y ==⋅==⨯=,()()()()()45450.0768P B P X P X P Y P Y ==+=⋅=+==⎡⎤⎡⎤⎣⎦⎣⎦,由条件概率公式可得()()()0.009610.07688P AB P A B P B ===.【点睛】思路点睛:用定义法求条件概率()P B A 的步骤: (1)分析题意,弄清概率模型; (2)计算()P A 、()P AB ; (3)代入公式求()()()P AB P B A P A =.22.(1)2081;(2)分布列见解析,()23681E X =. 【分析】(1)利用事件的独立性,分两种情况,恰 好打了7局小明获胜和恰好打了7局小亮获胜,再概率相加即可.(2)X 的可能取值为2,3,4,5,利用二项分布,分别求出其相应的概率,列出分布列即可. 【详解】(1)恰 好打了7局小明获胜的概率是525416721152C 333P ⨯⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 恰好打了7局小亮获胜的概率为252426721152333P C ⨯⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, ∴比赛结束时恰好打了7局的概率为5212715215220381P P P ⨯+⨯=+==. (2)X 的可能取值为2,3,4,5,()224239P X ⎛⎫=== ⎪⎝⎭,()2312321283C 33327P X ⎛⎫==⨯⨯== ⎪⎝⎭,()2241434421113134C C 333381P X ⎛⎫⎛⎫⎛⎫==⨯⨯+⨯==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2341344521212485C C 3333381P X ⎛⎫⎛⎫⎛⎫==⨯⨯+⨯⨯== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ 或()334421885C 33381P X ⎛⎫==⨯⨯==⎪⎝⎭. ∴X 的分布列如下:()481382362345927818181E X =⨯+⨯+⨯+⨯=.【点睛】方法点睛:求解离散型随机变量X 的分布列的步骤:①理解X 的意义,写出X 可能取的全部值;②求X 取每个值的概率;③写出X 的分布列.求离散型随机变量的分布列的关键是求随机变量所取值对应的概率. 23.(1)列联表见解析,没有;(2)710. 【分析】(1)分析题意完成2×2列联表,直接套公式求出2K ,对照参数下结论; (2)列举出基本事件,利用等可能事件的概率公式求概率. 【详解】(1)由题意设男士人数为x ,则女士人数为20x +, 又20100x x ++=,解40x =.即男士有40人,女士有60人. 由此填写22⨯列联表如下:由表中数据,计算()2210050152510 5.556 6.63560407525K ⨯⨯-⨯==<⨯⨯⨯,所以没有99%的把握认为对“政策是否有效与性别有关”.(2)从被调查的该餐饮机构的市民中,利用分层抽样抽取5名市民,其中女士抽取5603100⨯=人,分别用A ,B ,C 表示,男士抽取2人,分别用D ,E 表示. 从5人中随机抽取2人的所有可能结果为(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ),共10种.其中抽取的2人中有男士的所有可能结果为(A ,D ),(A ,E ),(B ,D )(B ,E ),(C ,D ),(C ,E ),(D ,E ),共7种.所以,抽取的两人中有男士的概率为710P =. 【点睛】(1)独立性检验的题目直接根据题意完成完成2×2列联表,直接套公式求出2K ,对照参数下结论,一般较易;(2)等可能性事件的概率一般用列举法列举出基本事件,直接套公式求概率.。
回归分析
相关系数
明目标、知重点.会建立线性回归模型分析两个变量间的相关关系.能通过相关系数判断两个变量间的线性相关程度.掌握建立线性回归模型的步骤.
.线性回归方程
在线性回归方程=+中,==,=-.其中=,=.
(,)称为样本点的中心,线性回归直线过样本点的中心.
.相关系数
()相关系数的计算公式
=.
()相关系数的取值范围是[-],值越大,变量之间的线性相关程度越高;值越接近,变量之间的线性相关程度越低.
()当>时,>,称两个变量正相关;
当<时,<,称两个变量负相关;
当=时,=,称两个变量线性不相关.
[情境导学]
“名师出高徒”这句谚语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关?
探究点一线性回归方程
思考两个变量之间的关系分几类?
答分两类:①函数关系,②相关关系.
函数关系是一种确定性关系,而相关关系是一种非确定性关系.
上面所提的“名师”与“高徒”之间的关系就是相关关系.
思考什么叫回归分析?
答回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.
思考对具有线性相关关系的两个变量进行回归分析有哪几个步骤?
答基本步骤为画散点图,求线性回归方程,用线性回归方程进行预测.
例若从某大学中随机选取名女大学生,其身高和体重数据如下表所示:
编号
身高
体重
求根据女大学生的身高预测体重的回归方程,并预测一名身高为的女大学生的体重.
解()画散点图
选取身高为变量,体重为变量,画出散点图,展示两个变量之间的关系,并判断二者是否具。
一、选择题1.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜,根据经验,每局比赛中甲获胜的概率为0.4,则本次比赛甲获胜的概率是( ) A .0.216B .0.36C .0.352D .0.6482.甲、乙两人进行乒乓球比赛,假设每局比赛甲胜的概率是0.6,乙胜的概率是0.4.那么采用5局3胜制还是7局4胜制对乙更有利?( ) A .5局3胜制B .7局4胜制C .都一样D .说不清楚3.某研究性学习小组调查研究学生玩手机对学习的影响,部分统计数据如表经计算2K 的值,则有( )的把握认为玩手机对学习有影响. A .95% B .99%C .99.5%D .99.9%4.已知变量,X Y ,由它们的样本数据计算得到2K 的观测值 4.328k ≈,2K 的部分临界值表如下:以下判断正确的是( )A .在犯错误的概率不超过0.05的前提下认为变量,X Y 有关系B .在犯错误的概率不超过0.05的前提下认为变量,X Y 没有关系C .有97.5%的把握说变量,X Y 有关系D .有97.5%的把握说变量,X Y 没有关系5.某光学仪器厂生产的透镜,第一次落地打破的概率为0.3;第一次落地没有打破,第二次落地打破的概率为0.4;前两次落地均没打破,第三次落地打破的概率为0.9.则透镜落地3次以内(含3次)被打破的概率是( ). A .0.378 B .0.3C .0.58D .0.9586.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( ) A .35B .14C .12D .137.以下四个命题,其中正确的个数有( )①由独立性检验可知,有99%的把握认为物理成绩与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀.②两个随机变量相关性越强,则相关系数的绝对值越接近于1;③在线性回归方程^0.212y x =+中,当解释变量x 每增加一个单位时,预报变量ˆy平均增加0.2个单位;④对分类变量X 与Y ,它们的随机变量2K 的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越大. A .1B .2C .3D .48.先后抛掷骰子两次,落在水平桌面后,记正面朝上的点数分别为,x y ,设事件A 为x y +为偶数,事件B 为x y ≠ ,则概率(|)P B A =( )A .14B .13C .12D .239.四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且 2.7567.3ˆ25yx =-+. ②y 与x 负相关且 3.47654ˆ.68y x =+ ③y 与x 正相关且 1.226 6.5ˆ78yx =-- ④y 与x 正相关且8.96786ˆ.13y x =+ 其中一定不正确的结论的序号是( ) A .①②B .②③C .③④D .①④10.通过随机询问100名性别不同的高二学生是否爱吃零食,得到如下的列联表:其中()()()()()22,.n ad bc K n a b c d a b c d a c b d -==+++++++则下列结论正确的是A .在犯错误的概率不超过0.05的前提下,认为“是否爱吃零食与性别有关”B .在犯错误的概率不超过0.05的前提下,认为“是否爱吃零食与性别无关”C .在犯错误的概率不超过0.025的前提下,认为“是否爱吃零食与性别有关”D .在犯错误的概率不超过0.025的前提下,认为“是否爱吃零食与性别无关” 11.对具有线性相关关系的变量x ,y 有一组观测数据(),i i x y (1,2,,8i =),其回归直线方程是1ˆ8ˆybx =+,且1238x x x x ++++=()123826y y y y ++++=,则实数ˆb的值是( )A .116B .14C .13D .1212.把一枚硬币任意掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则P (B/A )=( ) A .14B .13C .12D .23二、填空题13.在一次三人象棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,比赛顺序如下:第一局,甲对乙;第二局,第一局胜者对丙;第三局,第二局胜者对第一局败者;第四局,第三局胜者对第二局败者.则乙连胜四局的概率为____. 14.某人抛掷一枚均匀骰子,构造数列{}n a ,使1,()1,()n n a n ⎧=⎨-⎩当第次掷出偶数当第次掷出奇数,记12n n S a a a =+++,则20S ≠且82S =的概率为_____.15.甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为13,乙每次投中的概率为12,每人分别进行三次投篮.乙恰好比甲多投进2次的概率是______. 16.给出下列结论:(1)在回归分析中,可用相关指数R 2的值判断模型的拟合效果,R 2越大,模型的拟合效果越好;(2)某工产加工的某种钢管,内径与规定的内径尺寸之差是离散型随机变量; (3)随机变量的方差和标准差都反映了随机变量的取值偏离于均值的平均程度,它们越小,则随机变量偏离于均值的平均程度越小;(4)若关于x 的不等式2x x a a -+-≥在R 上恒成立,则a 的最大值是1;(5)甲、乙两人向同一目标同时射击一次,事件A :“甲、乙中至少一人击中目标”与事件B :“甲,乙都没有击中目标”是相互独立事件.其中结论正确的是 .(把所有正确结论的序号填上)17.某班主任对全班50名学生的积极性和对待班级工作的态度进行了调查,统计数据如下表所示:则至少有________的把握认为学生的学习积极性与对待班级工作的态度有关.(请用百分数表示).注:独立性检验界值表18.已知某种高炮在它控制的区域内击中敌机的概率为0.2,要使敌机一旦进入这个区域后有0.9以上的概率被击中,需要至少布置___________门高炮?(用数字作答,已知lg20.3010=,lg30.4771=)19.2019年7月15日,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x元和销售量y件之间的一组数据如下表所示:可知,销售量y与价格x之间有较强的线性相关关系,其线性回归方程是3.240y x=-+,且20m n+=,则其中的n=______.20.投到某出版社的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则直接予以录用,若两位初审专家都未予通过,则不予录用,若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为12,复审的稿件能通过评审的概率为14,各专家独立评审,则投到该出版社的1篇稿件被录用的概率为__________.三、解答题21.一个口袋中有4个红球和3个黑球.(1)从口袋中随机地连续取出三个球,取出后不放回,求:(i)三个球中有两个红球一个黑球的概率;(ii)第二次取出的是红球且第三次取出的也是红球的概率.(2)从口袋中随机地连续取出三个球,取出后放回,求至少有两个是红球且第三个是红球的概率22.奶茶是年轻人非常喜欢的饮品.某机构对于奶茶的消费情况在一商圈附近做了一些调查,发现女性喜欢奶茶的人数明显高于男性,每月喝奶茶的次数也比男性高,但单次奶茶消费金额男性似乎明显高于女性.针对每月奶茶消费是否超过百元进行调查,已知在调查的200人中女性人数是男性人数的4倍,统计如下:22⨯关?(2)在月消费超百元的调查者中,同时进行对于品牌喜好的调查.发现喜欢A 品牌的男女均为3人,现从喜欢A 品牌的这6人中抽取2人送纪念品,求这两人恰好都是女性的概率. 附:()()()()()2n ad bc K a b c d a c b d -=++++. 23.2020年1月24日,中国疾控中心成功分离中国首株新型冠状病毒毒种.6月19日,中国首个新冠mRNA 疫苗获批启动临床试验,截至2020年10月20日,中国共计接种了约6万名受试者,为了研究年龄与疫苗的不良反应的统计关系,现从受试者中采取分层抽样抽取100名,其中大龄受试者有30人,舒张压偏高或偏低的有10人,年轻受试者有70人,舒张压正常的有60人.(1)根据已知条件完成下面的22⨯列联表,并据此资料你是否能够以99%的把握认为受试者的年龄与舒张压偏高或偏低有关?6人,从抽出的6人中任取3人,设取出的大龄受试者人数为X ,求X 的分布列和数学期望.运算公式:()()()()()22n ad bc K a b c d a c b d -=++++,对照表:24.消费者信心指数是反映消费者信心强弱的指标;它是预测经济走势和消费趋向的一个先行指标,是监测经济周期变化的重要依据.消费者信心指数值介于0和200之间.指数超过100时,表明消费者信心处于强信心区;指数等于100时,表示消费者信心处于强弱临界点;指数小于100时,表示消费者信心处于弱信心区.我国某城市从2016年到2019年各季度的消费者信心指数如下表1:记2016年至2019年年份序号为,该城市各年消费者信心指数的年均值(四舍五入取整)为y ,x 与y 的关系如下表2:的消费者信心指数不小于2017年的消费者信心指数的概率;(2)根据表2得到线性回归方程为:ˆˆ4.4yx a =+,求ˆa 的值,并预报该城市2020年消费者信心指数的年平均值.(3)根据表2计算(,)x y 的相关系数r (保留两位小数),并判断是否正相关很强.参考数据和公式:ˆˆay bx =-;12342.54x +++==;105112114119112.54y +++==23.45≈22.47≈;()()niix x y y r --=∑0.751r ≤≤时,y 与x 正相关很强.25.近期,济南公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x 表示活动推出的天数,y 表示每天使用扫码支付的人次(单位:十人次),统计数据如表所示:表:根据以上数据,绘制了散点图.x1234567 y611213466101196(1)根据散点图判断,在推广期内y a bx=+与xy c d=⋅(c,d均为大于零的常数)哪一个适宜作为扫码支付的人次y关于活动推出天数x的回归方程类型?(给出判断,不必说明理由);(2)根据(1)的判断结果及表中的数据,建立y关于x的回归方程,并预测活动推出第8天使用扫码支付的人次;(3)推广期结束后,车队对乘客的支付方式进行统计,结果如下表:支付方式现金乘车卡扫码比例10%60%30%车队为缓解周边居民出行压力,以80万元的单价购进了一批新车,根据以往的经验可知,每辆车每个月的运营成本约为0.66万元.已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有16的概率享受7折优惠,有13的概率享受8折优惠,有12的概率享受9折优惠,预计该车队每辆车每个月有1万人次乘车,根据所给数据以事件发生的频率作为相应事件发生的概率,在不考虑其它因素的条件下,按照上述收费标准,假设这批车需要()*n n N∈年才能开始盈利,求n的值.参考数据:其中lgi iv y=,7117iiv v==∑参考公式:对于一组数据(),i iu v,()22,u v,…,(),n nu v,其回归直线v a uβ=+的斜率和截距的最小二乘估计公式分别为:1221ni iiniiu v nuvu nuβ==-=-∑∑,a v uβ=-.26.在一定范围内,植物的生长受到空气、水、温度、光照和养分等因素的影响,某试验小组为了研究光照时长对某种植物增长高度的影响,在保证其他因素相同的条件下,对该植物进行不同时长的光照试验,经过试验,得到6组该植物每日的光照时间x (单位:h )和每日平均增长高度y (单位:mm )的数据.(1)该小组分别用模型①ˆˆˆybx a =+和模型②ˆˆˆmx n y e +=对以上数据进行拟合,得到回归模型,并计算出模型的残差如下表:(模型①和模型②的残差分别为1ˆe 和2ˆe ,残差ˆˆi i i ey y =-)根据上表的残差数据,应选择哪个模型来刻画该植物每日的光照时间与每日平均增长高度的关系较为合适,简要说明理由;(2)为了优化模型,将(1)中选择的模型残差绝对值最大所对应的一组数据(),x y 剔除,根据剩余的5组数据,求该模型的回归方程,并预测光照时间为11h 时,该植物的平均增长高度.(剔除数据前的参考数据:7.5x =, 5.9y =,61299.8i ii x y==∑,621355i i x ==∑,ln z y =,141z ≈.,6173.10i i i x z =≈∑,n10.7l 2.37≈, 4.03456.49e ≈.)参考公式:()()()1122211ˆn niii ii i nni ii i x x y y x y nxybx x xnx ====---==--∑∑∑∑,ˆˆay bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】先列举出甲获胜的情况,再利用独立事件的概率乘法公式可计算出所求事件的概率。
北师大版高中数学选修1-2第一章统计案例题库一、选择题(共37小题,每小题5.0分,共185分)1.用独立性检验来考察两个分类变量x与y是否有关系,当统计量K2的观测值()A.越大,“x与y有关系”成立的可能性越小B.越大,“x与y有关系”成立的可能性越大C.越小,“x与y没有关系”成立的可能性越小D.与“x与y有关系”成立的可能性无关2.在一个2×2列联表中,由其数据计算得K2的观测值k=7.097,则这两个变量间有关系的可能性为()A. 99%B. 99.5%C. 99.9%D.无关系3.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:由以上数据,计算得到K2的观测值k≈9.643,根据临界值表,以下说法正确的是()A.没有充足的理由认为课外阅读量大与作文成绩优秀有关B.有0.5%的把握认为课外阅读量大与作文成绩优秀有关C.有99.9%的把握认为课外阅读量大与作文成绩优秀有关D.有99.5%的把握认为课外阅读量大与作文成绩优秀有关4.考察棉花种子经过处理跟生病之间的关系得到下表数据:根据以上数据,可得出()A.种子是否经过处理跟是否生病有关B.种子是否经过处理跟是否生病无关C.种子是否经过处理决定是否生病D.以上都是错误的5.观察下列各图,其中两个分类变量之间关系最强的是().A.答案AB.答案BC.答案CD.答案D6.对两个分类变量进行独立性检验的主要作用是()A.判断模型的拟合效果B.对两个变量进行相关分析C.给出两个分类变量有关系的可靠程度D.估计预报变量的平均值7.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由列联表算得附表:参照附表,得到的正确结论是().A.在犯错误的概率不超过的前提下认为“爱好该项运动与性别有关”B.在犯错误的概率不超过的前提下认为“爱好该项运动与性别无关”C.在犯错误的概率不超过的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过的前提下,认为“爱好该项运动与性别无关”8.在吸烟与患肺癌这两个分类变量的独立性检验的计算中,下列说法正确的是().A.若2的观测值为,在犯错误的概率不超过的前提下认为吸烟与患肺癌有关系,那么在个吸烟的人中必有人患有肺癌B.由独立性检验可知,在犯错误的概率不超过的前提下认为吸烟与患肺癌有关系时,我们说某人吸烟,那么他有的可能患有肺癌C.若从统计量中求出在犯错误的概率不超过的前提下认为吸烟与患肺癌有关系,是指有1%的可能性使得判断出现错误D.以上三种说法都不正确9.利用独立性检验来考虑两个分类变量和是否有关系时,通过查阅下表来确定断言“和有关系”的可信度,如果,那么就有把握认为“和有关系”的百分比为()A. 25%B. 75%C. 2.5%D. 97.5%10.下面是一个2×2列联表:则表中a、b处的值分别为()A. 94,96B. 52,50C. 52,60D. 54,5211.下表是一个2×2列联表:则表中a,b处的值分别为()A. 94,96B. 52,50C. 52,54D. 54,5212.根据下面的列联表得到如下中个判断:①有的把握认为患肝病与嗜酒有关;②有的把握认为患肝病与嗜酒有关;③认为患肝病与嗜酒有关的出错的可能为;④认为患肝病与嗜酒有关的出错的可能为;其中正确命题的个数为()A .B.1C. 2D .13.为调查中学生近视情况,某校男生150名中有80名近视,女生140名中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力()A.期望与方差B.排列与组合C.独立性检验D.概率14.在判断两个分类变量是否有关系的常用的方法中,最为精确的方法是()A.通过三维柱形图判断B.通过二维条形图判断C.通过等高条形图判断D.以上都不对15.下列关于K2的说法中正确的是()A.K2在任何相互独立问题中都可以用来检验有关还是无关B.K2的值越大,两个事件的相关性就越大C.K2是用来判断两个分类变量是否有关系的随机变量,只对于两个分类变量适合D .K2的观测值k的计算公式为16.假设有两个分类变量X与Y,它们的可能取值分别为{x1,x2}和{y1,y2},其2×2列联表为:以下各组数据中,对于同一样本能说明X与Y有关系的可能性最大的一组为()A.a=5,b=4,c=3,d=2B.a=5,b=3,c=4,d=2C.a=2,b=3,c=4,d=5D.a=2,b=3,c=5,d=417.在2×2列联表中,两个比值________相差越大,两个分类变量之间的关系越强()A.与B.与C.与D.与18.在三维柱形图中,主对角线上两个柱形高度的乘积与副对角线上的两个柱形的高度的乘积相差越大,两个变量有关系的可能性就()A.越大B.越小C.无法判断D.以上都不对19.如下图所示,4个散点图中,不适合用线性回归模型拟合其中两个变量的是()A.答案AB.答案BC.答案CD.答案D20.甲、乙、丙、丁四位同学各自对A,B两变量做回归分析,分别得到散点图与残差平方和(-)2如下表哪位同学的实验结果体现拟合A,B两变量关系的模型拟合精度高?()A.甲B.乙C.丙D.丁21.在判断两个变量与是否相关时,选择了4个不同的模型,它们的相关指数分别为:模型1的相关指数为0.98,模型2的相关指数为0.80,模型3的相关指数为0.50,模型4的相关指数为0.25.其中拟合效果最好的模型是 ().A.模型1B.模型2C.模型3D.模型422.下列数据符合的函数模型为()A.B.y=2e xC.y=2eD .23.在画两个变量的散点图时,下面哪个叙述是正确的()A.预报变量在x轴上,解释变量在y轴上B.解释变量在x轴上,预报变量在y轴上C.可以选择两个变量中任意一个变量在x轴上D.可以选择两个变量中任意一个变量在y轴上24.在对两个变量进行回归分析时有下列步骤:①对所求出的回归方程作出解释;②收集数据(i,i),;③求回归方程;④根据所收集的数据绘制散点图.则下列操作顺序正确的是( )A.①②④③B.③②④①C.②③①④D.②④③①25.在对一组数据采用几种不同的回归模型进行回归分析时,得到下面的相应模型的相关指数的值,其中拟和效果较好的是()A .B .C .D .26.为了表示n个点与相应直线在整体上的接近程度,我们常用()表示.A.(yi-i)B.(i-yi)C.(yi-i)2D.(yi-)227.已知甲、乙、丙、丁四位同学各自对A、B两变量的线性相关性做试验,并用回归分析方法分别求得相关系数r与残差平方和m如下表:则哪位同学的试验结果体现A、B两变量有更强的线性相关性()A.甲B.乙C.丙D.丁28.若某地财政收入x与支出y满足线性回归方程(单位:亿元),其中.如果今年该地区财政收入10亿元,年支出预计不会超过().A. 10亿元B. 9亿元C. 10.5亿元D. 9.5亿元29.四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且=2.347x-6.423;②y与x负相关且=-3.476x+5.648;③y与x正相关且=5.437x+8.493;④y与x正相关且=-4.326x-4.578.其中一定不正确的结论的序号是()A.①②B.②③C.③④D.①④30.已知x与y之间的几组数据如下表:假设根据上表数据所得线性回归直线方程=x+,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y=b′x+a′,则以下结论正确的是()A.>b′,>a′B.>b′,<a′C.<b′,>a′D.<b′,<a′31.散点图在回归分析过程中的作用是()A.查找个体个数B.比较个体数据大小关系C.探究个体分类D.粗略判断变量是否线性相关32.设(1,1),(2,2),…,(n,n)是变量和的个样本点,直线是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是( )A .和的相关系数为直线的斜率B.和的相关系数在0到1之间C .当为偶数时,分布在两侧的样本点的个数一定相同D .直线过点()33.变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则( )A. r2<r1<0B. 0<r2<r1C. r2<0<r1D. r2=r134.设两个变量和之间具有线性相关关系,它们的相关系数是关于的回归直线的斜率是纵轴上的截距是,那么必有 ().A .与的符号相同B.与的符号相同C .与的符号相反D.与的符号相反35.在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)()都在直线y=+1上,则这组样本数据的样本相关系数为()A.-1B. 0C.D. 136.变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则()A.r2<r1<0B. 0<r2<r1C.r2<0<r1D.r2=r137.对于相关关系r,下列说法正确的是()A. |r|越大,相关程度越小B. |r|越小,相关程度越大C. |r|越大,相关程度越小,|r|越小,相关程度越大D. |r|≤1且|r|越接近于1,相关程度越大,|r|越接近于0,相关程度越小分卷II二、填空题(共19小题,每小题5.0分,共95分)38.分类变量X和Y的列表如下,则下列说法判断正确的是________.(填序号)①ad-bc越小,说明X与Y的关系越弱;②ad-bc越大,说明X与Y的关系越强;③(ad-bc)2越大,说明X与Y的关系越强;④(ad-bc)2越接近于0,说明X与Y的关系越强.39.如果K2的观测值为6.645,可以认为“x与y无关”的可信度是________.40.为研究某新药的疗效,给50名患者服用此药,跟踪调查后得下表中的数据:设H0:服用此药的效果与患者的性别无关,则K2的观测值k≈________(小数点后保留三位有效数字),从而得出结论:服用此药的效果与患者的性别有关,这种判断出错的可能性为________.41.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了名电视观众,相关的数据如下表所示:由表中数据直观分析,收看新闻节目的观众与年龄.(填“有关”或“无关”)42.某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:为了判断主修统计专业是否与性别有关系,根据表中的数据,得到随机变量K2的观测值:因此,判定主修统计专业与性别有关系,那么这种判断出错的概率为.43.下表是关于男女生喜欢武打剧的调查表:则列联表中A=______ ,B=_____ ,C=_____ ,D=_____ .44.下面是一个2×2列联表:则b-d=________.45.下列说法正确的是________.(填序号)①对事件A与B的检验无关,即两个事件互不影响;②事件A与B关系越密切,χ2就越大;③χ2的大小是判断事件A与B是否相关的惟一数据;④若判定两事件A与B有关,则A发生B一定发生.46.在研究两个变量的相关关系时,观察散点图发现样本点集中于某一条指数曲线y=e bx+a的周围,令z=ln y,求得线性回归方程为z =0.25x-2.58,则该模型的回归方程为________.47.若满足则可用来描述与之间关系的函数解析式为________.48.若一函数模型为,则作变换=________才能转为是的线性回归方程.49.在线性回归模型中,R2表示________对预报变量变化的贡献率,R2越________,表示回归模型的拟合效果越好.50.若一组观测值(1,1),(2,2),…,(n,n)之间满足+(),且恒为0,则为________.51.若对于变量y与x的10组统计数据的回归模型中,相关指数R2=0.95,又知残差平方和为120.53,那么的值为__________.52.如图是x和y的一组样本数据的散点图,去掉一组数据________后,剩下的4组数据的相关指数最大.53.线性回归模型=x++中,=__________,=________,称为________.54.许多因素都会影响贫穷,教育也许是其中之一.在研究这两个因素的关系时,收集了美国50个州的成年人受过9年或更少教育的百分比(x)和收入低于官方规定的贫困线的人数占本州人数的百分比(y)的数据,建立的线性回归方程为=0.8x+4.6.斜率的估计值为0.8说明________________________________________________________________________.55.有下列说法正确的是:()①线性回归分析就是由样本点去寻找一条直线,使之贴近这些样本点的数学方法;②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;③通过回归方程=x+可以估计观测变量的取值和变化趋势;56.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间(单位:小时)与当天投篮命中率y之间的关系:小李这5天的平均投篮命中率为______;用线性回归分析的方法,预测小李每月6号打篮球6小时的投篮命中率为______.三、解答题(共44小题,每小题12.0分,共528分)57.高中流行这样一句话“文科就怕数学不好,理科就怕英语不好”.下表是一次针对高三文科学生的调查所得数据,试问:在出错概率不超过0.025的前提下,能否判断“文科学生总成绩不好与数学成绩不好有关系”?58.吃零食是中学生中普遍存在的现象,吃零食对学生身体发育有诸多不利影响,影响学生的健康成长.下表是性别与吃零食的列联表:请问喜欢吃零食与性别是否有关?59.在某校对有心理障碍学生进行测试得到如下列联表:试说明在这三种心理障碍中哪一种与性别关系最大?60.某教育机构为了研究人具有大学专科以上学历(包括大学专科)和对待教育改革态度的关系,随机抽取了392名成年人进行调查,所得数据如下表所示:对于教育机构的研究项目,根据上述数据能得出什么结论.61.为了研究性格与血型的关系,抽取80名被试者,他们的血型与性格汇总如下,试判断性格与血型是否相关.62.在某测试中,卷面满分为100分,60分为及格,为了调查午休对本次测试前两个月复习效果的影响,特对复习中进行午休和不进行午休的考生进行了测试成绩的统计,数据如下表所示:(1)根据上述表格完成列联表:(2)根据列联表可以得出什么样的结论?对今后的复习有什么指导意义?63.在海南省第二十四届科技创新大赛活动中,某同学为研究“网络游戏对当代青少年的影响”作了一次调查,共调查了50名同学,其中男生26人,有8人不喜欢玩电脑游戏,而调查的女生中有9人喜欢玩电脑游戏.(1)根据以上数据建立一个2×2的列联表;(2)根据以上数据,在犯错误的概率不超过0.025的前提下,能否认为“喜欢玩电脑游戏与性别有关系”?64.电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.根据已知条件完成下面的2×2列联表,并据此资料,你是否认为“体育迷”与性别有关?65.某校团对“学生性别与是否喜欢韩剧有关”作了一次调查,其中女生人数是男生人数的,男生喜欢韩剧的人数占男生人数的,女生喜欢韩剧的人数占女生人数的.若在犯错误的概率不超过0.05的前提下认为是否喜欢韩剧和性别有关,则男生至少有多少人?66.某校在两个班进行教学方式的对比试验,两个月后进行了一次检测,试验班与对照班成绩统计如下表所示(单位:人):(1)求的值;(2)能否在犯错误的概率不超过的前提下认为“教学方式”与“成绩”有关系?67.某地震观测站对地下水位的变化和地震的发生情况共进行了次观测,得到的数据如下表:能否在犯错误的概率不超过0.10的前提下认为地下水位的变化与地震的发生情况有关?68.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:甲厂:乙厂:(1)分别估计两个分厂生产的零件的优质品率;(2)由以上统计数据填写2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.69.有甲、乙两个班,进行数学考试,按学生考试及格与不及格统计成绩后,得到如下的列联表根据表中数据,你有多大把握认为成绩及格与班级有关?由列联表中的数据,得70.某机构为了研究人的脚的大小与身高之间的关系,随机测量了20人,得到如下数据:(1) 若“身高大于175厘米”的为“高个”,“身高小于等于175厘米”的为“非高个”;“脚长大于42码”的为“大脚”,“脚长小于等于42码”的为“非大脚”,请根据上表数据完成下面的2×2列联表.(2)根据(1)中的2×2列联表,在犯错误的概率不超过0.01的前提下,能否认为脚的大小与身高之间有关系?71.吃零食是中学生中普遍存在的现象,吃零食对学生身体发育有诸多不得影响,影响学生的健康成长,下表是性别与吃零食的列联表试画出列联表的三维柱形图、二维条形图与等高条件形图,并结合图形判断性别与吃零食是否有关?72.某医疗机构为了了解呼吸道疾病与吸烟是否有关,进行了一次抽样调查,共调查了515个成年人,其中吸烟者220人,不吸烟者295人.调查结果是:吸烟的220人中有37人患呼吸道疾病(简称患病),183人未患呼吸道疾病(简称未患病);不吸烟的295人中有21人患病,274人未患病.根据这些数据能否断定“患呼吸道疾病与吸烟有关”?(用列联表和等高条形图说明).73.在调查的480名男人中有38人患色盲,520名女人中有6名患色盲,试利用图形来判断色盲与性别是否有关?74.在某医院,因为患心脏病而住院的665名男性病人中有214人秃顶,而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶.(1)利用图形判断秃顶与患心脏病是否有关系;(2)能否在犯错误的概率不超过0.01的前提下认为秃顶与患心脏病有关系?75.某生产线上,质量监督员甲在生产现场时,990件产品中有合格品982件,次品8件;不在生产现场时,510件产品中有合格品493件,次品17件.试利用列联表和等高条形图判断监督员甲在不在生产现场对产品质量好坏有无影响.76.关于与有以下数据:有如下两个线性模型:(1);(2),试比较哪一个拟合效果比较好?77.对两个变量x,y取得4组数据(1,1),(2,1.2),(3,1.3),(4,1.37),甲、乙、丙三人分别求得数学模型如下:甲y=0.1x+1,乙y=-0.05x2+0.35x+0.7,丙y=-0.8·0.5x+1.4,试判断三人谁的数学模型更接近于客观实际.78.某同学次考试的数学、语文成绩在班中的排名如下表:对上述数据分别用与来拟合与之间的关系,并用残差分析两者的拟合效果。
一、选择题1.如图是九江市2019年4月至2020年3月每月最低气温与最高气温(℃)的折线统计图:已知每月最低气温与最高气温的线性相关系数r=0.83,则下列结论错误的是()A.每月最低气温与最高气温有较强的线性相关性,且二者为线性正相关B.月温差(月最高气温﹣月最低气温)的最大值出现在10月C.9﹣12月的月温差相对于5﹣8月,波动性更大D.每月最高气温与最低气温的平均值在前6个月逐月增加2.从一口袋中有放回地每次摸出1个球,摸出一个白球的概率为0.4,摸出一个黑球的概率为0.5,若摸球3次,则恰好有2次摸出白球的概率为A.0.24 B.0.26 C.0.288 D.0.2923.为研究某种细菌在特定环境下,随时间变化的繁殖情况,得到如下实验数据:天数x(天)3456繁殖个数y(千个) 2.534 4.5由最小二乘法得y与的线性回归方程为,则当时,繁殖个数y的预测值为()A.4.9 B.5.25C.5.95 D.6.154.一张储蓄卡的密码共有6位数字,每位数字都可以从09中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过2次就按对的概率为()A.25B.310C.15D.1105.在某场考试中,同学甲最后两道单项选择题(每题四个选项)不会解答,分别随机选择一个选项作为答案,在其答对了其中一道题的条件下,两道题都答对的概率为()A.116B.17C.14D.136.从345678910,1112,,,,,,,,中不放回地依次取2个数,事件A=“第一次取到的数可以被3整除”,B = “第二次取到的数可以被3整除”,则()P B|?A =( ) A .59B .23C .13D .297.从装有形状大小相同的3个黑球和2个白球的盒子中依次不放回地任意抽取3次,若第二次抽得黑球,则第三次抽得白球的概率等于( ) A .15B .14C .13D .128.下列说法中正确的是( )A .设随机变量~(10,0.01)X N ,则1(10)2P X >= B .线性回归直线不一定过样本中心点(,)x yC .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1D .先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为50m +,100m +,150m +,……的学生,这样的抽样方法是分层抽样9.工人月工资(元)关于劳动生产率x(千元)的回归方程为,下列说法中正确的个数是( )①劳动生产率为1000元时,工资为730元; ②劳动生产率提高1000元,则工资提高80元; ③劳动生产率提高1000元,则工资提高730元; ④当月工资为810元时,劳动生产率约为2000元. A .1B .2C .3D .410.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为( ) A .0.12B .0.42C .0.46D .0.8811.甲、乙两位同学各自独立地解答同一个问题,他们能够正确解答该问题的概率分别是23和12,在这个问题至少被一个人正确解答的条件下,甲、乙两位同学都能正确解答该问题的概率为( )A .27B .25C .15D .1912.为了研究经常使用手机是否对数学学习成绩有影响,某校高二数学研究性学习小组进行了调查,随机抽取高二年级50名学生的一次数学单元测试成绩,并制成下面的2×2列联表:及格 不及格 合计 很少使用手机 20 5 25 经常使用手机101525合计 3020 50则有( )的把握认为经常使用手机对数学学习成绩有影响.参考公式:()()()()()22=n ad bc K a b c d a c b d -++++,其中n a b c d =+++()2P K k ≥ 0.150.10 0.05 0.025 0.010 0.005 0.001 k 2.0722.7063.8415.0246.6357.87910.828A .97.5%B .99%C .99.5%D .99.9%二、填空题13.有7个评委各自独立对A 、B 两位选手投票表决,两位选手旗鼓相当,每位评委公平投票且不得弃权.若7位评委依次揭晓票选结果,则A 选手在每位评委投票揭晓后票数始终保持领先的概率是______.14.某人抛掷一枚均匀骰子,构造数列{}n a ,使1,()1,()n n a n ⎧=⎨-⎩当第次掷出偶数当第次掷出奇数,记12n n S a a a =+++,则20S ≠且82S =的概率为_____.15.一个不透明的箱中原来装有形状、大小相同的1个绿球和3个红球.甲、乙两人从箱中轮流摸球,每次摸取一个球,规则如下:若摸到绿球,则将此球放回箱中可继续再摸;若摸到红球,则将此球放回箱中改由对方摸球,甲先摸球,则在前四次摸球中,甲恰好摸到两次绿球的概率是________.16.某一部件由四个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3或元件4正常工作,则部件正常工作.设四个电子元件的使用寿命(单位:小时)均服从正态分布2(1000,50)N ,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为__________.17.已知x 、y 之间的一组数据如下: x 0 1 2 3 y8264则线性回归方程ˆya bx =+所表示的直线必经过点________.18.设甲、乙两套方案在一次试验中通过的概率均为0.3,且两套方案在试验过程中相互之间没有影响,则两套方案在一次试验中至少有一套通过的概率为___________. 19.某校高三年级要从5名男生和2名女生中任选3名代表参加数学竞赛(每人被选中的机会均等),则在男生甲被选中的情况下,男生乙和女生丙至少一个被选中的概率是______.20.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以1A ,2A 和3A 表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是___________.①()25P B =;②()1511P B A =;③事件B 与事件1A 相互独立;④1A ,2A ,3A 是两两互斥的事件三、解答题21.某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表:x 的线性相关程度;(2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?参考公式:()()niix x y y r --=∑()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++. 临界值表:22.02≈.22.自从新型冠状病毒爆发以来,美国疫情持续升级,以下是美国2020年4月9日-12月14日每隔25天统计1次共11次累计确诊人数(万).(1)将4月9日作为第1次统计,若将统计时间顺序作为变量x ,每次累计确诊人数作为变量y ,得到函数关系bxy ae =(a 、0b >).对上表的数据作初步处理,得到部分数据已作近似处理的一些统计量的值6x =,603.09y =,1111ln 5.9811i i y ==∑,()()11115835.70iii x x y y =--=∑,()()111ln ln 35.10iii x x y y =--=∑,()1121110i i x x =-=∑,()1121ln ln 11.90i i y y=-=∑, 4.0657.97e ≈, 4.0758.56e ≈,4.0859.15e ≈.根据相关数据,确定该函数关系式(函数的参数精确到0.01).(2)为了了解患新冠肺炎与年龄的关系,已知某地患有新冠肺炎的老年、中年、青年的人数分别为45人,30人,15人,按分层抽样的方法随机抽取6人进行问卷调查,再从6人中随机抽取2人进行调查结果对比,求这2人中至少一人是老年人的概率.23.已知某班的50名学生进行不记名问卷调查,内容为本周使用手机的时间长,如表:(1)求这50名学生本周使用手机的平均时间长;(2)时间长为[0,5)的7名同学中,从中抽取两名,求其中恰有一个女生的概率; (3)若时间长为[0,10)被认定“不依赖手机”,[]10,25被认定“依赖手机”,根据以上数据完成22⨯列联表:能否在犯错概率不超过0.15的前提下,认为学生的性别与依赖手机有关系?(参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++)24.近几年,电商行业的蓬勃发展带动了快递业的迅速增长,快递公司揽收价格一般是采用“首重+续重”的计价方式.首重是指最低的计费重量,续重是指超过首重部分的计费重量,不满一公斤按一公斤计费.某快递网点将快件的揽收价格定为首重(不超过一公斤)8元,续重2元/公斤(例如,若一个快件的重量是0.6公斤,按8元计费;若一个快件的重量是1.4公斤,按8元2+元110⨯=元计费).根据历史数据,得到该网点揽收快件重量的频率分布直方图如下图所示(1)根据样本估计总体的思想,将频率视作概率,求该网点揽收快件的平均价格; (2)为了获得更大的利润,该网点对“一天中收发一件快递的平均成本i y (单位:元)与当天揽收的快递件数i x (单位:百件)()1,2,3,4,5i =之间的关系”进行调查研究,得到相关数据如下表:每天揽收快递件数i x (百件) 2 3 4 5 8 每件快递的平均成本i y (元)5.64.84.44.34.1根据以上数据,技术人员分别根据甲、乙两种不同的回归模型,得到两个回归方程:方程甲:(1)ˆ0.2 5.6yx =-+,方程乙:(2)4ˆ 3.5yx=+. ①为了评价两种模型的拟合效果,根据上表数据和相应回归方程,将以下表格填写完整(结果保留一位小数),分别计算模型甲与模型乙的残差平方和1Q ,2Q ,并依此判断哪个模型的拟合效果更好(备注:ˆˆi i i ey y =-称为相应于点(),i i x y 的残差,残差平方和21ˆni i Q e==∑; 每天揽收快递件数i x /百件 2 3 4 5 8 每天快递的平均成本i y /元5.6 4.8 4.4 4.34.1模型甲预报值(1)ˆi y5.25.0 4.8 残差(1)ˆi e 0.4-0.2 0.4 模型乙预报值(2)ˆi y5.54.8 4.5 预报值(2)ˆi y0.1-0.1②预计该网点今年6月25日(端午节)一天可以揽收1000件快递,试根据①中确定的拟合效果较好的回归模型估计该网点当天的总利润(总利润=(平均价格-平均成本)×总件数).25.某种疾病可分为Ⅰ、Ⅱ两种类型.为了解该疾病类型与性别的关系,在某地区随机抽取了患该疾病的病人进行调查,其中女性是男性的2倍,男性患Ⅰ型病的人数占男性病人的56,女性患Ⅰ型病的人数占女性病人的13. (1)若在犯错误的概率不超过0.005的前提下认为“所患疾病类型”与“性别”有关,求男性患者至少有多少人?(2)某药品研发公司欲安排甲乙两个研发团队来研发此疾病的治疗药物.两个团队各至多安排2个接种周期进行试验.甲团队研发的药物每次接种后产生抗体的概率为p ,每人每次接种花费()0m m >元,每个周期至多接种3次,第一个周期连续2次出现抗体则终止本接种周期进入第二个接种周期,否则需依次接种至第一周期结束,再进入第二周期;第二接种周期连续2次出现抗体则终止试验,否则需依次接种至至试验结束;乙团队研发的药物每次接种后产生抗体的概率为q ,每人每次花费()0n n >元,每个周期接种3次,每个周期必须完成3次接种,若一个周期内至少出现2次抗体,则该周期结束后终止试验,否则进入第二个接种周期.假设两个研发团队每次接种后产生抗体与否均相互独立.①若甲团队的试验平均花费大于乙团队的试验平均花费,求p 、q 、m 、n 满足的关系式;②若m n =,2p q =,从两个团队试验的平均花费考虑,该公司应选择哪个团队进行药品研发?附:()()()()()22n ad bc K a b c d a c b d -=++++,26.个人所得税是国家对本国公民、居住在本国境内的个人的所得和境外个人来源于本国的所得征收的一种所得税我国在1980年9月10日,第五届全国人民代表大会第三次会议通过并公布了《中华人民共和国个人所得税法》公民依法诚信纳税是义务,更是责任现将自2013年至2017年的个人所得税收入统计如下:个税收入y(千亿元) 6.537.388.6210.0911.97x根据散点图判断,可用①nxy me=与②2y px q=+作为年个人所得税收入y关于时间代号x的回归方程,经过数据运算和处理,得到如下数据:x y z w()521iix x=-∑()521iiw w=-∑38.92 2.161110374()()51i iix x z z=--∑()()51i iiw w y y=--∑1.6083.83表中lnz y=,2w x=,1ln5iiz y==∑,215iiw x==∑,参考数据: 1.48 5.37e=,0.96 2.61e=.以下计算过程中四舍五入保留两位小数.(1)根据所给数据,分别求出①、②中y关于x的回归方程;(2)已知2018年个人所得税收人为13.87千亿元,用2018年的数据验证(1)中所得两个回归方程,哪个更适宜作为y关于时间代号x的回归方程?(3)你还能从统计学哪些角度来进一步确认哪个回归方程更适宜?(只需叙述,不必计算)附:对于一组数据()11,u v、()22,u v、、(),n nu v,其回归直线v a uβ=+的斜率和截距的最小二乘估计分别为:()()()121ni iiniiu u v vu uβ==--=-∑∑,v uαβ=-.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据相关系数的性质判断A;根据所给折线图,对B,C,D逐项进行判断.【详解】每月最低气温与最高气温的线性相关系数r=0.83,比较接近于1,则每月最低气温与最高气温有较强的线性相关性,且二者为线性正相关,则A正确;由所给的折线图可以看出月温差(月最高气温﹣月最低气温)的最大值出现在10月,则B 正确;5﹣8月的月温差分别为18,17,16,16,9﹣12月的月温差分别为20,31,24,21,则9﹣12月的月温差相对于5﹣8月,波动性更大,C正确;每月的最高气温与最低气温的平均值在前5个月逐月增加,第六个月开始减少,所以A正确,则D错误;故选:D【点睛】本题主要考查了根据折线图解决实际问题以及相关系数的性质的应用,对于相关系数r,r越接近于1,两个变量的线性相关程度越强,属于中档题.2.C解析:C【分析】首先分析可能的情况:(白,非白,白)、(白,白,非白)、(非白,白,白),然后计算相应概率.【详解】因为摸一次球,是白球的概率是0.4,不是白球的概率是0.6,所以0.40.60.40.40.40.60.60.40.40.288P=⨯⨯+⨯⨯+⨯⨯=,故选C.【点睛】本题考查有放回问题的概率计算,难度一般.3.B解析:B【分析】根据表格中的数据,求得样本中心为97(,)22,代入回归直线方程,求得ˆ0.35a=,得到回归直线的方程为ˆ0.70.35yx =+,即可作出预测,得到答案. 【详解】由题意,根据表格中的数据,可得34569 2.534 4.57,4242x y ++++++====, 即样本中心为97(,)22,代入回归直线方程ˆˆ0.7yx a =+,即79ˆ0.722a=⨯+, 解得ˆ0.35a=,即回归直线的方程为ˆ0.70.35y x =+, 当7x =时,ˆ0.770.35 5.25y=⨯+=,故选B . 【点睛】本题主要考查了回归直线方程的应用,其中解答中熟记回归直线方程的特征,求得回归直线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.4.C解析:C 【分析】利用互斥事件概率加法公式和相互独立事件概率乘法公式直接求解. 【详解】一张储蓄卡的密码共有6位数字,每位数字都可以从0~9中任选一个, 某人在银行自动提款机上取钱时,忘记了密码最后一位数字, 任意按最后一位数字,不超过2次就按对的概率为:p=19110109+⨯=15. 故选C . 【点睛】本题考查概率的求法,考查互斥事件概率加法公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.B解析:B 【解析】分析:由题意结合条件概率计算公式整理计算即可求得最终结果.详解:同学甲至少答对一道题的概率为:2371416⎛⎫-= ⎪⎝⎭,两道题都答对的概率为211416⎛⎫= ⎪⎝⎭, 由条件概率计算公式可知,同学甲两道题都答对的概率为:11167716p ==. 本题选择B 选项.点睛:本题主要考查古典概型计算公式,条件概率的计算等知识,意在考查学生的转化能力和计算求解能力.6.C解析:C 【解析】分析:先求()P AB ,()P A ,再根据()(|)()P AB P B A P A =得结果. 详解:因为214421101022(),()155C C P AB P A C C ====, 所以2()115(|)2()35P AB P B A P A ===, 选C.点睛:本题考查条件概率,考查基本求解能力.7.D解析:D 【解析】分析:这是一个条件概率,可用古典概型概率公式计算,即从5个球中取三个排列,总体事件是第二次是黑球,可在第二次是黑球的条件下抽排第一次和第三次球.详解:111223122412C C C P C A ==. 点睛:此题是一个条件概率,条件是第二次抽取的是黑球,不能误以为是求第二次抽到黑球,第三次抽到白球的概率,如果那样求得错误结论为1132353310C C A ⨯=. 8.A解析:A 【解析】在A 中,设随机变量X 服从正态分布N (10,0.01),则由正态分布性质得1(10)2P X >=,故A 正确; 在B 中,线性回归直线一定过样本中心点(),x y ,故B 错误;在C 中,若两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1,故C 错误;在D 中,先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为m+50,m+100,m+150…的学生,这样的抽样方法是系统抽样法,故D 错误. 故选:A9.C解析:C 【解析】对于①当劳动生产率为1000元时,工资为65080730y =+=元,故①正确;对于②劳动生产率提高1000元,则工资提高80元正确;故③错误;对于④当月工资为810元时,由81065080x =+得2x =,即劳动生产率约为2000元,故④正确;故选C.10.D解析:D 【解析】由题意知,甲、乙都不被录取的概率为(1-0.6)(1-0.7)=0.12. ∴至少有一人被录取的概率为1-0.12=0.88.故选D. 考点:相互独立事件的概率.11.B解析:B 【分析】先计算“这个问题至少被一个人正确解答”和“甲、乙两位同学都能正确解答该问题”概率,再利用条件概率公式计算即可. 【详解】由已知,不妨设A =“这个问题至少被一个人正确解答”,B =“甲、乙两位同学都能正确解答该问题”,因为甲、乙两位同学各自独立正确解答该问题的概率分别是23和12, 故215()111326P A ⎛⎫⎛⎫=---= ⎪⎪⎝⎭⎝⎭,121()233P B =⨯=, 易知1()()3P AB P B ==. 故()1()235()56P AB P B A P A ===∣.故选:B. 【点睛】本题考查了条件概率的应用,属于中档题.12.C解析:C 【分析】根据2×2列联表,求出k 的观测值2K ,结合题中表格数据即可得出结论. 【详解】 由题意,可得:222()50(2015105)258.3337.879()()()()302025253n ad bc K a b c d a c b d -⨯⨯-⨯===≈>++++⨯⨯⨯,所以有99.5%的把握认为经常使用手机对数学学习成绩有影响. 故选C. 【点睛】本题考查了独立性检验的应用,考查了计算能力,属于基础题.二、填空题13.【分析】将比分分为四种情况讨论计算概率【详解】由条件可知前两名投票的都投给选手并且投给每位选手的概率是若投票给两位选手的比分为则概率为若比分为则投给选手的方法有种所以概率为若比分为则投给选手的两票不 解析:532【分析】将比分分为7:0,6:1,5:2,4:3四种情况讨论计算概率. 【详解】由条件可知前两名投票的都投给选手A ,并且投给每位选手的概率是12P =. 若投票给A 、B 两位选手的比分为7:0,则概率为712⎛⎫ ⎪⎝⎭, 若比分为6:1,则投给选手B 的方法有155C =种,所以概率为7152⎛⎫⋅ ⎪⎝⎭若比分为5:2,则投给选手B 的两票不能在第三和第四的位置,有2519C -=种,所以概率为7192⎛⎫⋅ ⎪⎝⎭, 若比分为4:3,则投给A 的票不能是最后一位,且不能占5,6位,有2415C -=种,所以概率为7152⎛⎫⋅ ⎪⎝⎭, 所以概率()7151595232P ⎛⎫=+++⋅=⎪⎝⎭. 故答案为:532【点睛】本题考查独立事件同时发生的概率,重点考查分类的思想,属于中档题型.14.【分析】根据题意抛掷一枚均匀骰子出现奇数或偶数概率为则且的情况有2种:①当前2次同时出现偶数时则后6次出现3次偶数3次奇数②当前2次出现奇数时则后6次出现5次偶数1次奇数分别计算相应的概率求和即可【解析:13128. 【分析】根据题意,抛掷一枚均匀骰子,出现奇数或偶数概率为12,则20S ≠且82S =的情况有2种:①当前2次同时出现偶数时,则后6次出现3次偶数3次奇数,②当前2次出现奇数时,则后6次出现5次偶数1次奇数,分别计算相应的概率求和即可. 【详解】抛掷一枚均匀骰子,出现奇数或偶数概率为12, 构造数列{}n a ,使1,()1,()n n a n ⎧=⎨-⎩当第次掷出偶数当第次掷出奇数,记12n n S a a a =+++,则20S ≠且82S =的情况为:①当前2次同时出现偶数时,则后6次出现3次偶数3次奇数,相应的概率23336111522264C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⨯⨯⨯=, ②当前2次出现奇数时,则后6次出现5次偶数1次奇数,相应的概率为25561113222128C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⨯⨯⨯=, 所以概率为3513+12864128=. 故答案为:13128. 【点睛】本题考查二项分布概率计算,结合排列组合与数列的知识,属于综合题,解题的关键在于对所求情况进行分析,再利用二项分布进行概率计算即可,属于中等题.15.【分析】先定义事件从而得到事件甲恰好摸到两次绿球的情况为事件利用事件的独立性进行概率计算即可得到答案【详解】设甲摸到绿球的事件为则甲摸到红球的事件为则设乙摸到绿球的事件为则乙摸到红球的事件为则在前四 解析:15128【分析】先定义事件A ,A ,B ,B ,从而得到事件“甲恰好摸到两次绿球的情况为事件(),,AAA B B AABA ABAA +,利用事件的独立性进行概率计算,即可得到答案。
一、选择题1.甲、乙两队进行排球比赛,采取五局三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩可知在每一局比赛中,甲队获胜的概率为23,乙队获胜的概率为13.若前两局中乙队以20:领先,则下列说法中错误的是( ) A .甲队获胜的概率为827B .乙队以30:获胜的概率为13 C .乙队以三比一获胜的概率为29D .乙队以32:获胜的概率为492.在一个质地均匀的小正方体的六个面中,三个面标0,两个面标1,一个面标2,将这个小正方体连续抛掷两次,若向上的数字的乘积为偶数,则该乘积为非零偶数的概率为( ) A .14 B .89 C .116D .5323.“人机大战,柯洁哭了,机器赢了”,2017年5月27日,岁的世界围棋第一人柯洁不敌人工智能系统AlphaGo ,落泪离席.许多人认为这场比赛是人类的胜利,也有许多人持反对意见,有网友为此进行了调查.在参与调查的男性中,有人持反对意见,名女性中,有人持反对意见.再运用这些数据说明“性别”对判断“人机大战是人类的胜利”是否有关系时,应采用的统计方法是( )A .分层抽样B .回归分析C .独立性检验D .频率分布直方图4.针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的12,男生追星的人数占男生人数的16,女生追星的人数占女生人数的23.若有95%的把握认为是否追星和性别有关,则男生至少有( ) 参考数据及公式如下: 20()P K k ≥ 0.050 0.0100.0010k3.841 6.635 10.8282()=()()()()n ad bc K a b c d a c b d -++++A .12B .11C .10D .185.从345678910,1112,,,,,,,,中不放回地依次取2个数,事件A = “第一次取到的数可以被3整除”,B = “第二次取到的数可以被3整除”,则()P B|?A =( )A .59B .23C .13D .296.在“新零售”模式的背景下,自由职业越来越流行,诸如:淘宝网店主、微商等等,现调研某自由职业者的工资收入情况,记x 表示该自由职业者的平均水平每天工作的小时数,y 表示平均每天工作x 个小时的月收入.假设y 与x 具有线性相关关系,则y 关与x 的线性回归方程ˆˆˆybx a =+必经过点( ) A .()33, B .()34, C .()44, D .()45,7.甲、乙两人抢答竞赛题,甲答对的概率为15,乙答对的概率为14,则两人中恰有一人答对的概率为 A .720B .12 20C .120D .2208.下列说法中正确的是( )A .设随机变量~(10,0.01)X N ,则1(10)2P X >= B .线性回归直线不一定过样本中心点(,)x yC .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1D .先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为50m +,100m +,150m +,……的学生,这样的抽样方法是分层抽样9.在5道题中有3道理科题和2道文科题,如果一次性抽取 2道题,已知有一道是理科题的条件下,则另一道也是理科题的概率为 A .13B .14C .12D .3510.通过随机询问72名不同性别的学生在购买食物时是否看营养说明,得到如下列联表:参考公式:22()()()()()n ad bc K a b c d a c b d -=++++20()P K k ≥ 0.100.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.828则根据以上数据:A .能够以99.5%的把握认为性别与读营养说明之间无关系;B .能够以99.9%的把握认为性别与读营养说明之间无关系;C .能够以99.5%的把握认为性别与读营养说明之间有关系;D .能够以99.9%的把握认为性别与读营养说明之间有关系;11.学生会为了调查学生对2018年俄罗斯世界杯的关注是否与性别有关,抽样调查100人,得到如下数据:根据表中数据,通过计算统计量并参考以下临界数据:若由此认为“学生对2018年俄罗斯世界杯的关注与性别有关”,则此结论出错的概率不超过 A .B .C .D .12.为了研究经常使用手机是否对数学学习成绩有影响,某校高二数学研究性学习小组进行了调查,随机抽取高二年级50名学生的一次数学单元测试成绩,并制成下面的2×2列联表:及格 不及格 合计 很少使用手机 20 5 25 经常使用手机 10 15 25 合计302050则有( )的把握认为经常使用手机对数学学习成绩有影响.参考公式:()()()()()22=n ad bc K a b c d a c b d -++++,其中n a b c d =+++A .97.5%B .99%C .99.5%D .99.9%二、填空题13.在一次三人象棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,比赛顺序如下:第一局,甲对乙;第二局,第一局胜者对丙;第三局,第二局胜者对第一局败者;第四局,第三局胜者对第二局败者.则乙连胜四局的概率为____. 14.两个实习生加工一个零件,产品为一等品的概率分别为23和34,则这两个零件中恰有一个一等品的概率为__________. 15.有如下四个命题:①甲乙两组数据分别为甲:28,31,39,42,45,55,57,58,66;乙:29,34,35,48,42,46,55,53,55,67.则甲乙的中位数分别为45和44.②相关系数0.83r =-,表明两个变量的相关性较弱.③若由一个2⨯2列联表中的数据计算得2K 的观测值 4.103k ≈,那么有95%的把握认为两个变量有关.④用最小二乘法求出一组数据(,),(1,,)i i x y i n =的回归直线方程ˆˆˆy bx a =+后要进行残差分析,相应于数据(,),(1,,)i i x y i n =的残差是指()ˆˆˆi i ie y bx a =-+. 以上命题“错误”的序号是_________________16.甲、乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是23,没有平局,若采用三局两胜制比赛,即先胜两局者获胜且比赛结束,则甲队获胜的概率等于__________. 17.以下四个命题,其中正确的序号是____________________.①从匀速传递的产品生产流水线上,每20分钟从中抽取一件产品进行检测,这样的抽样是分层抽样;②两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1;③在线性回归方程0.212ˆyx =+中,当解释变量x 每增加一个单位时,预报变量ˆy 平均增加0.2个单位;④分类变量X 与Y ,它们的随机变量2K 的观测值为k ,当k 越小,“X 与Y 有关系”的把握程度越大.18.某研究小组为了研究中学生的身体发育情况,在某学校随机抽出20名15至16周岁的男生,将他们的身高和体重制成2×2列联表,根据列联表的数据,可以有_____%的把握认为该学校15至16周岁的男生的身高和体重之间有关系.(注:独立性检验临界值表参考第9题,K 2=2()()()()()n ad bc a b c d a c b d -++++.) 19.已知一组数据的回归直线方程为 1.51y x =-+,且4y =,发现有两组数据( 1.7,2.9)-,( 2.3,5.1)-的误差较大,去掉这两组数据后,重新求得回归直线方程为y x a '''=-+,则当3x '=-时,y '=_____.20.某质检员检验一件产品时,把正品误判为次品的概率是0.1,把次品误判为正品的概率是0.05.如果一箱产品中含有8件正品,2件次品,现从中任取1件让该质检员检验,那么出现误判的概率为___________.三、解答题21.某校将进行篮球定点投篮测试,规则为:每人至多投3次,先在M 处投一次三分球,投进得3分,未投进不得分,以后均在N 处投两分球,每投进一次得2分,未投进不得分.测试者累计得分高于3分即通过测试,并终止投篮.甲、乙两位同学为了通过测试,进行了五轮投篮训练,每人每轮在M 处和N 处各投10次,根据他们每轮两分球和三分球的命中次数情况分别得到如图表:若以每人五轮投篮训练命中频率的平均值作为其测试时每次投篮命中的概率. (1)求甲同学通过测试的概率;(2)在甲、乙两位同学均通过测试的条件下,求甲得分比乙得分高的概率.22.消费者信心指数是反映消费者信心强弱的指标;它是预测经济走势和消费趋向的一个先行指标,是监测经济周期变化的重要依据.消费者信心指数值介于0和200之间.指数超过100时,表明消费者信心处于强信心区;指数等于100时,表示消费者信心处于强弱临界点;指数小于100时,表示消费者信心处于弱信心区.我国某城市从2016年到2019年各季度的消费者信心指数如下表1:2016年 2017年 2018年 2019年 第一季度 104.50 111.70 118.50 119.30 第二季度 104.00 110.20 114.60 118.20 第三季度 105.50 114.20 110.20 118.10 第四季度106.80113.20113.20119.30记2016年至2019年年份序号为,该城市各年消费者信心指数的年均值(四舍五入取整)为y ,x 与y 的关系如下表2: 年份序号x1 2 3 4 消费者信心指数年均值y105112114119的消费者信心指数不小于2017年的消费者信心指数的概率;(2)根据表2得到线性回归方程为:ˆˆ4.4yx a =+,求ˆa 的值,并预报该城市2020年消费者信心指数的年平均值.(3)根据表2计算(,)x y 的相关系数r (保留两位小数),并判断是否正相关很强.参考数据和公式:ˆˆay bx =-;12342.54x +++==;105112114119112.54y +++==;55023.45≈;50522.47≈;()()()()12211niii nniii i x x y y r x x y y ===--=--∑∑∑;当0.751r ≤≤时,y 与x 正相关很强.23.某花圃为提高某品种花苗质量,开展技术创新活动,在A ,B 实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图,记综合评分为80分及以上的花苗为优质花苗.(1)用样本估计总体,以频率作为概率,若在A ,B 两块实验地随机抽取3株花苗,求所抽取的花苗中优质花苗数的分布列和数学期望;(2)填写下面的列联表,并判断是否有99%的把握认为优质花苗与培育方法有关.优质花苗 非优质花苗 合计甲培育法 20乙培育法 10合计附:下面的临界值表仅供参考.20()P K k ≥0.050 0.010 0.001 0k3.8416.63510.828(参考公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++)24.甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.优秀非优秀总计甲班10乙班30合计105已知在全部105人中抽到随机抽取1人为优秀的概率为2 7(Ⅰ)请完成上面的列联表;(Ⅱ)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系” .(Ⅲ)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6或10号的概率.参考公式:22()()()()()n ad bcKa b c d a c b d-=++++25.在疫情这一特殊时期,教育行政部门部署了“停课不停学”的行动,全力帮助学生在线学习.复课后进行了摸底考试,某校数学教师为了调查高三学生这次摸底考试的数学成绩与在线学习数学时长之间的相关关系,对在校高三学生随机抽取45名进行调查.知道其中有25人每天在线学习数学的时长是不超过1小时的,得到了如下的等高条形图:(Ⅰ)是否有99%的把握认为“高三学生的这次摸底考试数学成绩与其在线学习时长有关”;(Ⅱ)将频率视为概率,从全校高三学生这次数学成绩超过120分的学生中随机抽取10人,求抽取的10人中每天在线学习时长超过1小时的人数的数学期望和方差.()20P K k ≥ 0.050 0.010 0.001 0k3.8416.63510.828()()()()()22n ad bc K a b c d a c b d -=++++26.某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若||0.75r >,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系: 周光照量X (单位:小时)3050X << 5070X ≤≤ 70X >若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值.附:相关系数公式()()niix x y y r --=∑0.55≈,0.95≈.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】A ,在乙队以2:0领先的前提下,若甲队获胜则第三、四、五局均为甲队取胜;B ,乙队以3:0获胜,即第4局乙获胜;C ,乙队以三比一获胜,即第三局甲获胜,第四局乙获胜;D ,若乙队以3:2获胜,则第五局为乙队取胜,第三、四局乙队输. 【详解】解:对于A ,在乙队以2:0领先的前提下,若甲队获胜则第三、四、五局均为甲队取胜,所以甲队获胜的概率为3128()327P ==,故正确; 对于B ,乙队以3:0获胜,即第4局乙获胜,概率为13,故正确;对于C ,乙队以三比一获胜,即第三局甲获胜,第四局乙获胜,概率为212339⨯=,故正确;对于D ,若乙队以3:2获胜,则第五局为乙队取胜,第三、四局乙队输,所以乙队以3:2获胜的概率为221433327⨯⨯=,故错.故选:D . 【点睛】本题主要考查相互独立事件的概率乘法公式,所求的事件与它的对立事件概率间的关系,属于中档题.2.D解析:D【分析】首先确定是条件概率,在出现数字乘积为偶数的前提下,乘积为非零偶数的概率,首先求两次数字乘积为偶数的概率,然后两次为非零偶数的概率,再按照条件概率的公式求解.【详解】两次数字乘积为偶数,可先考虑其反面——只需两次均出现1向上,概率是221 69⎛⎫=⎪⎝⎭,所以两次数字乘积为偶数的概率P=228169⎛⎫-=⎪⎝⎭;若乘积非零且为偶数,需连续两次抛掷小正方体的情况为(1,2)或(2,1)或(2,2),P=111152366636⨯⨯+⨯=,.故所求条件概率为55368329P==.故选:D【点睛】本题主要考查了条件概率的计算和独立事件,考查了学生的计算能力,属于基础题. 3.C解析:C【解析】【分析】根据“性别”以及“反对与支持”这两种要素,符合,从而可得出统计方法。
一、选择题1.甲、乙两队进行排球比赛,采取五局三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩可知在每一局比赛中,甲队获胜的概率为23,乙队获胜的概率为13.若前两局中乙队以20:领先,则下列说法中错误的是( ) A .甲队获胜的概率为827B .乙队以30:获胜的概率为13 C .乙队以三比一获胜的概率为29D .乙队以32:获胜的概率为492.甲、乙两人进行乒乓球比赛,假设每局比赛甲胜的概率是0.6,乙胜的概率是0.4.那么采用5局3胜制还是7局4胜制对乙更有利?( ) A .5局3胜制B .7局4胜制C .都一样D .说不清楚3.A B 两支篮球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局A 队获胜的概率是12外,其余每局比赛B 队获胜的概率都是13.假设各局比赛结果相互独立.则A 队以3:2获得比赛胜利的概率为( ) A .427B .281C .1681D .8274.甲罐中有5个红球,2个白球和3个黑球,乙罐中有6个红球,2个白球和2个黑球,先从甲罐中随机取出一个球放入乙罐,分别以1A ,2A ,3A 表示由甲罐取出的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以B 表示由乙罐取出的球是红球的事件,下列结论中不正确...的是( ) A .事件B 与事件1A 不相互独立 B .1A 、2A 、3A 是两两互斥的事件 C .17(|)11P B A =D .3()5P B =5.某光学仪器厂生产的透镜,第一次落地打破的概率为0.3;第一次落地没有打破,第二次落地打破的概率为0.4;前两次落地均没打破,第三次落地打破的概率为0.9.则透镜落地3次以内(含3次)被打破的概率是( ). A .0.378B .0.3C .0.58D .0.9586.从混有4张假钞的10张一百元纸币中任意抽取3张,若其中一张是假币的条件下,另外两张都是真币的概率为( ) A .512B .58C .35D .127.一射手对同一目标独立地进行4次射击,且射击结果之间互不影响.已知至少命中一次的概率为8081,则此射手的命中率为( )A .19B .13 C .23D .8 98.下列有关结论正确的个数为( )①小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点不相同”,事件B =“小赵独自去一个景点”,则()2|9P A B =; ②设,a b ∈R ,则“22log log a b >”是“21a b ->的充分不必要条件;③设随机变量ξ服从正态分布(),7N μ,若()()24P P ξξ<=>,则μ与D ξ的值分别为3,7D μξ==. A .0B .1C .2D .39.通过随机询问72名不同性别的学生在购买食物时是否看营养说明,得到如下列联表:参考公式:22()()()()()n ad bc K a b c d a c b d -=++++则根据以上数据:A .能够以99.5%的把握认为性别与读营养说明之间无关系;B .能够以99.9%的把握认为性别与读营养说明之间无关系;C .能够以99.5%的把握认为性别与读营养说明之间有关系;D .能够以99.9%的把握认为性别与读营养说明之间有关系; 10.下面给出四种说法:①用相关指数R 2来刻画回归效果,R 2越小,说明模型的拟合效果越好; ②命题P :“∃x 0∈R ,x 02﹣x 0﹣1>0”的否定是¬P :“∀x ∈R ,x 2﹣x ﹣1≤0”; ③设随机变量X 服从正态分布N (0,1),若P (x >1)=p 则P (﹣1<X <0)=12﹣p ④回归直线一定过样本点的中心(,x y ).其中正确的说法有( ) A .①②③B .①②④C .②③④D .①②③④11.甲、乙两队进行篮球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队不超过4场即获胜的概率是( ) A .0.18B .0.21C .0.39D .0.4212.甲、乙两人独立地破译一份密码,破译的概率分别为11,32,则密码被破译的概率为( ) A .16B .23C .56D .1二、填空题13.甲、乙两名运动员进行乒乓球单打比赛,已知每一局甲胜的概率为23.比赛采用“五局三胜(即有一方先胜3局即获胜,比赛结束)制”,则甲3:2获胜的概率是____. 14.2018年春季,世界各地相继出现流感疫情,这已经成为全球性的公共卫生问题.为了考察某种流感疫苗的效果,某实验室随机抽取100只健康小鼠进行试验,得到如下列联表:关系.(参考公式:()()()()()22n ad bc K a b c d a c b d -=++++.)15.下列命题中,正确的命题有__________.①回归直线ˆˆˆy bx a =+恒过样本点的中心(),x y ,且至少过一个样本点;②将一组数据的每个数据都加一个相同的常数后,方差不变;③用相关指数2R 来刻面回归效果;表示预报变量对解释变量变化的贡献率,越接近于1,说明模型的拟合效果越好;④若分类变量X 和Y 的随机变量2K 的观测值K 越大,则“X 与Y 相关”的可信程度越小;⑤.对于自变量x 和因变量y ,当x 取值一定时,y 的取值具有一定的随机性,x ,y 间的这种非确定关系叫做函数关系;⑥.残差图中残差点比较均匀的地落在水平的带状区域中,说明选用的模型比较合适; ⑦.两个模型中残差平方和越小的模型拟合的效果越好.16.从包括甲乙两人的6名学生中选出3人作为代表,记事件A :甲被选为代表,事件B :乙没有被选为代表,则()P BA │等于_________. 17.某同学通过计算机测试的概率为13,他连续测试3次,且三次测试相互独立,其中恰有1次通过的概率为__________. 18.以下说法正确的是_____________ . ①类比推理属于演绎推理.②设有一个回归方程ˆ23yx =- ,当变量每增加1个单位,y 平均增加3个单位. ③样本相关系数r 满足以下性质:1r ≤,并且r 越接近1,线性相关程度越强;r 越接近0,线性相关程度越弱.④对复数12,z z 和自然数n 有()1212nn n z z z z ⋅=⋅.19.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力蓄电池技术作为新能源汽车的核心技术,它的不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为______.20.已知甲、乙两位射手,甲击中目标的概率为0.7,乙击中目标的概率为0.6,如果甲乙两仁射手的射击相互独立,那么甲乙两射手同时瞄准一个目标射击,目标被射中的概率为_________.三、解答题21.2020年11月某市进行了高中各年级学生的“国家体质健康测试”.现有1500名(男生1200名,女生300名)学生的测试成绩,根据性别按分层抽样的方法抽取100名学生进行分析,得到如下统计图表: 男生测试情况:生恰好是一男一女的概率;(2)若测试成绩为良好或优秀的学生为“体育达人”,其他成绩的学生(含病残等免试学生)为“非体育达人”.根据以上统计数据填写下面的列联表,并回答能否在犯错误的概率不超过0.01的前提下认为“是否为体育达人与性别有关?”附:22(),()()()()n ad bc K n a b c d a b c d a c b d ⎛⎫-==+++ ⎪++++⎝⎭22.某种疾病可分为Ⅰ、Ⅱ两种类型.为了解该疾病类型与性别的关系,在某地区随机抽取了患该疾病的病人进行调查,其中女性是男性的2倍,男性患Ⅰ型病的人数占男性病人的56,女性患Ⅰ型病的人数占女性病人的13. (1)若在犯错误的概率不超过0.005的前提下认为“所患疾病类型”与“性别”有关,求男性患者至少有多少人?(2)某药品研发公司欲安排甲乙两个研发团队来研发此疾病的治疗药物.两个团队各至多安排2个接种周期进行试验.甲团队研发的药物每次接种后产生抗体的概率为p ,每人每次接种花费()0m m >元,每个周期至多接种3次,第一个周期连续2次出现抗体则终止本接种周期进入第二个接种周期,否则需依次接种至第一周期结束,再进入第二周期;第二接种周期连续2次出现抗体则终止试验,否则需依次接种至至试验结束;乙团队研发的药物每次接种后产生抗体的概率为q ,每人每次花费()0n n >元,每个周期接种3次,每个周期必须完成3次接种,若一个周期内至少出现2次抗体,则该周期结束后终止试验,否则进入第二个接种周期.假设两个研发团队每次接种后产生抗体与否均相互独立.①若甲团队的试验平均花费大于乙团队的试验平均花费,求p 、q 、m 、n 满足的关系式;②若m n =,2p q =,从两个团队试验的平均花费考虑,该公司应选择哪个团队进行药品研发?附:()()()()()22n ad bc K a b c d a c b d -=++++,23.某植物学家培养出一种观赏性植物,会开出红花或黄花,已知该植物第一代开红花和黄花的概率都是12,从第二代开始,若上一代开红花,则这一代开红花的概率是13,开黄花的概率是23;若上一代开黄花,则这一代开红花的概率是35,开黄花的概率是25.记第n 代开红花的概率为n p ,第n 代开黄花的概率为n q . (1)求2p ;(2)①证明:数列9()19n p n N *⎧⎫-∈⎨⎬⎩⎭为等比数列; ②第*(,2)n n N n ∈≥代开哪种颜色花的概率更大?24.为了调查某高中学生每天的睡眠时间,现随机对20名男生和20名女生进行问卷调查,结果如下:女生:男生:(1)现把睡眠时间不足5小时的定义为“严重睡眠不足”,从睡眠时间不足6小时的女生中随机抽取3人,求此3人中恰有一人为“严重睡眠不足”的概率;(2)完成下面2x2列联表,并回答是否有90%的把握认为“睡眠时间与性别有关”?(()()()()()22n ad bc K a b c d a c b d -=++++,其中n=a+b+c+d )25.自然资源部门对某市饮用水厂中的地下水质量进行监测,随机抽查了100眼水井进行监测,得到溶解性总固体浓度(单位:mg L )和硫酸盐浓度(单位:mg L )的分布如下表:(1)估计事件“该市某一水井中溶解性总固体浓度不超过500,且硫酸盐浓度不超过150”的概率;(2)根据所给数据,完成下面的22⨯列联表:硫酸盐浓度[]0,150(]150,250合计(3)根据(2)中的列联表,判断是否有99%的把握认为该市水井中溶解性总固体浓度与硫酸盐浓度有关?附:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++.()2P K k≥0.0500.0100.001k 3.841 6.63510.82826.为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了2018年下半年该市100名农民工(其中技术工、非技术工各50名)的月工资,得到这100名农民工的月工资均在[]25,55(百元)内,且月工资收入在[45,50)(百元)内的人数为15,并根据调查结果画出如图所示的频率分布直方图:(1)求n的值;(2)已知这100名农民工中月工资高于平均数的技术工有31名,非技术工有19名.①完成如下所示22⨯列联表技术工非技术工总计月工资不高于平均数50月工资高于平均数50总计5050100②则能否在犯错误的概率不超过0.001的前提下认为是不是技术工与月工资是否高于平均数有关系?参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】A ,在乙队以2:0领先的前提下,若甲队获胜则第三、四、五局均为甲队取胜;B ,乙队以3:0获胜,即第4局乙获胜;C ,乙队以三比一获胜,即第三局甲获胜,第四局乙获胜;D ,若乙队以3:2获胜,则第五局为乙队取胜,第三、四局乙队输. 【详解】解:对于A ,在乙队以2:0领先的前提下,若甲队获胜则第三、四、五局均为甲队取胜,所以甲队获胜的概率为3128()327P ==,故正确; 对于B ,乙队以3:0获胜,即第4局乙获胜,概率为13,故正确;对于C ,乙队以三比一获胜,即第三局甲获胜,第四局乙获胜,概率为212339⨯=,故正确;对于D ,若乙队以3:2获胜,则第五局为乙队取胜,第三、四局乙队输,所以乙队以3:2获胜的概率为221433327⨯⨯=,故错. 故选:D . 【点睛】本题主要考查相互独立事件的概率乘法公式,所求的事件与它的对立事件概率间的关系,属于中档题.2.A解析:A 【分析】分别计算出乙在5局3胜制和7局4胜制情形下对应的概率,然后进行比较即可得出答案. 【详解】当采用5局3胜制时,乙可以3:0,3:1,3:2战胜甲,故乙获胜的概率为:322222340.4+0.40.60.40.40.60.40.3174C C ⨯⨯+⨯⨯≈;当采用7局4胜制时,乙可以4:0,4:1,4:2,4:3战胜甲,故乙获胜的概率为:4333323334560.4+0.40.60.40.40.60.4+0.40.60.40.2898C C C ⨯⨯+⨯⨯⨯⨯≈,显然采用5局3胜制对乙更有利,故选A. 【点睛】本题主要考查相互独立事件同时发生的概率,意在考查学生的计算能力和分析能力,难度中等.3.A解析:A 【解析】分析:若“A 队以3:2胜利”,则前四局A 、B 各胜两局,第五局A 胜利,利用独立事件同时发生的概率公式可得结果. 详解:若“A 队以3:2胜利”, 则前四局A 、B 各胜两局, 第五局A 胜利,因为各局比赛结果相互独立, 所以队以3:2获得比赛胜利的概率为2224211433227P C ⎛⎫⎛⎫=⨯⨯=⎪ ⎪⎝⎭⎝⎭,故选A.点睛:本题主要考查阅读能力,独立事件同时发生的概率公式,意在考查利用所学知识解决实际问题的能力,属于中档题.4.D解析:D 【解析】分析:由题意1A ,2A ,3A 是两两互斥事件,条件概率公式求出1(|)P B A ,()()()()123P B P A B P A B P A B =++,对照选项即可求出答案.详解:由题意1A ,2A ,3A 是两两互斥事件,()()()12351213,,10210510P A P A P A =====, ()()()111177211|1112P BA P B A P A ⨯===,()23|11P B A =,()33|11P B A =,而()()()()123P B P A B P A B P A B =++()()()()()()112233|||P A P B A P A P B A P A P B A =++1713332115111011=⨯+⨯+⨯ 511=. 所以D 不正确. 故选:D.点睛:本题考查相互独立事件,解题的关键是理解题设中的各个事件,且熟练掌握相互独立事件的概率简洁公式,条件概率的求法,本题较复杂,正确理解事件的内蕴是解题的关键.5.D解析:D 【详解】分析:分别利用独立事件的概率公式求出恰在第一次、恰在第二次、恰在第三次落地打破的概率,然后由互斥事件的概率公式求解即可.详解:透镜落地3次,恰在第一次落地打破的概率为10.3P =, 恰在第二次落地打破的概率为20.70.40.28P =⨯=, 恰在第三次落地打破的概率为30.70.60.90.378P =⨯⨯=, ∴落地3次以内被打破的概率1230.958P P P P =++=.故选D .点睛:本题主要考查互斥事件、独立事件的概率公式,属于中档题. 解答这类综合性的概率问题一定要把事件的独立性、互斥性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件的思想方法在概率计算中特别重要.6.A解析:A 【解析】分析:直接利用条件概率公式求解.详解:由条件概率公式得26291553612C P C ===.故答案为A 点睛:(1)本题主要考查条件概率,意在考查学生对条件概率的掌握水平.(2) 条件概率一般有“在A 已发生的条件下”这样的关键词,表明这个条件已经发生, 发生了才能称为条件概率.但是有时也没有,要靠自己利用条件概率的定义识别.7.C解析:C 【解析】设此射手未射中目标的概率为p ,则1-p 4=8081,所以p =13,故此射手的命中率为1-p =23. 故选C8.D解析:D 【解析】对于①,4344443273()()464432A PB P AB ⨯====,,所以()2()()9P AB P A B P B ==,故①正确;对于②,当22log log a b >,有0a b >>,而由21a b ->有a b >,因为0,0a b a b a b a b >>⇒>>≠>>> ,所以22log log a b >是21a b ->的充分不必要条件,故②正确;对于③,由已知,正态密度曲线的图象关于直线3ξ=对称,且27σ= 所以3,7D μξ==,故③正确.点睛:本题主要考查了条件概率,充分必要条件,正态分布等,属于难题.这几个知识点都是属于难点,容易做错.9.C解析:C 【解析】2272(1682028)=8.427.87944283636K ⨯⨯-⨯≈⨯⨯⨯>∴性别和读营养说明之间有99.5%的可能性. 本题选择C 选项.10.C解析:C 【解析】对于①,用相关指数2R 刻画回归效果时,2R 越大,说明模型的拟合效果越好,∴①错误;对于②,命题2000P:"x ,10"R x x ∃∈--> 的否定是2:",10"P x R x x ⌝∀∈--≤ ,②正确;对于③,根据正态分布()0,1N 的性质可得,若()1,P X p >= 则()1P X p <-= ,()()11112,102P X p P X p ∴-<<=-∴-<<=- ,③正确;对于④,回归直线一定过样本点的中心(),x y ,④正确;综上所述②③④正确,故选C .11.C解析:C 【分析】利用相互独立事件概率乘法公式和互斥事件概率加法公式直接求解. 【详解】解:甲、乙两队进行排球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立, 则甲队以3:1获胜的概率是:()()()10.60.610.50.50.610.60.50.510.60.60.50.50.21P =⨯⨯-⨯+⨯-⨯⨯+-⨯⨯⨯=. 甲队以3:0获胜的概率是: 20.60.60.50.18P =⨯⨯=则甲队不超过4场即获胜的概率120.210.180.39P P P =+=+= 故选:C 【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,属于中档题.12.B解析:B 【分析】密码被破译分三种情况:甲破译出密码乙未破译,乙破译出密码甲未破译,甲乙都破译出密码,根据相互独立事件的概率和公式可求解出答案. 【详解】设 “甲独立地破译一份密码” 为事件A , “乙独立地破译一份密码” 为事件B , 则()13P A =,()12P B =,()12133P A =-=,()11122P B =-=, 设 “密码被破译” 为事件C ,则()()()()P C P AB P AB P AB =++11211123232323=⨯+⨯+⨯=, 故选:B. 【点睛】本题以实际问题为背景考查相互独立事件的概念及其发生的概率的计算,考查分析问题和解决问题的能力,属于中档题.二、填空题13.;【分析】利用相互独立事件同时发生的概率计算求解甲获胜则比赛打了5局且最后一局甲胜利【详解】由题意知前四局甲乙每人分别胜2局则甲获胜的概率是:【点睛】本题考查相互独立事件同时发生的概率属于基础题解析:1681; 【分析】利用相互独立事件同时发生的概率计算求解,甲3:2获胜,则比赛打了5局,且最后一局甲胜利. 【详解】由题意知,前四局甲、乙每人分别胜2局,则甲3:2获胜的概率是:222421216()()33381P C =⋅⋅=.【点睛】本题考查相互独立事件同时发生的概率,属于基础题.14.05【详解】分析:直接利用独立性检验公式计算即得解详解:由题得所以犯错误的概率最多不超过005的前提下可认为注射疫苗与感染流感有关系故答案为005点睛:本题主要考查独立性检验和的计算意在考查学生对这解析:05 【详解】分析:直接利用独立性检验2K 公式计算即得解.详解:由题得22100(10302040)1004.762 3.8413070505021K ⨯-⨯==≈>⨯⨯⨯,所以犯错误的概率最多不超过0.05的前提下,可认为“注射疫苗”与“感染流感”有关系. 故答案为0.05.点睛:本题主要考查独立性检验和2K 的计算,意在考查学生对这些知识的掌握水平和解决实际问题的能力.15.②⑥⑦【解析】①回归直线恒过样本点的中心可以不过任何一个样本点;②将一组数据中的每个数据都加上同一个常数后根据方差公式可知方差恒不变;③用相关指数来刻面回归效果;表示预报变量对解释变量变化的贡献率越解析:②⑥⑦ 【解析】①回归直线ˆˆˆybx a =+恒过样本点的中心(),x y ,可以不过任何一个样本点; ②将一组数据中的每个数据都加上同一个常数后,根据方差公式可知方差恒不变; ③用相关指数2R 来刻面回归效果;表示预报变量对解释变量变化的贡献率,越接近于0,说明模型的拟合效果越好;④若分类变量X 和Y 的随机变量2K 的观测值K 越大,则“X 与Y 相关”的可信程度越大;⑤.对于自变量x 和因变量y ,当x 取值一定时,y 的取值具有一定的随机性,x ,y 间的这种非确定关系叫做相关关系;⑥.残差图中残差点比较均匀的地落在水平的带状区域中,说明选用的模型比较合适; ⑦.两个模型中残差平方和越小的模型拟合的效果越好. 故答案为:②⑥⑦16.【解析】因为所以应填答案解析:35【解析】因为()()2254336613,210C C P A P AB C C ====,所以3(|)5P B A =。
题型一独立性检验思想
独立性检验的基本思想是统计中的假设检验思想,类似于数学中的反证法,要确认两个分类变量有关系这一结论成立的可信程度,首先假设该结论不成立,即假设“两个分类变量没有关系”成立,在该假设下我们构造的随机变量χ2应该很小,如果由观测数据计算得到的χ2的值很大,则在一定程度上说明假设不合理.例1 为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,
另一组注射药物B.下表1和表2分别是注射药物A和药物B后的试验结果.(疱疹面积单位:mm2)
表1:注射药物A后皮肤疱疹面积的频数分布表
表2:注射药物B后皮肤疱疹面积的频数分布表
完成下面2×2列联表,能否在犯错误概率不超过0.01的前提下,认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.
表3
解列出2×2列联表
χ2=200×(70×65-35×30)2100×100×105×95
≈24.56,
由于χ2>6.635,所以有99%的把握认为两者有关系,或者说在犯错误概率不超过0.01的前提下,认为“注射药物A 后的疱疹面积与注射药物B 后的疱疹面积有差异”.
反思与感悟 利用假设检验的思想,计算随机变量χ2的值,可以更精确地判断两个分类变量是否有关系.
跟踪训练1 调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表,试问婴儿的性别与出生的时间是否有关系?
解 χ2=n (ad -bc )2
(a +b )(c +d )(a +c )(b +d )
=80×(15×26-31×8)246×34×23×57
≈0.787<2.706.
所以我们没有把握认为“婴儿的性别与出生的时间有关系”. 题型二 数形结合思想
在回归分析中,我们可以使用散点图观察两个变量间的相关关系,也可以大致分。