鲁教版八年级数学下册 相似多边形习题
- 格式:doc
- 大小:161.55 KB
- 文档页数:1
第三节课堂练习一.选择题1.如图所示,长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下矩形与原矩形相似,那么剩下矩形的面积是()A.28cm2B.27cm2C.21cm2D.20cm2【答案】B2.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A.4:9B.2:3C.:D.16:81【答案】B3.如图,矩形ABCD∽矩形DEFC,且面积比为4:1,则AE:ED的值为()A.4:1B.3:1C.2:1D.3:2【答案】B4.如图,一张矩形纸片ABCD的长AB=a,宽BC=b.将纸片对折,折痕为EF,所得矩形AFED 与矩形ABCD相似,则a:b=()A.2:1B.:1C.3:D.3:2【答案】B5.如图,矩形ABCD∽矩形FAHG,能求出图中阴影部分面积的条件是()A.矩形ABCD和矩形HDEG的面积之差B.矩形ABCD和矩形AHGF的面积之差C.矩形ABCD和矩形HDEG的面积之和D.矩形ABCD和矩形AHGF的面积之和【答案】B6.如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a b B.a=2b C.a=2b D.a=4b【答案】A7.下列各组图形中一定是相似形的是()A.两个直角三角形B.两个等边三角形C.两个菱形D.两个矩形【答案】B8.两个相似多边形的面积之比是1:4,则这两个相似多边形的周长之比是()A.1:2B.1:4C.1:8D.1:16【答案】A9.已知A4纸的宽度为21cm,如图对折后所得的两个矩形都和原来的矩形相似,则A4纸的高度约为()A.24.8cm B.26.7cm C.29.7cm D.无法确定【答案】C10.如图的两个四边形相似,则∠α的度数是()A.87°B.60°C.75°D.120°【答案】A11.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元【答案】C12.两个相似多边形一组对应边分别为3cm,4.5cm,那么它们的相似比为()A.B.C.D.【答案】A二.填空题1.矩形的两边长分别为x和6(x<6),把它按如图方式分割成三个全等的小矩形,每一个小矩形与原矩形相似,则x=.【答案】232.如图,矩形ABCD中,AB=2,BC=4,剪去一个矩形ABEF后,余下的矩形EFDC∽矩形BCDA,则EC的长为.【答案】13.如图,矩形纸片ABCD中,AB>AD,E,F分别是AB,DC的中点,将矩形ABCD沿EF所在直线对折,若得到的两个小矩形都和矩形ABCD相似,则用等式表示AB与AD的数量关系为.【答案】AB=2AD4.沿一张矩形纸较长两边的中点将纸折叠,所得的两个矩形仍然与原来的矩形相似,则原矩形纸的长、宽之比是.【答案】2:15.若一个矩形截去两个以短边长为边长的正方形后得到的矩形与原矩形相似,则这个矩形的长与宽之比为.【答案】(+1):16.如图,正方形ABCD中,点E是对角线BD上的一点,BE=BC,过点E作EF⊥AB,EG⊥BC,垂足分别为点F,G,则正方形FBGE与正方形ABCD的相似比为.【答案】1:2三.解答题1.如图,矩形ABCD中,AB=4,点E,F分别在AD,BC边上,且EF⊥BC,若矩形ABFE∽矩形DEFC,且相似比为1:2,求AD的长.【答案】10【解析】2.如图,一个矩形广场的长为100m,宽为80m,广场外围两条纵向小路的宽均为1.5m,如果设两条横向小路的宽都为xm,那么当x为多少时,小路内、外边缘所围成的两个矩形相似.【答案】1.2m3.我们通常用到的一种复印纸,整张称为A1纸,对折一分为二裁开成为A2纸,再一分为二成为A3纸,…,它们都是相似的矩形.求这种纸的长与宽的比值(精确到千分位).【答案】1.414【解析】4.如图,矩形ABCD剪去一个以宽为边长的正方形ABFE后,剩下的矩形EFCD的长与宽的比与原矩形长与宽的比相等,求原矩形的长与宽的比.【答案】215【解析】5.如图,四边形ABCD∽四边形EFGH,连接对角线AC,EG.求证:.【答案】6.如图,G是正方形ABCD对角线AC上一点,作GE⊥AD,GF⊥AB,垂足分别为点E,F.求证:四边形AFGE与四边形ABCD相似.【答案】7.如图,四边形ABCD∽四边形EFGH,求∠α、∠β的大小和EH的长度.【答案】83o;81o;28cm。
相似多边形-练习一、选择题1.在一张比例尺为1:50 000的地图上,一块多边形地区的面积是320cm2,这个地区的实际面积是()A. 8×107m2B. 8×108m2C. 8×1010m2D. 8×1011m22.四边形ABCD与四边形A1B1C1D1相似,相似比为2:3,四边形A1B1C1D1与四边形A2B2C2D2相似,相似比为5:4,则四边形ABCD与四边形A2B2C2D2相似且相似比为()A. 5:6B. 6:5C. 5:6或6:5D. 8:153.一个五边形的边长分别为2、3、4、5、6,另一个和它相似的五边形的最大边长为24,则这个五边形的最短边为()A. 6B. 8C. 10D. 12二、解答题4.请你说清楚所有的正方形都相似的道理.5.如图,把矩形ABCD对折,折痕为MN,矩形DMNC与矩形ABCD相似,已知AB=4.(1)求AD的长;(2)求矩形DMNC与矩形ABCD的相似比.相似多边形-练习参考答案一、选择题1. A.解:设这个地区的实际面积是xcm2,由题意得,320:x=(1:50000)2,解得,x=8×1011,8×1011cm2=8×107m2,故选A.2.A.解:∵四边形ABCD与四边形A1B1C1D1相似,相似比为2:3,即:相似比为:10:15;四边形A1B1C1D1与四边形A2B2C2D2相似,相似比为5:4,即:15:12;∴四边形ABCD与四边形A2B2C2D2且相似比为10:12,也就是5:6.故选A.3.B.解:两个相似的五边形,一个最长的边是6,另一个最大边长为24,则相似比是6:24=1:4,根据相似五边形的对应边的比相等,设后一个五边形的最短边的长为x,则2:x=1:4,解得:x=8.即后一个五边形的最短边的长为8.故选B.二、解答题4.解:正方形的角都是直角,因而正方形的对应角一定对应相等,而正方形的边都相等,因而对应边的比值一定相等.5.解:(1)由已知得MN=AB,MD=AD=BC,∵矩形DMNC与矩形ABCD相似,=,∵MN=AB,DM=AD,BC=AD,∴AD2=AB2,∴由AB=4得,AD=4;(2)矩形DMNC与矩形ABCD的相似比为==.。
补充练习:相似多边形
1.把一个三角形变换为和它相似的三角形,若面积扩大到原来的100倍,则边长扩大到原来的()
A.10000倍
B.10倍
C.100倍
D.1000倍.
2.已知△ABC与△DEF相似且面积比为4∶25,则△ABC与△DEF的相似比为.
3.两个相似多边形的相似比是1∶8,则这两个多边形的对应对角线的比是________.
4.在菱形ABCD和菱形A′B′C′D′中,∠A=∠A′=60°,若AB∶A′B′=1∶3,则BD∶B′D′=________.
5.某生活小区开辟了一块矩形绿草地,并画了甲、乙两张规划图,其比例尺分别为1∶200和1∶500,求这块矩形草地在甲、乙两张图纸上的面积比.
6.如图,平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果BE∶BC=2∶3,求B F∶FD的值.
E
参考答案
1.B;
2.2∶5;
3.1∶8;
4.1∶3;
5. 25∶4.
6. 32
FD BF
.。
第九章图形的相似单元测试卷题号一二三总分得分一、选择题(每题3分,共30分)1.若=,则等于( )A. B. C. D.2.若两个相似多边形的面积之比为1∶4,则它们的周长之比为( )A.1∶4B.1∶2C.2∶1D.4∶13.如图,在△ABC中,若DE∥BC,AD=3,BD=6,AE=2,则AC的长为( )A.4B.5C.6D.84.如图,小正方形的边长均为1,则下列图中的三角形与△ABC相似的是( )5.如图,在△ABC中,点D在线段BC上,且△ABC∽△DBA,则下列结论一定正确的是( )A.AB2=BC·BDB.AB2=AC·BDC.AB·AD=BD·BCD.AB·AD=AD·CD6.如图,为估算某河的宽度(河两岸平行),在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D 在同一条直线上,若测得BE=20 m,CE=10 m,CD=20 m,则河的宽度AB等于( )A.60 mB.40 mC.30 mD.20 m7.如图,△ABO是由△A'B'O经过位似变换得到的,若点P'(m,n)在△A'B'O上,则点P'经过位似变换后的对应点P的坐标为( )A.(2m,n)B.(m,n)C.(m,2n)D.(2m,2n)8.如图,点E为▱ABCD的边AD上一点,且AE∶DE=1∶3,点F为AB的中点,EF交AC于点G,则AG∶GC等于( )A.1∶2B.1∶5C.1∶4D.1∶39.如图,在△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC 内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为( )A.1B.2C.12-6D.6-610.如图,在钝角三角形ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形ABE和等腰直角三角形ACF,EM平分∠AEB交AB于点M,取BC的中点D,AC的中点N,连接DN,DE,DF.下列结论:①EM=DN;②S△CND=S四边形ABDN;③DE=DF;④DE⊥DF.其中正确结论的个数为( )A.1B.2C.3D.4二、填空题(每题3分,共24分)11.假期,爸爸带小明去A地旅游.小明想知道A地与他所居住的城市的距离,他在比例尺为1∶500000的地图上测得所居住的城市距A地32 cm,则小明所居住的城市与A地的实际距离为_____________.12.已知=,则的值是_____________.13.如图,已知点C是线段AB的黄金分割点,且BC>AC.若S1表示以BC 为边的正方形的面积,S2表示长为AD(AD=AB)、宽为AC的矩形的面积,则S1与S2的大小关系为_____________.14.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1∶,点A的坐标为(0,1),则点E的坐标是.15.如图,已知D,E分别是△ABC的AB,AC边上的点,DE∥BC,且S△ADE∶SAE∶AC=.四边形DBCE=1∶8,那么16.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40 cm,EF=20 cm,测得边DF离地面的高度AC=1.5 m,CD=8 m,则树高AB= .17.如图,已知点P是边长为4的正方形ABCD内一点,且PB=3,BF⊥BP,垂足是点B,若在射线BF上找一点M,使以点B,M,C为顶点的三角形与△ABP相似,则BM的长为.18.如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共部分的面积记为S1,再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2,…,以此类推,则S n= .(用含n的式子表示)三、解答题(19,21题每题8分,24题14分,其余每题12分,共66分)19.如图,多边形ABCDEF和多边形A1B1C1D1E1F1相似(各字母已按对应关系排列),∠A=∠D1=135°,∠B=∠E1=120°,∠C1=95°.(1)求∠F的度数;(2)如果多边形ABCDEF和多边形A1B1C1D1E1F1的相似比是1∶1.5,且CD=15 cm,求C1D1的长度.20.如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC关于x轴对称的△A1B1C1;(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以-2,得到对应的点A2,B2,C2,请画出△A2B2C2;(3)求△A1B1C1与△A2B2C2的面积比,即∶=________.(不写解答过程,直接写出结果) 21.如图,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD 和CB交于点G.(1)求证:△ADE≌△CFE;(2)若GB=2,BC=4,BD=1,求AB的长.22.如图,一条河的两岸BC与DE互相平行,两岸各有一排景观灯(图中黑点代表景观灯),每排相邻两景观灯的间隔都是10 m,在与河岸DE的距离为16 m的A处(AD⊥DE)看对岸BC,看到对岸BC上的两个景观灯的灯杆恰好被河岸DE上两个景观灯的灯杆遮住.河岸DE上的两个景观灯之间有1个景观灯,河岸BC上被遮住的两个景观灯之间有4个景观灯,求这条河的宽度.23.如图,在矩形ABCD中,已知AB=24,BC=12,点E沿BC边从点B开始向点C以每秒2个单位长度的速度运动;点F沿CD边从点C开始向点D以每秒4个单位长度的速度运动.如果E,F同时出发,用t(0≤t≤6)秒表示运动的时间.请解答下列问题:(1)当t为何值时,△CEF是等腰直角三角形?(2)当t为何值时,以点E,C,F为顶点的三角形与△ACD相似?24.如图,E,F分别是正方形ABCD的边DC,CB上的点,且DE=CF,以AE为边作正方形AEHG,HE与BC交于点Q,连接DF.(1)求证:△ADE≌△DCF.(2)若E是CD的中点,求证:Q为CF的中点.(3)连接AQ,设S△CEQ=S1,S△AED=S2,S△EAQ=S3,在(2)的条件下,判断S1+S2=S3是否成立?并说明理由.参考答案一、1.【答案】D 2.【答案】B3.【答案】C解:因为DE∥BC,所以AE∶AC=AD∶AB=3∶9=1∶3,则AC=6.4.【答案】A5.【答案】A解:因为△ABC∽△DBA,所以==.所以AB2=BC·BD,AB·AD=AC·DB.6.【答案】B解:∵AB⊥BC,CD⊥BC,∴∠ABC=∠DCE=90°.又∵∠AEB=∠DEC,∴△ABE∽△DCE.∴=,即=.∴AB=40 m.7.【答案】D解:将△A'B'O经过位似变换得到△ABO,由题图可知,点O是位似中心,位似比为A'B'∶AB=1∶2,所以点P'(m,n)经过位似变换后的对应点P 的坐标为(2m,2n).8.【答案】B解:延长FE,CD交于点H,∵四边形ABCD是平行四边形,∴AB∥CD,易证△AFE∽△DHE,∴=,即=,∴HD=3AF.易证△AFG∽△CHG,∴===.故选B.9.【答案】D解:如图,过点A作AM⊥BC于点M,交DG于点N,延长GF交BC于点H.∵AB=AC,AD=AG,∴AD∶AB=AG∶AC.又∠BAC=∠DAG,∴△ADG∽△ABC.∴∠ADG=∠B.∴DG∥BC.∴AN⊥DG.∵四边形DEFG是正方形,∴FG⊥DG.∴FH⊥BC.∵AB=AC=18,BC=12,∴BM=BC=6.∴AM==12.∵=,即=,∴AN=6.∴MN=AM-AN=6.∴FH=MN-GF=6-6.故选D.10.【答案】D解:∵△ABE是等腰直角三角形,EM平分∠AEB,∴EM是AB边上的中线.∴EM=AB.∵点D、点N分别是BC,AC的中点,∴DN是△ABC的中位线.∴DN=AB,DN∥AB.∴EM=DN.①正确.∵DN∥AB,∴△CDN∽△CBA.∴==.∴S△CND=S四边形ABDN.②正确.如图,连接DM,FN,则DM是△ABC的中位线,∴DM=AC,DM∥AC.∴四边形AMDN是平行四边形.∴∠AMD=∠AND.易知∠ANF=90°,∠AME=90°,∴∠EMD=∠FND.∵FN是AC边上的中线,∴FN=AC.∴DM=FN.∴△DEM≌△FDN.∴DE=DF,∠FDN=∠DEM.③正确.∵∠MDN+∠AMD=180°,∴∠EDF=∠MDN-(∠EDM+∠FDN)=180°-∠AMD-(∠EDM+∠DEM)=180°-(∠AMD+∠EDM+∠DEM)=180°-(180°-∠AME)=180°-(180°-90°)=90°.∴DE⊥DF.④正确.故选D.二、11.【答案】160 km解:设小明所居住的城市与A地的实际距离为x km,根据题意可列比例式为=,解得x=160.12.【答案】解:∵=,∴设a=13,b=5,则==.13.【答案】S1=S2解:∵C是线段AB的黄金分割点,且BC>AC,∴BC2=AC·AB,又∵S1=BC2,S2=AC·AD=AC·AB,∴S1=S2.14.【答案】(,)解:∵点A的坐标为(0,1),∴OA=1.∵正方形OABC与正方形ODEF是位似图形,O为位似中心,位似比为1∶,∴=.∴OD=OA=×1=.∵四边形ODEF是正方形,∴DE=OD=.∴点E的坐标为(,).15.【答案】1∶316.【答案】5.5 m解:由已知得△DEF∽△DCB,∴=,∵DE=40 cm=0.4 m,EF=20cm=0.2 m,CD=8 m,∴=.∴CB=4 m.∴AB=4+1.5=5.5(m).17.【答案】或3解:∵∠ABC=∠FBP=90°,∴∠ABP=∠CBF.当△MBC∽△ABP时,BM∶AB=BC∶BP,得BM=4×4÷3=;当△CBM∽△ABP时,BM∶BP=CB∶AB,得BM=4×3÷4=3.18.【答案】×解:在正△ABC中,AB1⊥BC,∴BB1=BC=1.在Rt△ABB1中,AB1===,根据题意可得△AB2B1∽△AB1B,记△AB1B的面积为S,∴=.∴S1=S.同理可得S2=S1,S3=S2,S4=S3,….又∵S=×1×=,∴S1=S=×,S2=S1=×,S3=S2=×,S4=S3=×,…,S n=×.三、19.解:(1)∵多边形ABCDEF和多边形A1B1C1D1E1F1相似,又∠C和∠C1,∠D和∠D1,∠E和∠E1是对应角,∴∠C=95°,∠D=135°,∠E=120°.由多边形内角和定理,知∠F=720°-(135°+120°+95°+135°+120°)=115°.(2)∵多边形ABCDEF和多边形A1B1C1D1E1F1的相似比是1∶1.5,且CD=15 cm,∴C1D1=15×1.5=22.5(cm).20.分析:(1)根据关于x轴对称的两点的坐标特征得出对应点的位置,进而得出答案;(2)将△A1B1C1三个顶点的横坐标与纵坐标同时乘以-2得出各点坐标,进而得出答案;(3)利用位似图形的性质得出位似比,进而得出答案.解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.(3)1∶421.(1)证明:∵AB∥FC,∴∠A=∠ECF.又∵∠AED=∠CEF, 且DE=FE,∴△ADE≌△CFE.(2)解法一:∵AB∥FC,∴∠GBD=∠GCF,∠GDB=∠GFC.∴△GBD∽△GCF.∴=.∴=.∴CF=3.由(1)得△ADE≌△CFE.∴AD=CF=3,∴AB=AD+BD=3+1=4.解法二:如图,取BC的中点H,连接EH.∵△ADE≌△CFE,∴AE=CE.∴EH是△ABC的中位线.∴EH∥AB,且EH=AB. ∴∠GBD=∠GHE,∠GDB=∠GEH.∴△GBD∽△GHE.∴=.∴=.∴EH=2.∴AB=2EH=4.22.解:由题意可得DE∥BC,所以=.又因为∠DAE=∠BAC,所以△ADE∽△ABC.所以=,即=.因为AD=16 m,BC=50 m,DE=20 m,所以=.解得DB=24 m.答:这条河的宽度为24 m.23.解:(1)由题意可知BE=2t,CF=4t,CE=12-2t.因为△CEF是等腰直角三角形,∠ECF是直角,所以CE=CF. 所以12-2t=4t,解得t=2.所以当t=2时,△CEF是等腰直角三角形.(2)根据题意,可分为两种情况:①若△EFC∽△ACD,则=,所以=,解得t=3,即当t=3时,△EFC∽△ACD.②若△FEC∽△ACD,则=,所以=,解得t=1.2,即当t=1.2时,△FEC∽△ACD.因此,当t为3或1.2时,以点E,C,F为顶点的三角形与△ACD相似.24.(1)证明:由AD=DC,∠ADE=∠DCF=90°,DE=CF,得△ADE≌△DCF.(2)证明:因为四边形AEHG是正方形,所以∠AEH=90°.所以∠QEC+∠AED=90°.又因为∠AED+∠EAD=90°,所以∠EAD=∠QEC.因为∠ADE=∠C=90°,所以△ECQ∽△ADE.所以=.因为E是CD的中点,所以EC=DE=AD.所以=.因为DE=CF,所以==.即Q是CF的中点.(3)解:S1+S2=S3成立.理由:因为△ECQ∽△ADE,所以=.所以=.因为∠C=∠AEQ=90°,所以△AEQ∽△ECQ.所以△AEQ∽△ECQ∽△ADE.所以=,=.所以+=+=. 在Rt△AEQ中,由勾股定理,得EQ2+AE2=AQ2,所以+=1,即S1+S2=S3.。
3 相似多边形一、请你填一填(1)若△ABC ∽△A ′B ′C ′,AB =4,BC =5,AC =6,△A ′B ′C ′的最大边长为15,那么它们的相似比是________,△A ′B ′C ′的周长是________.(2)两个相似三角形的相似比为2∶3,它们周长的差是25,那么较大三角形的周长是________.(3)如图,在ABCD 中,延长AB 到E ,使BE =21AB ,延长CD 到F ,使DF =DC ,EF 交BC 于G ,交AD 于H ,则△BEG 与△CFG 的面积之比是________.(4)把一个三角形改做成和它相似的三角形,如果面积缩小到原来的21倍,那么边长应缩小到原来的________倍. 二、认真选一选(1)如图,把一个矩形纸片ABCD 沿AD 和BC 的中点连线EF 对折,要使矩形AEFB 与原矩形相似,则原矩形长与宽的比为( )A.2∶1B.3∶1C.2∶1D.4∶1(2)如图,在△ABC 中,D 、E 分别是边AB 、AC 的中点,△ADE 和四边形BCED 的面积分别记为S 1、S 2,那么21S S 的值为( )A.21B.41C.31D.32(3)如图,在Rt △ABC 中,AD 为斜边BC 上的高,若S △CAD =3S △ABD ,则AB ∶AC 等于( )A.1∶3B.1∶4C.1∶3D. 1∶2(4)顺次连结三角形三边的中点,所成的三角形与原三角形对应高的比是( )A.1∶4B.1∶3C.1∶2D.1∶2三、灵机一动某生活小区开辟了一块矩形绿草地,并画了甲、乙两张规划图,其比例尺分别为1∶200和1∶500,求这块矩形草地在甲、乙两张图纸上的面积比.四、用数学眼光看世界如图,△ABC 是一块锐角三角形余料,其中BC =12 cm ,高AD =8 cm ,现在要把它裁剪成一个正方形材料备用,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,问这个正方形材料的边长是多少?参考答案一、(1)2∶5 37.5 (2)75 (3)1∶16 (4)22二、(1)C (2)C (3)C (4)D三、解:设这块矩形绿地的面积为S ,在甲、乙两张规划图上的面积分别为S 1、S 2则S S 1=(2001)2,S S 2=(5001)2∴S 1=40000S ,S 2=250000S∴S 1∶S 2=40000S ∶250000S =41∶251=25∶4即:这块草地在甲、乙两张图上的面积比为25∶4四、解:设这个正方形材料的边长为x cm ,则△P AN 的边PN 上的高为(8-x ) cm∵由已知得:△APN ∽△ABC ∴BC PN =AD x -8,即12x =88x-解得:x =4.8 答:这个正方形材料的边长为4.8 cm.。
八年级数学下册第九章图形的相似综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,矩形ABCD被分割成4个小矩形,其中矩形AEPH~矩形HDFP~矩形PEBG,AE AH,AC交HG,EF于点M,Q,若要求APQ的而积,需知道下列哪两个图形的面积之差()A.矩形AEPH和矩形PEBG B.矩形HDFP和矩形AEPHC.矩形HDFP和矩形PEBG D.矩形HDFP和矩形PGCF2、如图,若△ABC∽△DEF,则∠C的度数是()A.70°B.60°C.50°D.40°3、如图,∥DE BC ,则下列比例式错误的是( )A .AD DE BD BC= B .AE AD EC BD = C .AB AC BD EC = D .AD AE AB AC = 4、如图,将△ABC 沿BC 边上的中线AD 所在直线向下平移到△A 'B 'C '的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若A A '=1,则A ''D 等于( )A .4B .3C .2D .1.5 5、已知12a b =,则a b b +的值为( ) A .23 B .32 C .35 D .16、如图,在平面直角坐标系中,已知点A 、B 的坐标分别为()3,2-、()2,3-,以原点O 为位似中心,在原点的异侧按1∶3的相似比将OAB 放大,则点B 的对应点B '的坐标为( ).A .()6,9-B .()9,6-C .()6,4-D .()4,6-7、下列各组线段中是成比例线段的是( )A .2cm,4cm,6cm,6cmB .2cm,4cm,4cm,8cmC .4cm,8cm,12cm,16cmD .3cm,6cm,9cm,12cm8、如图,正方形ABCD 中,对角线AC 、BD 交于点O ,∠BAC 的平分线交BD 于E ,交BC 于F ,BH ⊥AF 于H ,交AC 于G ,交CD 于P ,连接GE 、GF ,以下结论:①△OAE ≌△OBG ;②四边形BEGF 是菱形;③BE =CG ;④1PG AE=;⑤S △PBC :S △AFC =1:2,其中正确的有( )个.A .2B .3C .4D .59、如图,在Rt△ABC 中,∠B =90°,AC =5,AB =3,点E 是边CB 上一动点,过点E 作EF //CA 交AB 于点F ,D 为线段EF 的中点,按下列步骤作图:①以C 为圆心,适当长为半径画弧交CB ,CA 于点M ,点N ;②分别以M ,N 为圆心,适当长为半径画弧,两弧的交点为G ;③作射线CG .若射线CG 经过点D ,则CE 的长度为( )A.813B.1513C.2013D.251310、如图:AD⊥BC于点D,CE⊥AB于点E,图中共有相似三角形()对.A.4 B.5 C.6 D.7第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图(1),四边形ABCD和四边形AEFG都是正方形,将正方形AEFG绕点A旋转,连接BE、CF.(1):FC BE的值为______.(2)当G、F、C三点共线时,如图(2),若5AB=、AE=BE= ______.2、如图,在边长为6的等边△ABC中,D是边BC上一点,将△ABC沿EF折叠使点A与点D重合,若BD:DE=2 : 3,则CF=____.3、如图所示的网格是正方形网格,A,B,C,D是网格线交点,AC与BD相交于点O,则△ABO的面积与△CDO的面积的比为_____.4、如图,Rt△ABC中,∠ACB=90°,BC=5,AB=D在边AC上,将△ABD沿着直线BD翻折得△EBD,BE交直线AC于点F,联结CE,若△BCE是等腰三角形,则AF的长是_____.5、如图,正方形ABCD的边长为2,AC,BD交于点O,点E为△OAB内的一点,连接AE,BE,CE,OE,若∠BEC=90°,给出下列四个结论:①∠OEC=45°;②线段AE1;③△OBE∽△ECO+BE=CE.其中正确的结论有 _____.(填写所有正确结论的序号)三、解答题(5小题,每小题10分,共计50分)1、如图,在正方形网格中,每个最小正方形的边长均为1.(1)求证:ABC A B C '''∽△△; (2)ABC 和A B C '''是位似三角形吗?如果是,请在图中画出位似中心的位置O ;如果不是,请说明理由.2、已知,DEF 是ABC 的位似三角形(点D 、E 、F 分别对应点A 、B 、C ),原点O 为位似中心,DEF 与ABC 的位似比为k .(1)若位似比12k =,请你在平面直角坐标系的第四象限中画出DEF ; (2)若位似比k n =,ABC 的面积为S ,则DEF 的面积=______.3、问题提出如图(1),ABC 和DEC 都是等腰直角三角形,其中90ACB DCE ∠=∠=︒,BC AC =,EC DC =,点E 在ABC 内部,直线AD 与BE 交于点F .线段AF ,BF ,CF 之间存在怎样的数量关系?问题探究(1)先将问题特殊化如图2,当点D ,F 重合时,直接写出表示AF ,BF ,CF 之间的数量关系的等式:______________________________;(2)再探究一般情形如图1,当点D ,F 不重合时,证明(1)中的结论仍然成立.(提示:过点C 作CG CF ⊥,交BF 于点G )(3)问题拓展如图3,若ABC 和DEC 都是含30°的直角三角形,有90ACB DCE ∠=∠=︒,90BAC EDC ∠=∠=︒,点E 在△ABC 内部,直线AD 与BE 交于点F .直接写出一个等式,表示线段AF ,BF ,CF 之间的数量关系.4、如图1,已知等边ABC 的边长为8,点D 在AC 边上,2AD =,点P 是AB 边上的一个动点.(1)连接PC 、PD .①当AP =______时,APD ACP ∽△△; ②若APD △与BPC △相似,求AP 的长度;(2)已知点Q 在线段PB 上,且2PQ =.①如图2,若APD △与BQC 相似,则ACQ ∠与PDC ∠之间的数量关系是______;②如图3,若E 、F 分别是PD 、CQ 的中点,连接EF ,线段EF 的长是否是一个定值,若是,求出EF 的长,若不是,说明理由.5、如图,线段AB =2,点C 是AB 的黄金分割点(AC <BC ),点D (不与C 点,B 点重合)在AB 上,且AD 2=BD •AB ,那么CD AC=_____.-参考答案-一、单选题1、B【解析】【分析】设,AE a EP b ==,则HP DF a ==,根据相似多边形的性质与相似三角形的性质与判定,分别求得矩形AEPH 的面积为:ab ,矩形HDFP 的面积为:3a b ,矩形PEBG 的面积为:3b a,以及APQ 的面积,HDFP AEPH S S -矩形矩形,进而比较可【详解】解:∵矩形ABCD 被分割成4个小矩形, 设,AE a EP b ==,则HP DF a ==, 矩形AEPH ~矩形HDFPAE HD EP HP∴= 2AE HP a PF HD EP b⋅∴=== 222a ab AD BC EP PF b b b +∴==+=+= 矩形AEPH ~矩形PEBG ,AE EP EP EB∴= 22EP b EB AE a∴== 2b FC EB a∴== ∴矩形AEPH 的面积为:ab矩形HDFP 的面积为:3a b矩形PEBG 的面积为:3b a∴HDFP AEPH S S -=矩形矩形3a b -ab 32a ab b -= EQ BC ∥AEQ ABC ∴∽2222EQ AE a a b BC AB a b a a∴===++ 2222222222a a a b a a EQ b a b b a b b b⎛⎫+∴=⨯+=⨯= ⎪++⎝⎭ 11=22APQ AEQ AEP S S S AE EQ AE EP ∴-=⋅-⋅△△ ()1=2AE EQ EP ⋅- 22232111=222a a b a ab a b a b b b ⎛⎫--=⨯-=⨯⨯ ⎪⎝⎭ ()1=2HDFP AEPHS S -矩形矩形 故选B【点睛】本题考查了相似多边形的性质,相似三角形的性质与判定,进行的性质,题中相等量两较多,关系复杂,设参数是解题的关键.2、C【解析】【分析】根据三角形内角和即可求得∠C 的度数.【详解】解:在ABC 中,70,60A B ∠=︒∠=︒50C ∴∠=︒故选C【点睛】本题考查了相似三角形的性质,三角形内角和定理,掌握三角形内角和定理是解题的关键.3、A【解析】【分析】根据平行线分线段成比例定理写出相应的比例式,即可得出答案.【详解】解:∵DE //BC , ∴,,AD AE AB AC AD AE BD EC BD EC AB AC===; ∴A 错误;故选:A .【点睛】此题考查了平行线分线段成比例定理,用到的知识点是平行线分线段成比例定理,关键是找准对应关系,避免错选其他答案.4、C【解析】【分析】利用相似三角形的面积之比等于相似比的平方计算即可.【详解】设A 'B '、A 'C '与BE 交于点E ,F ,∵△ABC 沿BC 边上的中线AD 所在直线向下平移到△A 'B 'C '的位置,∴△ABC ∽△A 'EF , ∴2()ABC A EF S AD S A D'='△△,∵△ABC 的面积为9,阴影部分三角形的面积为4,A A '=1, ∴291()4A D A D'+=' 解得A ''D =2,故选C .【点睛】本题考查了相似三角形的判定和性质,熟练掌握判定,灵活选择使用性质是解题的关键.5、B【解析】【分析】 根据12a b =求得b =2a ,代入计算即可. 【详解】 解:∵12a b =, ∴b =2a , ∴2322a b a a b a ++==, 故选:B .【点睛】此题考查了比例的性质,代数式的化简求值,正确掌握比例的性质是解题的关键.6、A【解析】【分析】直接利用位似图形的性质以及结合B点坐标直接得出点B′的坐标.【详解】解:∵以点O为位似中心,在原点的异侧按1:3的相似比将△OAB放大,点B的坐标分别为(−2,3).∴点B的对应点B′的坐标为(6,-9),故选:A.【点睛】本题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k 或-k.7、B【解析】【分析】根据成比例线段的定义和性质,即可求解.【详解】⨯≠⨯,所以该四条线段不是成比例线段,故本选项不符合题意;解:A、因为2646⨯=⨯,所以该四条线段是成比例线段,故本选项符合题意;B、因为2844⨯≠⨯,所以该四条线段不是成比例线段,故本选项不符合题意;C、因为416812D 、因为31269⨯≠⨯,所以该四条线段不是成比例线段,故本选项不符合题意;故选:B【点睛】本题主要考查了成比例线段的定义,熟练掌握对于给定的四条线段a b c d ,,, ,如果其中两条线段的长度之比等于另外两条线段的长度之比,则这四条线段叫做成比例线段是解题的关键.8、C【解析】【分析】证明()AHG AHB ASA ∆≅∆,得出GH BH =,得出AF 是线段BG 的垂直平分线,由线段垂直平分线的性质得出EG EB =,FG FB =,由正方形的形状得出14522.52BAF CAF ∠=∠=⨯︒=︒,45ABE ∠=︒,90ABF ∠=︒,证出BEF BFE ∠=∠,得出EB FB =,因此EG EB FB FG ===,即可得出②正确;设OA OB OC a ===,菱形BEGF 的边长为b,证出CF ==,由正方形的性质得出OA OB =,90AOE BOG ∠=∠=︒,证出OAE OBG ∠=∠,由ASA 证明OAE OBG ∆≅∆,①正确;求出OG OE a b ==-,GOE ∆是等腰直角三角形,得出GE,)b a b -,整理得a =,得出2(2AC a b ==,(1AG AC CG b =-=,由平行线得出1BG AG PG CG ===1AE PG=()EAB GBC ASA ∆≅∆,得出BE CG =,③正确;证明()FAB PBC ASA ∆≅∆,得出BF CP =,因此1212PBCAFC BC CP S CP S CF AB CF ∆∆===,⑤错误;即可得出结论. 【详解】解:AF 是BAC ∠的平分线,GAH BAH ∴∠=∠,BH AF ⊥,90AHG AHB ∴∠=∠=︒,在AHG ∆和AHB ∆中,GAH BAH AH AH AHG AHB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AHG AHB ASA ∴∆≅∆,GH BH ∴=,AF ∴是线段BG 的垂直平分线,EG EB ∴=,FG FB =,四边形ABCD 是正方形,14522.52BAF CAF ∴∠=∠=⨯︒=︒,45ABE ∠=︒,90ABF ∠=︒, 67.5BEF BAF ABE ∴∠=∠+∠=︒,9067.5BFE BAF ∠=︒-∠=︒,BEF BFE ∴∠=∠,EB FB ∴=,EG EB FB FG ∴===,∴四边形BEGF 是菱形;②正确;设OA OB OC a ===,菱形BEGF 的边长为b ,四边形BEGF 是菱形,//GF OB ∴,90CGF COB ∴∠=∠=︒,45GFC GCF ∴∠=∠=︒,CG GF b ∴==,90CGF ∠=︒,CF ∴,四边形ABCD 是正方形,OA OB ∴=,90AOE BOG ∠=∠=︒,BH AF ⊥,90GAH AGH OBG AGH ∴∠+∠=︒=∠+∠,OAE OBG ∴∠=∠,在OAE ∆和OBG ∆中,OAE OBG OA OB AOE BOG ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()OAE OBG ASA ∴∆≅∆,①正确;OG OE a b ∴==-,GOE ∴∆是等腰直角三角形,GE ∴,)b a b ∴=-,整理得a =,2(2AC a b ∴==+,(1AG AC CG b =-=,四边形ABCD 是正方形,//PC AB ∴,∴1BG AG PG CG == OAE OBG ∆≅∆,AE BG ∴=,∴1AE PG=∴1PG AE =,④正确;OAE OBG ∠=∠,45CAB DBC ∠=∠=︒,EAB GBC ∴∠=∠,在EAB ∆和GBC ∆中,45EAB GBC AB BC ABE BCG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ()EAB GBC ASA ∴∆≅∆,BE CG ∴=,③正确;在FAB ∆和PBC ∆中,90FAB PBC AB BC ABF BCP ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ()FAB PBC ASA ∴∆≅∆,BF CP ∴=,∴1212PBC AFCBC CP S CP S CF AB CF ∆∆=== 综上所述,正确的有4个,故选:C .【点睛】本题考查了正方形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质、平行线的性质、菱形的判定与性质、三角形面积的计算等知识;本题综合性强,有一定难度,熟练掌握正方形的性质,证明三角形全等是解题的关键.9、C【解析】【分析】分析:先利用勾股定理计算出BC =4,利用基本作图得到CD 平分∠ACB ,再证明∠DCE =∠CDE 得到EC=ED,设CE=x,则EF=2x,BE=4﹣x,接着证明△BEF∽△BCA,利用相似比得到25x=44x-,然后解方程即可.【详解】解:∵∠B=90°,AC=5,AB=3,∴BC4,由作法得CD平分∠ACB,∴∠DCE=∠DCA,∵//EF AC,∴∠DCA=∠CDE,∴∠DCE=∠CDE,∴EC=ED,∵D点为EF的中点,∴DE=DF,设CE=x,则EF=2x,BE=4﹣x,∵EF//AC,∴△BEF∽△BCA,∴EFAC=BEBC,即25x=44x-,解得x=2013,即CE的长为20 13.故选:C.【点睛】本题考查了基本作图,相似三角形的判定与性质,熟练掌握以上知识点是解题的关键.10、C【解析】【分析】根据相似三角形判定定理判定即可.【详解】解:∵AD⊥BC,CE⊥AB,∴∠AEF=∠ADC=∠BEC=∠ADB=90°,∵∠AFE=∠CFD,∴△AFE∽△CFD,∵∠B是公共角,∴△ABD∽△CBE,∵∠A是公共角,∴△AEF∽△ADB,∴△AEF∽△CDF∽△ADB∽△CEB.∴图中相似三角形的对数是6对.故选:C.【点睛】本题考查了相似三角形的判定定理,熟练掌握定理是解题的关键.二、填空题1、【解析】【分析】①连接AF ,AC ,根据正方形及直角三角形的性质可得:AC AF AB AE==,45BAC EAF ∠=∠=︒,结合图形利用各角之间的数量关系得出BAE CAF ∠=∠,依据相似三角形的判定定理及性质即可得出结果;②连接AC ,则ACG 为直角三角形,由正方形的四条边相等及勾股定理得出AC =,CG =结合图形得出FC =【详解】解:①如图所示,连接AF ,AC ,根据正方形及直角三角形的性质可得:AC AF AB AE=45BAC EAF ∠=∠=︒, ∴BAC EAC EAF EAC ∠-∠=∠-∠,即BAE CAF ∠=∠,在ABE 与ACF 中,∵AC AF AB AE== BAE CAF ∠=∠,∴~ABE ACF ,∴FC AC EB AB== ②如图所示:连接AC ,则ACG 为直角三角形,∵FG AG AE ===5AB BC ==,∴AC =,∴CG ===∴FC CG GF =-=由结论①可得:BE FC ==【点睛】题目主要考查相似三角形的判定和性质,正方形的性质,勾股定理解三角形等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.2、3.6【解析】【分析】根据折叠的性质可得∠EDF =∠A ,DF =AF ,再由等边三角形的性质可得∠EDF =60°,∠BDE +∠CDF =∠BDE +∠BED =120°,从而得到∠CDF =∠BED ,进而得到△BDE ∽△CFD ,再由BD :DE =2 : 3,可得到23CF BD DF DE ==,即263CF CF =-,即可求解. 【详解】解:根据题意得:∠EDF =∠A ,DF =AF ,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∴∠EDF=60°,∴∠BDE+∠CDF=180°-∠EDF=120°,∵∠B=60°,∴∠BDE+∠BED=180°-∠B=120°,∴∠BDE+∠CDF=∠BDE+∠BED,∴∠CDF=∠BED,∴△BDE∽△CFD,∴BD DECF DF=,即23CF BDDF DE==,∵等边△ABC的边长为6 ,∴263CFCF=-,解得: 3.6CF=.故答案为:3.6【点睛】本题主要考查了等边三角形的性质,图形的折叠,相似三角形的判定和性质,熟练掌握等边三角形的性质,图形的折叠的性质,相似三角形的判定和性质是解题的关键.3、1:4【解析】【分析】证明△AOB∽△COD,只需求出其相似比的平方即得两三角形面积比.【详解】解:如图,设小方格的边长为1,∵△ABE 、△DCF 分别是边长为1和2的等腰直角三角形,∴∠ABE =∠CDF =45°,AB =,CD =,∵BE //DF ,∴∠EBO =∠FDO ,∴∠ABO =∠CDO ,又∠AOB =∠COD ,∴△ABO ∽△CDO ,∴S △ABO :S △CDO =(AB :CD )2,∴2:1:4ABO CDO S S ==△△,故答案为:1∶4.【点睛】本题考查相似三角形面积比与相似比的关系,关键是判断两三角形相似,确定其相似比.452【解析】【分析】根据题意作图如下,过C 作BE 的垂线,交于G ,由勾股定理求得AC的性质,可得:5AB EB EC BC ====,若△BCE 是等腰三角形,则EC BC =,勾股定理求出CG BGC CGF ∽,求出52CF =,根据AF AC CF =-,即可求出. 【详解】解:D 在边AC 上,将△ABD 沿着直线BD 翻折得△EBD ,BE 交直线AC 于点F ,联结CE ,根据题意作图如下,过C 作BE 的垂线,交于G ,在Rt ABC 中,AC根据翻折的性质,可得:5AB EB EC BC ====,当点D 在边AC 之间上动时,且BE 交直线AC 于点F ,故90BCB ∠>︒,若△BCE 是等腰三角形,则EC BC =,根据等腰三角形的三线合一的性质知,点G 为BE 的中点,12BG BE ∴==CG ∴==90CGF BGC∠=∠=︒,90 GFC GCF GFC GBC∠+∠=∠+∠=︒,GCF GBC∴∠=∠,BGC CGF∴∽,BG BCCG CF∴=,5CF=,解得:52CF=,52AF AC CF∴=-=,52.【点睛】本题考查了三角形的翻折、等腰三角形、勾股定理、三角形相似等知识,解题的关键是根据题意作出相应图形,利用三角形相似来求边长.5、①②④【解析】【分析】通过证明点E,点B,点C,点O四点共圆,可得∠OEC=∠OBC=45°,故①正确;由题意可得点E在直径为BC的圆上,当点E在AF上时,AE有最小值,由勾股定理可得AE1,故②正确;由圆周角定理可得∠BOE≠∠OEC,则∠COE≠∠BEO,即△OBE与△ECO不相似,故③错误;由“SAS”可证△COH≌△BOE,可得BE=CH,由线段的和差关系EC=BE,故④正确,即可求解.【详解】解:∵四边形ABCD是正方形,∴∠BOC=90°,∠ACB=∠DBC=45°,∵∠BEC=90°,∴∠CEB=∠BOC,∴点E,点B,点C,点O四点共圆,∴∠OEC=∠OBC=45°,故①正确;∵∠BEC=90°,∴点E在直径为BC的圆上,如图,取BC的中点F,连接AF,EF,∴EF=BF=FC=1,在△AFE中,AE>AF-EF,∴当点E在AF上时,AE有最小值,此时:AF∴AE1,故②正确;∵点E,点B,点C,点O四点共圆,∴∠BOE=∠BCE<∠BCO=45°,∠OEC=∠CBO=45°,∴∠BOE≠∠OEC,∴∠COE≠∠BEO,∴△OBE与△ECO不相似,故③错误;如图,过点O作OH⊥OE,交CE于H,∵OH⊥OE,∠OEC=45°,∴∠OEC=∠OHE=45°,∴OE=OH,∴EH OE,∵∠EOH=∠BOC=90°,∴∠BOE=∠COH,又∵OB=OC,∴△COH≌△BOE(SAS),∴BE=CH,∴EC=BE+EH=BE,故④正确,故答案为:①②④.【点睛】本题是四边形综合题,考查了正方形的性质,相似三角形的判定,勾股定理,全等三角形的判定和性质等知识,灵活运用这些性质解决问题是解题的关键.三、解答题1、 (1)见解析(2)ABC 和A B C '''是位似三角形,见解析【解析】【分析】(1)运用勾股定理求出两个三角形各边的长,再根据相似三角形的判定方法进行判断即可;(2)利用位似图形的性质进行判断即可.(1)证明:∵每个最小正方形的边长均为1,∴BC ==,AB =AC =B C ==''A B '',A C ''∵111,,,222BC AB AC B C A B A C ======'''''' ∴BC AB AC B C A B A C =='''''' ∴ABC A B C '''∽△△ (2) ABC 和A B C '''是位似三角形,位似中心的位置O 如图所示:【点睛】 本题主要考查了相似三角形的判定以及位似图形的性质,注意位似是相似的特殊形式,位似比等于相似比.2、 (1)见解析(2)2n S【解析】【分析】(1)根据平面直角坐标系可得()()()6,6,82,4,0A B C ---,,横纵坐标都乘以12-,得()()()3,3,4,1,2,0D E F --,顺次连接,,D E F 即可得到DEF ;(2)根据位似比等于相似比,面积比等于相似比的平方即可求解.(1)如图所示,(2)k n =,ABC 的面积为S ,21=ABC DEF SS n ∴21DEF SS n ∴=△ 则DEF 的面积2n S故答案为:2n S【点睛】本题考查了平面直角坐标系中画位似图形,相似三角形的性质,掌握位似图形的性质解题的关键.3、(1)+=AF BF ,理由见解析(2)第(1)问中的结论仍然成立,理由见解析;(3)3+BF【解析】【分析】(1)证明△CBE ≌△CAF (SAS ),得到BE=AF ,由△CDF为等腰直角三角形得到DE,最后再由=+=BF BE DE AF 即可证明;(2)过点C 作CG CF ⊥,交BF 于点G ,证明△CBE ≌△CAF (SAS ),得到BE=AF ,证明△CFG 为等腰直角三角形得到FG =,最后再由=+=BF BG FG AF 即可证明;(3)同(2)中思路,证明△ACF ∽△BCG,得到=AF ,证明△CFG 为30°、60°、90°三角形,得到=FG,最后再由=+=BF BG GF AF 即可求解. (1)解:如下图2所示,AF ,BF ,CF之间的数量关系的等式为:=AF BF ,理由如下:∵∠ACE +∠ECB =∠ACB =90°,∠ACE +∠FCA =∠DCE =90°,∴∠ECB =∠FCA ,在△ACF 和△BCE 中:==⎧⎪∠∠⎨⎪=⎩CF CE FCA ECB AC BC , ∴△ACF ≌△BCE (SAS ),∴AF=BE ,当D 和F 重合时,由△DEC 为等腰直角三角形知,∴△CFE 为等腰直角三角形,∴DE ,∴=+=BF BE DE AF .(2)解:第(1)问中结论仍然成立,理由如下:过点C 作CG CF ⊥,交BF 于点G ,如下图1所示:∵∠ACE +∠ECB =∠ACB =90°,∠ACE +∠DCA =∠DCE =90°,∴∠ECB =∠DCA ,在△ACD 和△BCE 中:==⎧⎪∠∠⎨⎪=⎩CD CE DCA ECB AC BC , ∴△ACD ≌△BCE (SAS ),∴∠DAC =∠EBC ,∵∠DAC +∠AFB =180°-∠FNA ,∠EBC +∠BCA =180°-∠CNB ,且∠FNA =∠CNB ,∴∠AFB =∠BCA =90°,∴∠DFE =90°∴∠DFE +∠DCE =90°+90°=180°,∴D 、C 、E 、F 四点共圆,∴∠CFE =∠CDE =45°,又∠FCG =90°,∴△FCG 为等腰直角三角形,∴FG =,CF CG =,45∠=FGC ,∴∠CGB =180°-∠FGC =135°,又∠CFA=∠CFE+∠AFB=45°+90°=135°,∴∠CGB=∠CFA,在△CGB和△CFA中:==∠∠⎧⎪∠∠⎨⎪=⎩CGB CFAFAC GBC CA CB,∴△CGB≌△CFA(AAS),∴GB=AF,∴BF BG GF AF=+=+.(3)解:线段AF,BF,CF之间的数量关系为:3=+BF,理由如下:过C点作CG⊥CF交BF于点G,如图3所示:由(2)可知:∠AFB=∠ACB=90°,∴∠DFE=90°,∴∠DFE+∠DCE=90°+90°=180°,∴D、C、E、F四点共圆,∴∠CFE=∠CDE=30°,∴△CFG 为30°、60°、90°三角形,三边之比为2,∴=FG 由(2)知,∠FAC =∠GBC ,且∠CFA =∠CFG +∠AFB =30°+90°=120°,∠CGB =180°-∠CGF =180°-60°=120°,∴∠CFA =∠CGB ,∴△ACF ∽△BCG ,∴==AF AC BG BC∴=AF∴=+=BF BG GF FC ,∴线段AF ,BF ,CF 之间的数量关系为:3+BF .【点睛】本题是三角形全等和相似的综合题,难度较大,熟练掌握三角形全等和相似的判定方法是解决本题的关键.4、 (1)①4;②4或1.6(2)①120ACQ PDC ∠+∠=︒或120PDC ACQ ∠-∠=︒【解析】【分析】(1)①根据相似三角形的判定,列出比例式求解即可;②分类讨论,根据相似三角形的性质列出比例式求解即可;(2)①根据相似三角形对应角相等,得出BCQ APD ∠=∠或BCQ ADP ∠=∠,再结合等边三角形的性质求解即可;②连接QE 并延长,使QE =EG ,连接DG ,CG ,作AH ⊥BC 于H ,GI ⊥BC 于I ,求出CG 长即可.(1)解:①∵A A ∠=∠, 当AP AD AC AP=时,APD ACP ∽△△; ∵等边ABC 的边长为8,2AD =,28AP AP=,解得,4AP =(负值舍去), 故答案为:4;②当APD BPC ∽△△时, AP AD BP BC=,即288AP AP =-,解得, 1.6AP =; 当APD BCP ∽△△时, AP AD BC BP =,即288AP AP=-,解得,4AP =; AP 的长度为4或1.6.(2)解:①当APD BQC ∽△△时,BCQ ADP ∠=∠,∴180PDC BCQ ∠+∠=︒,∵60BCQ ACQ ∠=︒-∠,∴120PDC ACQ ∠-∠=︒;当APD BCQ ∽△△时,BCQ APD ∠=∠,∵60PDC APD ∠=︒+∠,∴60PDC BCQ ∠=︒+∠,∵60BCQ ACQ ∠=︒-∠,∴120ACQ PDC ∠+∠=︒;故答案为:120ACQ PDC ∠+∠=︒或120PDC ACQ ∠-∠=︒;②线段EF 的长是一个定值,理由如下:连接QE 并延长至G ,使QE =EG ,连接DG ,CG ,作AH ⊥BC 于H ,GI ⊥BC 于I ,∵QE =EG ,PE =DE ,∠PEQ =∠DEG ,∴△PEQ ≌△DEG ,∴DG =PQ =2,∠QPE =∠GDE ,∴DG =AD =2,QP ∥GD ,∴∠DAP =∠GDA =60°,∴△GDA 是等边三角形,∴∠DAG =∠ACB =60°,GA =2,∴GA ∥BC ,∵AH ⊥BC ,GI ⊥BC ,∴HA ∥GI ,∴四边形HAGI 是平行四边形,∴GA = HI =2,∵∵AH ⊥BC ,∴HC =4,HI =2,AH ==GI =CG∵F分别是CQ的中点,∴GC=2EF,∴EF=【点睛】本题考查了相似三角形的性质与判定,全等三角形的判定与性质,勾股定理,等边三角形的性质与判定,解题关键是恰当作辅助线,利用全等三角形和相似三角形的判定与性质进行推理计算.5【解析】【分析】利用黄金分割的定义求出AD和BC,再求出CD和AC,即可得解.【详解】解:∵点D在AB上,且AD2=BD•AB,∴点D是AB的黄金分割点,∴AD AB1,又∵点C是AB的黄金分割点,AC<BC,∴BC AB1,∴CD =AD +BC -AB =4-,∴AC =AD -CD =3∴CD AC ,. 【点睛】本题考查了黄金分割:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC =AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.。
相似多边形一.选择题(共10小题)1.(2015•杭州模拟)如图,四边形ABCD∽四边形A1B1C1D1,AB=12,CD=15,A1B1=9,则边C1D1的长是()A.10 B. 12 C.D.(2题图)(7题图)(8题图)2.(2015•长沙一模)两个相似多边形的面积之比为1:9,则它们的周长之比为()A.1:3 B. 1:9 C. 1:D. 2:33.(2015•石河子校级模拟)两个相似多边形的一组对分别是3cm和4.5cm,如果它们的面积之和是78cm2,那么较大的多边形的面积是()A.44.8 B. 42 C. 52 D. 544.(2015春•泰山区期末)如图所示,两个等边三角形,两个矩形,两个正方形,两个菱形各成一组,每组中的一个图形在另一个图形的内部,对应边平行,且对应边之间的距离都相等,那么两个图形不相似的一组是()A.B.C.D.5.(2015春•高密市期末)已知两个五边形相似,其中一个五边形的最长边为20,最短边为4,另一个五边形的最短边为3,则它的最长边为()A.15 B. 12 C.9 D. 66.(2014春•冷水江市期末)两个相似多边形的面积比是9:16,其中较小多边形的周长为36cm,则较大多边形的周长为()A.48cm B. 54cm C. 56cm D. 64cm7.(2015•梧州一模)如图,一张矩形纸片ABCD的长AB=a,宽BC=b.将纸片对折,折痕为EF,所得矩形AFED与矩形ABCD相似,则a:b=()A.2:1 B.:1 C. 3:D. 3:28.(2014秋•南京期末)已知矩形纸片ABCD中,AB=1,如图,剪去正方形ABEF,得到的矩形ECDF与矩形ABCD相似,则AD的长为()A.2 B. C.D.9.(2013•铜仁市模拟)图中,有三个矩形,其中相似的是()A.甲和乙B.甲和丙C.乙和丙D.没有相似的矩形10.(2013秋•孟津县期中)下列图形中一定相似的一组是()A.邻边对应成比例的两个平行四边形B.有一条边相等的两个矩形C.有一个内角相等的两个平行四边形D.底角都是60°的两个等腰三角形二.填空题(共6小题)11.(2015春•庆阳校级月考)图中的两个四边形相似,则x+y= ,a= .(11题图)(14题图)(16题图)12.(2015春•凉州区校级月考)若两个相似多边形的对应边之比为5:2,则它们的周长比是.13.(2015春•凉州区校级月考)若两个相似多边形的面积比是16:25,则它们的周长比等于.14.(2014•甘肃模拟)如图,在长8cm,宽4cm 的矩形中截去一个矩形(阴影部分)使留下的矩形与原矩形相似,那么留下的矩形的面积为cm2.15.(2014春•靖远县校级月考)两个相似五边形,一组对应边的长分别为3cm和4.5cm,如果它们的面积之和是78cm2,则较大的五边形面积是cm2.16.(2011•青岛)如图,以边长为1的正方形ABCD的边AB为对角线作第二个正方形AEBO1,再以BE为对角线作第三个正方形EFBO2,如此作下去,…,则所作的第n个正方形的面积S n= .三.解答题(共4小题)17.(2014秋•海口期中)如图,四边形ABCD和四边形EFGH相似,求∠α、∠β 的大小和EH的长度.18.(2012春•新浦区校级期中)如图:矩形草坪的长为a米,宽为b米(a>b),沿草坪四周外围有宽为x米的环形小路.(1)草坪的长与宽的比值m= ,外围矩形的长与宽的比值n= .(用含有a、b、x的代数式表示);(2)请比较m与n的大小;(3)图中的两个矩形相似吗?为什么?19.(2007•宁波)如图,把矩形ABCD对折,折痕为MN,矩形DMNC与矩形ABCD相似,已知AB=4.(1)求AD的长;(2)求矩形DMNC与矩形ABCD的相似比.20.如图,已知△AEO∽△ABC,△AOF∽△ACD,那么四边形ABCD与四边形AEOF相似吗?请说明你的理由.鲁教版八年级数学下册第9章9.3相似多边形测试题参考答案一.选择题(共10小题)1.C.2.A.3.D.4.B.5.A.6.A.7.B.8.D.9.B.10.D.二.填空题(共6小题)11.63 ,a= 85°.12.5:2 .13.4:5 .14.815.54 16..三.解答题(共4小题)17.解:∵四边形ABCD和四边形EFGH相似,∴∠α=∠B=83°,∠D=∠H=118°,∠β=360°﹣(83°+78°+118°)=81°,EH:AD=HG:DC,∴=,∴EH=28(cm).答:∠α=83°,∠β=81°,EH=28cm.18.解:(1)∵矩形草坪的长为a米,宽为b米(a>b),∴草坪的长与宽的比值m=a:b,外围矩形的长与宽的比值n=(a+2x):(b+2x);(2)m﹣n=﹣==,∵a>b>0,∴m﹣n=>0,∴m>n;(3)若图中的两个矩形相似,则需m=n,∵m>n,∴图中的两个矩形不相似.故答案为:(1)a:b,(a+2x):(b+2x).19.解:(1)由已知得MN=AB,MD=AD=BC,∵矩形DMNC与矩形ABCD相似,,∵MN=AB,DM=AD,BC=AD,∴AD2=AB2,∴由AB=4得,AD=4;(2)矩形DMNC与矩形ABCD的相似比为=.20.解:四边形ABCD与四边形AEOF相似,理由如下:∵△AEO∽△ABC,∴∠2=∠1,∠4=∠3,==,∵△AOF∽△ACD,∴∠6=∠5,∠8=∠7,==,∴∠2+∠6=∠1+∠5,即∠EOF=∠BCD,===.在四边形AEOF与四边形ABCD中,∵∠EAF=∠BAD,∠4=∠3,∠EOF=∠BCD,∠8=∠7,===,∴四边形AEOF∽四边形ABCD,即四边形ABCD与四边形AEOF相似.。
初二数学相似多边形试题1.两个多边形相似的条件是()A.对应角相等B.对应边相等C.对应角相等,对应边相等D.对应角相等,对应边成比例【答案】D【解析】根据多边形相似的条件依次分析各项即可判断.两个多边形相似的条件是对应角相等,对应边成比例,故选D.【考点】多边形相似的条件点评:本题是判定多边形相似的基础应用题,难度一般,学生只需正确理解多边形相似的判定方法即可轻松完成.2.下列图形是相似多边形的是()A.所有的平行四边形;B.所有的矩形C.所有的菱形;D.所有的正方形【答案】D【解析】根据对应角相等,对应边成比例的两个多边形相似,依次分析各项即可判断.所有的平行四边形、矩形、菱形均不一定是相似多边形,而所有的正方形都是相似多边形,故选D.【考点】相似多边形点评:本题是判定多边形相似的基础应用题,难度一般,学生只需熟练掌握特殊四边形的性质即可轻松完成.3.在四边形ABCD与四边形A′B′C′D′中,∠A=∠A′,∠B=∠B′,∠C=∠C′,•∠D=∠D′,且,则四边形________∽四边形________,且它们的相似比是________.【答案】ABCD,A′B′C′D′,2:3【解析】根据对应角相等且对应边成比例的两个多边形相似,相似多边形的相似比等于对应边的比即可得到结果.∵∠A=∠A′,∠B=∠B′,∠C=∠C′,•∠D=∠D′,且,∴四边形ABCD∽四边形A′B′C′D′,且它们的相似比是2:3.【考点】相似多边形的判定和性质点评:本题是相似多边形的判定和性质的基础应用题,难度一般,学生只需正确理解多边形相似的判定方法即可轻松完成.4.把一个矩形剪去一个正方形,若剩余的矩形和原矩形相似,求原矩形的长与宽的比.【答案】(1+):2【解析】根据相似多边形对应边的比等于相似比,设出原来矩形的长和宽,就可得到关于长宽的方程,从而可以解得结果.根据相似多边形对应边的成比例,可得设原矩形ABCD的长AD=x,宽AB=y,则AE=x-y.则解得或(舍去)答:原矩形的长与宽的比为(1+):2.【考点】相似多边形的性质点评:方程思想是初中数学学习中的一个非常重要的思想,很多问题都是转化为方程来解决的;本题重点考查了学生的数形结合的能力,难度不大.5.下列命题正确的是()A.有一个角对应相等的平行四边形相似B.对应边成比例的两个平行四边形相似C.有一个角对应相等的两个等腰梯形相似D.有一个角对应相等的两个菱形相似【答案】D【解析】根据多边形相似的条件即可得到结果.A.有一个角对应相等的平行四边形不一定相似,故本选项错误;B.对应边成比例的两个平行四边形不一定相似,故本选项错误;C.有一个角对应相等的两个等腰梯形不一定相似,故本选项错误;D.有一个角对应相等的两个菱形相似,本选项正确;故选D.【考点】相似多边形点评:特殊四边形的性质的应用是初中数学的重点,是中考常见题,学生需认真掌握并会熟练运用.6.下列说法中正确的是()A.相似形一定是全等形B.不全等的图形不是相似形C.全等形一定是相似形D.不相似的图形可能是全等形【答案】C【解析】根据相似形与全等形的关系依次分析各项即可判断.A.相似形不一定是全等形,B.不全等的图形可能是相似形,D.不相似的图形一定不是全等形,故错误;C.全等形一定是相似形,本选项正确.【考点】相似多边形点评:全等三角形的判定和性质的运用是初中数学平面图形知识里的重点,是中考中的常见知识点,但一般学生往往会把全等和相似看作两个完全不相关的概念,却不了解全等是相似的特例.7.如图所示,有三个矩形,其中是相似形的是()A.甲和乙B.甲和丙C.乙和丙D.甲、乙和丙【答案】B【解析】根据对应角相等且对应边成比例的两个多边形相似即可判断.∵∴是相似形的是甲和丙故选B.【考点】相似多边形点评:特殊平行四边形的性质的应用是初中数学的重点,也是难点,是中考常见题,因而熟练掌握特殊平行四边形的性质极为重要.8.已知如图所示的两个梯形相似,求出未知的x,y,z的长和∠α,∠β的度数.【答案】x=3,y=3,z=6,∠α=70°,∠β=120°【解析】根据两个相似多边形的对应角相等,对应边成比例即可得到结果.∵两个梯形相似∴∠α=180°-110°=70°,∠β=180°-60°=120°,,解得x=3,y=3,z=6.【考点】相似多边形的性质点评:本题是相似多边形的性质的基础应用题,难度一般,学生在解题时只需注意对应字母写在对应位置上,同时具备一定的计算能力,即可轻松解答.9.暑假时,康子帮母亲到鱼店去买鱼,鱼店里有一种“竹笑鱼”,个个都长得非常相似,现在根据大小有两种不同的价格,如图所示,鱼长10cm的每条100日元,鱼长18cm的每条150日元,康子不知道买哪条更好些,你看怎么办?【答案】买18cm长的鱼更合算【解析】因为同一种鱼的密度一样,所以它们的质量比等于体积比,再根据相似体体积的比等于相似比立方,即可判断.设这两种鱼的质量分别为m、M,则而它们的价格比为150:100=1.5,∴买18cm长的鱼更合算.【考点】相似体点评:本题是相似体的基础应用题,难度不大.实际生活中的很多问题往往可以转化为数学问题,学生要具备一定的数学思想及数学方法.10.如图所示,甲、乙是两个不同的正方体,正方体都是相似体,•它们的一切对应线段之比都等于相似比(a:b),设S甲,S乙分别表示两个正方体的表面积,则,又设V甲,V乙分别表示这两个正方体的体积,则,下列几何体中,一定属于相似体的是()A.两个球体B.两个圆柱体C.两个圆锥体D.两个长方体【答案】A【解析】根据阅读材料得到相似体的概念,然后对球体,圆锥体,圆柱体以及长方体进行分析,发现只有球体的形状是完全相同的.A 、两个球体,形状完全相同,是相似体;B、两个圆柱体,如果底面半径或高发生变化,图形就会改变,不是相似体;C、两个圆锥体,如果底面半径或高发生变化,图形就会改变,不是相似体;D、两个长方体,如果长,宽,高中有一个发生变化,图形就会改变,不是相似体;故选A.【考点】相似图形点评:阅读理解题主要考查学生阅读分析问题的能力,在中考中很常见,这类问题往往难度不大,但需要同学们仔细认真,注意把握题目中的关键语句.。
相似多边形判定专项练习题
以下是一组相似多边形判定的练题,用于帮助你巩固对相似多
边形的理解和判定技巧。
每个题目都包含了一对多边形,你需要判
断它们是否相似。
在每个题目后面标注你的答案,将"√"表示相似,将"×"表示不相似。
祝你好运!
题目一
已知多边形ABC和多边形DEF的对应边比为2:3,对应角相等,判断它们是否相似。
答案:√
题目二
已知多边形PQR的两条边长度分别是5cm和10cm,并且对应
角相等,请判断它与多边形XYZ的相似关系。
答案:×
题目三
多边形LMN和多边形XYZ的对应边分别为4:6,对应角相等,请判断它们是否相似。
答案:√
题目四
已知多边形ABC与多边形XYZ的对应角相等,对应边之比为3:5,请判断它们是否相似。
答案:√
总结
相似多边形的判定依据主要包括对应边比和对应角相等。
通过对多边形的边长和角度进行比较,我们可以判定多边形之间是否相似。
希望以上练习题能够帮助你更好地理解和掌握相似多边形的判定方法。
八年级数学下册第九章图形的相似专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分),顶点A重合,将ADE绕其顶点A旋转,在旋转过程中,1、如图,一副三角板,AD BC以下4个位置,不存在相似三角形的是 ( ).A.B.C.D.2、如图,在Rt△ABC中,∠B=90°,AC=5,AB=3,点E是边CB上一动点,过点E作EF//CA交AB于点F,D为线段EF的中点,按下列步骤作图:①以C为圆心,适当长为半径画弧交CB,CA于点M,点N;②分别以M,N为圆心,适当长为半径画弧,两弧的交点为G;③作射线CG.若射线CG经过点D,则CE的长度为()A .813B .1513C .2013D .25133、如图,在平面直角坐标系中,等腰直角'''A B C ∆是等腰直角△ABC 以原点O 为位似中心的位似图形,且位似比为2:1,点1,0A ,()1,2B ,C 在''A B 上,则'C 点坐标为( )A .()2,4B .()2,2C .()4,2D .()4,44、如下图,D 、E 分别是△ABC 边的AB 、AC 上的点,DE ∥BC ,且S △ADE ︰S △ABC =1︰9,那么AD ∶BD 的值为( )A .1︰9B .1︰3C .1︰8D .1︰25、如图,将△ABC 绕点C 顺时针旋转α得到△DEC ,此时点D 落在边AB 上,且DE 垂直平分BC ,则ACDE 的值是( )A .13 B .12 C .35 D 6、如图,∠BEC =∠CDB ,下列结论正确的是( )A .EF •BF =DF •CFB .BE •CD =BF •CFC .AE •AB =AD •AC D .AE •BE =AD •DC7、如图,在平行四边形ABCD 中,点E 在BC 边上43CEBE ,则△BEF 与△ADF 的周长之比为()A .1:3B .3:7C .4:7D .3:48、如图,已知直线a b c ∥∥,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,若8BD=,则DF的值是()AC=,12CE=,6A.15 B.10 C.14 D.99、如图,在ABC中,EF∥BC,AE=2BE,则AEF与梯形BCFE的面积比为()A.1:2 B.2:3 C.3:4 D.4:510、如图,△A'B'C'是△ABC以点O为位似中心经过位似变换得到的,若BB'=2OB',则A B C'''与ABC的面积之比为()A.1:3 B.1:4 C.1:6 D.1:9第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图:正方形DGFE的边EF在△ABC边BC上,顶点D、G分别在边AB、AC上,AH⊥BC于H,交DG 于P,已知BC=48,AH=16,那么S正方形DGEF=_____.2、如图,已知ADAB=AEAC,若使△ABC∽△ADE成立_____(只添一种即可).3、如图,已知AD为△ABC的角平分线,DE∥AB,如果AEEC=34,那么AEAB=________________.4、已知实数a,b满足ab=34,则483a ba b-+的值是 _____.5、在矩形ABCD中,AB=6,BC=8,BD⊥DE交AC的延长线于点E,则DE=_____.三、解答题(5小题,每小题10分,共计50分)1、如图,在边长为1的小正方形组成的网格中,△OAB的顶点都在格点上.(1)请作出△OAB 关于直线CD 对称的△O 1A 1B 1;(2)请以点P 为中心,相似比为2,作出△OAB 的同向位似图形△O 2A 2B 2.2、如图1,在矩形ABCD 中,AB =8,AD =4,点P 是对角线BD 上一点,连接AP ,AE ⊥AP ,且12AP AE ,连接BE .(1)当DP =2时,求BE 的长.(2)四边形AEBP 可能为矩形吗?如果不可能,请说明理由;如果可能,求出此时四边形AEBP 的面积.(3)如图2,作AQ ⊥PE ,垂足为Q ,当点P 从点D 运动到点B 时,直接写出点Q 运动的距离.3、如图,在菱形ABCD 中,AB =15,过点A 作AE ⊥BC 于点E ,AE =12,动点P 从点B 出发,以每秒3个单位长度的速度沿BE 向终点E 运动,过点P 作PQ ⊥BC ,交BA 于点Q ,以PQ 为边向右作正方形PQMN ,点N 在射线BC 上,设点P 的运动时间为t 秒(t >0).(1)直接写出线段PQ的长(用含t的代数式表示);(2)当正方形PQMN与四边形AECD重合部分图形为四边形时,求t的取值范围;(3)连接AC、QN,当△QMN一边上的中点在线段AC上时,直接写出t的值.4、如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s速度向点C移动,同时动点Q从C出发以1cm/s的速度向点A移动,设它们的运动时间为t.(1)根据题意知:CQ=,CP=;(用含t的代数式表示)(2)t为何值时,△CPQ的面积等于△ABC面积的18?(3)运动几秒时,△CPQ与△CBA相似?5、如图,∠A=∠D,AC,BD相交于点E,过点C作CF∥AB交BD于点F.(1)求证:△CEF∽△DEC;(2)若EF=3,EC=5,求DF的长.-参考答案-一、单选题1、D【解析】【分析】根据一副三角板,得到△ABC中,有一个角为60°,一个角为30°;△ADE为等腰直角三角形;再依据两个角对应相等的两个三角形相似解答即可.【详解】解:∵∠C=∠C,∠CAF=∠CAB-∠BAF=60°-30°=30°=∠B,∴△ACF∽△BCA,故A不符合题意;∵∠ACF=∠E,∴BC∥DE,∴∠AFC=∠D,∴△ACF∽△AED,故B不符合题意;∵∠APC和∠DPE是对顶角,∴∠APC=∠DPE,∵∠C=∠E=90°,∴△ACP∽△DEP,故C不符合题意;∵∠DAB和∠EAB没有明确的度数,∴不存在相似三角形.故选D.【点睛】本题考查了相似三角形的判定,掌握两个角对应相等的两个三角形相似是解题的关键.2、C【解析】【分析】分析:先利用勾股定理计算出BC=4,利用基本作图得到CD平分∠ACB,再证明∠DCE=∠CDE得到EC=ED,设CE=x,则EF=2x,BE=4﹣x,接着证明△BEF∽△BCA,利用相似比得到25x=44x-,然后解方程即可.【详解】解:∵∠B=90°,AC=5,AB=3,∴BC4,由作法得CD平分∠ACB,∴∠DCE=∠DCA,∵//EF AC,∴∠DCA=∠CDE,∴∠DCE=∠CDE,∴EC=ED,∵D点为EF的中点,∴DE=DF,设CE=x,则EF=2x,BE=4﹣x,∵EF//AC,∴△BEF∽△BCA,∴EFAC=BEBC,即25x=44x,解得x=2013,即CE的长为20 13.故选:C.【点睛】本题考查了基本作图,相似三角形的判定与性质,熟练掌握以上知识点是解题的关键.3、C【解析】【分析】取AB的中点D,连接CD,由等腰直角三角形的性质及A、B的坐标,可求得点C的坐标,再根据两个三角形的位似比即可求得点'C的坐标.【详解】取AB的中点D,连接CD,如图∵△ABC 是等腰直角三角形∴CD ⊥AB∵()1,0A ,()1,2B∴AB ⊥x 轴∴CD ∥x 轴∴D (1,1)∵等腰直角'''A B C ∆是等腰直角△ABC 以原点O 为位似中心的位似图形,且位似比为2:1 ∴2,0A ,()2,4B '∴A B x ''⊥轴∵C 在''A B 上∴C (2,1)由位似比为2:1,则'C 点坐标为(4,2)故选:C【点睛】本题考查了三角形位似的定义及性质,等腰三角形的性质等知识,掌握三角形位似的定义是关键.4、D【解析】【分析】根据相似三角形面积的比等于相似比的平方可得出答案.【详解】∵DE∥BC,∴△ADE∽△ABC,∴2219 ADEABCS ADS AB==∴13 AD AB=∴12 AD BD=故选:D.【点睛】此题考查了相似三角形的判定与性质,解题的关键是理解相似三角形面积的比等于相似比的平方.5、B【解析】【分析】根据旋转的性质和线段垂直平分线的性质证明DCF DEC∆∆∽,对应边成比例即可解决问题.【详解】解:如图,设DE与BC交于点F,由旋转可知:CA CD =,AB DE =,BC EC =,B E ∠=∠, DE 垂直平分BC ,DF BC ∴⊥,DC DB =,1122CF BF BC EC ===,DCB B E ∴∠=∠=∠,90DCB FDC ∠+∠=︒,90E FDC ∴∠+∠=︒,90DCE ∴∠=︒,DCF DEC ∴∆∆∽, ∴12CD CF DE CE ==, ∴12AC DE =. 故选:B .【点睛】本题考查了相似三角形的判定与性质,线段垂直平分线的性质,旋转的性质,解题的关键是得到DCF DEC ∆∆∽.6、C【解析】【分析】根据条件证明出ABD ACE ∽,根据性质得:AE AC AD AB =,变形即可得到.【详解】解:BEC CDB ∠=∠, AEC ADB ∴∠=∠,A A ∠=∠,ABD ACE ∴△∽△,AE AC AD AB∴=, AE AB AD AC ∴=,故选:C .【点睛】本题考查了三角形相似的判定及性质,解题的关键是证明出ABD ACE ∽.7、B【解析】【分析】通过证明△BEF ∽△ADF ,利用相似三角形的性质即可求解.【详解】解:∵CE :BE =4:3,∴BE :BC =3:7,∵四边形ABCD 是平行四边形,∴AD =BC ,∴BE :AD =3:7,∵四边形ABCD 是平行四边形,∴BE ∥AD ,∴△BEF ∽△ADF ,∴△BEF 与△ADF 的周长之比为3:7,故选:B .【点睛】本题考查了相似三角形的判定和性质,平行四边形的性质,证明三角形相似是解题的关键.8、D【解析】【分析】根据平行线分线段成比例,即可求解.【详解】解:∵a b c ∥∥, ∴AC BD CE DF= , ∵8AC =,12CE =,6BD =, ∴8612DF= ,解得:9DF = . 故选:D【点睛】本题主要考查了成比例线段,熟练掌握平行线分线段成比例定理是解题的关键.9、D【解析】【分析】证明△AEF ∽△ABC ,利用相似三角形的性质得到24()9AEF ABC S AE S AB ∆∆==,然后根据比例的性质得到△AEF 与梯形BCFE 的面积比.【详解】解:∵AE =2BE , ∴AE AB =22BE BE BE+=23, ∵EF ∥BC ,∴△AEF ∽△ABC , ∴2224()()39AEF ABC S AE S AB ∆∆===, ∴△AEF 与梯形BCFE 的面积比为4:5.故选:D .【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;灵活运用相似三角形的性质进行几何计算.10、D【解析】【分析】先根据2BB OB ''=可得13OB OB '=,再根据位似图形的性质可得A B AB ''∥,A B C ABC '''△,然后根据相似三角形的判定与性质即可得.【详解】解:2BB OB ''=,13OB OB =∴', A B C '''与ABC 是位似图形,A B AB ''∴,A B C ABC '''△,OA B OAB ''∴, 13OB A B AB OB ''∴='=, 则A B C '''与ABC 的面积之比为2()11:99A B AB ''==, 故选:D .【点睛】本题考查了位似图形、相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方是解题关键.二、填空题1、144【解析】【分析】根据DG ∥BC 得出△ADG ∽△ABC ,利用相似三角形对应边上高的比等于相似比,列方程求出正方形的边长,则可得出答案.【详解】解:设正方形DGEF 的边长为x .由正方形DEFG 得,DG ∥EF ,即DG ∥BC ,∵AH ⊥BC ,∴AP ⊥DG .∵DG ∥BC ,∴△ADG∽△ABC,∴DG AP BC AH=,∵PH⊥BC,DE⊥BC,∴PH=ED,AP=AH﹣PH,即DG AH PH CB AH-=,由BC=48,AH=16,DE=DG=x,得16 4816x x-=,解得x=12.∴正方形DEFG的边长是12,∴S正方形DGEF=DE2=122=144.故答案为:144.【点睛】本题考查了相似三角形的判定与性质,正方形的性质.解题的关键是由平行线得到相似三角形,利用相似三角形的性质列出方程.2、∠DAE=∠BAC(不唯一)【解析】【分析】根据相似三角形的判定定理解答即可.【详解】解:根据“两边成比例且夹角相等的两个三角形相似”可得:∠DAE=∠BAC.故答案是∠DAE=∠BAC(不唯一).【点睛】本题主要考查了相似三角形的判定,掌握“两边成比例且夹角相等的两个三角形相似”和“三边成比例的两个三角形相似”是解答本题的关键.3、4 7【解析】【分析】由DE∥AB可得DE CEAB AC=,进而结合题干中的条件得到AE=DE,即可求解.【详解】解:∵DE∥AB,∴~CDE CBA,∴DE CE AB AC=,又∵AEEC=34,∴DE CEAB AC==47,又∵AD为△ABC的角平分线,DE∥AB,∴∠ADE=∠BAD=∠DAE,∴AE=DE,∴AE DE CEAB AB AC===47,故答案为:47.【点睛】本题主要考查了三角形相似的判定与性质、角平分线的定义;熟练掌握相似三角形的判定与性质是解决问题的关键.4、29【解析】【分析】首先用b 表示出a ,再代入483a b a b -+约分即可求值. 【详解】 解:∵a b =34,∴a =34b , ∴344243839834b b a b a b b b ⨯--==+⨯+, 故答案为:29.【点睛】本题考查了比例的性质,用b 表示出a 是解题关键.5、1207【解析】【分析】由勾股定理可求AC 的长,由矩形的性质可得5OD OB ==,由面积法可求DH 的长,通过证明OD DE OH DH=,即可求解. 【详解】解:如图:过点D 作DH AC ⊥于H ,6AB =,8BC =,10AC ∴=,四边形ABCD 是矩形,152AO CO BO DO AC ∴=====,11··22ADC S AD CD AC DH ==, 6810DH ∴⨯=,245DH ∴=,75OH ∴=, ∵=90DOH ODH ∠+︒∠,=90DOH E ∠+︒∠,∴ODH E ∠=∠90DHO EHD ∠=∠=︒,ODH DEH ∴∆∆∽, ∴OD DE OH DH =, ∴572455DE =,1207DE ∴=, 故答案为:1207.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,勾股定理,熟知相似三角形的性质与判定条件是解题的关键.三、解答题1、 (1)见解析(2)见解析【解析】【分析】(1)△OAB关于直线CD对称的△O1A1B1在CD的右侧,对应点到CD的距离相等,所此描点、连线即可得;(2)根据位似图形的性质求作即可.(1)如图所示. △O1A1B1即为所求(2)如图所示,△O2A2B2即为所求.【点睛】本题主要考查了利用旋转变换和轴对称变换进行作图,旋转作图时,决定图形位置的因素有旋转角度、旋转方向、旋转中心.画一个图形的轴对称图形时,先从一些特殊的对称点开始.2、 (1)4;(2)可能,面积为1285;(3)8 【解析】【分析】(1)根据矩形的性质和等角的余角相等证得12AD APAB AE==,∠DAP=∠BAE,根据相似三角形的判定和性质证得△ADP∽△ABE即可求解;(2)根据相似三角形的性质和直角三角形的两锐角互余证得∠PBE=90°,根据矩形的判定当∠APB=90°时可得四边形AEBP为矩形;利用勾股定理求得BD,再根据三角形的面积公式求得AP,进而求得AE即可求解;(3)根据题意画出图形证明点Q在直线Q1Q2上运动,由(2)中结论可知四边形AQ1BQ2是矩形,根据矩形对角线相等求得Q1Q2即可.(1)解:如图,∵四边形ABCD是矩形,AB=8,AD=4,∴∠DAB=90°,12 ADAB=,∴12AD AP AB AE==,∵AP⊥AE,∴∠PAE=90°,∴∠DAP+∠PAB=∠PAB+∠BAE,∴∠DAP=∠BAE,∴△ADP∽△ABE,∴12DP AD BE AB ==, ∴24BE DP ==;(2)解:四边形AEBP 可能为矩形.如图,由(1)得△ADP ∽△ABE ,∴∠ABE =∠ADB ,∴∠PBE =∠PBA +∠ABE =∠PBA +∠ADB =90°,如图,当∠APB =90°时,∵∠APB =∠PAB =∠PBE =90°,∴四边形AEBP 为矩形,在Rt△ABD 中,AB =8,AD =4,由勾股定理得:BD =AP ==2AE AP ==, 1285AEBP S AE AP =⋅=;(3)解:由(1)中,12AD AP AB AE==,∠DAB =∠PAE =90°, ∴△ADB ∽△APE ,∴∠ADB =∠APE ,如图,当点P 在点D 处时,Q 在Q 1处,即AQ 1⊥BD ,作 AQ 2⊥PE ,∴∠AQ 1D =∠AQ 2P =90°,∴△ADQ 1∽△APQ 2, ∴12AQ AD AP AQ =,∠DAQ 1=∠PAQ 2, ∵∠DAP =∠DAQ 1+∠PAQ 1=∠PAQ 1+∠PAQ 2=∠Q 1AQ 2,∴△ADP ∽△AQ 1Q 2,∴∠AQ 1Q 2=∠ADP ,∴∠BQ 1Q 2=90°-∠AQ 1Q 2=90°-∠ADP=∠ABD ,因此点Q 在直线Q 1Q 2上运动,故当点P 从点D 运动到点B 时,点Q 由Q 1运动到如图2中的Q 2位置,则点Q 运动的距离为Q 1Q 2的长度.此时,∠DAP =∠DAB =∠DAQ 1+∠PAQ 1=∠PAQ 1+∠PAQ 2=∠Q 1AQ 2=90°,又∵∠AQ 1D =∠AQ 2P =90°,∴四边形AQ1BQ2是矩形,∴Q1Q2=AB=8,即点Q运动的距离为8.图2 图3【点睛】本题考查相似三角形的判定与性质、矩形的判定与性质、直角三角形的性质、等角的余角相等、勾股定理等知识,熟练掌握相关知识的联系与运用是解答的关键.3、 (1)PQ=4t(2)97<t≤157(3)158或157或52【解析】【分析】(1)根据题意以及勾股定理,求得BE的长,根据PQ∥AE,可得BQP BEA∽,进而可得BQ=5t,PQ=4t;(2)当MN与AE重合时,BP+PN=BE,当点N与点C重合时,BP+PN=BN=BC,分别求得t的值,进而求得t的取值范围;(3)分三种情况讨论,即当,,QM MN QN的中点在AC上,根据相似三角形的性质与判定,列出比例式,解方程求解即可(1)∵AE⊥BC,∴∠AEB=90°,∵AB=15,AE=12,∴BE9,∵PQ⊥BC,∴PQ∥AE,BQP BEA∴∽∴BQ BP PQ BA BE AE==,动点P从点B出发,以每秒3个单位长度的速度沿BE向终点E运动3PB t∴=∴315912 BQ t PQ==,∴BQ=5t,PQ=4t;(2)当MN与AE重合时,BP+PN=BE,∵四边形PQMN是正方形,∴PN=PQ=4t,∴3t+4t=9,∴t=97.当点N与点C重合时,BP+PN=BN=BC,∵四边形ABCD是菱形,AB=15,∴BP+PN=BN=BC=15,∵四边形PQMN是正方形,∴PN=PQ=4t,∴3t+4t=15,∴t=157.∴当97<t≤157时,重叠部分是四边形;(3)当AC经过MN的中点R时,∴RN=12MN=12PQ=2t,∵PQ∥AE,MN∥PQ,∴MN∥AE,∴NC NR CE AE,∴2 612 NC t=,∴NC=t,∵CE=BC﹣BE=15﹣9=6,∴BN+CN=BP+PN+CN=7t+t=15,解得t=158.当AC经过QM的中点W时,∵QM∥BC,AQW ABC∴∽∴AQ QWAB BC=,即21515AQ t=,∴AQ=QW=2t,∴AQ=AB=BQ=15﹣5t=2t,解得t=157.当AC经过QN的中点K时,设AC交QM于H,∵QM∥BC,AQH ABC ∴∽∴AQ QH AB BC=,∴AQ=QH,∵QM∥BC,K是QN的中点,∴KQ=KN,∠KQH=∠KNC,∠KHQ=∠KCN,∴△KHQ≌△KCN(AAS),∴QH=CN,∴AQ=QH=CN,∴AB﹣BQ=BN﹣BC,即15﹣5t=7t﹣15,解得t=52,综上所述,满足条件的t的值为158或157或52.【点睛】本题考查了动点问题,正方形的性质,勾股定理,相似三角形的性质与判定,掌握相似三角形的性质与判定是解题的关键.4、 (1)t,4﹣2t(2)32或12(3)65或1611秒【解析】【分析】(1)结合题意,直接得出答案即可;(2)根据三角形的面积列方程即可求出结果;(3)设经过t秒后两三角形相似,则可分下列两种情况进行求解:①若Rt△ABC∽Rt△QPC,②若Rt△ABC∽Rt△PQC,然后列方程求解.(1)解:AC=3cm,BC=4cm,根据题意得:经过t秒后,BP=t,PC=4-2t,CQ=t,故答案为:t,4-2t;(2)解:当△CPQ的面积等于△ABC面积的18时,即12(4-2t)•t=18×12×3×4,解得;t=32或t=12;答:经过32或12秒后,△CPQ的面积等于△ABC面积的18;(3)解:设经过t秒后两三角形相似,则可分下列两种情况进行求解,①若Rt△ABC∽Rt△QPC则AC QCBC PC=,即3442tt=-,解得t=65;②若Rt△ABC∽Rt△PQC则PC ACQC BC=,即4234tt-=,解得t=1611;由P点在BC边上的运动速度为2cm/s,Q点在AC边上的速度为1cm/s,可求出t的取值范围应该为0<t<2,验证可知①②两种情况下所求的t均满足条件.答:要使△CPQ与△CBA相似,运动的时间为1.2或1611秒.【点睛】本题考查了一元二次方程的实际运用,动点问题,相似三角形的判定和性质,三角形的面积,掌握相似三角形的性质是解决问题的关键;特别是(3)注意分类讨论.5、 (1)证明见解析; (2)163DF =. 【解析】【分析】(1)通过CF ∥AB 得到B EFC ∠=∠,然后利用三角形内角和定理有180A B AEB D DCE DEC ∠+∠+∠=∠+∠+∠=︒,从而得出DCE EFC ∠=∠,外加对顶角DEC CEF ∠=∠,从而得出结论;(2)根据(1)的结论得到比例式EF CE CE ED=,带入数据就可求出DF 的长. (1)∠A =∠D ,180A B AEB D DCE DEC ∠+∠+∠=∠+∠+∠=︒ ,AEB DEC ∠=∠,∴ B DCE ∠=∠; CF ∥AB ,∴ B EFC ∠=∠,∴ DCE EFC ∠=∠;DEC CEF ∠=∠∴△CEF ∽△DEC (2)△CEF ∽△DEC , ∴EF CE CE ED=; EF =3,EC =5,∴253 ED=∴2516333 DF=-=【点睛】本题考查了相似三角形的判定,牢记“两组角对应相等的两个三角形相似”是解题的关键.利用三角形内角和定理,结合平行线的性质,即可证出.。
3 相似多边形一、选择题1.△ABC ∽△A ′B ′C ′,相似比是2∶3,那么△A ′B ′C ′与△ABC 面积的比是 ( )A.4∶9B.9∶4C.2∶3D.3∶22.将一个五边形改成与它相似的五边形,如果面积扩大为原来的9倍,那么周长扩大为原来的 ( )A.9倍B.3倍C.81倍D.18倍3.在△ABC 中,DE ∥BC ,交AB 于D ,交AC 于E ,且AD ∶DB =1∶2,则下列结论正确的是( )A. BC DE =21B. BC DE =31C.的周长的周长ABC ADE ∆∆=21 D. ABC ADE S S ∆∆=314.如图,ABCD 中,AE ∶ED =1∶2,S △AEF =6 cm 2,则S △CBF 等于( )A.12 cm 2B.24 cm 2C. 54 cm 2D.15 cm 2二、填空题5.△ABC ∽△A ′B ′C ′,相似比是3∶4,△ABC 的周长是27 cm ,则△A ′B ′C ′的周长为________.6.两个相似多边形对应边的比为3∶2,小多边形的面积为32 cm 2,那么大多边形的面积为________.7.若两个三角形相似,且它们的最大边分别为6 cm 和8 cm ,它们的周长之和为35 cm ,则较小的三角形的周长为________.8.在矩形ABCD中,E、F分别为AB、CD的中点,如果矩形ABCD∽矩形BCFE,那么AD∶AB=________,相似比是________,面积比是________.三、解答题9.在比例尺为1∶50000的地图上,一块多边形地区的周长是72 cm,多边形的两个顶点A、B之间的距离是25 cm,求这个地区的实际边界长和A、B两地之间的实际距离.10.如图,梯形ABCD中,AB∥CD,AC、BD交于E,若S△DCE∶S△DCB=1∶3,求S△DCE ∶S△ABD.11.已知:△ABC∽△A′B′C′,它们的周长之差为20,面积比为4∶1,求△ABC 和△A′B′C′的周长.参考答案一、1.B 2.B 3.B 4.C二、5.36 cm6.72 cm27.15 cm8.2∶2 2∶1 2∶1三、9.36千米, 12.5千米10.1∶611. 40 20。
八年级数学下册第九章图形的相似同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,四边形ABCD 和A ′B ′C ′D ′是以点O 为位似中心的位似图形,若OA :OA 则四边形ABCD 和A ′B ′C ′D ′的面积比为( )A B .2:3 C .2:5 D .4:92、已知12a b =,则a b b +的值为( ) A .23 B .32 C .35 D .13、如图,ABC 和DEF 中,A D ∠=∠,则添加下列条件后无法判定ABC DEF ∽△△的是( )A .B E ∠=∠ B .C F ∠=∠ C .AB AC DE DF =D .BA BC ED EF= 4、如图所示,在直角坐标系中,1,0A ,()0,2B ,以A 为位似中心,把ABC 按相似比1∶2放大,放大后的图形记作AB C ''△,则B '的坐标为( ).A .()1,2--B .()1,2-C .()1,4--D .()1,4-5、如果13a b a -=,那么a b a +的值等于( ) A .53 B .52C .43D .2 6、已知35x y =,则+x x y 的值为( ) A .25 B .38 C .32 D .237、已知2x =3y (x ≠0),则下列比例式成立的是( )A .23xy = B .32x y = C .23x y = D .23xy = 8、如图, 1B B ,是A ∠一边上的任意两点, 作BC AC ⊥于点111C B C AC ⊥,于点1C .若34BC AC ==,, 则111B C AC 的值是( )A .43B .34C .45D .359、如图,在下列四个条件:①∠B =∠C ,②∠ADB =∠AEC ,③AD :AC =AE :AB ,④PE :PD =PB :PC 中,随机抽取一个能使△BPE ∽△CPD 的概率是( )A .0.25B .0.5C .0.75D .110、如图,在ABCD 中,点E 、F 分别在AD 、CD 边上,连接BE 、AF ,它们相交于点G ,延长BE 、CD ,相交于点H ,下列结论中正确的是( )A .EG AE BG BC =B .AE BE ED EH= C .=EH DH EB CH D .=AG BG FG FH第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知75x y =.则x y x +=___. 2、如图,将ABC 沿BC 边上的中线AD 平移到A B C '''的位置,已知ABC 的面积为18,阴影部分三角形的面积为2.若2A D '=,则AA '等于______.3、已知点P 是线段AB 的黄金分割点,,4cm PA PB AB >=,那么PA =________cm .4、如图,在△ABC 中,AB =AC =3,BC =4.若D 是BC 边上的黄金分割点,则△ABD 的面积为_____.5、定义:如图1,已知锐角∠AOB 内有定点P ,过点P 任意作一条直线MN ,分别交射线OA ,OB 于点M ,N .若P 是线段MN 的中点时,则称直线MN 是∠AOB 的中点直线.如图2,射线OQ 的表达式为y =2x (x >0),射线OQ 与x 轴正半轴的夹角为∠α,P (3,1),若MN 为∠α的中点直线,则直线MN 的表达式为__________________.三、解答题(5小题,每小题10分,共计50分)1、如图,△ADE的顶点E在△ABC的边BC上,DE与AB相交于点F,AE2=AF•AB,∠DAE=∠BAC.(1)求证:△DAF∽△CAE.(2)求证:DFDE=CECB.2、如图,直角△ABC中,AB⊥AC,AD⊥BC,证明:AB2=BD•BC,AC2=CD•BC,AD2=BD•CD.3、如图,在△ABC中,∠ACB=90°,CD是斜边AB上的高.(1)求证:△ACD∽△CBD;(2)若AD=3,BD=2,求CD的长.4、菱形ABCD的边长为6,∠D=60°,点E在边AD上运动.(1)如图1,当点E为AD的中点时,求AO:CO的值;(2)如图2,F是AB上的动点,且满足BF+DE=6,求证:△CEF是等边三角形.5、如图,公路旁有两个高度相等的路灯AB、CD,小明上午上学时发现路灯AB在太阳光下的影子恰好落在路牌底部E处,他自己的影子恰好落在路灯CD的底部C处;晚自习放学时,站在上午同一个地方,发现在路灯CD的灯光下自己的影子恰好落在E处.(1)在图中画出小明的位置(用线段FG表示).(2)若上午上学时,高1米的木棒的影子为2米,小明身高为1.5米,他距离路牌底部E恰好2米,求路灯高.-参考答案-一、单选题1、B【解析】【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质,即可解答.【详解】解:∵四边形ABCD 和A ′B ′C ′D ′是以点O 为位似中心的位似图形,若OA :OA∴::AD A D OA OA '''== ,∴四边形ABCD 和A ′B ′C ′D ′的面积比为22:2:3= .故选:B【点睛】 本题考查的是位似变换的性质,熟练掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.2、B【解析】【分析】 根据12a b =求得b =2a ,代入计算即可. 【详解】 解:∵12a b =, ∴b =2a , ∴2322a b a a b a ++==, 故选:B .【点睛】此题考查了比例的性质,代数式的化简求值,正确掌握比例的性质是解题的关键.3、D【解析】【分析】根据相似三角形的判定定理即可得出结论.【详解】解:∵A D ∠=∠,B E ∠=∠,∴ABC DEF ∽△△ , 故选项A 不符合题意;∵A D ∠=∠,C F ∠=∠,∴ABC DEF ∽△△, 故选项B 不符合题意;∵A D ∠=∠,AB AC DE DF=, ∴ABC DEF ∽△△, 故选项C 不符合题意; ∵BA BC ED EF=,但,B E ∠∠不一定相等, ∴,ABC DEF 不一定相似, 则添加BA BC ED EF=条件后无法判定ABC DEF ∽△△; 故选项D 符合题意.故选D .【点睛】本题考查条件条件使两个三角形相似,掌握相似三角形的判定定理,两角对应相等的两个三角形相似,两边对应成比例,夹角对应相等的两个三角形相似,三边对应成比例的两个三角形相似是解题关键.4、D【解析】【分析】根据位似得到AB BB'=,过B'作B'D⊥y轴于D,则∠B'DB=∠AOB=90°,证得△B'BD≌△ABO,求出B'D=AO=1,AD=4,得到B'的坐标.【详解】解:∵把ABC按相似比1∶2放大,放大后的图形记作AB C''△,∴12 ABAB=',∴AB BB'=,过B'作B'D⊥y轴于D,则∠B'DB=∠AOB=90°,∵∠B'BD=∠ABO,∴△B'BD≌△ABO,∴B'D=AO=1,BD=BO=2,∴AD=4,∴B'(-1,4),故答案为(-1,4).【点睛】此题考查了位似图形的性质,全等三角形的判定及性质,熟练掌握位似的性质及全等三角形的判定及性质定理是解题的关键.5、A【解析】【分析】根据13a ba-=可得23ba=,根据a ba+=1+ba即可得答案.【详解】∵13a ba-=,∴1-ba=13,∴23ba=,∴a ba+=1+ba=53,故选:A.【点睛】本题考查分式的加减运算,熟练掌握运算法则是解题关键.6、B【解析】【分析】利用设k法进行解答即可.【详解】解:∵35xy=,∴设x =3k ,y =5k , ∴33358x k x y k k ==++, 故选:B .【点睛】本题考查了比例的性质,熟练掌握设k 法是解题的关键.7、B【解析】【分析】把各个选项依据比例的基本性质,两内项之积等于两外项之积,已知的比例式可以转化为等积式2x =3y ,即可判断.【详解】解:A.变成等积式是:3x =2y ,故错误;B.变成等积式是:2x =3y ,故正确;C.变成等积式是:3x =2y ,故错误;D.变成等积式是:3x =2y ,故错误.故选:B .【点睛】本题考查了比例的性质,熟记两内项之积等于两外项之积是解题的关键.8、B【解析】【分析】先证明1190BCA B C A ∠=∠=︒,再证明11ABC AB C ,最后利用相似三角形的性质得出结果.【详解】解:∵BC AC ⊥,111B C AC ⊥,∴1190BCA B C A ∠=∠=︒,∵∠A =∠A ,∴11ABC AB C , ∴111B C BC AC AC=, ∵BC =3,AC =4, ∴11134B C BC AC AC ==. 故选B .【点睛】本题考查了垂直的定义及相似三角形的判定与性质,解题的关键是灵活运用相似三角形的判定与性质.9、C【解析】【分析】根据已知及相似三角形的判定方法进行分析,再直接由概率公式求解即可.【详解】解:∵∠BPE =∠CPD ,①当∠B =∠C ,则△BPE ∽△CPD 成立,①符合题意;②当∠ADB =∠AEC ,即∠CDP =∠BEP ,则△BPE ∽△CPD 成立,②符合题意;③当AD :AB =AE :AC ,又∠A 公共,则△ACE ∽△ABD ,∴∠B =∠C ,∴△BPE∽△CPD才成立;而当AD:AC=AE:AB,就不能推出△BPE∽△CPD,③不符合题意;④当PE:PD=PB:PC,则△BPE∽△CPD成立,④符合题意;四个选项中有三个符合题意,∴随机抽取一个能使△BPE∽△CPD的概率是34=0.75,故选:C.【点睛】本题考查了概率公式,相似三角形的判定,①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.10、B【解析】【分析】根据相似三角形的性质和平行四边形的性质可以判断各个选项中的比值是否成立,从而可以解答本题.【详解】解:由图可知,EG AEBG BC≠,故选项A错误;∵AB∥CD,∴△ABE∽△DHE,∴AE BEED EH⋅=,故选项B正确;∵DE∥BC,∴EH DHEB DC=,故选项C错误;∵AB ∥CD ,∴△ABG ∽△FHG , ∴AG BG FG HG=,故选项D 错误; 故选:B .【点睛】本题考查相似三角形的判定与性质、平行四边形的性质,解题的关键是明确题意,找出所求问题需要的条件.二、填空题1、125【解析】【分析】根据比例的性质求解即可,设7,5x k y k ==,代入代数式进行计算即可.【详解】 解:∵75x y = 设7,5x k y k ==, ∴x y x +751275k k k +== 故答案为:125【点睛】 本题考查了比例的性质,掌握比例的性质是解题的关键.2、4【解析】【分析】根据平移的性质,,得A EF ABC '∠=∠,A FE ACB '∠=∠,BAD EA D '∠=∠,CAD FA D '∠=∠,根据相似三角形的性质,通过证明A ED ABD '∽△△,A FD ACD '△∽△,推导得2A EF ABC A D S S AD ''⎛⎫= ⎪⎝⎭△△,通过计算即可得到答案.【详解】 根据题意,A EF ABC '∠=∠,A FE ACB '∠=∠,BAD EA D '∠=∠,CAD FA D '∠=∠,如下图∴A ED ABD '∽△△,A FD ACD '△∽△ ∴2A ED A FD ABD ACD S S A D AD S S '''⎛⎫== ⎪⎝⎭△△△△ ∴()22A EF A ED A FD ABD ACD ABC A D A D S S S S S S AD AD '''''⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭△△△△△△ ∵2A EF S '=△,18ABC S =∴13A D AD '= ∴36AD A D '==∴4AA AD A D ''=-=故答案为:4.【点睛】本题考查了平移、相似三角形、三角形中线的知识,解题的关键是熟练掌握相似三角形的性质,从而完成求解.3、2【解析】【分析】设AP 的长为x ,由黄金分割点可知AP PB AB AP =,有x 4x 4x -=,求出符合要求的解即可. 【详解】解:设AP 的长为x ,由黄金分割点可知AP PB AB AP = ∴x4x 4x -=去分母得:()244x x =⨯-解得12x =-(舍去)或2252x 经检验2x =是方程的解∴AP 的长为()2cm故答案为:2.【点睛】 本题考查了黄金分割,分式方程的应用.解题的关键在于列正确的分式方程并求解.4、5 5【解析】【分析】过A 作AE BC ⊥于E ,先由等腰三角形的性质得2BE =,由勾股定理求出AE =ABC ∆的面积=BD BC =或BD BC =解:过A 作AE BC ⊥于E ,如图所示:AB AC =,122BE CE BC ∴===,AE ∴=ABC ∴∆的面积11422BC AE =⨯=⨯ D 是BC 边上的黄金分割点,∴当BD CD >时,BD BC =,1212BD AE ABD BD ABC BC BC AE ⨯∆==∆⨯的面积的面积 ABD ∴∆的面积5= 当BD CD <时,CD BC =,∴BD BC1212BD AE ABD BD ABC BC BC AE ⨯∆==∆⨯的面积的面积, ABD ∴∆的面积5=;故答案为:55.本题考查了黄金分割、等腰三角形的性质、勾股定理以及三角形面积等知识;解题的关键是熟练掌握黄金分割的定义和等腰三角形的性质.5、y =﹣12x +52【解析】【分析】作MD ⊥x 轴于D ,PE ⊥x 轴于E ,则//PE MD ,设M (m ,2m ),由题意得PE =m ,由P (3,1)求得m =1,即可求得N (5,0),然后根据待定系数法即可求得直线MN 的解析式.【详解】解:如图,作MD ⊥x 轴于D ,PE ⊥x 轴于E ,则//PE MD ,∵P 为MN 的中点,//PE MD ∴1DE MP EN PN== ∴DN=EN ,即E 为DN 中点,∴PE 是MDN △中位线∴PE =12MD ,∵M 是射线OQ 上的点,∴设M (m ,2m ),∴PE=12MD=m,∵P(3,1),∴m=1,OE=3∴M(1,2)∴OD=1,则DE=OE-OD=2∴EN=DE=2∴ON=OE+EN=5∴N(5,0),设直线MN的解析式为y=kx+b,把P(3,1),N(5,0)代入得31 50k bk b+=⎧⎨+=⎩,解得1252kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线MN的解析式为y=﹣12x+52,故答案为:y=﹣12x+52.【点睛】本题考查了待定系数法求一次函数的解析式,正比例函数图象上点的坐标特征,三角形中位线定理,求得N的坐标是解题的关键.三、解答题1、 (1)见解析(2)见解析【解析】【分析】(1)首先证明△EAF∽△EAB,得∠AEF=∠B,再利用三角形内角和定理知∠D=∠C,从而证明结论;(2)先证明△DAE∽△CAB,再根据△DAF∽△CAE,从而可得AD DFAC EC=,ED DABC AC=,等量代换即可.(1)证明: AE2=AF•AB,∴EA FA BA AE=,∴∠EAF=∠BAE,∴△EAF∽△BAE,∴∠AEF=∠B,又∵∠DAE=∠BAC,∴∠D=∠C,又∵∠DAF=∠CAE,∴△DAF∽△CAE;(2)∵∠DAE=∠BAC,∠D=∠C,∴△DAE∽△CAB,∴ED DA BC AC=,∵△DAF∽△CAE,AC EC∴DE DF BC EC=, ∴DF CE DE CB =. 【点睛】本题主要考查了相似三角形的判定与性质,三角形内角和定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.2、见解析【解析】【分析】证明ABD CBA ∆∆∽,由相似三角形的性质可知AB BD BC AB =,故此可得到:2AB BD BC =;证明ADC BAC ∆∆∽,由相似三角形的性质可知AC DC BC AC=故此2AC CD BC =;证明ABD CAD ∆∆∽,由相似三角形的性质可知AD DC BD AD=,故此可知:2AD BD CD =. 【详解】 证明:在ABD ∆和CBA ∆中,B B ∠=∠,90BAC ADB ∠==︒∠,ABD CBA ∴∆∆∽. ∴AB BD BC AB=. 2·AB BD BC ∴=.在ADC ∆和BAC ∆中,C C ∠=∠,90BAC ADC ∠=∠=︒,ADC BAC ∴∆∆∽.BC AC2AC CD BC∴=..ADC BAC∆∆∽,ABD CBA∆∆∽,ABD CAD∴∆∆∽.∴AD DC BD AD=.2·AD BD CD∴=.【点评】本题主要考查的是相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定.3、 (1)见解析【解析】【分析】(1)根据两角对应相等的两个三角形相似证明即可.(2)利用相似三角形的性质证明CD2=AD•DB,可得结论.(1)证明:∵CD⊥AB,∴∠CDA=∠CDB=90°,∵∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B,∴△ACD∽△CBD.(2)解:∵△ACD∽△CBD,∴ADCD=CDBD,∴CD2=AD•DB,∵AD=3,BD=2,∴CD2=6,∵CD>0,∴CD.【点睛】本题考查射影定理,相似三角形的判定和性质等知识,解题的关键是掌握相似三角形的判定方法,属于中考常考题型.4、 (1)12(2)见解析【解析】【分析】(1)先由菱形的性质得BC=AD=6,AD∥BC,再证△AOE∽△COB,即可得出答案;(2)先证△ABC是等边三角形,得AC=BC,∠ACB=60°,再证△ACE≌△BCF(SAS),得CE=CF,∠ACE=∠BCF,然后证∠ECF=∠ACB=60°,即可得出结论.(1)∵四边形ABCD是菱形,∴BC=AD=6,AD∥BC,∵点E为AD的中点,∴AE =12AD =3,∵AD ∥BC ,∴△AOE ∽△COB , ∴3162AO AE CO BC ===; (2)证明:∵四边形ABCD 是菱形,∴AB =BC ,AD ∥BC ,∠B =∠D =60°,∴∠CAE =∠ACB ,△ABC 是等边三角形,∴AC =BC ,∠ACB =60°,∴∠EAC =60°=∠B ,∵AE +DE =AD =6,BF +DE =6,∴AE =BF ,在△ACE 和△BCF 中,AE BF CAE B AC BC =⎧⎪∠=∠⎨⎪=⎩, ∴△ACE ≌△BCF (SAS ),∴CE =CF ,∠ACE =∠BCF ,∴∠ACE +∠ACF =∠BCF +∠ACF =∠ACB =60°,即∠ECF =60°,∴△CEF 是等边三角形.【点睛】本题考查了菱形的性质、等边三角形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质等知识;熟练掌握菱形的性质,证明三角形全等和三角形相似是解题的关键,属于中考常考题型.5、 (1)见解析(2)路灯高3.75米【解析】【分析】(1)作出太阳光线BE,过点C作BE的平行线,与DE的交点即为小明的位置;(2)易得小明的影长,利用EFG EDC∽可得路灯CD的长度.∆∆(1)解:如图,FG就是所求作的线段.(2)上午上学时,高1米的木棒的影子为2米,CG FG∴==,23FG CD,//∠=∠,∴∠=∠,EGF ECDEFG D∴∆∆∽,EFG EDC∴FG EG=,CD EC∴1.52=,CD5CD=,解得 3.75∴路灯高3.75米.【点睛】综合考查了中心投影和平行投影的运用,注意平行投影的光线是平行的;用到的知识点为:在相同时间段,垂直于地面的物高与影长是成比例的;两三角形相似,对应边成比例.。
经典相似多边形练习题
本文介绍了一些经典的相似多边形练题,旨在帮助读者加深对相似多边形概念的理解和应用。
以下为几个练题:
1. 通过比例求相似多边形的边长
已知两个相似多边形的边长比为2:3,若小多边形的边长为
4cm,求大多边形的边长。
解答:设大多边形的边长为x cm,根据边长比例可得:x / 4 = 3 / 2。
解方程得,x = 6 cm。
故大多边形的边长为6cm。
2. 通过比例求相似多边形的面积
已知两个相似多边形的边长比为3:5,若小多边形的面积为36 cm²,求大多边形的面积。
解答:设大多边形的面积为x cm²,根据边长比例可得:(x / 36)^(1/2) = 5 / 3。
解方程得,x ≈ 150.67 cm²。
故大多边形的面积约为150.67 cm²。
3. 在相似多边形中找相等角
已知两个相似多边形的对应角相等,求证它们相似。
解答:由已知可知,两个相似多边形的对应角相等,根据相似多边形的定义,可以证明它们相似。
综上所述,通过以上经典的相似多边形练习题,读者可以更好地掌握相似多边形的性质和解题方法,提高应用能力。
八年级数学下册第九章图形的相似专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在平行四边形ABCD 中,E 是AB 边上一点,若AE :AB =1:3,则S △AEF :S △ADC =( )A .1:12B .1:9C .1:6D .1:32、如图,在△ABC 中,点D 、E 在边AB 上,点F 、G 在边AC 上,且DF ∥EG ∥BC ,AD =DE =EB ,若Δ1ADF S =,则EBCG S =四边形( )A.3 B.4 C.5 D.63、如图,△A'B'C'是△ABC以点O为位似中心经过位似变换得到的,若AA'∶OA'=2∶3,则△ABC 的面积与△A'B'C'的面积比是()A.25∶9B.9∶4C.25∶3D.5∶34、如图,直线l1∥l2∥l3,分别交直线m,n于点A,B,C,D,E,F.已知AB=4,BC=6,DE=2,则EF的长为()A.2 B.3 C.4 D.4.55、如图,在ABCD中,点E、F分别在AD、CD边上,连接BE、AF,它们相交于点G,延长BE、CD,相交于点H,下列结论中正确的是()A.EG AEBG BC=B.AE BEED EH=C .=EH DH EB CHD .=AG BG FG FH6、如图,ABC 和DEF 中,A D ∠=∠,则添加下列条件后无法判定ABC DEF ∽△△的是( )A .B E ∠=∠ B .C F ∠=∠ C .AB AC DE DF =D .BA BC ED EF= 7、如图,在平面直角坐标系中,等腰直角'''A B C ∆是等腰直角△ABC 以原点O 为位似中心的位似图形,且位似比为2:1,点1,0A ,()1,2B ,C 在''A B 上,则'C 点坐标为( )A .()2,4B .()2,2C .()4,2D .()4,48、如图,在平面直角坐标系中,已知点A 、B 的坐标分别为()3,2-、()2,3-,以原点O 为位似中心,在原点的异侧按1∶3的相似比将OAB 放大,则点B 的对应点B '的坐标为( ).A .()6,9-B .()9,6-C .()6,4-D .()4,6-9、将一个三角形的各边都缩小到原来的12后,得到三角形与原三角形( )A .一定不相似B .不一定相似C .无法判断是否相似D .一定相似 10、如图所示,在直角坐标系中,1,0A ,()0,2B ,以A 为位似中心,把ABC 按相似比1∶2放大,放大后的图形记作AB C ''△,则B '的坐标为( ).A .()1,2--B .()1,2-C .()1,4--D .()1,4-第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在矩形ABCD 中,AB =6,BC =8,BD ⊥DE 交AC 的延长线于点E ,则DE =_____.2、已知30x y x -=,则y x=______. 3、已知75x y =.则x y x +=___. 4、如图,在平行四边形ABCD 中,E 是AB 的延长线上的一点,DE 与边BC 相交于点F ,27BE AE =,那么BF FC的值为________________.5、两个相似多边形的周长比是3:4,其中较小的多边形的面积为236cm ,则较大的多边形的面积为______cm 2.三、解答题(5小题,每小题10分,共计50分)1、在△ABC 中,∠ABC =80°,∠BAC =40°,AB 的垂直平分线分别与AB ,AC 交于点E ,D 两点.(1)用圆规和直尺在图中作出AB 的垂直平分线DE ,并连接BD ;(2)找出一组相似三角形(不用说明理由).2、如图,在矩形ABCD 中,对角线AC 的垂直平分线与边AD 、BC 分别交于点E 、F ,连结AF 、CE .(1)试判断四边形AFCE 的形状,并说明理由;(2)若5AB =,23AE BF =,求EF 的长;(3)连结BE ,若BE CE ⊥,求BF AE的值. 3、如图,Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D .(1)求证:AC 2=AB •AD ;(2)若BD=9,AC=6,求AD 的长.4、如图,在边长为1的小正方形组成的网格中,△OAB 的顶点都在格点上.(1)请作出△OAB 关于直线CD 对称的△O 1A 1B 1;(2)请以点P 为中心,相似比为2,作出△OAB 的同向位似图形△O 2A 2B 2.5、感知:(1)数学课上,老师给出了一个模型:如图1,90BAD ACB AED ∠=∠=∠=︒,由12180BAD ∠+∠+∠=︒,2180D AED ∠+∠+∠=︒,可得1D ∠=∠ ;又因为90ACB AED =∠=︒,可得ABC DAE △△∽,进而得到BC AC=______.我们把这个模型称为“一线三等角”模型. 应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,在ABC 中,10AB AC ==,12BC =,点P 是BC 边上的一个动点(不与B 、C 重合),点D 是AC 边上的一个动点,且APD B ∠=∠.①求证:ABP PCD △△∽; ②当点P 为BC 中点时,求CD 的长;拓展:(3)在(2)的条件下如图2,当APD △为等腰三角形时,请直接写出BP 的长.-参考答案-一、单选题1、A【解析】【分析】先判断出△AEF 与△DCF 是相似,利用性质可求面积比,再由△AEF 与△ADF 是等高的三角形,也可得出面积比,最后根据S △ADC =S △CDF +S △ADF 计算比值即可.【详解】解:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∵AE :AB =1:3,∴AE :CD =1:3,∵AE ∥CD ,∴△AEF ∽△CDF , ∴21()9AEF CDF S AE S CD ==,13EF AE DF CD , ∴S △CDF =9S △AEF ,S △ADF =3S △AEF ,∵S △ADC =S △CDF +S △ADF , ∴19312AEF AEF ADC AEF AEF S S S S S ==+, 故选:A .【点睛】本题考查相似三角形的判定和性质,平行四边形的性质等知识,解题的关键是熟练掌握相似和平行四边形的基本知识,属于中考常考题型.2、C【解析】【分析】利用////DF EG BC ,得到ADF ABC ∆∆∽,ADF AEG ∆∆∽,利用AD DE EB ==,得到13AD AB =,12AD AE =,利用相似三角形的性质,相似三角形的面积比等于相似比的平方,分别求得AEG ∆和ABC ∆的面积,利用ABC AEG EBCG S S S ∆∆=-四边形即可求得结论.【详解】解:AD DE EB ==,∴13AD AB =,12AD AE =. ////DF EG BC ,ADF ABC ∴∆∆∽,ADF AEG ∆∆∽. ∴2()ADF ABC S AD S AB ∆∆=,2()ADF AEG S AD S AE ∆∆=. 99ABC ADF S S ∆∆∴==,44AEG ADF S S ∆∆==.945ABC AEG EBCG S S S ∆∆∴=-=-=四边形.故选:C .【点睛】本题主要考查了相似三角形的判定与性质,解题的关键是利用相似三角形的面积比等于相似比的平方,用ABC AEG EBCG S S S ∆∆=-四边形解答.3、A【解析】【分析】根据位似变换的性质得到△A B C '''∽△ABC ,A B ''∥AB ,进而得到△O A B ''∽△OAB ,根据相似三角形的性质得到A B AB'',根据相似三角形的面积比等于相似比的平方解答即可. 【详解】解:∵△A B C '''是△ABC 以点O 为位似中心经过位似变换得到的,∴△A B C '''∽△ABC ,A B ''∥AB ,∴△O A B ''∽△OAB , ∴A B AB ''=OA OA '=35, ∴ABC A B C S S '''∆∆=(AB A B '')2=259, 故选:A .【点睛】本题考查了位似的性质,相似三角形的性质与判定,掌握相似三角形面积比等于相似比的平方是解题的关键.4、B【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】解:123l l l,AB DEBC EF∴=,4,6,2AB BC DE===,426EF∴=,解得3EF=,经检验,3EF=是所列分式方程的解,故选:B.【点睛】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题关键.5、B【解析】【分析】根据相似三角形的性质和平行四边形的性质可以判断各个选项中的比值是否成立,从而可以解答本题.【详解】解:由图可知,EG AEBG BC≠,故选项A错误;∵AB∥CD,∴△ABE∽△DHE,∴AE BEED EH⋅=,故选项B正确;∵DE∥BC,∴EH DH EB DC=,故选项C 错误; ∵AB ∥CD ,∴△ABG ∽△FHG , ∴AG BG FG HG=,故选项D 错误; 故选:B .【点睛】本题考查相似三角形的判定与性质、平行四边形的性质,解题的关键是明确题意,找出所求问题需要的条件.6、D【解析】【分析】根据相似三角形的判定定理即可得出结论.【详解】解:∵A D ∠=∠,B E ∠=∠,∴ABC DEF ∽△△ , 故选项A 不符合题意;∵A D ∠=∠,C F ∠=∠,∴ABC DEF ∽△△, 故选项B 不符合题意;∵A D ∠=∠,AB AC DE DF=, ∴ABC DEF ∽△△,故选项C 不符合题意; ∵BA BC ED EF=,但,B E ∠∠不一定相等, ∴,ABC DEF 不一定相似, 则添加BA BC ED EF=条件后无法判定ABC DEF ∽△△; 故选项D 符合题意.故选D .【点睛】本题考查条件条件使两个三角形相似,掌握相似三角形的判定定理,两角对应相等的两个三角形相似,两边对应成比例,夹角对应相等的两个三角形相似,三边对应成比例的两个三角形相似是解题关键.7、C【解析】【分析】取AB 的中点D ,连接CD ,由等腰直角三角形的性质及A 、B 的坐标,可求得点C 的坐标,再根据两个三角形的位似比即可求得点'C 的坐标.【详解】取AB 的中点D ,连接CD ,如图∵△ABC 是等腰直角三角形∴CD ⊥AB∵()1,0A ,()1,2B∴AB ⊥x 轴∴CD ∥x 轴∴D (1,1)∵等腰直角'''A B C ∆是等腰直角△ABC 以原点O 为位似中心的位似图形,且位似比为2:1 ∴2,0A ,()2,4B '∴A B x ''⊥轴∵C 在''A B 上∴C (2,1)由位似比为2:1,则'C 点坐标为(4,2)故选:C【点睛】本题考查了三角形位似的定义及性质,等腰三角形的性质等知识,掌握三角形位似的定义是关键.8、A【解析】【分析】直接利用位似图形的性质以及结合B 点坐标直接得出点B ′的坐标.【详解】解:∵以点O 为位似中心,在原点的异侧按1:3的相似比将△OAB 放大,点B 的坐标分别为(−2,3).∴点B的对应点B′的坐标为(6,-9),故选:A.【点睛】本题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k 或-k.9、D【解析】【分析】,再由三边对应成比例的两个三角形相根据题意可得原三角形的各边与得到的三角形的各边比均为12似,即可求解.【详解】,解:∵将一个三角形的各边都缩小到原来的12∴原三角形的各边与得到的三角形的各边比均为1,2∴得到三角形与原三角形一定相似.故选:D【点睛】本题主要考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.10、D【解析】【分析】根据位似得到AB BB'=,过B'作B'D⊥y轴于D,则∠B'DB=∠AOB=90°,证得△B'BD≌△ABO,求出B'D=AO=1,AD=4,得到B'的坐标.【详解】解:∵把ABC按相似比1∶2放大,放大后的图形记作AB C''△,∴12 ABAB=',∴AB BB'=,过B'作B'D⊥y轴于D,则∠B'DB=∠AOB=90°,∵∠B'BD=∠ABO,∴△B'BD≌△ABO,∴B'D=AO=1,BD=BO=2,∴AD=4,∴B'(-1,4),故答案为(-1,4).【点睛】此题考查了位似图形的性质,全等三角形的判定及性质,熟练掌握位似的性质及全等三角形的判定及性质定理是解题的关键.二、填空题1、120 7【解析】【分析】由勾股定理可求AC 的长,由矩形的性质可得5OD OB ==,由面积法可求DH 的长,通过证明OD DE OH DH=,即可求解. 【详解】解:如图:过点D 作DH AC ⊥于H ,6AB =,8BC =,10AC ∴=,四边形ABCD 是矩形,152AO CO BO DO AC ∴=====, 11··22ADC S AD CD AC DH ==, 6810DH ∴⨯=,245DH ∴=,75OH ∴=, ∵=90DOH ODH ∠+︒∠,=90DOH E ∠+︒∠,∴ODH E ∠=∠90DHO EHD ∠=∠=︒,ODH DEH ∴∆∆∽, ∴OD DE OH DH =,∴572455DE =,1207DE ∴=, 故答案为:1207. 【点睛】 本题考查了相似三角形的判定和性质,矩形的性质,勾股定理,熟知相似三角形的性质与判定条件是解题的关键.2、13【解析】【分析】利用比例的基本性质,进行计算即可.【详解】 解:30x y x -=, 30x y ∴-=,3x y ∴=, ∴13=y x , 故答案为:13.【点睛】本题考查了比例的性质,解题的关键是熟练掌握比例的基本性质.3、125【解析】【分析】根据比例的性质求解即可,设7,5x k y k ==,代入代数式进行计算即可.【详解】 解:∵75x y = 设7,5x k y k ==, ∴x y x +751275k k k +== 故答案为:125【点睛】 本题考查了比例的性质,掌握比例的性质是解题的关键.4、25【解析】【分析】由四边形ABCD 是平行四边形,可得AB ∥CD ,CD =AB ,即可证得△BEF ∽△CDF ,然后由相似三角形的对应边成比例,即可求得答案.【详解】解:四边形ABCD 是平行四边形,∴AB ∥CD ,CD =AB ,∴△BEF ∽△CDF , ∵27BE AE =,∴25 BE BEAB CD==,∴25 BF BEFC CD==.故答案为:25.【点睛】此题考查了相似三角形的判定与性质以及平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.5、64【解析】【分析】根据相似多边形周长之比等于相似比,面积之比等于相似比的平方求出面积比,计算即可.【详解】解:∵两个相似多边形的周长比是3:4,∴两个相似多边形的相似比是3:4,∴两个相似多边形的面积比是9:16,∵较小多边形的面积为36cm2,∴较大多边形的面积为64cm2,故答案为:64.【点睛】本题考查了相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.三、解答题1、 (1)见解析(2)△CBD∽△CAB【解析】【分析】(1)以大于二分之一AB的长度为半径,分别以A,B两点为圆心在线段AB的两侧画弧,分别交于一点,连接两个交点即可;(2)根据角平分线的性质求出角之间的等量关系,进而根据相似三角形的相似的条件判断即可.(1)解:如图,直线DE即为所求.(2)解:△CBD∽△CAB.理由:∵BD平分∠ABC,∴∠ABD=∠CBD=40°∵∠A=40°,∴∠∠CBD=∠A=40°,∵∠C=∠C,∴△CBD∽△CAB.【点睛】本题考查尺规作图作线段的垂直平分线,以及相似三角形的判定,能够熟练掌握相似三角形的判定定理是解决本题的关键.2、 (1)四边形AFCE 是菱形.理由见解析(2)EF =(3)BF AE 【解析】【分析】(1)由矩形的性质及线段垂直平分线的性质,可证得AEO CFO △△≌,从而得AE =CF ,即可证得四边形AFCE 是平行四边形,进而可得四边形AFCE 是菱形;(2)设3AE m =,2BF m =,由四边形AECF 是菱形及勾股定理可求得m ,从而可得BC 的长,由勾股定理可求得AC 的长,从而可得OC 的长,再由勾股定理求得OF 的长,最后求得EF 的长;(3)设AE a =,BF b =,由矩形的性质及BE ⊥CE ,易得CDE BEC △△∽,由相似三角形的性质可得关于a 、b 的方程,即可求得b a的值,从而求得结果. (1)四边形AFCE 是菱形.理由如下:∵四边形ABCD 是矩形,∴AD BC ∥,AD BC =,∴EAO FCO ∠=∠,∵EF 是AC 的垂直平分线,∴AO CO =,90EOA FOC ∠=∠=︒,在AEO △和CFO △中, EAO FCO AO CO EOA FOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()AEO CFO ASA △△≌,∴AE CF =,∴四边形AFCE 是平行四边形,又∵AC EF ⊥,∴四边形AFCE 是菱形;(2)∵23AE BF =,∴设3AE m =,2BF m =,∵四边形AECF 是菱形,∴3AF AE m ==,EF =2 OE =2OF ,12OC AC =,AC ⊥EF , 在Rt ABF 中,∵222AB BF AF +=,∴222549m m +=,∴m =∴AF FC ==BF =∴BC =∵四边形ABCD 是矩形,∴90ABC ∠=︒,∴AC =∴12OC AC ==, 在Rt △OCF 中,由勾股定理得:∴OF =,∴2EF OF ==(3)设AE a =,BF b =,则AF CF EC a ===,BC a b =+,BF DE b ==.∵四边形ABCD 是矩形,∴AD CB ∥,∴DEC BCE ∠=∠,∵BE CE ⊥,∴90BEC D ∠=∠=︒,∴CDE BEC △△∽, ∴DE EC EC BC=, ∴b a a a b =+, ∴220b ab a +-=, ∴210b b a a⎛⎫+-= ⎪⎝⎭,∴b a =,∴BF AE =.本题考查了矩形的性质,菱形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,解方程等知识,熟练运用这些知识是解决问题的关键.根据问题的特点设元是本题的特点.3、 (1)见解析(2)AD的长为3.【解析】【分析】(1)证明Rt△ACD∽Rt△ABC,然后利用相似比可得到结论;(2)由AC2=AB•AD得到62=(AD+9)•AD,则可求出AD=3.(1)证明:∵CD⊥AB,∴∠ADC=90°,∵∠DAC=∠CAB,∴Rt△ACD∽Rt△ABC,∴AC:AB=AD:AC,∴AC2=AB•AD;(2)解:∵AC2=AB•AD,BD=9,AC=6,∴62=(AD+9)•AD,整理得AD2+9AD-36=0,解得AD=-12(舍去)或AD=3,∴AD的长为3.本题考查了相似三角形的判定与性质,掌握相似三角形的判定定理和性质定理是解题的关键.4、 (1)见解析(2)见解析【解析】【分析】(1)△OAB关于直线CD对称的△O1A1B1在CD的右侧,对应点到CD的距离相等,所此描点、连线即可得;(2)根据位似图形的性质求作即可.(1)如图所示. △O1A1B1即为所求(2)如图所示,△O2A2B2即为所求.【点睛】本题主要考查了利用旋转变换和轴对称变换进行作图,旋转作图时,决定图形位置的因素有旋转角度、旋转方向、旋转中心.画一个图形的轴对称图形时,先从一些特殊的对称点开始.5、感知:(1)AEDE ;应用:(2)①见解析;②3.6;拓展:(3)2或113【解析】【分析】(1)根据相似三角形的性质,即可求解;(2)①根据等腰三角形的性质得到∠B=∠C,根据三角形的外角性质得到∠BAP=∠CPD,即可求证;②根据相似三角形的性质计算,即可求解;(3)分PA=PD、AP=AD、DA=DP三种情况,根据等腰三角形的性质、相似三角形的性质,即可求解.【详解】感知:(1)∵△ABC∽△DAE,∴BC AC AE DE=,∴BC AE AC DE=,故答案为:AEDE;应用:(2)①∵∠APC=∠B+∠BAP,∠APC=∠APD+∠CPD,∠APD=∠B,∴∠BAP=∠CPD,∵AB=AC,∴∠B=∠C,∴△ABP∽△PCD;②BC=12,点P为BC中点,∴BP=PC=6,·∵△ABP∽△PCD,∴AB BP PC CD =,即1066CD=, 解得:CD =3.6;拓展:(3)当PA =PD 时,△ABP ≌△PCD ,∴PC =AB =10,∴BP =BC -PC =12-10=2;当AP =AD 时,∠ADP =∠APD ,∵∠APD =∠B =∠C ,∴∠ADP =∠C ,不合题意,∴AP ≠AD ;当DA =DP 时,∠DAP =∠APD =∠B ,∵∠C =∠C ,∴△BCA ∽△ACP , ∴BC AC AC CP =,即121010CP=, 解得:253CP =, ∴25111233BP BC CP =-=-=, 综上所述,当APD △为等腰三角形时, BP 的长为2或113 . 【点睛】本题考查的是三角形相似的判定定理和性质定理、全等三角形的判定定理和性质定理以及三角形的外角性质,掌握相似三角形的判定定理和性质定理是解题的关键.。
《相似图形》习题
1.下面图形是相似形的为( )
A.所有矩形B.所有正方形C.所有菱形D.所有平行四边形
2.下列四组图形中必相似的是( )
A.有一组邻边相等的两个平行四边形B.有一个角相等的两个等腰梯形
C.对角线互相垂直的两个矩形D.对角线互相垂直且相等的两个四边形.3.下列说法正确的是( )
A.对应边成比例的多边形都相似B.四个角对应相等的梯形都相似
C.有一个角相等的两个菱形相似D.有一个锐角相等的两个等腰三角形相似
4.四边形ABCD与四边形A
1B
1
C
1
D
1
相似,相似比为2:3,四边形A
1
B
1
C
1
D
1
与四边形A
2
B
2C
2
D
2
相似,相似比为5:4,则四边形ABC D与四边形A
2
B
2
C
2
D
2
相似且相似比为( )
A.5:6B.6:5C.5:6或6:5D.8:15
5.若五边形ABCDE∽五边形MNOPQ,且AB=12,MN=6,AE=7,则MQ=_______.
6.一个六边形六边长分别为3,4,5,6,7,8,另一个与它相似的六边形的最短边为6,则其周长为________.
7.如图,图(1)是一个正六边形ABCDEF,使线段BC、FE的长增加相等的数,得图(2),将图(1)中的点A、D分别向两边拉长相等的量,得图(3).那么图(1)与图(2)相似吗?图(1)与图(3)相似吗?图(2)与图(3)呢?为什么?
8.如图,等腰梯形ABCD与等腰梯形A′B′C′D′相似,∠A′=65°,A′B′=6cm,AB=8cm,AD=5 cm,试求梯形ABCD的各角的度数与A′D′,B′C′的长.。