希尔伯特23个数学问题
- 格式:doc
- 大小:109.50 KB
- 文档页数:3
1900年,德国数学家希尔伯特在巴黎召开的国际数学家大会上提出了一个震撼全球的问题清单,其中包括23个数学问题,这个清单被称为希尔伯特的23个问题。
这些问题使数学家们探索了整个20世纪,直到今天,这些问题仍然是数学家研究的热点问题,对数学的发展影响深远。
1.安德烈·韦伊定理:韦伊在1924年证明了,任何一个数都可以用四种平方数的和表示(顺序可以不同)。
这个定理改变了我们对于整数的理解,使我们看到了整数之间的微妙关系。
2.多项式方程组的求解:通过解决多项式方程组的求解问题,数学家得以研究出代数几何、拓扑学、数论等领域的问题。
3.梅尔斯定理:梅尔斯定理是数论中一条著名的定理,它对于我们研究素数产生了深远的影响。
梅尔斯定理的核心是:素数分布呈现出一定的规律性。
4.黎曼假设:黎曼假设是数学中著名的一条定理,它对数论的发展产生了重大影响。
它研究的是素数的分布规律,尽管至今没有得到证明,但数学家们一直在致力于研究。
5.黑格尔猜想:黑格尔猜想是一个普遍存在的问题,涉及到对于整数的理解和分解的问题。
它被认为是一条重要的代数学关于整数的猜想。
6.二十四问题中的第六个问题:从广义空间的角度出发,探究可能存在的最小的黎曼曲面。
7.有多少种平面上的几何形状可以拼成一个正方形:这个问题通过广义多面体的角度进行探究。
8.三次方程的求解:即$x^3+nx=m$,求解这个方程对于代数学中之后的发展产生了至关重要的作用。
9.每两个整数之间,是否都存在一个素数:这个问题涉及到数论中经典的问题,对素数的研究提供了更深层次的思考。
10.背包问题:这个问题涉及到了优化、操作科学、组合学等领域,是计算理论中著名的问题之一,它是物品对背包的选择问题,需要使得物品价值总和最大。
11.第五个问题:在数学中,研究高维空间的性质是一项极其困难的任务,希尔伯特提出了这个问题,想要探究高维空间的各个性质。
12.稳定性问题:在一些实际问题中,如果输入数据有一些错误,模型的结果是否会受到很大影响?这个问题问得正是这个。
希尔伯特的23个数学问题湖南 黄爱民希尔伯特(Hilbert D ,1862.1.23~1943.2.14)是二十世纪上半叶德国乃至全世界最伟大的数学家之一.1900年,希尔伯特在巴黎数学家大会上提出了23个最重要的问题供二十世纪的数学家们去研究,这就是著名的“希尔伯特23个问题”.这23个问题涉及现代数学大部分重要领域,推动了二十世纪数学的发展.下面介绍部分问题给同学们.1.连续统假设 1874年,康托猜测在可列集基数和实数基数之间没有别的基数,这就是著名的连续统假设.1938年,哥德尔证明了连续统假设和世界公认的策梅洛———弗伦克尔集合论公理系统的无矛盾性.1963年,美国数学家科亨证明连续统假设和策梅洛———弗伦克尔集合论公理是彼此独立的.因此,连续统假设不能在策梅洛———弗伦克尔公理体系内证明其正确性与否.希尔伯特第1问题在这个意义上已获解决.2.算术公理的相容性 欧几里得几何的相容性可归结为算术公理的相容性.希尔伯特曾提出用形式主义计划的证明论方法加以证明.1931年,哥德尔发表的不完备性定理否定了这种看法.1936年德国数学家根茨在使用超限归纳法的条件下证明了算术公理的相容性.1988年出版的《中国大百科全书》数学卷指出,数学相容性问题尚未解决.3.两个等底等高四面体的体积相等问题 问题的意思是,存在两个等边等高的四面体,它们不可分解为有限个小四面体,使这两组四面体彼此全等.M .W .德恩1900年即对此问题给出了肯定解答.4.两点间以直线为距离最短线问题 此问题提得过于一般.满足此性质的几何学很多,因而需增加某些限制条件.1973年,前苏联数学家波格列洛夫宣布,在对称距离情况下,问题获得解决.《中国大百科全书》说,在希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决.5.物理学的公理化 希尔伯特建议用数学的公理化方法推演出全部物理,首先是概率和力学.1933年,前苏联数学家柯尔莫哥洛夫实现了将概率论公理化.后来在量子力学、量子场论方面取得了很大成功.但是物理学是否能全盘公理化,很多人表示怀疑.6.不可能用只有两个变数的函数解一般的七次方程 七次方程的根依赖于3个参数a b c ,,,即()x x a b c ,,.这个函数能否用二元函数表示出来?前苏联数学家阿诺尔德解决了连续函数的情形(1957),维士斯金又把它推广到了连续可微函数的情形(1964).但如果要求是解析函数,则问题尚未解决.7.舒伯特计数演算的严格基础 一个典型问题是:在三维空间中有四条直线,问有几条直线能和这四条直线都相交?舒伯特给出了一个直观解法.希尔伯特要求将问题一般化,并给以严格基础.现在已有了一些可计算的方法,但严格的基础迄今仍未确立.8.半正定形式的平方和表示 一个实系数n 元多项式对一切数组12()n x x x L ,,,都恒大于或等于0,是否都能写成平方和的形式?1927年阿廷证明这是对的.9.用全等多面体构造空间 由德国数学家比勃马赫(1910)、荚因哈特(1928)作出部分解决.。
1900年23个数学问题
1900年,法国数学家大卫·希尔伯特提出了23个重要的数学问题,
这些问题被称为“希尔伯特的23个问题”。
这些问题的解决对于数学发
展具有重要的意义,并且深刻地影响了20世纪数学研究的方向。
这些问题涵盖了多个数学领域,包括数论、代数、几何、拓扑学等。
其中一些问题被迅速解决,而另一些问题则成为了当今数学界的研究
热点。
希尔伯特的23个问题包括了一些著名的开放问题,比如黎曼猜想。
这个问题涉及黎曼函数,是解析数论中的重要问题之一。
希尔伯特问
题的第六个问题涉及到黎曼猜想,并且提出了一种可能的方法来解决
这个问题。
希尔伯特的问题还涉及到几何学中的问题,比如问题16和问题18。
问题16探讨了在给定的条件下是否存在与已知曲面切线相同的曲面,
而问题18则涉及到拓扑学中的一些基本问题。
希尔伯特问题还包括了一些代数学的问题,例如代数数域的公理和
多项式环的结构。
这些问题的解决对于代数学的发展和应用具有重要
的意义。
在过去的100多年中,许多希尔伯特问题已经被解决,但仍有一些
问题尚未解决。
这些问题的解决需要更深入的数学研究和创新。
解决
希尔伯特问题的过程促进了数学领域的发展,带来了新的数学理论和
应用。
希尔伯特的23个问题对于数学界起到了重要的推动作用,使得许
多数学家倾注心血进行研究。
希望未来的数学家能够在解决这些问题
的过程中取得突破,推动数学的发展,并为人类的科学进步作出贡献。
希尔伯特23个数学问题希尔伯特的23个问题分为四大块:第1到第6问题是数学基础问题;第7到第12问题是数论问题;第13到第18问题是属于代数和几何问题;第19到第23问题属于数学分析问题.经过一个多世纪,希尔伯特提出的23个问题中,接近一半已经解决或基本解决.有些问题虽未解决,但也取得了重要的进展.问题1康托尔的连续统基数问题(公理化集合论)1874年,康托尔猜测在可数集基数与实数集基数之间没有别的基数,即著名的连续统假设.1938年,奥地利数理逻辑学家哥德尔证明了连续统假设与策梅洛-弗伦克尔(Zermelo-Fraenkel,ZF)集合论公理系统的无矛盾性.1963年,美国数学家科恩证明了连续统假设与ZF集合论公理系统彼此独立.因而连续统假设不能用ZF集合论公理系统加以证明,即连续统假设的真伪不可能在ZF集合论公理系统内判定.在这个意义上,问题已经解决了.问题2算术公理的相容性(数学基础)欧几里得几何的相容性可归结为算术公理的相容性.希尔伯特曾提出用形式主义计划的证明方法加以证明,后来发展为系统的希尔伯特计划(“元数学”或“证明论”),但1931年,哥德尔发表“不完备性定理”做出否定.1936年,根茨(G.Gentaen,1909—1945)使用超限归纳法证明了算术公理系统的相容性,但数学的相容性问题至今未解决.问题3只根据合同公理证明等底等高的四面体有相等之体积是不可能的(几何基础)问题的含义是:存在两个等底等高的四面体,它们不可能分解为有限个小四面体,使这两组四面体彼此全等,这一问题很快于1900年由希尔伯特的学生德恩(M.Dehn,1878—1952)给出了肯定的解答.这是希尔伯特问题中最早获得解决的一个.问题4直线作为两点间最短距离问题(几何基础)这一问题提得过于一般,满足这一性质的几何例子很多,只需要加以某些限制条件.在构造特殊度量几何方面已有很大进展,但未完全解决.1973年,苏联数学家波格列洛夫(Pogleov)宣布,在对称距离情况下,问题获得解决.问题5不要定义群的函数的可微性假设的李群概念(拓扑群论) 这一问题简称连续群的解析性,即是否每一个局部欧式群都一定是李群.经过漫长的努力,这个问题于1952年,由美国格里森(Gleason)、蒙哥马利(Montqomery)和齐宾(Zipping)共同解决.1953年,日本的山迈彦得到完全肯定的结果.问题6物理公理的数学处理(数学物理)希尔伯特建议用数学的公理化方法推演出全部物理学.1933年,苏联数学家柯尔莫哥洛夫(A.Kolmogorov,1903—1987)将概率论公理化.后来在量子力学、量子场论和热力学等领域,公理化方法获得很大成功,但物理学各个分支能否全盘公理化,很多人对此表示怀疑.公理化的物理意味着什么,仍是需要探讨的问题.问题7某些数的无理性与超越性(超越数论)要求证明:若是代数数,是无理数的代数数,则一定是超越数或至少是无理数.苏联数学家盖尔丰德(A.O.Gelfond)于1929年、德国数学家施奈德(T.Schneieder)及西格尔(C.L.Siegel,1896—1981)于1934年各自独立地解决了这问题的后半部分.1966年贝克等大大推广了此结果.但是,超越数理论还远远未完成.要确定所给的数是否超越数,还没有统一的方法,如欧拉常数的无理性至今未获得证明.问题8素数分布问题(数论)希尔伯特在此问题中提到黎曼猜想、哥德巴赫猜想以及孪生素数问题.一般情形的黎曼猜想至今未解决.哥德巴赫猜想和孪生素数问题也未最终解决,这两个问题的最佳结果均属于中国的数学家陈景润.问题9任意数域中最一般的互反律之证明(类域论)该问题于1921年由日本学者高木贞治(1875—1860)、1927年由德国学者阿廷(E.Artin)各自给以基本解决.类域理论至今仍在发展之中.问题10丢番图方程可解性的判别(不定分析)希尔伯特提出问题:能否通过有限步骤来判定不定方程是否存在有理整数解.1970年,由苏联数学家马蒂雅塞维奇证明希尔伯特所期望的一般算法是不存在的.尽管得出了否定的结果,却产生了一系列很有价值的副产品,其中不少和计算机科学有密切联系.问题11系数为任意代数数的二次型(二次型理论)德国数学家哈塞(H.Hasse,1898—1979)于1929年和西格尔于1951年在这个问题上获得了重要的结果.20世纪60年代,法国数学家魏依取得了新的重大进展,但未获最终解决.问题12阿贝尔(Abel)域上的克罗内克(L.Kroneker,1823—1891)定理推广到任意代数有理域(复乘法理论)尚未解决.问题13不可能用只有两个变数的函数解一般的七次方程(方程论与实函数论)连续函数情形于1957年由苏联数学家阿诺尔德(V.Arnold,1937—2010)否定解决.1964年,苏联数学家维图斯金(Vituskin)推广到连续可微情形.但若要求是解析函数,则问题仍未解决.问题14证明某类完全函数系的有限性(代数不变式理论)1958年,日本数学家永田雅宜举出反例给出了否定解决.问题15舒伯特(Schubert)记数演算的严格基础(代数几何学) 由于许多数学家的努力,舒伯特演算的基础的纯代数处理已有可能,但舒伯特演算的合理性仍待解决.至于代数几何的基础,已由荷兰数学家范·德·瓦尔登于1940年及法国数学家魏依于1950年各自独立建立.问题16代数曲线与曲面的拓扑(曲线与曲面的拓扑学、常微分方程的定性理论)这个问题分为两部分:前半部分涉及代数曲线含有闭的分枝曲线的最大数目,后半部分要求讨论极限环的最大个数和相对位置.关于问题的前半部分,近年来不断有重要结果出现.关于问题的后半部分,1978年,中国的史松龄在秦元勋、华罗庚的指导下,与王明淑分别举出了至少有4个极限环的具体例子.1983年,中国的秦元勋进一步证明了二次系至多有4个极限环,从而最终解决了二次微分方程的解的结构问题,并且为希尔伯特第16问题的研究提供了新的途径.问题17半正定形式的平方表示式(实域论)一个实数n元多项式对任意数组都恒大于零或等于零,是否能写成平方和的形式?此问题于1927年,由阿廷给予肯定的解决.问题18用全等多面体构造空间(结晶体群理论)该问题由三部分组成.第一部分欧式空间仅有有限个不同类的带基本区域的运动群.第二部分包括是否存在不是运动群的基本区域但经适当毗连即可充满全空间的多面体?第一部分由德国数学家贝尔巴赫(Bieberbach)于1910年做出了肯定的回答.第二部分由德国数学家莱因哈特(Reinhart)于1928年、黑施于1935年做出了部分解决.第三部分至今未能解决.问题19正则变分问题的解是否一定解析(椭圆型偏微分方程理论)1929年,德国数学家伯恩斯坦(L.Bernstein,1918—1990)证明了一个变元的、解析的非线性椭圆方程,其解必定是解析的.这个结果后来又被伯恩斯坦和苏联数学家彼德罗夫斯基等推广到多变元和椭圆组的情形.在此意义下,问题已获解决.问题20一般边值问题(椭圆型偏微分方程理论)偏微分方程边值问题的研究正处于蓬勃发展的阶段,已成为一个很大的数学分支,目前还在继续发展,进展十分迅速.问题21具有给定单值群的线性偏微分方程的存在性证明(线性常微分方程大范围理论)此问题属于线性常微分方程的大范围理论.希尔伯特于1905年、勒尔(H.Rohrl)于1957年分别得出重要结果.1970年,法国数学家德利涅(Deligne)做出了突出的贡献.问题22用自守函数将解析函数单值比(黎曼曲面体)此问题涉及深奥的黎曼曲面理论,一个变数的情形已由德国数学家克贝(P.Koebe)于1907年解决,但一般情形尚未解决.问题23变分法的进一步发展(变分法)这是一个不明确的数学问题,只是谈了一些对变分法的一般看法.希尔伯特本人和许多数学家对变分法的发展做出了重要的贡献.20世纪变分法已有了很大的进展.希尔伯特的23个数学问题的影响及意义希尔伯特的23个数学问题绝大部分业已存在,并不是希尔伯特首先提出来的,但他站在更高的层面,用更尖锐、更简单的方式重新提出了这些问题,并指出了其中许多问题的解决方向.在世纪之交提出的这23个问题,涉及现代数学的许多领域.一个世纪以来,这些问题激发着数学家们浓厚的研究兴趣,对20世纪数学的发展起着巨大的推动作用.许多世界一流的数学家都深深为这23个问题着迷,并力图解决这些问题.希尔伯特所提出的问题清晰、易懂,其中一些有趣得令许多外行都跃跃欲试.解决其中任意一个,或者在任意一个问题上有重大突破,就自然地被公认为是世界一流水平的数学家.我国的数学家陈景润因在解决希尔伯特第8个问题(即素数问题,包括黎曼猜想、哥德巴赫猜想等)上有重大贡献而为世人所瞩目,由此也可见希尔伯特问题的特殊地位.经过整整一个世纪,希尔伯特的23个数学问题中,将近一半已经解决或基本解决.有些问题虽未解决,但也取得了重要进展.希尔伯特提出的问题是极其深奥的,不少问题一般人连题目也看不懂.正因为困难,才吸引有志之士去做巨大的努力.但它又不是不可接近的,因而提供了使人们终有收获的科学猎场.一百多年来,人们始终注视着希尔伯特问题的研究,绝不是偶然的.希尔伯特问题的研究与解决大大推动了许多现代数学分支的发展,包括数理逻辑、几何基础、李群、数学物理、概率论、数论、函数论、代数几何、常微分方程、偏微分方程、黎曼曲面论和变分法等.第2问题和第10问题的研究,还促进了现代计算机理论的成长.当然,预测不可能全部符合后来的发展,20世纪数学发展的广度和深度都远远超出20世纪初年的预料,像代数拓扑、抽象代数、泛函分析和多复变量函数等许多理论学科都未列入这23个问题,更不要说与应用有关的应用数学以及随计算机出现发展起来的计算数学和计算机科学了.。
未证明的23个数学猜想1.希尔伯特猜想:每个正整数都可以写成2的若干次方之和。
2.Goldbach猜想:任何一个大于2的偶数都可以表示为两个素数之和。
3.调和猜想:每个正整数都可以表示为至少两个正有理数的和。
4.Underwood猜想:任何整数的“素因子构造”(由一组乘积组成的正整数)都是独一无二的。
5.加贝尔猜想:每个大于3的质数都可以写成一个素数与连续两个平方数之和。
6.切比雪夫猜想:任何一个不能被其他数整除的正整数都可以写成多个素数的乘积。
7.黎曼猜想:任何一个大于2的正整数,都可以表示成一组连续奇数的和。
8.汉密尔顿猜想:四面体数和二面体数总是互质的。
9.尼拔猜想:所有质数都可以表示成一个整数的四次幂加一。
10.拉格朗日猜想:任何两个整数的平方和都是另一个整数的平方。
11.格贝尔猜想:总计的素数的和正好是阶乘的一半。
12.若昂·克拉伦猜想:任意正数的全部正因子总和等于它的这个正数的两倍。
13.高斯猜想:每个正整数的平方都可以表示成一个正整数的和。
14.古典柯西猜想:每个正整数可以表示成一组和相等的两个立方数之和。
15.利奥波德·波利亚猜想:任何一个偶数都可以表示成两个奇数的和。
16.梅尔·史密斯猜想:任何一个大于2的偶数都可以表示为至少三个素数之和。
17.巴比伦大定理:任何一个大于2的整数都可以表示为六个质数的乘积。
18.阿贝尔猜想:任何一个大于2的正整数都可以表示为三个素数的和。
19.皮亚诺猜想:素数列表是无限的。
20.哥德巴赫猜想:每个大于2的偶数,都可以分解为两个质数的和。
21.约翰逊猜想:每个奇完全数都可以表示成一系列质数的乘积。
22.完美数猜想:任何一个大于2的整数都可以表示为一个完美数乘以一个素数。
23.保罗·圣凯猜想:任何一个大于7的偶数都可以表示为一组连续质数的和。
希尔伯特的二十三个问题1900年,德国数学家D.希尔伯特在巴黎第二届国际数学家大会上作了题为《数学问题》的著名讲演,其中对各类数学问题的意义、源泉及研究方法发表了精辟的见解,而整个讲演的核心部分则是希尔伯特根据19世纪数学研究的成果及发展趋势而提出的23个问题。
①连续统假设1963年,P.J.科恩证明了:连续统假设的真伪不可能在策梅洛-弗伦克尔公理系统内判明。
②算术公理的相容性1931年,K.哥德尔的“不完备定理”指出了用希尔伯特“元数学”证明算术公理相容性之不可能。
数学相容性问题尚未解决。
③两等高等底的四面体体积之相等M.W.德恩1900年即对此问题给出了肯定解答。
④直线作为两点间最短距离问题希尔伯特之后,在构造及探讨各种特殊度量几何方面有许多进展,但问题并未解决。
⑤不要定义群的函数的可微性假设的李群概念A.M.格利森、D.蒙哥马利和L.齐平等于1952年对此问题作出了最后的肯定解答。
⑥物理公理的数学处理公理化物理学的一般意义仍需探讨。
至于希尔伯特问题中提到的概率论公理化,已由А.Н.柯尔莫哥洛夫(1933)等人建立。
⑦某些数的无理性及超越性1934年,A.O.盖尔丰德和T.施奈德各自独立地解决了问题的后半部分,即对于任意代数数□≠0,1,和任意代数无理数□证明了□□的超越性。
⑧素数问题包括黎曼猜想、哥德巴赫猜想及孪生素数问题等。
一般情况下的黎曼猜想仍待解决。
哥德巴赫猜想最佳结果属于陈景润(1966),但离最终解决尚有距离。
⑨任意数域中最一般的互反律之证明已由高木□治(1921)和E.阿廷(1927)解决。
⑩丢番图方程可解性的判别1970年,□.В.马季亚谢维奇证明了希尔伯特所期望的一般算法不存在。
11系数为任意代数数的二次型H.哈塞(1929)和C.L.西格尔(1936,1951)在这问题上获得重要结果。
12阿贝尔域上的克罗内克定理推广到任意代数有理域尚未解决。
13不可能用只有两个变数的函数解一般的七次方程连续函数情形于1957年由В.И.阿诺尔德解决。
希尔伯特23个数学难题1. 哥德巴赫猜想:任意大于2的偶数都可以表示成两个质数之和。
2. 佩尔方程:找出满足 x² - ny² = 1 的自然数解,其中 n 是一个给定的正整数。
3. 费尔马小定理:如果 p 是一个质数,那么对于任意整数 a,a^p - a 都是 p 的倍数。
4. 黎曼猜想:所有非平凡的自然数零点都位于复平面上的某一直线上,即 "黎曼 Zeta 函数的非平凡零点的实部等于 1/2"。
5. 庞加莱猜想:任何大于1的整数都可以表示成至多四个自然数的平方和。
6. 费马大定理:对于任意大于2的整数 n,方程 x^n + y^n = z^n 没有正整数解。
7. 罗宾逊算术:是否存在一个算术表达式,可表示为解 x^n + y^n = z^n,其中 n、x、y、z 都是多项式函数?8. 连续平面切片问题:一个单位区间上的无限个单位半径圆,是否一定能够被切割为有限个片,从而使得每个片的周长之和无上限?9. 康托对角线证明了无穷的数量比可数的数量更多,这一论断是否成立?10. 佛馬定理:给定一个序列 a0, a1, a2, ...,是否存在一个多项式 P(x) ,使得对于所有 n,P(n)和 a(n) 在整数环上取得相等的值?11. 黑洞信息悖论:如果一个物体掉入黑洞的话,它的信息会丢失吗?12. 度量空间完备性:对于一个给定的度量空间,是否所有的柯西序列都收敛于该空间的内点?13. 矩阵剖析:对于一个给定的方块矩阵,是否可以逐步剖析为若干个小方块,而每个小方块都可以分解为若干个更小的方块?14. 程序终止:是否存在一个通用的算法,可以判断任意给定程序是否会在有限的步骤内终止?15. 旅行推销员问题:对于给定的城市和距离,是否存在一个最短的闭合路径,使得旅行推销员途经每个城市一次,然后返回起点?16. 负二次定理:是否存在一个实数 a,满足 a * a = -1 ?17. 确定性因素分解:是否存在一个确定性的多项式时间算法,用于将大整数因式分解?18. 最短超球面问题:给定一组点,是否可以找到一个最小的超球面,将这些点全部覆盖?19. 生物学中的形态发生:如何解释、理解和预测生物体的形态发生过程?20. 难以判定的问题:是否存在一个问题,无法通过任何算法,以有限步骤确定其答案的正确性?21. 最大连续子序列和问题:给定一个整数序列,找出具有最大和的连续子序列。
希尔伯特数学23个世界难题1900年德国数学家希尔伯特在巴黎第二届国际数学家代表会上提出23个重要的数学问题,称为希尔伯特数学问题﹝Hilbert'sMathematicalProblems﹞。
内容涉及现代数学大部份重要领域,目的是为新世纪的数学开展提供目标和预测成果,结果大大推动了20世纪数学的开展。
该23个问题的简介如下:1.连续统假设。
2.算术公理体系的兼容性。
3.只根据合同公理证明底面积相等、高相等的两个四面体有相等的体积是不可能的。
即不能将这两个等体积的四面体剖分为假设干相同的小多面体。
4.直线作为两点间最短距离的几何结构的研究。
5.拓扑群成为李群的条件。
6.物理学各分支的公理化。
7.某些数的无理性与超越性。
8.素数问题。
包括黎曼猜想、哥德巴赫猜想等问题。
9.一般互反律的证明。
10.丢番图方程可解性的判别。
11.一般代数数域的二次型论。
12.类域的构成问题。
具体为阿贝尔域上的克罗内克定理推广到作意代数有理域。
13.不可能用只有两个变量的函数解一般的七次方程。
14.证明某类完全函数系的有限性。
15.舒伯特计数演算的严格根底。
16.代数曲线与曲面的拓扑研究。
17.正定形式的平方表示式。
18.由全等多面体构造空间。
19.正那么变分问题的解是否一定解析。
20.一般边值问题。
21.具有给定单值群的线性微分方程的存在性。
22.用自守函数将解析关系单值化。
23.开展变分学的方法。
Hilbert 23个数学问题
在1900年巴黎国际数学家代表大会上,希尔伯特发表了题为《数学问题》的著名讲演。
他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个最重要的数学问题。
这23个问题通称希尔伯特问题,后来成为许多数学家力图攻克的难关,对现代数学的研究和发展产生了深刻的影响,并起了积极的推动作用,希尔伯特问题中有些现已得到圆满解决,有些至今仍未解决。
他在讲演中所阐发的想信每个数学问题都可以解决的信念,对于数学工作者是一种巨大的鼓舞。
希尔伯特的23个问题分属四大块:第1到第6问题是数学基础问题;第7到第12问题是数论问题;第13到第18问题属于代数和几何问题;第19到第23问题属于数学分析。
[01]康托的连续统基数问题。
1874年,康托猜测在可数集基数和实数集基数之间没有别的基数,即著名的连续统假设。
1938年,侨居美国的奥地利数理逻辑学家哥德尔证明连续统假设与ZF集合论公理系统的无矛盾性。
1963年,美国数学家科恩(P·Choen)证明连续统假设与ZF公理彼此独立。
因而,连续统假设不能用ZF公理加以证明。
在这个意义下,问题已获解决。
[02]算术公理系统的无矛盾性。
欧氏几何的无矛盾性可以归结为算术公理的无矛盾性。
希尔伯特曾提出用形式主义计划的证明论方法加以证明,哥德尔1931年发表不完备性定理作出否定。
根茨(G·Gentaen,1909-1945)1936年使用超限归纳法证明了算术公理系统的无矛盾性。
[03]只根据合同公理证明等底等高的两个四面体有相等之体积是不可能的。
问题的意思是:存在两个登高等底的四面体,它们不可能分解为有限个小四面体,使这两组四面体彼此全等德恩(M·Dehn)1900年已解决。
[04]两点间以直线为距离最短线问题。
此问题提的一般。
满足此性质的几何很多,因而需要加以某些限制条件。
1973年,苏联数学家波格列洛夫(Pogleov)宣布,在对称距离情况下,问题获解决。
[05]拓扑学成为李群的条件(拓扑群)。
这一个问题简称连续群的解析性,即是否每一个局部欧氏群都一定是李群。
1952年,由格里森(Gleason)、蒙哥马利(Montgomery)、齐宾(Zippin)共同解决。
1953年,日本的山迈英彦已得到完全肯定的结果。
[06]对数学起重要作用的物理学的公理化。
1933年,苏联数学家柯尔莫哥洛夫将概率论公理化。
后来,在量子力学、量子场论方面取得成功。
但对物理学各个分支能否全盘公理化,很多人有怀疑。
[07]某些数的超越性的证明。
需证:如果α是代数数,β是无理数的代数数,那么βα一定是超越数或至少
是无理数(例如,eπ)。
苏联的盖尔芳德(Gelfond)1929年、德国的施奈
德(Schneider)及西格尔(Siegel)1935年分别独立地证明了其正确性。
但超越数理论还远未完成。
目前,确定所给的数是否超越数,尚无统一的方法。
[08]素数分布问题,尤其对黎曼猜想、哥德巴赫猜想和孪生素共问题。
素数是一个很古老的研究领域。
希尔伯特在此提到黎曼(Riemann )猜想、哥德巴赫(Goldbach )猜想以及孪生素数问题。
黎曼猜想至今未解决。
哥德巴赫猜想和孪生素数问题目前也未最终解决,其最佳结果均属中国数学家陈景润。
[09]一般互反律在任意数域中的证明。
1921年由日本的高木贞治,1927年由德国的阿廷(E·Artin )各自给以基本解决。
而类域理论至今还在发展之中。
[10]能否通过有限步骤来判定不定方程是否存在有理整数解?
求出一个整数系数方程的整数根,称为丢番图(约210-290,古希腊数学家)方程可解。
1950年前后,美国数学家戴维斯(Davis )、普特南(Putnan )、罗宾逊(Robinson )等取得关键性突破。
1970年,巴克尔(Baker )、费罗斯(Philos )对含两个未知数的方程取得肯定结论。
1970年。
苏联数学家马蒂塞维奇最终证明:在一般情况答案是否定的。
尽管得出了否定的结果,却产生了一系列很有价值的副产品,其中不少和计算机科学有密切联系。
[11]一般代数数域内的二次型论。
德国数学家哈塞(Hasse )和西格尔(Siegel )在20年代获重要结果。
60年代,法国数学家魏依(A·Weil )取得了新进展。
[12]类域的构成问题。
即将阿贝尔域上的克罗内克定理推广到任意的代数有理域上去。
此问题仅有一些零星结果,离彻底解决还很远。
[13]一般七次代数方程以二变量连续函数之组合求解的不可能性。
七次方程73210x ax bx cx ++++=的根依赖于方程中的3个参数a 、b 、c ;x =(,,)x a b c 。
这一函数能否用两变量函数表示出来?此问题已接近解决。
1957年,苏联数学家阿诺尔德(Arnold )证明了任一在[0,1]上连续的实函数123(,,)f x x x 可写成形式9
1231((,),)i i i h x x x ξ=∑,这里i h 和i ξ为连续实函数。
柯尔莫哥洛夫证明
123(,,)f x x x 可写成形式7
1122331(()()())i i i i i h x x x ξξξ=++∑,这里i h 和i ξ为连续实函数,
ij ξ的选取可与f 完全无关。
1964年,维土斯金(Vituskin )推广到连续可微情形,对解析函数情形则未解决。
[14]某些完备函数系的有限的证明。
即域K 上的以12,n x x x 为自变量的多项式(1,,)i f i m = ,
R 为1[,,]m K x x 上的有理函数1(,,)m F x x 构成的环,并且11(,,)[,,]m m F f f K x x ∈ 试问R 是否可由有限个元素1,,N F F 的多项式生成?这个与代数不变量问题有关的问题,日本数学家永田雅宜于1959年用漂亮的反例给出了否定的解决。
[15]建立代数几何学的基础。
荷兰数学家范德瓦尔登1938年至1940年,魏依1950年已解决。
注:舒伯特(Schubert )计数演算的严格基础。
一个典型的问题是:在三维空间中有四条直线,问有几条直线能和这四条直线都相交?舒伯特给出了一个直观的解法。
希尔伯特要求将问题一般化,并给以严格基础。
现在已有了一些可计算的方法,它和代数几何学有密切的关系。
但严格的基础至今仍未建立。
[16]代数曲线和曲面的拓扑研究。
此问题前半部涉及代数曲线含有闭的分枝曲线的最大数目。
后半部要求讨论备//dx dy Y X =的极限环的最多个数()N n 和相对位置,其中X 、Y 是x 、y 的n 次多项式。
对2n =(即二次系统)的情况,1934年福罗献尔得到(2)1N ≥;1952年鲍廷得到(2)3N ≥;1955年苏联的波德洛夫斯基宣布(2)3N ≤,这个曾震动一时的结果,由于其中的若干引理被否定而成疑问。
关于相对位置,中国数学家董金柱、叶彦谦1957年证明了2E 不超过两串。
1957年,中国数学家秦元勋和蒲富金具体给出了2n =的方程具有至少3个成串极限环的实例。
1978年,中国的史松龄在秦元勋、华罗庚的指导下,与王明淑分别举出至少有4个极限环的具体例子。
1983年,秦元勋进一步证明了二次系统最多有4个极限环,并且是(1,3)结构,从而最终地解决了二次微分方程的解的结构问题,并为研究希尔伯特第[16]问题提供了新的途径。
[17]半正定形式的平方和表示。
实系数有理函数1(,)n f x x 对任意数组1(,)n x x 都恒大于或等于0,确定f 是否都能写成有理函数的平方和?1927年阿廷已肯定地解决。
[18]用全等多面体构造空间。
德国数学家比贝尔巴赫(Bieberbach )1910年,莱因哈特(Reinhart )1928年作出部分解决。
[19]正则变分问题的解是否总是解析函数?
德国数学家伯恩斯坦(Bernrtein ,1929)和苏联数学家彼德罗夫斯基(1939)已解决。
[20]研究一般边值问题。
此问题进展迅速,己成为一个很大的数学分支。
日前还在继读发展。
[21]具给定奇点和单值群的Fuchs 类的线性微分方程解的存在性证明。
此问题属线性常微分方程的大范围理论。
希尔伯特本人于1905年、勒尔(H·Rohrl )于1957年分别得出重要结果。
1970年法国数学家德利涅(Deligne )作出了出色贡献。
[22]用自守函数将解析函数单值化。
此问题涉及艰深的黎曼曲面理论,1907年克伯(P·Koebe )对一个变量情形已解决而使问题的研究获重要突破。
其它方面尚未解决。
[23]发展变分学方法的研究。
这不是一个明确的数学问题。
20世纪变分法有了很大发展。