2012年上海普陀区中考数学质量抽查试卷(二模)
- 格式:doc
- 大小:311.72 KB
- 文档页数:5
普陀区2011学年度第一学期九年级数学期终考试调研卷2012.1.5(时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、单项选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上] 1.在锐角三角形ABC 中,如果各边长都扩大2倍,那么B ∠的余弦值( ▲ ) . (A )扩大2倍; (B )缩小2倍; (C )大小不变; (D )不能确定. 2.下列各组图形中,一定相似的是( ▲ ) .(A )两个矩形; (B )两个菱形; (C )两个正方形; (D )两个等腰梯形. 3.如果0k <(k 为常数),那么二次函数222y kx x k =-+的图像大致是( ▲ ).4.下列说法中正确的是( ▲ ). (A )三个点确定一个圆;(B )当半径大于点到圆心的距离时,点在圆外; (C )圆心角相等,它们所对的弧相等;(D )边长为RR . 5.如图1,在△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,如果DE ∥BC , DF ∥AC ,那么下列比例式一定成立的是( ▲ ). (A )AE DE ECBC=;(B )AE CF ACBC=; (C )AD BF ABBC=; (D )DE DF BCAC=.6.如图2,由5个同样大小的正方形合成一个矩形,那么ABD ADB ∠+∠ 的度数是( ▲ ).(A )90; (B )60;E D CBA图1E图3(C )45; (D )不能确定.二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:tan 30cos60⨯= ▲ . 8.已知抛物线的表达式是245y x =-,那么它的顶点坐标是 ▲ . 9.在平面直角坐标系中,如果把抛物线()2225y x =-+向右平移3个单位,那么所得抛 物线的表达式是 ▲ .10.已知线段4a =,9c =,那么a 和c 的比例中项b = ▲ . 11.如果两个相似三角形的相似比为1∶4,那么它们的周长比为 ▲ .12.小王在楼下点A 处看到楼上点B 处的小明的仰角是35度,那么点B 处的小明看点A处的小王的俯角等于 ▲ 度.13.如图3,平行四边形ABCD 中,点E 在边BC 上,AE 交BD 于点F ,如果23BF FD =,那么BE BC = ▲ . 14.如图4,DE ∥BC ,31=BA DA ,请用向量ED 表示向量BC , 那么BC = ▲ .15.G 为△ABC 的重心,如果EF 过点G 且EF ∥BC ,分别交AB 、AC于点E 、F ,那么EF BC的值为__ ▲____.16.已知两圆相切,半径分别为2厘米和5厘米,那么两圆的圆心距等于 ▲ 厘米.17.如图5是一张直角三角形的纸片,直角边AC =6cm , sin B =53,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,那么DE 的 长等于 ▲ .18.在平面直角坐标系中,△ABC 的顶点分别是 (10)A -,,(30)B ,,(02)C ,,已知动直线(02)y m m =<<与线段AC 、BC 分别交于D 、E 两点,而在x 轴上存在点P ,使得DEP △为等腰直角三角形,那么m 的值等于 ▲ .三、解答题:(本大题共7题,满分78分)19.(本题满分10分)如图6,已知两个不平行的向量→a 、→b .→a →BA图4ABCDE图5先化简,再求作:2(→a -12→b )-12(2→a +4→b ).(不要求写作法,但要指出图中表示结论的向量)20.(本题满分10分)如图7,点A B ,是⊙O 上两点,10AB =,点P 是⊙O 上的动点(P 与A B ,不重合), 联结AP PB ,,过点O 分别作OE AP ⊥,OF PB ⊥,点E 、F 分别是垂足. (1)求线段EF 的长;(2)点O 到AB 的距离为2,求⊙O 的半径.21.(本题满分10分)已知二次函数()250y ax bx a =++≠中,函数y 与自变量x 的部分对应值如下表:(1)求这个二次函数的解析式及图像的对称轴;(2)设m ≥2,且1()A m y ,,2(1)B m y +,两点都在该函数的图像上,试比较1y 与2y的大小:1y2y (填“大于”“等于”或“小于”). 22.(本题满分10分)如图8所示,A 、B 两地隔河相望,原来从A 地到B 地需要经过桥DC ,沿折线A →D →C →B 到达B 地,现在直线AB (与桥DC 平行)上建了新桥EF ,可沿直线AB 从A 地直达 B 地.已知BC =1000m ,∠A =45°,∠B =37°.问:现在从A 地到达B 地可比原来少走图7多少路程?(结果精确到1m .参考数据: 1.412≈,sin37°≈0.60,cos37°≈0.80)23.(本题满分12分)如图9,在ABC △中,D 是AB 上一点,E 是AC 上一点,ACD B ∠=∠,2AD AE AC =.求证:(1)DE ∥BC ;(2)2ADE DEC ABC BCD S S S S ⎛⎫= ⎪⎝⎭△△△△.24. (本题满分12分)如图10,梯形OABC , BC ∥OA ,边OA 在x 轴正半轴上,边OC 在y 轴正半轴上,点B (3,4),AB =5.(1)求BAO ∠的正切值;EDCBA图9(2)如果二次函数249y x bx c =++的图像经过O 、A 两点,求这个二次函数的解析 式并求图像顶点M 的坐标;(3)点Q 在x 轴上,以点Q 、点O 及(2)中的点M 为顶点的三角形与△ABO 相似, 求点Q 的坐标.25、(本题满分14分)把两块边长为4的等边三角板ABC 和DEF 先如图11-1放置,使三角板DEF 的顶点D 与三角板ABC 的AC 边的中点重合,DF 经过点B ,射线DE 与射线AB 相交于点M , 接着把三角形板ABC 固定不动,将三角形板DEF 由图11-1所示的位置绕点D 按逆时 针方向旋转,设旋转角为α.其中090α<<,射线DF 与线段BC 相交于点N (如图11-2所示).(1)当060α<<时,求AM ·CN 的值.(2)当060α<<时,设AM = x ,两块三角形板重叠部分的面积为y ,求y 与x 的函 数解析式并求定义域.(3)当BM = 2时,求两块三角形板重叠部分的面积.MFEDCBA图11-1NBCDM EFA图11-2ABC备用图—11—。
数学试卷(时间:100分钟,满分:150分)考生注意:所有答案务必按照规定在答题纸上完成,写在试卷上不给分一、单项选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.下列各数中无理数共有………………………………………………………………( ).①–0.21211211121111,②3π,③227(A) 1个; (B) 2个; (C) 3个; (D) 4个.2. 如果a >1>b ,那么下列不等式正确的个数是…………………………………………( ).① a –b>0,② a -1>1–b ,③ a -1>b –1,④1ab>. (A) 1; (B) 2; (C) 3; (D) 4. 3.在下列方程中,有实数根的是…………………………………………………………( ).(A) 2310x x ++=; (B) 10=;(C) 2230x x ++=; (D)111x x x =--. 4.下列语句正确的是……………………………………………………………………( ).(A)“上海冬天最低气温低于–5 ºC ”,这是必然事件; (B) “在去掉大小王的52张扑克牌中抽13张牌,其中有4张黑桃”,这是必然事件; (C) “电视打开时正在播放广告”,这是不可能事件;(D) “从由1,2,5组成的没有重复数字的三位数中任意抽取一个数,这个三位数能被4整除”,这是随机事件.5. 上海市2012年5月份某一周的日最高气温(单位:ºC )分别为28,30,25,29,31,32,28,这周的日最高气温的平均值为……………………………………………( ). (A) 28ºC ; (B) 29ºC ; (C) 30ºC ; (D) 31ºC . 6.对于一个正多边形,下列四个命题中,错误的是……………………………………( ). (A )正多边形是轴对称图形,每条边的中垂线是它的对称轴; (B )正多边形是中心对称图形,正多边形的中心是它的对称中心; (C )正多边形每一个外角都等于正多边形的中心角; (D )正多边形每一个内角都与正多边形的中心角互补.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置] 7.计算:()33a a --⋅= .8.函数()2f x x=- 的定义域是 . 9.若2(0)3a cb d b d ==+≠其中,则a cb d ++= . 10.某城市现有固定居住人口约为一千九百三十万,用科学计数法表示为 人. 11.不等式组10,24x x ->⎧⎨<⎩的解集是 .12. 分解因式:227183x x ++= .13.如果两个相似三角形的面积之比是16∶9,那么它们对应的角平分线之比是 . 14. 有6张分别写有数字1、2、3、4、5、6的卡片,它们的背面相同,现将它们的背面朝上,从中任意摸出一张是数字5的机会是 . 15.如图,在平行四边形ABCD 中,点E 、F 分别是AB 、CD 上的中点,记AB a =,AD b =. 用含a 、b 的式子表示向量AF = .16. 为了了解中学生的身体发育情况,对第二中学同年龄的80名学生的身高进行了测量,经统计,身高在150.5—155.5厘米之间的頻数为5,那么这一组的頻率是 . 17.地面控制点测得一飞机的仰角为45°,若此时地面控制点与该飞机的距离为2000米,则此时飞机离地面的高度是 米(结果保留根号).18.已知在△AOB 中,∠B =90°,AB=OB ,点O 的坐标为(0,0),点A 的坐标为(0,8),点B 在第一象限内,将这个三角形绕原点O 旋转75°后,那么旋转后点B 的坐标为 .三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分)19(4)2tan303ππ--︒--.E20.解方程组:222,22212.x y x xy y x y =+⎧⎨-+++=⎩21. 如图:已知,四边形ABCD 是平行四边形,AE ∥BD ,交CD 的延长线于点E ,EF ⊥BC 交BC 延长线于点F , 求证:四边形ABFD 是等腰梯形.第21题CAB FED22.一辆汽车,新车购买价20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同. 已知在第三年年末,这辆车折旧后价值11.56 万元,求这辆车第二、三年的年折旧率.23.如图,已知⊙O 的半径为5,弦AB 的长等于8,OD ⊥AB ,垂足为点D ,DO 的延长线与⊙O 相交于点C ,点E 在弦AB 的延长线上,CE 与⊙O 相交于点F ,cos C =35,求:(1)CD 的长(5分);(2)EF 的长(7分).D 第23题 AE B CO F24. 如图,抛物线c bx x y -+=2经过直线3-=x y 与坐标轴的两个交点A 、B ,此抛物线与x 轴的另 一个交点为C ,抛物线的顶点为D . (1)求此抛物线的解析式(4分); (2)点P 为抛物线上的一个动点,求使APC S ∆∶ACD S ∆=5∶4的点P 的坐标(5分);(3)点M 为平面直角坐标系上一点,写出使点M 、A 、 B 、D 为平行四边形的点M 的坐标(3分).第24题第25题2012学年度第二学期普陀区九年级质量调研数学试卷参考答案及评分说明一、单项选择题:(本大题共6题,每题4分,满分24分)1.(C) ; 2.(B) ; 3.(A) ; 4.(D) ; 5.(B); 6.(B).二、填空题:(本大题共12题,每题4分,满分48分) 7. –1; 8. 0x ≥且2x ≠; 9.23; 10. 71.9310⨯; 11. 12x <<; 12.()2331x +; 13.4∶3; 14.16; 15. b +12a ;16.116; 17. ; 18.(2-)或(-,). 三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.解: 原式=12(3)3π-⨯--…………………………………8′(各2分)=23π-+. ……………………………………2′ 20.解:222,(1)22212.(2)x y x xy y x y =+⎧⎨-+++=⎩由(1)得:2x y -=. (3)…………………………………………1′由(2)得:2()2()12x y x y -++=. (4)……………………………(2+1)′ 将(3)代入(4),得:4x y +=.………………………………………………2′可得:4,2.x y x y +=⎧⎨-=⎩…………………………………………………………1′解方程组得:3,1.x y =⎧⎨=⎩…………………………………………………2′∴原方程组的解为:3,1.x y =⎧⎨=⎩ ……………………………………………1′21.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ; AB ∥CD ,AB =CD . ……………………………………3′∴AB ∥DE ;又∵AE ∥BD ,∴四边形ABDE 是平行四边形. ………………………1′ ∴AB=DE . ……………………………………………1′∴CD=DE . ……………………………………………………………………………1′ ∵EF ⊥BC ,∴DF=CD=DE . …………………………………………………………………1′ ∴AB=DF . ……………………………………………………………………1′ ∵CD 、DF 交于点D ,∴线段AB 与线段DF 不平行. ……………………………………………………1′ ∴四边形ABFD 是等腰梯形. ………………………………………………1′22.解:设这辆车第二、三年的年折旧率为x .…………………………………………1′ 根据题意,可以列出方程220(120%)(1)11.56x --=.……………………………………………4′整理,得 2(1)0.7225x -=.……………………………………………1′2289(1)400x -=.……………………………………………1′17120x -=±.…………………………………………………1′解得10.15x =,2 1.85x =(不合题意,舍去).…………………………………1′所以 0.15x =,即15%x =.答:这辆车第二、三年的年折旧率为15%.………………………………………………………1′ 23. 解:(1)联接AO . ……………………………………………………1′ ∵OD ⊥AB ,∴142AD BD AB ===, …………………………………2′∵AO =5,∴OD=3. ……………………………………………………1′ ∴CD=8. ……………………………………………………1′(2)过点O 作OH ⊥HC 于点E , ……………………………………………1′ ∴2CF CH =.………………………………………………………………1′在Rt △OCH 中, ∵cos C =35, HD第23题A EB COF第21题 C AB EDOC =5,∴CH=3. ………………………………………………………2′ 在Rt △CDE 中, ∵cos C =35CDCE =,CD =8, ∴CE=4011333=.………………………………………………………2′∴EF=CE –CF=11136733-=.…………………………………………………1′24.解:(1)∵直线3-=x y 与坐标轴的两个交点A 、B ,∴点B (0,–3),点A (3,0). ………………………2′ 又∵抛物线c bx x y -+=2经过点A 、B ,∴c =3. …………………………………………………1′ 将点A 坐标代入抛物线的解析式c bx x y -+=2, 解得 b =–2. ……………………………………………1′ ∴抛物线的解析式是 322--=x x y . (2)∵抛物线的解析式是 322--=x x y ,可得 C (–1,0),顶点D (1,–4).……………………………………………………2′ 因为点P 为抛物线上的一个动点,设点P (a ,322--a a ), ∵APC S ∆∶ACD S ∆=5∶4,∴454421324212=⨯⨯--⨯⨯a a .∴322--a a =5解得 41=a ,22-=a ; 或5322-=--a a ,因为0<∆,所以无实数解.∴满足条件的点P 的坐标为)5,4(1P ,)5,2(2-P .……………………………………3′ (3)∵点M 、A 、B 、D 为平行四边形,∴点M 的坐标为)1,2(1M ,)7,2(2--M ,)1,4(3-M . ………………………………3′第24题精锐教育网站: - 10 - 精锐教育· 教学管理25. 解:(1)过点P 作PD ⊥AB ,垂足为D .∵∠ACB =90°,∴∠ACB=∠PDB=90°. 又∵∠ABC=∠PBD ,∴△ACB ∽△PDB . ……………………………………2′ ∵AC=6cm ,BC =8cm ,∴AB =10cm . ∵点P 为BC 的中点,∴BP =4cm .∵ABPBAC PD =,解得PD=2.4. ………………………2′ ∵t =1.2,V =2cm/s ,PQ=2⨯1.2=2.4,∴PQ=PD ,即⊙P 与直线AB 相切. …………………2′ (2)当AP=AQ 时, ∵∠ACB =90°,∴CQ=CP =4cm ,∴PQ =8cm . ∴1t =4秒. ………………………………………………1′ 当P A=PQ 时, ∵∠ACB =90°,AC=6cm ,CP =4cm ,∴AP =132cm .∴PQ=132cm . ∴2t =13秒. ……………………1′ 当QA=QP 时,点Q 在线段AP 的中垂线QH 上,垂足为H . ∵∠ACB =90°, ∴cos ∠APC =131321324==AP PC . 又∵cos ∠APC =QPQP PH 13=, ∴1313213=QP ,得 PQ=213,∴3t =413.…………………………………………1′ ∴当t=4秒或13秒或413秒时,△AQP 是等腰三角形. ……………………………1′ (3)∵点P 在⊙O 内,∴⊙P 与⊙O 只可能内切,∵O 为AB 中点,P 为BC 中点,∴圆心距OP=21AC=3cm . ………………………1′ ∵⊙O 是△ABC 的外接圆,∴⊙O 的半径为5 cm ,⊙P 的半径为PQ , ∴5-PQ =3 当PQ –5=3时,PQ =8 cm ,t=4秒;当PQ –5=–3时,PQ=2cm ,t=1秒. ……………………………2′BPCAOQ第25题DBPCAO第25题QH中国领先的中小学教育品牌∴当⊙P与⊙O相切时,t分别为4秒和1秒.…………………………………………1′精锐教育网站:- 11 - 精锐教育·教学管理部。
上海市两区2012年中考二模数学试题及答案一、 选择题(每小题2分,共20分)1、︱-32︱的值是( )A 、-3B 、3C 、9D 、-92、下列二次根式是最简二次根式的是( )A 、{ EMBED Equation.3 |21 B 、 C 、 D 、以上都不是 3、下列计算中,正确的是( )A 、X 3+X 3=X 6B 、a 6÷a 2=a 3C 、3a+5b=8abD 、(—ab)3=-a 3b 34、1mm 为十亿分之一米,而个体中红细胞的直径约为0.0000077m ,那么人体中红细胞直径的纳米数用科学记数法表示为( )A 、7.7×103mmB 、7.7×102mmC 、7.7×104mmD 、以上都不对5、如图2,天平右盘中的每个砝码的质量为10g ,则物体M 的质量m(g)的取值范围,在数轴上可表示为( )6、如图3,将∠BAC 沿DE 向∠BAC 内折叠,使AD 与A ’D 重合,A ’E 与AE 重合,若∠A =300,则∠1+∠2=( )A 、500B 、600C 、450D 、以上都不对 7、某校九(3)班的全体同学喜欢的球类运动用图4所示的统计图来表示,下面说法正确的是( )A 、从图中可以直接看出喜欢各种球类的具体人数;B 、从图中可以直接看出全班的总人数;C 、从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况;D 、从图中可以直接看出全班同学现在喜欢各种球类的人数的大小关系。
8、下列各式中,能表示y 是x 的函数关系式是( )A 、y=B 、y=C 、y=D 、y=9、如图5,PA为⊙O的切线,A为切点,PO交⊙O于点B,PA=8,OA=6,则tan∠APO的值为()A、 B、 C、 D、10、在同一直角坐标系中,函数y=kx+k,与y=(k)的图像大致为()二、填空题(每小题2分,共20分)11、(-3)2-(л-3.14)0=。
普陀区2012学年第二学期九年级数学3月调研试卷一、选择题(每题4分,满分24分)1、下列二次根式中,最简二次根式是 ( ) (A )x 63 (B )142-x (C )32x (D )x 1 2、下列运算正确的是 ( )(A )232121a a a =÷ (C )()2222a a =(B )632a a a =⋅(D )()()22b a b a b a +-=---3、下列方程中,没有实数根的是 ( )(A )122--=x x (B )x x =+1 (C )0112=+-x x (D )x x 3422=+ 4、不等式组⎩⎨⎧-≤-->x x x 28132的最小整数解是 ( )(A )-1(B )0 (C )2 (D )35、对角线互相平分且相等的四边形是 ( ) (A )菱形 (B )矩形 (C )正方形 (D )等腰梯形6、下列命题中,真命题的个数有 ( )①长度相等的两条弧是等弧;②正多边形既是轴对称图形,又是中心对称图形; ③相等的圆心角所对的弧相等; ④垂直弦的直径平分这条弦. (A )1个 (B )2个 (C )3个 (D )4个二、填空题(每题4分,满分48分)7、计算:1-11+x = . 8、如果两个相似三角形的面积比为1∶2,那么它们的周长比为 .9、掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为奇数的概率为 .10、在实数范围内分解因式:221x x --= . 11、数据2、4、5、5、6、8的方差是 .12、如图,在ABC ∆中,点G 是重心, 设向量AB a = ,GD b =,那么学校 班 姓名学 _____________________________________________________装____________订___________线____________________________13、点11(,)A x y ,点22(,)B x y 是双曲线2y x=-上的两点,若120x x <<,则1y 2y (填“=”、“>”、“<”).14、在△ABC 中,点D 、E 分别在边AB 和AC 上,且DE ∥BC , 如果AD =5,DB =10,那么ADE S ∆:ABC S ∆的值为 .15、如图,在高楼前D 点测得楼顶的仰角为30o ,向高楼前进60米到C 点,又测得楼顶的仰角为45o ,则该高楼的高度 大约为___________米.(结果可保留根号)16、矩形ABCD 中,AD =4,CD =2,边AD 绕A 旋转使得点D 落在CB 的延长线上的P 处,那么∠DPC 的度数为 _.17、如图,是一个隧道的截面,如果路面AB 宽为8米,净高CD 为8米,那么这个隧道所在圆的半径OA 是 米.18、已知两圆的圆心距为4,其中一个圆的半径长为5,那么当两圆内切时,另一圆的半径为 . 三、解答题(第19~22题各10分,第23、24题各12分,第25题14分,满分78分)19、计算:13123622127)3(-++⨯+-+--)(.20、解方程组:⎩⎨⎧=-+-=+.012,5222y xy x y x )2()1((第17题)(第15题图)(第12题图)21. 在四边形ABCD 中, 0090,60=∠=∠=∠D B A ,3,2==CD BC , 求AB 的长.DCBA22、今年3月12日,某校九年级部分学生参加植树节活动,参加植树学生植树情况的部分统计结果如图所示.请根据统计图形所提供的有关信息,完成下列问题:(2)求学生植树棵数的平均 数(精确到1) (3)请将该条形统计图补充完整.23.(本题12分)如图,在⊙O 中,AD 、BC 相交于点E ,OE 平分∠(1)求证:CD AB =;(2)如果⊙O 的半径为5,CB AD ⊥,1=DE ,求AD 的长.24.(本题满分12分)如图,直线n x y +-=2(n >0)与轴轴、y x 分别交于点B A 、,16=∆OAB S ,抛物线)0(2≠+=a bx ax y 经过点A ,顶点M 在直线n x y +-=2上.(1)求n 的值; (2)求抛物线的解析式;(3)如果抛物线的对称轴与x 轴交于点N ,那么在对称轴上找一点P ,使得OPN ∆和AMN ∆相似,求点P的坐标.25、在梯形ABCD 中,∠ABC= 90,AD ∥BC ,AB=8cm ,BC=18cm ,54sin =∠BCD ,点P 从点B 开始沿BC 边向终点C 以每秒3cm 的速度移动,点Q 从点D 开始沿DA 边向终点A 以每秒2cm 的速度移动,设运动时间为t 秒.(1)如图:若四边形ABPQ 是矩形,求t 的值; (2)若题设中的“BC=18cm ”改变为“BC=k cm ”,其它条件都不变,要使四边形PCDQ 是等腰梯形,求t 与k 的函数关系式,并写出k 的取值范围;(3)如果⊙P 的半径为6cm ,⊙Q 的半径为4cm ,在移动的过程中,试探索:t 为何值时⊙P 与⊙Q 外离、外切、相交?数学试题参考答案及评分标准一.选择题(本题共6二.填空题(本大题共7.1+x x ; 8.1∶2; 9.21; 10.()()2121+---x x ; 11.310; 12.a b 26-; 13.<; 14.91; 15.30330+;16.015; 17.5; 18.9或1.备用图备用图19.解:131023622127)3(-++⨯+-+--)( 231321231+++-+-= ………………………………5分23321231-++-+-=………………………………2分333-= ………………………………3分20.解: 由(2)得:01=--y x 或01=+-y x .………………………………(2分) 原方程组可化为:⎩⎨⎧=--=+;01,52y x y x ⎩⎨⎧=+-=+.01,52y x y x …………………(4分) 解这两个方程组得原方程组的解为:⎪⎪⎩⎪⎪⎨⎧==;34,3711y x⎩⎨⎧==;2,122y x ………(4分) 说明:学生如果利用代入消元法求解,参照给分。
上海市普陀区2012年高三年级第二次质量调研数学试卷 (理科)说明:本试卷满分150分,考试时间120分钟。
本套试卷另附答题纸,每道题的解答必须写...在答题纸的相应位置,本卷上任何解答都不作评分依据........................。
一、填空题(本大题满分56分)本大题共有14小题,要求直接将结果填写在答题纸对应的空格中.每个空格填对得4分,填错或不填在正确的位置一律得零分. 1. 函数22()sin cos 22x xf x =-的最小正周期是 . 2. 二项式6)1(xx -的展开式中的常数项是 .(请用数值作答) 3. 函数1log 121-=x y 的定义域是 .4. 设1e 与2e 是两个不共线的向量,已知122AB e ke =+,123CB e e =+,122CD e e =-,则当A B D 、、三点共线时,k = .5. 已知各项均为正数的无穷等比数列{}n a 中,121a =+,321a =-,则此数列的各项和S = .6. 已知直线l 的方程为230x y --=,点(1,4)A 与点B 关于直线l 对称,则点B 的坐标为 .7. 如图,该框图所对应的程序运行后输出的结果S 的值为 .8. 若双曲线的渐近线方程为3y x =±,它的一个焦点的坐标为(10,0),则该双曲线的标准方程为 .9. 如图,需在一张纸上印上两幅大小完全相同,面积都是32cm 2的照片. 排版设计为纸上左右留空各3cm ,上下留空各2.5cm ,图间留空为1cm .照此设计,则这张纸的最小面积是 cm 2.10. 给出问题:已知ABC △满足cos cos a A b B ⋅=⋅,试判定ABC △的形状.某学生的解答如下:解:(i )由余弦定理可得,开始2012?n ≤sin3n S S π←+1n n ←+输出S 结束是否0,0S n ←←第7题图第9题图22222222b c a a c b a b bc ac+-+-⋅=⋅,⇔()()()2222222a b c a b a b -=-+, ⇔222c a b =+,故ABC △是直角三角形.(ii )设ABC △外接圆半径为R .由正弦定理可得,原式等价于2sin cos 2sin cos R A A R B B =sin2sin2A B ⇔=A B ⇔=, 故ABC △是等腰三角形.综上可知,ABC △是等腰直角三角形.请问:该学生的解答是否正确?若正确,请在下面横线中写出解题过程中主要用到的思想方法;若不正确,请在下面横线中写出你认为本题正确的结果. . 11. 已知数列{}n a 是等比数列,其前n 项和为nS.若1020S =,2060S =,则3010S S = . 12.的正六棱柱的所有顶点都在一个球面上,则此球的体积为 . 13. 用红、黄、蓝三种颜色分别去涂图中标号为1,2,3,,9的9个小正方形(如右图),需满足任意相邻(有公共边的)小正方形所涂颜色都不相同,且标号为“1、5、9”的小正方形涂相同的颜色. 则符合条件的所有涂法中,恰好满足“1、3、5、7、9”为同一颜色,“2、4、6、8”为同一颜色的概率为 .14. 设*N n ∈,n a 表示关于x 的不等式144log log (54)21n x x n -+⨯-≥-的正整数解的个数,则数列{}n a 的通项公式n a = .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个结论是正确的,必须把正确结论的代号写在答题纸相应的空格中. 每题选对得5分,不选、选错或选出的代号超过一个(不论是否都写在空格内),或者没有填写在题号对应的空格内,一律得零分. 15. “lg ,lg ,lg x y z 成等差数列”是“2y xz =”成立的 ( )A .充分非必要条件;B .必要非充分条件;C .充要条件;D .既非充分也非必要条件.16. 设θ是直线l 的倾斜角,且cos 0a θ=<,则θ的值为 ( )第13题图A. arccos a π-;B. arccos a ;C. arccos a -;D. arccos a π+.17. 设全集为R ,集合22|14x M x y ⎧⎫=+=⎨⎬⎩⎭,3|01x N x x -⎧⎫=≤⎨⎬+⎩⎭,则集合2231|24x x y ⎧⎫⎪⎪⎛⎫++=⎨⎬ ⎪⎝⎭⎪⎪⎩⎭可表示为 ( )A. M N ;B. MN ; C. R C M N ⋂; D. R M C N ⋂18. 对于平面α、β、γ和直线a 、b 、m 、n ,下列命题中真命题是( )A .若,,a m a n ⊥⊥,m n αα≠≠⊂⊂,则a α⊥; B. 若//,,a b b α≠⊂则//a α; C. 若,,//,//a b a b ββαα≠≠⊂⊂,则//a β; D. 若//,,,a a b βαγβγ⋂=⋂=则//a b .三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸规定的方框内写出必要的步骤. 19. (本题满分12分)已知函数()2f x kx =+,0k ≠的图像分别与x 轴、y 轴交于A 、B 两点,且22AB i j =+,函数6)(2--=x x x g . 当x 满足不等式()()f xg x >时,求函数()1()g x y f x +=的最小值.20. (本题满分12分,第1小题满分6分,第2小题满分6分)如图,已知圆锥体SO 的侧面积为15π,底面半径OA 和OB 互相垂直,且3OA =,P 是母线BS 的中点. (1)求圆锥体的体积;(2)异面直线SO 与PA 所成角的大小(结果用反三角函数表示).21. (本大题满分14分,第1小题满分7分,第2小题满分7分)已知ABC △中,1AC =,23ABC π∠=.设BAC x ∠=,记()f x AB BC =⋅. (1) 求()f x 的解析式及定义域;AB第20题图(2)设()6()1g x m f x =⋅+,是否存在实数m ,使函数)(x g 的值域为31,2⎛⎤ ⎥⎝⎦?若存在,求出m 的值;若不存在,请说明理由.22. (本大题满分16分,第1小题满分5分,第2小题满分5分,第3小题满分6分)已知数列{}n a 是首项为2的等比数列,且满足nn n pa a 21+=+*(N )n ∈.(1) 求常数p 的值和数列{}n a 的通项公式;(2) 若抽去数列{}n a 中的第一项、第四项、第七项、……、第23-n 项、……,余下的项按原来的顺序组成一个新的数列{}n b ,试写出数列{}n b 的通项公式;(3) 在(2)的条件下,设数列{}n b 的前n 项和为n T .是否存在正整数n ,使得1113n n T T +=?若存在,试求所有满足条件的正整数n 的值;若不存在,请说明理由.23. (本大题满分20分,第1小题满分4分,第2小题满分6分,第3小题最高分10分)设点F 是抛物线L :22y px =(0)p >的焦点,123n P P P P 、、、、是抛物线L 上的n个不同的点(3,n ≥*N n ∈).(1) 当2p =时,试写出抛物线L 上的三个定点1P 、2P 、3P 的坐标,从而使得123||||||6FP FP FP ++=;(2)当3n >时,若1230n FP FP FP FP ++++=,求证:123||||||||n FP FP FP FP np ++++=;(3) 当3n >时,某同学对(2)的逆命题,即: “若123||||||||n FP FP FP FP np ++++=,则1230n FP FP FP FP ++++=.”开展了研究并发现其为假命题.请你就此从以下三个研究方向中任选一个开展研究:① 试构造一个说明该逆命题确实是假命题的反例(本研究方向最高得4分); ② 对任意给定的大于3的正整数n ,试构造该假命题反例的一般形式,并说明你的理由(本研究方向最高得8分);③ 如果补充一个条件后能使该逆命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由(本研究方向最高得10分).【评分说明】本小题若选择不止一个研究方向,则以实得分最高的一个研究方向的得分作为本小题的最终得分.2012年普陀区高三第二次质量调研数学试卷参考答案一、填空题(每小题4分,满分56分): 1. π2; 2. 20-; 3. (文) )1(∞+,; (理)(0,1)(12),; 4. 8-;5. 2232+; 6. )2,5(; 7. 3; 8. 1922=-y x ; 9. 196; 10. 等腰或直角三角形; 11. (文)6;(理)7; 12. (文)π34;(理) 29π; 13. (文)108;(理)181; 14. 1*341,N n n -⋅+∈. 二、选择题(每题5分,满分20分):三、解答题(满分74分): 19.(本题满分12分) 解:由题意知:)0,2(k A -、)2,0(B ,则)2,2()2,2(==kAB 可解得:1=k ,即2)(+=x x f因为)()(x g x f >,即622-->+x x x ,解不等式得到()4,2-∈x2()15()2g x x x y f x x +--==+2(2)5(2)112522x x x x x +-++==++-++ 因为()4,2-∈x ,则()6,0)2(∈+x 所以35212)(1)(-≥-+++=+x x x f x g ,当且仅当212+=+x x ,即12=+x ,1-=x 时,等号成立. 所以,当1-=x 时,)(1)(x f x g +的最小值为3-.20.(本题满分12分)解:(1)由题意,15OA SB ππ⋅⋅=得5BS =,xCBA 故2222534SO SB OB =-=-=从而体积2211341233V OA SO πππ=⋅⋅=⨯⨯=.(2)如图2,取OB 中点H ,联结PH AH 、.由P 是SB 的中点知PH SO ∥,则APH ∠(或其补角)就是异面直线SO 与PA 所成角.由SO ⊥平面OAB ⇒PH ⊥平面OAB ⇒PH AH ⊥.在OAH ∆中,由OA OB ⊥得22352AH OA OH =+=; 在Rt APH ∆中,90AHP O ∠=,122PH SB ==,35AH =, 则35tan AH APH PH ∠==SO 与PA 所成角的大小35arctan .21. (本题满分14分,其中第1小题7分,第2小题7分) 解:(1)如图,在ABC ∆中,由23ABC π∠=,x BAC =∠, 可得x ACB -=∠3π,又 1AC =,故由正弦定理得 2sin 3sin()sin 33ABBC AC x x ππ===- ⇒sin()33AB x π=-、3BC x =.则函数()f x AB BC =⋅2||||cossin sin()333AB BC x x ==-ππ231sin sin )32x x x =-2312sin 3x x =- 11(32cos 2)66x x =+-11sin(2)366x π=+-, 其中定义域为0,3x ⎛⎫∈ ⎪⎝⎭π. 说明:亦可用积化和差方法化简:2111()sin sin()[cos cos(2)]cos(2)33333336f x x x x x ==-=---=--ππππ. (2)()6()12sin(2)16g x mf x m x m =+=+-+π由0,3x ⎛⎫∈ ⎪⎝⎭π可得52(,)666x πππ+∈⇒)62sin(π+x ]1,21(∈.显然,0m ≠,则 1O 当0>m 时,()(1,1]g x m ∈+,则)(x g 的值域为]23,1(⇔231=+m ⇔21=m ; 2O 当0m <时,()[1,1)g x m ∈+,不满足)(x g 的值域为]23,1(; 因而存在实数21=m ,使函数)(x g 的值域为31,2⎛⎤ ⎥⎝⎦.22. (本大题满分16分,第1小题满分5分,第二小题满分5分,第3小题满分6分)(1)解:由n n n pa a a 2,211+==+得222+=p a ,42223++=p p a ,又因为存在常数p ,使得数列{}n a 为等比数列,则3122a a a =即)422(2)22(22++=+p p p ,所以1=p .故数列{}n a 为首项是2,公比为2的等比数列,即nn a 2=.此时11222++=+=n n n n a 也满足,则所求常数p 的值为1且*2(N )n n a n =∈.(2)解:由等比数列的性质得:(i )当*2(N )n k k =∈时,kk n a b 332==; (ii ) 当*21(N )n k k =-∈时,13132--==k k n a b ,所以312*322,21,(N )2,2,n n nn k b k n k +⎧=-⎪=∈⎨⎪=⎩. (3)(文科)解:注意到21{}n b -是首项14b =、公比8q =的等比数列,2{}n b 是首项28b =、公比8q =的等比数列,则(i )当2n k =*(N )k ∈时,21321242()()n k k k T T b b b b b b -==+++++++4(81)8(81)8181kk--=+--2128121281277nk⋅-⋅-==;(ii )当21n k =-*(N )k ∈时,12212212812581258128777n k kk n k k k T T T b +-⋅-⋅-⋅-==-=-==. 即12*25812,217(N )12812,27n n nn k T k n k+⎧⋅-⎪=-⎪=∈⎨⎪⋅-⎪=⎩.(3)(理科)解:(续文科解答过程)假设存在正整数n 满足条件,则1111118133n n n n n n n n n T T b b b T T T T +++++==+=⇔=, 则(i )当*2,(N )n k k =∈时,3212122288888128121281237k k k n k k kn kb b T T +++⋅====⇒=⋅-⋅-1k ⇒=, 即当2n =时满足条件;(ii )当*21,(N )n k k =-∈时,128788968581258123197k k kn k k k n n b b T T +⋅====⇒=⋅-⋅-. 因为*N k ∈,所以此时无满足条件的正整数n . 综上可得,当且仅当2n =时,1113n n T T +=.23. (本大题满分20分,第1小题满分4分,第2小题满分6分,第3小题最高分10分) (理)解:(1)抛物线L 的焦点为(,0)2pF ,设111222333(,)(,)(,)P x y P x y P x y 、、, 分别过123P P P 、、作抛物线L 的准线l 的垂线,垂足分别为123Q Q Q 、、.由抛物线定义得123112233123||||||||||||()()()222p p pFP FP FP PQ P Q PQ x x x ++=++=+++++ 623321=+++=px x x因为2p =,所以3321=++x x x ,故可取,,)2,1()2,21(21P P 3P )6,23(满足条件. (2)设111222333(,)(,)(,)(,)n n n P x y P x y P x y P x y 、、、、,分别过123n P P P P 、、、、作抛物线L 的准线l 垂线,垂足分别为123n Q Q Q Q 、、、、.由抛物线定义得123112233||||||||||||||||n n n FP FP FP FP PQ PQ PQ PQ ++++=++++123()()()()2222n p p ppx x x x =++++++++123()2n np x x x x =+++++ 又因为1230n FP FP FP FP ++++=⇒123()()()()02222n p p ppx x x x -+-+-++-=⇒221np x x x n =+++ ; 所以123||||||||n FP FP FP FP ++++123()2n npx x x x =+++++np =. (3) ①取4=n 时,抛物线L 的焦点为(,0)2pF , 设111222333(,)(,)(,)P x y P x y P x y 、、,),(444y x P 分别过123P P P 、、4P 、作抛物线L 的准线l 垂线,垂足分别为123Q Q Q 、、4Q 、.由抛物线定义得=+++44332211Q P Q P Q P Q P +++=244321px x x x ++++p 4=, 则p x x x x 24321=+++,不妨取22,411p y px ==;,22px =p y =2;,23px =p y -=3;443,4p x y ==, 则=+++4321FP FP FP FP (p x x x x 24321-+++,)4321y y y y +++0,2p ⎛⎫= ⎪⎝⎭0≠.故1,42p P ⎛⎫⎪⎝⎭,2,2p P p ⎛⎫ ⎪⎝⎭,3,2p P p ⎛⎫- ⎪⎝⎭,434p P ⎛⎝⎭是一个当4n =时,该逆命题的一个反例.(反例不唯一)② 设111222333(,)(,)(,)(,)n n n P x y P x y P x y P x y 、、、、,分别过123n P P P P 、、、、作 抛物线L 的准线l 的垂线,垂足分别为123n Q Q Q Q 、、、、,由123||||||||n FP FP FP FP np ++++=及抛物线的定义得np np x x x n =++++221 ,即221np x x x n =+++ . 因为上述表达式与点111222333(,)(,)(,)(,)n n n P x y P x y P x y P x y 、、、、的纵坐标无关,所以只要将这n 点都取在x 轴的上方,则它们的纵坐标都大于零,则=+++n FP FP FP 21(,221npx x x n -+++ )21n y y y +++ (=,0)21n y y y +++ ,而021>+++n y y y ,所以021≠+++n FP FP FP . (说明:本质上只需构造满足条件且120n y y y +++≠的一组n 个不同的点,均为反例.)③ 补充条件1:“点i P 的纵坐标i y (1,2,,i n =)满足 1230n y y y y ++++=”,即:“当3n >时,若123||||||||n FP FP FP FP np ++++=,且点i P 的纵坐标iy (1,2,,i n =)满足1230n y y y y ++++=,则1230n FP FP FP FP ++++=”.此命题为真.事实上,设111222333(,)(,)(,)(,)n n n P x y P x y P x y P x y 、、、、,分别过123n P P P P 、、、、作抛物线L 准线l 的垂线,垂足分别为123n Q Q Q Q 、、、、,由12||||||n FP FP FP np +++=,及抛物线的定义得np np x x x n =++++221 ,即221npx x x n =+++ ,则 =+++nFP FP FP 21(,221npx x x n -+++ )21n y y y +++ (=,0)21n y y y +++ ,又由1230n y y y y ++++=,所以1230n FP FP FP FP ++++=,故命题为真.补充条件2:“点k P 与点1n k P -+(n 为偶数,*N )k ∈关于x 轴对称”,即:“当3n >时,若123||||||||n FP FP FP FP np ++++=,且点k P 与点1n k P -+(n 为偶数,*N )k ∈关于x 轴对称,则1230n FP FP FP FP ++++=”.此命题为真.(证略)23.(文)(1)解:抛物线L 焦点(1,0)F ,准线l 方程为:1-=x .由抛物线定义得11||1FP x =+,22||1FP x =+,33||1FP x =+,∴ 73||||||321321=+++=++x x x FP FP FP .(2)证明:由)0,1(F ,),1(111y x FP -=,),1(222y x FP -=,…,),1(n n n y x FP-= , 1230n FP FP FP FP ++++=⇒0)1()1()1(21=-++-+-n x x x ,即n x x x n =+++)(21 .则12||||||n FP FP FP +++)1()1()1(21++++++=n x x xn x x x n ++++=)(21 n 2=.(3)经推广的命题:“当3n >时,若021=+++n FP FP FP ,则np FP FP FP n =+++||||||21 .” 其逆命题为:“当3n >时,若np FP FP FP n =+++||||||21 ,则021=+++n FP FP FP ”. 该逆命题为假命题.不妨构造特殊化的一个反例:设2p =,4n =,抛物线x y 42=,焦点)0,1(F .由题意知:1234||||||||8FP FP FP FP +++=;根据抛物线的定义得:8)1()1()1()1(4321=+++++++x x x x ⇒44321=+++x x x x ;不妨取四点坐标分别为)0,0(1P 、)2,1(2P 、)2,1(3-P 、)22,2(4P ,但0)22,0()22,1()2,0()2,0()0,1(4321≠=+-++-=+++FP FP FP FP ,所以逆命题是假命题.。
xx学校xx学年xx 学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:如图11-1,已知梯形ABCD中,AD∥BC,∠D=90°,BC=5,CD=3,cotB=1,P是边BC上的一个动点(不与点B、点C重合),过点P作射线PE,使射线PE交射线BA于点E,∠BPE=∠CPD。
(1)如图11-2,当点E与点A重合时,求∠DPC的正切值;(2)当点E落在线段AB上时,设BP=,BE=,试求与之间的函数解析式,并写出的取值范围;(3)设以BE长为半径的和以AD长为直径的相切,求BP的长。
试题2:如图10,在平面直角坐标系中,二次函数的图像经过点,,,点D是点C关于原点的对称点,联结BD,点E是轴上的一个动点,设点E的坐标为,过点E作轴的垂线交抛物线于点P。
(1)求这个二次函数解析式;(2)当点E在线段OB上运动时,直线交BD于点Q,当四边形CDQP是平行四边形时,求的值;评卷人得分(3)是否存在点P,使△BDP是不以BD为斜边的直角三角形,如果存在,请直接写出点P的坐标;如果不存在,请说明理由。
试题3:如图9,在△ABC中,点D、E分别在边BC、AC上,BE、AD相交于点G,EF∥AD交BC于点F,且,联结FG。
(1)求证:FG∥CE;(2)设∠BAD=∠C,求证:四边形AGFE是菱形。
试题4:本市为了给市容营造温馨和谐的夜间景观,准备在一条宽7.4米的道路上空利用轻轨桥墩,安装呈大中小三个同心圆的景观灯带,如图8,已知EF表示路面宽度,轻轨桥墩上设有两处限高标志,分别表示等腰梯形的下底边到路面的距离为2.9米和等腰梯形的上底边到路面的距离为3.8米,大圆直径等于AD,三圆半径的比等于1:2:3.试求这三个圆形灯带的总长为多少米?(结果保留π)(参考数据:)试题5:已知,如图7,在平面直角坐标系中,直线与轴交于点A,在第一象限内与反比例函数图像交于点B,BC垂直于轴,垂足为点C,且OC=2OA。
图1 2012普陀初三二模数学试卷(含答案)一、单项选择题:(本大题共6题,每题4分,满分24分)分) 1.下列运算,计算结果错误的是.下列运算,计算结果错误的是( ( ▲▲ ) )..(A ) 437a a a =g ; (B ) 633a a a ¸=; (C ) 325()a a =; (D ) 333()a b a b =g g .2.经过点()2,4的双曲线的表达式是的双曲线的表达式是( ( ▲▲ ) )..(A )2y x =; ((B )12y x =; ((C )8y x =; ((D )2y x =.3.如图1,飞镖投一个被平均分成6份的圆形靶子,那么飞镖落在阴影部分的概率是( ( ▲▲ ) ).. (A )16; ((B )13; ((C )12; ((D )23. 4.下列图形中是中心对称图形,但不是轴对称图形的是.下列图形中是中心对称图形,但不是轴对称图形的是( ( ▲▲ ) )..(A ); ((B ); ((C ); ((D ) .5. 已知四边形ABCD 中,90o∠∠∠A B C ===,如果添加一个条件,即可判定该四边形是正方形,那么所添加的这个条件可以是(边形是正方形,那么所添加的这个条件可以是( ▲ ). (A )90o∠D =; (B )AB CD =; (C )AD BC =; (D )BC CD =.6.下列说法中正确的是.下列说法中正确的是( ( ▲▲ ) )..(A )某种彩票的中奖率是10%,则购买该种彩票100张一定中奖是必然事件;张一定中奖是必然事件; (B )如图2,在长方体ABCD -EFGH 中,与棱EF 、棱FG 都异面的棱是棱DH ; (C )如果一个多边形的内角和等于°540,那么这个多边形是正五边形;,那么这个多边形是正五边形; (D )平分弦的直径垂直于这条弦.)平分弦的直径垂直于这条弦.二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:22-= ▲ .8.方程212=-x 的根是的根是 ▲ ..9.用换元法解分式方程312122=+-+x x x x 时,如果设y x x =+12,那么原方程可以化为关于y 的方程是的方程是 ▲ .10.如果关于x 的方程210x ax a -+-=有两个相等的实数根,那么a 的值等于的值等于 ▲ . 11.已知正比例函数x k y )1(-=,函数值y 随自变量x 的值增大而减小,的值增大而减小,那么那么k 的取值范AB CD EFGH 图2围是围是 ▲ .12.某种品牌的笔记本电脑原价为a 元,如果连续两次降价的百分率都为x ,那么两次降价后的价格为后的价格为 ▲▲ 元元.13.已知△ABC 的重心G 到BC 边上中点D 的距离等于2,那么中线AD 长等于长等于 ▲ . 14.如果梯形的一条底边长为5,中位线长为7,那么另一条底边的长为,那么另一条底边的长为 ▲ . 15.如图3,在△ABC 中,DE ∥BC ,如果DE=1,BC =4,那么△ADE 与△ABC 面积的比是 ▲ .16.如图4,边长为1的菱形ABCD 的两个顶点B 、C 恰好落在扇形AEF 的弧EF 上时,弧BC 的长度等于的长度等于 ▲ (结果保留p ). 17.在矩形ABCD 中,如果2AB =uuu r,1BC =uuu r ,那么AB BC +uuu r uuu r= ▲ .18.如图5,将边长为4的正方形ABCD 沿着折痕EF 折叠,使点B 落在边AD 的中点G 处,那么四边形BCFE 的面积等于的面积等于 ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)分)先化简,再求值:11)1112(22+¸+-+-a a a a a ,其中2=a .20.(本题满分10分)分) 解方程组:解方程组:225602x xy y x y ì++=í+=î,. 21.(本题满分10分)分)已知:如图6,在△ABC 中,CD ⊥AB ,sin A =45,AB =13,CD =12,求AD 的长和tan B 的值. ① ②C D E B A图3 F CDE B A图4 CD BA图5 H G F CD E B A下面提供上海楼市近期的两幅业务图:图7(甲)所示为2011年6月至12月上海商品房平均成交价格的走势图(单位:万元/平方米);图7(乙)所示为2011年12月上海商品房成交价格段比例分布图(其中a 为每平方米商品房成交价格,单位:万元/平方米).(1)根据图7(甲),写出2011年6月至2011年12月上海商品房平均成交价格的中位数; (2)根据图7(乙),可知x = ▲ ;(3)2011年12月从上海市的内环线以内、内中环之间、中外环之间和外环线以外等四个区域中的每个区域的在售楼盘中随机抽出两个进行分析:共有可售商品房2400套,其中成交200套.请估计12月份在全市所有的60000套可售商品房中已成交的并且每平方米价格低于2万元的商品房的套数.万元的商品房的套数. 23.(本题满分12分)分)如图8,四边形ABCD 中,BC AD //,点E 在CB 的延长线上,联结DE ,交AB 于点F ,联结DB ,AFD DBE Ð=Ð,且2DE BE CE =×. (1) 求证:DBE CDE Ð=Ð;(2)当BD 平分ABC Ð时,求证:四边形ABCD 是菱形. 图8 F DECA B时间(月)成交均价(万元/平方米) 2.432.562.612.692.702.682.681.952.172.392.612.833.056月7月8月9月10月11月12月图7(甲)17%55%22%a <1 1≤a <2 2≤a <3 a ≥3 图7(乙) x % 二次函数()21236y x =+的图像的顶点为A ,与y 轴交于点B ,以AB 为边在第二象限内作等边三角形ABC .(1)求直线AB 的表达式和点C 的坐标.的坐标. (2)点(),1M m 在第二象限,且△ABM 的面积等于△ABC 的面积,求点M 的坐标.的坐标.(3)以x 轴上的点N 为圆心,1为半径的圆,与以点C 为圆心,CM 的长为半径的圆相切,直接写出点N 的坐标.的坐标.25、(本题满分14分)分)已知,90ACB Ð=o,CD 是ACB Ð的平分线,点P 在CD 上,2CP =.将三角板的直角顶点放置在点P 处,绕着点P 旋转,三角板的一条直角边与射线CB 交于点E ,另一条直角边与直线CA 、直线CB 分别交于点F 、点G .(1)如图9,当点F 在射线CA 上时,上时, ①求证:①求证: PF = PE . ②设CF = x ,EG =y ,求y 与x 的函数解析式并写出函数的定义域.的函数解析式并写出函数的定义域.(2)联结EF ,当△CEF 与△EGP 相似时,求EG 的长.的长.备用图ABCPDyx-111-1O 图9 ABCEGPDF普陀区2011学年度第二学期九年级数学期终考试试卷参考答案及评分说明一、单项选择题:(本大题共6题,每题4分,满分24分)分)1.(C); 2.(C); 3.(C); 4.(A); 5.(D); 6.(B).二、填空题:(本大题共12题,每题4分,满分48分)7.-4; 8. 5x =±; 9. 123y y-= ; 10. 2; 11.1k <; 12. 2(1)a x -; 13.6; 14.9; 15.1:16; 16.p 3; 17.5; 18.6.三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分)分)19.解:原式=)1()111(+×++-a a a a ………………………………………………………(3分)分)=aa a 11++- ……………………………………………………………………(……………………………………………………………………(2分)分)=aa 12+ ……………………………………………………………………………(……………………………………………………………………………(2分)分)当2=a 时,原式时,原式==21)2(2+223=……………………………………………………(3分)分)20.解法1:由①得:(2)(3)0x y x y ++=∴20x y +=或30x y += ………………………………………………(4分)原方程组可化为原方程组可化为 20,2;x y x y +=ìí+=î 30,2.x y x y +=ìí+=î……………………………………(2分) 分别解这两个方程组,得原方程组的解为114,2;x y =ìí=-î 223,1.x y =ìí=-î …………(4分)解法2:由②得2y x =- ③③ ………………………………………………………(1分)把③代入①得225(2)6(2)0x x x x +-+-=整理得27120x x -+=……………………………………………………………(3分) 解得124,3x x ==…………………………………………………………………(2分) 分别代入③得112,1y y =-=-……………………………………………………(2分)∴原方程组的解为114,2;x y =ìí=-î 223,1.x y =ìí=-î ………………………………………(2分)21.解:.解: ∵CD ⊥AB ,∴∠CDA =90°…………………………………………………………………(1分)∵ sin A =54=AC CD ,CD =12, ∴ AC =15…………………………………………………………………………(3分) ∴AD =9. …………………………………………………………………………(2分) ∴BD =4. …………………………………………………………………………(2分) ∴tan B =3=BDCD ………………………………………………………………(2分)22、解:、解:(1)2.68……………………………………………………………………………………(3分) (2)6…………………………………………………………………………………………(2分) (3)设12月份全市共成交商品房x 套,套,600002400200x=5000=x …………………………………………………………………………(3分)分)()50006%17%1150´+=(套)…………………………………………………………………………………………………………((2分) ∴估计12月份在全市所有的60000套可售商品房中已成交的并且每平方米价格低于2万21F DECAB元的商品房的成交套数为1150套.套.23.(1)证明:∵CE BE DE ×=2,∴DEBECE DE =. ……………………………………………………………(2分)分)∵E E Ð=Ð, ……………………………………………………………(1分)分)∴DBE D ∽CDE D .……………………………………………………………(1分)分)∴CDE DBE Ð=Ð. ……………………………………………………………(1分)(2) ∵CDE DBE Ð=Ð,又∵AFD DBE Ð=Ð,∴=ÐCDE AFD Ð.……………………………………………………………(1分)分)∴DC AB //. ……………………………………………………………(1分)分)又∵BC AD //,∴四边形ABCD 是平行四边形是平行四边形 …………………………………………………(1分)分)∵BC AD //,∴1Ð=ÐADB . …………………………………………………………(1分)分)∵DB 平分ABC Ð,∴21Ð=Ð. ………………………………………………………(1分)分)∴2Ð=ÐADB .∴AD AB =. ……………………………………………………………………………………………………………………((1分)分)∴四边形ABCD 是菱形. ……………………………………………………(1分)分)24.解:(1)二次函数()21236y x =+的图像的顶点A ()23,0-,与y 轴的交点B ()0,2,……(2分)分)设直线AB 的表达式为(0)y kx b k =+¹,可求得 33k =,2b =.所以直线AB 的表达式为323y x =+.…………………(.…………………(11分)分)可得30BAO Ð=o ,∵60BAC Ð=o,∴90CAO Ð=o.………………………………………………………………………………………………………………………………………………((1分) 在Rt △BAO 中,由勾股定理得:AB =4.∴AC =4.点()23,4C -.………………………………………………………………(.………………………………………………………………(11分)分)(2)∵点C 、M 都在第二象限,且△ABM 的面积等于△ABC 的面积,的面积,∴CM ∥AB .…………………………………………………………………………………(.…………………………………………………………………………………(11分)分)设直线CM 的表达式为33y x m =+,点()23,4C -在直线CM 上,上, 可得可得 6m =.∴直线CM 的表达式为363y x =+.……………………………………………………(.……………………………………………………(11分)分)可得点M 的坐标:()53,1-.……………………………………………………………(.……………………………………………………………(11分)分)(3)点N 的坐标()323,0--,()323,0-,()3323,0--,()3323,0-.…………………………………………………………………………………………(…………………………………………………………………………………………(44分)分)25. (1)①证明:过点P 作PM ⊥AC ,PN ⊥BC ,垂足分别为M 、N .…………………(1分)分)∵CD 是ACB Ð的平分线,的平分线, ∴PM =PN .由90PMC MCN CNP Ð=Ð=Ð=o,得90MPN Ð=o. ∴190FPN Ð+Ð=o. ∵290FPN Ð+Ð=o ,∴12Ð=Ð.∴△PMF ≌△PNE .……………………………(3分)分) ∴PF = PE . ②解:∵2CP =,∴1CN CM ==.∵△PMF ≌△PNE , ∴1NE MF x ==-.∴2CE x =-.……………………………………………………………………(2分)分) ∵CF ∥PN ,∴CF CGPN GN=. ∴1x CG x=-.……………………………………………………………………(2分)分) ∴21xy x x=+--(0≤x <1).………………………………………………(2分)分)(2)当△CEF 与△EGP 相似时,点F 的位置有两种情况:的位置有两种情况: ①当点F 在射线CA 上时,上时,∵90GPE FCE Ð=Ð=o,1PEG йÐ, ∴1G Ð=Ð. ∴FG FE =. ∴CG CE =. 在Rt △EGP 中,222EG CP ==.……………………(2分)分) ②当点F 在AC 延长线上时,延长线上时,∵90GPE FCE Ð=Ð=o ,12йÐ, ∴32Ð=Ð.21NM AB CEDPFFDPG E C BA1GFM NABCEPD2=.2+.2+.,∴CF CGPN GN=.2=-22.…………………………………………………………………………(AB CEDPMFG N45321。
2012学年普陀区九年级数学期终调研试卷2012.12.26(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答, 在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或 计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 1.如果:2:3x y =,那么下列各式不成立的是( )A .53x y y += ; B .13x y y -=-; C .123x y =; D .1314x y +=+.2.某一时刻,身髙1.6m 的小明在阳光下的影长是0.4m ,同一时刻同一地点测得某旗杆的影长是5m ,那么该旗杆的高度是( )A .1.25m ;B .10m ;C .20m ;D .8m .3.如果二次函数2y x bx c =++配方后为2(2)1y x =+-,那么b ,c 的值分别为( )A .4-,5;B .4,3;C .4- 3;D .4,5.4.如图,已知抛物线c bx x y ++=2的对称轴为直线2=x ,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为()0,3,则点B 的坐标为( )A .(2,3);B .(4,3);C .(3,3);D .(3,2).5.如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为( )A .12; BC; D.6. 已知线段a 、b 、c ,求作第四比例线段x ,下列作图正确的是( )(A ) B . (C ) (D ) 二、填空题:(本大题共12题,每题4分,满分48分) (第4题)(第5题) a x b c a c b x x c b a c a x b7.如果在比例尺为1︰1 000 000的地图上,A 、B 两地的图上距离是1.6厘米,那么A 、B 两地的实际距离是 千米.8.把长度为4cm 的线段进行黄金分割,则较长线段的长是__________cm .9.如果两个相似三角形的对应角平分线比是1︰4,那么它们的周长比是 .10.如果抛物线21)21y m x mx =-++(的图像开口向下,那么m 的取值范围是__________.11.将二次函数22y x =-的图像向右平移1个单位,再向下平移2个单位,所得图像的解析式为__________.12.二次函数2y ax bx c =++中,函数y 与自变量x 的部分对应值如下表,则m 的值为__________.13.在Rt △ABC 中,∠90C =,B α∠=,2AB =,那么BC =_____________.(结果用α的锐角三角比表示)14.如图,点D 、E 、F 分别是△ABC 三边的中点,那么与DF 相等的向量__________.15.如图,点G 是△ABC 的重心,AG ⊥GC ,4AC =,那么BG的长为 ___________.16.如图,△ABC 中,∠90C=,6BC cm =,23cotA =,那么△ABC 的面积是__________2cm .17.如图,某公园入口处原有三级台阶,每级台阶高为18cm ,深为30cm ,为方便残疾人士,拟将台阶 改为斜坡,设台阶的起点为A ,斜坡的起始点为C ,现设计斜坡BC 的坡度1:5i =,那么AC 的长度是 cm .18. 如图,在△ABC 中,∠90C =,将△ABC 沿直线MC 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,6MC =,NC =MABN 的面积是______________.(第14题) (第15题) (第16题)三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:230(60)cos sin ⋅.20.(本题满分10分)如图,已知两个不平行的向量a 、b .先化简,再求作:13(3)()22a b a b +-+. (不要求写作法,但要指出所作图中表示结论的向量) 21.(本题满分10分)已知:在直角梯形ABCD 中,AD ∥BC ,∠90C =,25AB AD ==,32BC =.连接BD ,AE⊥BD ,垂足为点E .(1)求证:△ABE ∽△DBC ; (2)求线段AE 的长.22.(本题满分10分)一艘轮船自西向东航行,在A 处测得东偏北21.3°方向有一座小岛C ,继续向东航行80海里到达B 处,测得小岛C 此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C 最近?(参考数据:921.325sin ≈,221.35tan ≈,963.510sin ≈,63.52tan ≈)ba(第20题图)(第17题)(第18题)(第21题)23.(本题满分12分,其中第(1)小题3分,第(2)小题4分, 第(3)小题5分)如图,点E 是矩形ABCD 的边BC 上一点,EF ⊥AE ,EF 分别交AC 、CD 于点M 、F ,BG ⊥AC ,垂足为点G ,BG 交AE 于点H . (1)求证:△ABE ∽△ECF ;(2)找出与△ABH 相似的三角形,并证明;(3)若E 是BC 中点,2BC AB =,2AB =,求EM 的长. 24.(本题满分12分,其中第(1)小题2分,第(2)小题5分,第(3)小题5分)如图,点A 在x 轴上,4OA =,将线段OA 绕点O 顺时针旋转120°至OB 的位置.(1)求点B 的坐标;(2)求经过点A 、O 、B 的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,说明理由.25.(本题满分14分,其中第(1)小题3分,第(2)小题5分,第(3)小题6分)将△ABC 绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍,得△AB C '',即如图①,我们将这种变换记为[],n θ.(1)如图①,对△ABC]得△AB C '',那么AB C ABCS S ''∆∆= ; 直线BC 与直线B C ''所夹的锐角为 度;(2)如图②,△ABC 中,∠30BAC =,∠90ACB =,对△ABC 作变换[],n θ得△AB C '',使点B 、C 、C '在同一直线上,且四边形ABB C ''为矩形,求θ和n 的值;(第23题)(3)如图③,△ABC 中,AB AC =,∠36BAC =,1BC =,对△ABC 作变换[],n θ得AB C '',使点B 、C 、B '在同一直线上,且四边形ABB C ''为平行四边形,求θ和n 的值.2012学年普陀区九年级数学期终调研试卷参考答案及评分说明一、选择题: 1.D . 2.C . 3.A . 4.B . 5.B . 6.D .二、填空题: 7.16.8.()2. 9.1:4. 10.1m <.11.()2212y x =---. 12.-1 . 13.2cos α. 14.EA 和CE . 15. 4. 16. 12. 17. 210. 18.三、解答题: 19.解:原式2=⎝⎭ 4分34=- 4分= 2分 20. 解:13322a b a b ⎛⎫⎛⎫+-+⎪ ⎪⎝⎭⎝⎭13322a b a b =+-- 1分 2a b =-+. 4分画图正确4分(方法不限), 结论1分.21.(1)证明:∵25AB AD ==,∴∠1=∠2. 1分∵AD ∥BC ,∴∠1=∠3. 1分∴∠2=∠3. 1分∵AE ⊥BD ,∴∠AEB =∠C =90°. 1分∴△ABE ∽△DBC . 1分22.解:过点C 作CD ⊥AE ,垂足为点D ,此时轮船离小岛最近,BD 即为所求. 由题意可知:∠A =21.3°,AB =80海里,∠CBE =63.5°. 在Rt △ACD 中, tan ∠25CD A AD ==, 1分 ()2805CD BD =+. 1分 12 3E同理:2CD BD =. 2分∴()22805BD BD =+. 2分 解得:20BD =. 1分24. 解:(1)如图,过点B 作BC ⊥x 轴,垂足为点C . 1分∵∠AOB =120°, ∴∠BOC =60°. 又∵4OA OB ==,∴2OC =,BC =.∴点B 的坐标为(2,--. 2分 (2)∵抛物线过原点O 和点A 、B ,∴可设抛物线的解析式为()20y ax bx a =+≠. 1分1 2 345将()4,0A,(2,B --代入,得164042a b a b +=⎧⎪⎨-=-⎪⎩ 2分解得6a b ⎧=-⎪⎪⎨⎪=⎪⎩.∴此抛物线的解析式为y x =+ 2分 (3)存在. 1分解:如图,抛物线的对称轴是2x =,直线2x =与x 轴的交点为D ,设点P 的坐标为()2,y .①若OB OP =,则22224y +=,解得y =±,当y =Rt △POD 中,∠PDO =90°,sin∠2PD POD OP ==, ∴∠POD =60°.∴∠POB =∠POD +∠AOB=60°+120° =180°,即P 、O 、B 三点在同一直线上.∴y =∴点P的坐标为(2,-. 1分②若BO BP =,则2244y ++=,解得y =-∴点P的坐标为(2,-. 1分③若PO PB =,则22224y y +=++,解得y =-∴点P 的坐标为(2,-. 1分综上所述,符合条件的点P 只有一个,其坐标为(2,-. 1分25.解:(1)3;60. 2分 (2)∵四边形ABB C ''是矩形,∴∠BAC '=90°. 1分 ∴θ=∠CAC '=∠BAC '-∠BAC =90°-30°=60°. 1分 在Rt △ABB '中,∠ABB '=90°,∠BAB '=60°, ∴∠AB B '=30°. 1分∴2AB AB '=,即2AB n AB'==. 1分 (3)∵四边形ABB C ''是平行四边形,∴AC '∥BB '. 又∵∠BAC =36°,∴θ=∠CAC '=∠ACB =72°. 1分 ∴∠C AB ''=∠BAC =36°. 1分 而∠B =∠B ,∴△ABC ∽△B BA '. 1分 ∴::AB BB CB AB '=. 1分∴()2AB CB BB CB BC CB ''=⋅=+. 1分而CB ACAB B C '''==,1BC =,∴()211AB AB =+, 1分解得,12AB =. 1分 ∵0AB >,∴BC n BC '==. 1分 (以上各题,若有其他解法,请参照评分标准酌情给分)。
2012年上海市初中毕业统一学业考试数 学1. 在下列代数式中,次数为三的单项式是( )A .2xyB .33x y +C .3x yD .3xy2. 数据5,7,5,8,6,13,5的中位数是( )A .5B .6C .7D .83. 不等式组2620x x -<⎧⎨->⎩的解集是( )A .3x >-B .3x <-C .2x >D .2x <4. 在下列根式中,二次根式a b -的有理化因式是( )A .a b +B .a b +C .a b -D .a b -5. 在下列图形中,为中心对称图形的是( )A .等腰梯形B .平行四边形C .正五边形D .等腰三角形6. 如果两圆的半径分别为6和2,圆心距为3,那么这两圆的位置关系是( )A .外离B .相切C .相交D .内含7. 计算:112-= . 8. 因式分解:xy x -= .9. 已知正比例函数(0)y kx k =≠,点(2,3)-在函数上,则y 随x 的增大而(选填“增大”或“减小”).10. 方程12x +=的根是 .11. 如果关于x 的方程260x x c -+=(c 为常数)没有实数根,那么c 的取值范围是 .12. 将抛物线2y x x =+向下平移2个单位,所得的新抛物线的解析式为.13. 布袋中装有个3红球和6个白球,它们除颜色外其他都相同,如果从布袋中随机摸出一个球,那么所摸到的球恰好为红球的概率是 . 14. 某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示,其中每个分数段可包括最小值,不包括最大值,结合表格的信息,可得测试分数在8090 分数段的学生有 名.15. 如图,已知梯形ABCD ,AD //BC ,2BC AD =,若AD a =,AB b = ,那么AC = (用a ,b表示).16. 在ABC 中,点D ,E 分别在AB ,AC 上,AED B ∠=∠,如果2AE =,ADE 的面积为4,四边形BCED 的面积为5,那么边AB 的长为 .17. 我们把两个三角形的中心之间的距离叫做重心距,在同一平面内有两个边长相等的等边三角形,如果当它们的一边重合时重心距为2,那么当它们的一分数段 60~70 70~80 80~90 90~100 频率 0.20.250.25DCBA A BD CE对角成对顶角时重心距为 .18. 如图所示,Rt ABC 中,90C ∠=︒,1BC =,30A ∠=︒,点D 为边AC 上的一动点,将ABD 沿直线BD 翻折,点A 落 在点E 处,如果DE AD ⊥时,那么DE = .19. 计算:1122112(31)32221-⎛⎫⨯-++- ⎪-⎝⎭20. 解方程:261393x x x x +=+--21. 如图所示,在Rt ABC ,90ACB ∠=︒,D 是边AB 的中点,BE CD ⊥,垂足为E ,已知15AC =,35cosA =.①求线段CD 的长; ②求sin DBE ∠的值.22. 某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y 万元与生产数量x 吨的函数关系式如图所示.①求y 与x 的函数关系式,并写出其定义域;②当生产这种产品的总成本为280万元时,求该产品的生产数量. (注:总成本=每吨的成本×生产数量)CBDAE DBCA105010xOy623. 如图所示,在菱形ABCD 中,点E 、F 分别在BC 、CD 上,BAF DAE ∠=∠,AE 与BD 相交于点G .①求证:BE DF =; ②当DF AD FC DF=时,求证:四边形BEFG 是平行四边形.24. 如图,在平面直角坐标系中,二次函数26y ax x c =++过点(4A ,0)和(1B -,0),并与y 轴交于点C ,点D 在线段OC 上,设DO t =,点E 在第二象限,且90ADE ∠=︒,12tan DAE ∠=,EF OD ⊥于F . ①求二次函数的解析式;②用含t 的代数式表示EF 和OF 的长; ③当ECA CAO ∠=∠时,求t 的值.25. 已知扇形AOB 中,90AOB ∠=︒,2OA OB ==,C 为 AB 上的动点,且不与A 、B 重合,OE AC ⊥于E ,OD BC ⊥于D . ①若1BC =,求OD 的长;②在DOE 中,是否存在长度保持不变的边,若存在,求出该边的长; 若不存在,请说明理由;③设BD x =,DOE 的面积为y ,求y 与x 的函数关系式及定义域.xD FEO B ACy AOBCDEEDCB AFG2012年上海市初中毕业统一学业考试数学参考答案1 2 3 4 5 6 7 8 9A B C C B D 1/2 (1)x y-减小10 11 12 13 14 15 16 17 183x=9c>22y x x=+-13150 2a b+3 4 31-【详解】1、解:根据单项式的次数定义可知:A、xy2的次数为3,符合题意;B、x3+y3不是单项式,不符合题意;C、x3y的次数为4,不符合题意;D、3xy的次数为2,不符合题意.故选A.2、解:将数据5,7,5,8,6,13,5按从小到大依次排列为:5,5,5,6,7,8,13,位于中间位置的数为6.故中位数为6.故选B.3、解:-2x<6 ①x-2>0 ②,由①得:x>-3,由②得:x>2,所以不等式组的解集是x>2.故选C.4、5、解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选:B.7、8、解:xy-x=x(y-1).故答案为:x(y-1).9、10、11、12、13、14、解:80~90分数段的频率为:1-0.2-0.25-0.25=0.3, 故该分数段的人数为:500×0.3=150人. 故答案为:150. 15、16、17、19 .3. 解 :原式=23122324-+++- =231232-+++-=3. 20.1x =.解:x(x-3)+6=x-3 x 2-4x+3=0 x1=2或x2=3经检验:x=3是方程的增根 x=1是原方程的根21.225(或12.5); 257.分析:(1)应用锐角三角比,求出斜边AB 即可(2)运用3cos 5B =,算出CE=16,DE=16-(25/2)=7/2,而DB=25/2 所以7sin 25DE DBE DB ∠==22. ① y=-101x+11(10≤x ≤50) ② 40.分析 (1)直接(10,10)、(50,6)代入 y=kx+b(2) 1(11)28010x x -+= 解得:140x =或270x = 由于1050x ≤≤,故40x = 23 分析(1)利用()ABE ADF ASA ∆≅∆(2)证明://AD BCAD AD DG DF DF BE GB FC∴===//GF BE ∴ 易证:GB=BE所以四边形BEFG 是平行四边形24 第一小问:第二小问:第三小问:25 第一小问解析:第二小问解析:第三小问解析:。
普陀区2012学年第二学期九年级数学3月调研试卷一、选择题(每题4分,满分24分)1、下列二次根式中,最简二次根式是 ( ) (A )x 63 (B )142-x (C )32x (D )x 1 2、下列运算正确的是 ( )(A )232121a a a =÷ (C )()2222a a =(B )632a a a =⋅(D )()()22b a b a b a +-=---3、下列方程中,没有实数根的是 ( )(A )122--=x x (B )x x =+1 (C )0112=+-x x (D )x x 3422=+ 4、不等式组⎩⎨⎧-≤-->x x x 28132的最小整数解是 ( )(A )-1(B )0 (C )2 (D )35、对角线互相平分且相等的四边形是 ( ) (A )菱形 (B )矩形 (C )正方形 (D )等腰梯形6、下列命题中,真命题的个数有 ( )①长度相等的两条弧是等弧;②正多边形既是轴对称图形,又是中心对称图形; ③相等的圆心角所对的弧相等; ④垂直弦的直径平分这条弦. (A )1个 (B )2个 (C )3个 (D )4个二、填空题(每题4分,满分48分)7、计算:1-11+x = . 8、如果两个相似三角形的面积比为1∶2,那么它们的周长比为 .9、掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为奇数的概率为 .10、在实数范围内分解因式:221x x --= . 11、数据2、4、5、5、6、8的方差是 .12、如图,在ABC ∆中,点G 是重心, 设向量AB a = ,GD b =,那么学校 班级 姓名学号 _____________________________________________________装____________订___________线____________________________向量BC =(结果用a 、b 表示).13、点11(,)A x y ,点22(,)B x y 是双曲线2y x=-上的两点,若120x x <<,则1y 2y (填“=”、“>”、“<”).14、在△ABC 中,点D 、E 分别在边AB 和AC 上,且DE ∥BC , 如果AD =5,DB =10,那么ADE S ∆:ABC S ∆的值为 .15、如图,在高楼前D 点测得楼顶的仰角为30o ,向高楼前进60米到C 点,又测得楼顶的仰角为45o ,则该高楼的高度 大约为___________米.(结果可保留根号)16、矩形ABCD 中,AD =4,CD =2,边AD 绕A 旋转使得点D 落在CB 的延长线上的P 处,那么∠DPC 的度数为 _.17、如图,是一个隧道的截面,如果路面AB 宽为8米,净高CD 为8米,那么这个隧道所在圆的半径OA 是 米.18、已知两圆的圆心距为4,其中一个圆的半径长为5,那么当两圆内切时,另一圆的半径为 . 三、解答题(第19~22题各10分,第23、24题各12分,第25题14分,满分78分)19、计算:13123622127)3(-++⨯+-+--)(.20、解方程组:⎩⎨⎧=-+-=+.012,5222y xy x y x )2()1((第17题)(第15题图)(第12题图)21. 在四边形ABCD 中, 0090,60=∠=∠=∠D B A ,3,2==CD BC , 求AB 的长.DCBA22、今年3月12日,某校九年级部分学生参加植树节活动,参加植树学生植树情况的部分统计结果如图所示.请根据统计图形所提供的有关信息,完成下列问题:(1)求参加植树的学生人数; (2)求学生植树棵数的平均数(精确到1)(3)请将该条形统计图补充完整.23.(本题12分)如图,在⊙O 中,AD 、BC 相交于点E ,OE 平分∠(1)求证:CD AB =;(2)如果⊙O 的半径为5,CB AD ⊥,1=DE ,求AD 的长.植树棵数24.(本题满分12分)如图,直线n x y +-=2(n >0)与轴轴、y x 分别交于点B A 、,16=∆OAB S ,抛物线)0(2≠+=a bx ax y 经过点A ,顶点M 在直线n x y +-=2上.(1)求n 的值; (2)求抛物线的解析式;(3)如果抛物线的对称轴与x 轴交于点N ,那么在对称轴上找一点P ,使得OPN ∆和AMN ∆相似,求点P的坐标.25、在梯形ABCD 中,∠ABC= 90,AD ∥BC ,AB=8cm ,BC=18cm ,54sin =∠BCD ,点P 从点B 开始沿BC 边向终点C 以每秒3cm 的速度移动,点Q 从点D 开始沿DA 边向终点A 以每秒2cm 的速度移动,设运动时间为t 秒.(1)如图:若四边形ABPQ 是矩形,求t 的值; (2)若题设中的“BC=18cm ”改变为“BC=k cm ”,其它条件都不变,要使四边形PCDQ 是等腰梯形,求t 与k 的函数关系式,并写出k 的取值范围;(3)如果⊙P 的半径为6cm ,⊙Q 的半径为4cm ,在移动的过程中,试探索:t 为何值时⊙P 与⊙Q 外离、外切、相交?数学试题参考答案及评分标准一.选择题(本题共6备用图备用图二.填空题(本大题共12小题,每小题4分,满分48分)7.1+x x ; 8.1∶2; 9.21; 10.()()2121+---x x ; 11.310; 12.26-; 13.<; 14.91; 15.30330+;16.015; 17.5; 18.9或1. 三.解答题(本大题共7小题,满分78分)19.解:13123622127)3(-++⨯+-+--)( 231321231+++-+-= ………………………………5分23321231-++-+-=………………………………2分333-= ………………………………3分20.解: 由(2)得:01=--y x 或01=+-y x .………………………………(2分) 原方程组可化为:⎩⎨⎧=--=+;01,52y x y x ⎩⎨⎧=+-=+.01,52y x y x …………………(4分) 解这两个方程组得原方程组的解为:⎪⎪⎩⎪⎪⎨⎧==;34,3711y x⎩⎨⎧==;2,122y x ………(4分) 说明:学生如果利用代入消元法求解,参照给分。
二次函数()21236y x =+的图像的顶点为A ,与y 轴交于点B ,以AB 为边在第二象限内作等边三角形ABC .(1)求直线AB 的表达式和点C 的坐标. (2)点(),1M m 在第二象限,且△ABM 的面积等于△ABC 的面积,求点M 的坐标.(3)以x 轴上的点N 为圆心,1为半径的圆,与以点C 为圆心,CM 的长为半径的圆相切,直接写出点N 的坐标.yx-111-1O已知,90ACB ∠= ,C D 是A C B ∠的平分线,点P 在C D 上,2CP =.将三角板的直角顶点放置在点P 处,绕着点P 旋转,三角板的一条直角边与射线CB 交于点E ,另一条直角边与直线CA 、直线CB 分别交于点F 、点G . (1)如图9,当点F 在射线CA 上时, ①求证: PF = PE .②设CF = x ,EG =y ,求y 与x 的函数解析式并写出函数的定义域. (2)联结EF ,当△CEF 与△EGP 相似时,求EG 的长.备用图ABCPD图9ABCEGPDF函数xk y =和xk y -=)0(≠k 的图像关于y 轴对称,我们把函数xk y =和xk y -=)0(≠k 叫做互为“镜子”函数.类似地,如果函数)(x f y =和)(x h y =的图像关于y 轴对称,那么我们就把函数)(x f y =和)(x h y =叫做互为“镜子”函数.(1)请写出函数43-=x y 的“镜子”函数: ,(3分) (2)函数 的“镜子”函数是322+-=x x y ; (3分) (3)如图7,一条直线与一对“镜子”函数xy 2=(x >0)和xy 2-=(x <0)的图像分别交于点C B A 、、,如果2:1:=AB CB ,点C 在函数xy 2-=(x <0)的“镜子”函数上的对应点的横坐标是21,求点B 的坐标. (6分)ABCOxy 图7在ABC Rt ∆中,︒=∠90C ,6=AC ,53sin =B ,⊙B 的半径长为1,⊙B 交边CB于点P ,点O 是边AB 上的动点.(1)如图8,将⊙B 绕点P 旋转︒180得到⊙M ,请判断⊙M 与直线AB 的位置关系;(4分) (2)如图9,在(1)的条件下,当OMP ∆是等腰三角形时,求OA 的长; (5分) (3)如图10,点N 是边BC 上的动点,如果以NB 为半径的⊙N 和以OA 为半径的⊙O 外切,设y NB =,x OA =,求y 关于x 的函数关系式及定义域.(5分).BOACP 图9BOACP 图8 图10ONBAC24.(本题满分12分,每小题满分各4分)如图,在平面直角坐标系中,二次函数cy+=2的图像经过点)0,3(A,+axbx,0(-C,顶点为D.(-)0,1B,)3(1)求这个二次函数的解析式及顶点坐标;(2)在y轴上找一点P(点P与点C不重合),使得0∠APD,求点P坐标;=90(3)在(2)的条件下,将APD∆沿直线AD翻折,得到AQD∆,求点Q坐标.yxO ABCD25.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)如图,ABC ∆中,5==BC AB ,6=AC ,过点A 作AD ∥BC ,点P 、Q 分别是射线AD 、线段BA 上的动点,且BQ AP =,过点P 作PE ∥AC 交线段AQ 于点O ,联接PQ ,设POQ ∆面积为y ,x AP =.(1)用x 的代数式表示PO ;(2)求y 与x 的函数关系式,并写出定义域;(3)联接QE ,若PQE ∆与POQ ∆相似,求AP 的长.BPDQCAO E在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a =++≠经过点(3,0)A -和点(1,0)B .设抛物线与y 轴的交点为点C .(1)直接写出该抛物线的对称轴;(2)求O C 的长(用含a 的代数式表示);(3)若A C B ∠的度数不小于90︒,求a 的取值范围.-1 O1 2 -1 12-3 -2 yx第24题图-3 3 -23 AB如图,△ABC 中,∠ABC =90°,AB =BC =4,点O 为AB 边的中点,点M 是BC 边上一动点(不与点B 、C 重合),AD ⊥AB ,垂足为点A .联结MO ,将△BOM 沿直线MO 翻折,点B 落在点B 1处,直线M B 1与AC 、AD 分别交于点F 、N ..(1)当∠CMF =120°时,求BM 的长;(2)设B M x =,C M F y AN F ∆=∆的周长的周长,求y 关于x 的函数关系式,并写出自变量x 的取 值范围;(3)联结NO ,与AC 边交于点E ,当△FMC ∽△AEO 时,求BM 的长.OABCMDN B 1F第25题图24.(本题共3小题,每小题4分,满分12分)已知:如图,抛物线2y x b x c =-++与x 轴的负半轴相交于点A ,与y 轴相交于点B (0,3),且∠OAB 的余切值为13.(1)求该抛物线的表达式,并写出顶点D 的坐标; (2)设该抛物线的对称轴为直线l ,点B 关于直线l 的对称点为C ,BC 与直线l 相交于点E .点P 在直线l 上,如果点D 是△PBC 的重心,求点P 的坐标; (3)在(2)的条件下,将(1)所求得的抛物线沿y 轴向上或向下平移后顶点为点P ,写出平移后抛物线的表达式.点M 在平移后的抛物线上,且△MPD 的面积等于△BPD 的面积的2倍,求点M 的坐标.xyO AB(第24题图)25.(本题共3小题,第(1)小题4分,第(2)、(3)小题每小题5分,满分14分)已知:如图,AB ⊥BC ,AD // BC , AB = 3,AD = 2.点P 在线段AB 上,联结PD ,过点D 作PD 的垂线,与BC 相交于点C .设线段AP 的长为x . (1)当AP = AD 时,求线段PC 的长;(2)设△PDC 的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; (3)当△APD ∽△DPC 时,求线段BC 的长.ABCDP (第25题图) ABCD(备用图)24.在Rt △ABC 中, AB =BC =4,∠B = 90,将一直角三角板的直角顶点放在斜边AC 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别与边AB 、BC 或其延长线上交于D 、E 两点(假设三角板的两直角边足够长),如图(1)、图(2)表示三角板旋转过程中的两种情形. (1)直角三角板绕点P 旋转过程中,当BE = ▼ 时,△PEC 是等腰三角形; (2)直角三角板绕点P 旋转到图(1)的情形时,求证:PD =PE ;(3)如图(3),若将直角三角板的直角顶点放在斜边AC 的点M 处,设AM : MC =m : n (m 、n 为正数),试判断MD 、ME 的数量关系,并说明理由.图(1)图(2) 图(3)MABCDEEDPPED ABCCBA25.如图,在直角坐标平面中,O 为原点,A (0,6), B (8,0).点P 从点A 出发, 以每秒2个单位长度的速度沿射线AO 方向运动,点Q 从点B 出发,以每秒1个单位长度的速度沿x 轴正方向运动.P 、Q 两动点同时出发,设移动时间为t (t >0)秒.(1)在点P 、Q 的运动过程中,若△POQ 与△AOB 相似,求t 的值; (2)如图(2),当直线PQ 与线段AB 交于点M ,且51MABM 时,求直线PQ 的解析式;(3)以点O 为圆心,OP 长为半径画⊙O ,以点B 为圆心,BQ 长为半径画⊙B ,讨论⊙O 和⊙B 的位置关系,并直接写出相应t 的取值范围.图(1) 图(2) (备用图)MyxOBAQP A BOxyQPyxBA O24.(本题满分12分,第(1)小题满分4分,第(2)小题满分8分)如图,一次函数1+=x y 的图像与x 轴、y 轴分别相交于点A 、B .二次函数的图像与y 轴的正半轴相交于点C ,与这个一次函数的图像相交于点A 、D ,且1010sin =∠ACB .(1) 求点C 的坐标;(2) 如果∠CDB =∠ACB ,求这个二次函数的解析式.(第24题图)xyOAB C25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图,⊙O的半径为6,线段AB与⊙O相交于点C、D,AC=4,∠BOD=∠A,OB与⊙O相交于点E,设OA=x,CD=y.(1)求BD长;O(2)求y关于x的函数解析式,并写出定义域;E (3)当CE⊥OD时,求AO的长.A C D B(第25题图)。
2012学年普陀区九年级数学期终调研试卷参考答案及评分说明一、选择题(本大题共6题,每题4分,满分24分)1.(D); 2. (C); 3.(A); 4.(B); 5.(B); 6.(D).二、填空题(本大题共12题,每题4分,满分48分)7.16; 8.(2); 9.1︰4; 10.1m <; 11.22(1)2y x =---;12.1-; 13.2cos α; 14.EA 和CE ; 15.4; 16.12; 17.210 ; 18. 三、解答题:(本大题共7题,满分78分)19.解:原式2=-4分)34=………………………………………………………………(4分)=. …………………………………………………………………(2分) 20. 解: 13(3)()22a b a b +-+ 13322a b a b =+-- ………………………………………………………(1分) 2a b =-+ …………………………………………………………………(4分)画图正确4分(方法不限),结论1分.21.(1)证明:∵AB=AD =25,∴∠1 =∠2.……………… (1分) ∵AD ∥BC ,∴∠1=∠3.……………………(1分)∴∠2=∠3. …………………………………(1分)∵AE ⊥BD , ∴∠AEB =∠C =90°. ………………………(1分)∴△ABE ∽△DBC . ………………………(1分)22.解:过点C 作CD ⊥AE ,垂足为点D ,此时轮船离小岛最近,BD 即为所求.………(1分) 1 2 3 E由题意可知:∠A =21.3°,AB =80海里,∠CBE =63.5°.…(1分)在Rt △ACD 中,tan ∠A =CD AD =25,……………………………………………(1分) 2(80)5C D B D =+;………………………………………………………(1分) 同理:2CD BD =;………………………………………………………………(2分)∴22(80)5BD BD =+,…………………………………………………………(2分) 解得: 20BD =.…………………………………………………………(1分)C 答:轮船继续向东航行20海里,距离小岛最近.……………………………………(1分)24. 解:(1)如图,过点B 作BC ⊥x 轴,垂足为的点C .……………………………………………(1分)1 2 3 4 5∵∠AOB =120°,∴∠BOC =60°.又∵OA=OB =4, ∴=2OC,BC∴点B 的坐标为(﹣2,﹣).…………………………………………………(2分)(2)∵抛物线过原点O 和点A 、B ,∴可设抛物线的解析式为2(0)y ax bx a =+≠,……………………………………(1分) 将A (4,0),B (﹣2,﹣1640,42a b a b +=⎧⎪⎨-=-⎪⎩……………………………………………………………………(2分)解得a b ⎧=⎪⎪⎨⎪=⎪⎩∴此抛物线的解析式为y =+………………………………………………(2分) (3)存在.……………………………………………………………………………………(1分) 解:如图,抛物线的对称轴是x =2,直线x =2与x 轴的交点为D ,设点P 的坐标为(2,y ).①若OB=OP ,则22+|y |2=42,解得y=±,当y=时,在Rt △POD 中,∠PDO =90°,sin ∠POD =PDOP=POD =60°. ∴∠POB =∠POD +∠AOB =60°+120°=180°,即P 、O 、B 三点在同一直线上.∴y=不符合题意,舍去.∴点P 的坐标为(2,﹣.………………………………………………………(1分)②若BO=BP ,则42+|y+|2=42,解得y =﹣∴点P 的坐标为(2,﹣).……………………………………………………………(1分) ③若PO=PB ,则22+|y |2=42+|y+|2,解得y =﹣.∴点P 的坐标为(2,﹣).……………………………………………………………(1分)综上所述,符合条件的点P 只有一个,其坐标为(2,﹣).…………………(1分) 25.解:(1) 3;60. …………………………………………………………………………(2分)(2)∵四边形 ABB′C′是矩形,∴∠BAC′=90°.………………………………………(1分)∴θ=∠CAC′=∠BAC′﹣∠BAC =90°﹣30°=60°.……………………………………(1分) 在 Rt △AB B' 中,∠ABB'=90°,∠BAB′=60°,∴∠AB′B =30°.…………………(1分) ∴AB′=2 AB ,即2AB n AB'==.……………………………………………………(1分) (3)∵四边形ABB′C′是平行四边形,∴AC′∥BB′.又∵∠BAC =36°,∴θ=∠CAC′=∠ACB =72°. …………………………………(1分) ∴∠C′AB′=∠BAC =36°. …………………………………………………………(1分) 而∠B =∠B ,∴△ABC ∽△B′BA . ………………………………………………(1分) ∴AB ∶BB′=CB ∶AB . ……………………………………………………………(1分) ∴AB 2=CB•BB′=CB (BC +CB′). …………………………………………………(1分) 而 CB′=AC=AB=B′C′,BC =1,∴AB 2=1(1+AB ),………………………………(1分)解得,AB =.…………………………………………………………………(1分)∵AB >0,∴12BC n BC '==.…………………………………………………(1分) (以上各题,若有其他解法,请参照评分标准酌情给分)。
上海市普陀区2012学年度第二学期初中七年级期末质量调研数学试卷(时间90分钟,满分100分) 2013.6说明:请规范书写,不要用铅笔答题.一、填空题(本大题共有14题,每题2分,满分28分) 1.16的平方根等于. 2=. 3.如果用四舍五入法并精确到百分位,那么0.7856≈ . 4.比较大小:3- (填“>”,“=”,“<”). 5= . 6= .7.如图1,直线AB 、CD 相交于点O ,OE 平分BOC ∠.如果65BOE ∠=,那么AOC ∠= 度.OEDCBA图1 图28.如图2,直线c 与b a ,都相交, //a b ,如果2110∠=︒,那么1∠= 度.9.如果点P 在第二象限,且点P 到x 轴的距离是3,到y 轴的距离是5,那么点P 的坐标是 . 10.已知△ABC 的两边8a =,2b =,那么第三条边c 的长度的范围是.11.如图3,在Rt △ABC 中,90ABC ∠=,BD 是斜边AC 上的高.如果154∠=,那么C ∠= 度.12.如图4,已知//AD BC ,AC 与BD 相交于点O .请写出图中面积相等的一对三角形: (只要写出一对即可).D AB C 1ODCBACBAD图3 图4 图513.如图5,在△ABC 中,80A ∠=,如果ABC ∠与ACB ∠的平分线交于点D ,那么BDC ∠= 度.14.如果一个等腰三角形其中一腰上的高与另一腰的夹角是30,那么这个等腰三角形的顶角等于 度.二、单项选择题(本大题共有4题,每题3分,满分12分) 15.下列各数中:0、2-227、π、0.3737737773(它的位数无限且相邻两个“3”之间“7”的个数依次加1个),无理数有……………………………( ).(A ) 1个; (B ) 2个; (C ) 3个; (D ) 4个.16.下列语句中正确的是…………………………………………………………( ). (A ) 数轴上的每一个点都有一个有理数与它对应; (B ) 负数没有方根;(C ) 近似数52.0有两个有效数字;(D ) 中国2010年上海世博会一轴四馆中的“中国馆”总建筑面积约为1601000平方米,1601000这个数是近似数. 17.如图6,不能推断AD//BC 的是…………………………………………………( ). (A ) 15∠=∠; (B ) 24∠=∠;(C ) 345∠=∠+∠ ; (D )012180B ∠+∠+∠=.18.给出下列关于三角形的条件: ①已知三边; ②已知两边及其夹角; ③已知两角及其夹边; ④已知两边及其中一边的对角.利用尺规作图,能作出唯一的三角形的条件分别是…………………………( ). (A ) ①②③; (B ) ①②④; (C ) ②③④; (D ) ①③④.EDCBA54321图6三、(本大题共有4题,第19、20题每题5分,第21、22题每题6分,满分22分) 19.计算:(5- 解:20.利用幂的运算性质进行计算:4.解:21.画图(不要求写画法,但需保留作图痕迹,并写出结论). (1)画△ABC ,使4AB =cm ,2BC =cm ,3AC =cm ; (2)画△ABC 边AC 上的中线BD . 解:22.如图7,在直角坐标平面内,已知点()2,3A --与点B ,将点A 向右 平移7个单位到达点C .(1)点B 的坐标是 ;A 、B 两点之间距离等于 ; (2)点C 的坐标是 ;△ABC 的形状是 ; (3)画出△ABC 关于原点O 对称的△111A B C .图7四、(本大题共有5题,第23、24题各6分,第25、26题各8分,第27题10分,满分38分) 23. 在△ABC 中,已知::3:4:5A B C ∠∠∠=,求三角形各内角度数. 解:24.如图8,已知AB AC =,AD BC ⊥,垂足为点D ,110BAC ∠=. (1)求1∠的度数;(2)BD CD =吗?为什么? 解:1DCBA图825.如图9,点A 、B 、C 、D 在一条直线上.如果AC BD =,BE CF =,且//BE CF ,那么//AE DF .为什么?解:因为//BE CF (已知),所以EBC FCB ∠=∠( ). 因为180EBC EBA ∠+∠=,180FCB FCD ∠+∠=(平角的意义), 所以 ( ). 因为AC BD =(已知),所以AC BC BD BC -=-(等式性质), 即 . (完成以下说理过程)26.如图10,在△ABC 中,已知AB AC =,点D 、E 、F 分别在边BC 、AC 、AB 上,且BD CE =,FDE B ∠=∠.(1)说明△BFD 与△CDE 全等的理由.(2)如果△ABC 是等边三角形,那么△DEF 是等边三角形吗?试说明理由. 解 :(1)记1EDC ∠=∠,2DFB ∠=∠.因为2FDC B ∠=∠+∠( ), 即12FDE B ∠+∠=∠+∠.又因为FDE B ∠=∠(已知),所以 (等式性质).(完成以下说理过程)FED CBA图9图1021F ED CBA27.如图11,在直角坐标平面内有两点()0,2A 、()2,0B -,且A 、B 两点之间的距离等于a (a 为大于0的已知数),在不计算a 的数值条件下,完成下列两题: (1)以学过的知识用一句话说出a >2的理由;(2)在x 轴上是否存在点P ,使△PAB 是等腰三角形,如果存在,请写出点P 的坐标,并求△PAB 的面积;如果不存在,请说明理由. 解:BA yxO图11参考答案与评分意见2009.6一、填空题(本大题共有14题,每题2分,满分28分)1.4±; 2. 34; 3.0.79; 4.>; 5.20; 6.235-;7.50; 8.70; 9.()5,3-; 10.10>c >6; 11.54; 12.△ABD 与△ADC 或△DCO 与△ABO 或△ABC 与△DBC ; 13.130; 14.60或120;二、单项选择题(本大题共有4题,每题3分,满分共12分) 15.B ; 16.D ; 17.B ; 18.A .三、(本大题共有4题,第19、20题各5分,第21、22题各6分,满分22分)19.解:原式2⎡=-⎢⎣……………………………………………………1分2⎡=-⎢⎣………………………………………………… 1分2=-……………………………………………1分2=………………………………………………………………… 2分【说明】没有过程,直接得结论扣2分.20.解法一: 原式4113222⎛⎫=⨯ ⎪⎝⎭……………………………………………………… 2分4562⎛⎫= ⎪⎝⎭…………………………………………………………… 1分1032=…………………………………………………………………1分=……………………………………………………………1分解法二: 原式4113222⎛⎫=⨯ ⎪⎝⎭……………………………………………………… 2分42322=⨯………………………………………………………… 1分 1032=…………………………………………………………………1分=……………………………………………………………1分21.(1)画图正确2分,标注字母正确1分,结论1分; (2)画图正确1分,标注字母正确1分.22.(1)()2,4-,7;……………………………………………………………(1+1)分 (2)()5,3-,等腰直角三角形;…………………………………………(1+1)分 (3)画图正确1分,标注字母正确1分.四、(本大题共有5题,第23、24题各6分,第25、26题各8分,第27题10分,满分38分) 23.解:根据题意:设A ∠ 、B ∠ 、C ∠的度数分别为3x 、4x 、5x .……1分 因为A ∠ 、B ∠ 、C ∠是△ABC 的三个内角(已知),所以180A B C ∠+∠+∠=(三角形的内角和等于180),……………1分即 345180x x x ++=.…………………………………………………1分 解得 15x =.……………………………………………………………2分 所以 45A ∠=,60B ∠=,75C ∠=.………………………………1分24.解:(1) 因为AB AC =(已知), 所以△ABC 是等腰三角形. 由AD BC ⊥(已知), 得112BAC ∠=∠(等腰三角形的三线合一).……………………………2分 由110BAC ∠=(已知), 得11110552∠=⨯=.……………………………………………………2分 (2)因为△ABC 是等腰三角形,AD BC ⊥(已知),所以BD CD =(等腰三角形的三线合一).……………………………2分【说明】在用“等腰三角形的三线合一”性质时,前面两个条件有漏写的,要扣1分.25.解: 两直线平行,内错角相等…………………………………………………1分 EBA FCD ∠=∠…………………………………………………………1分 等角的补角相等……………………………………………………………1分 AB CD =.………………………………………………………………1分 在△ABE 和△DCF 中,,,(AB CD ABE DCF BE CF =⎧⎪∠=∠⎨⎪=⎩已知), ………………………………………………………1分所以△ABE ≌△DCF (S.A.S ),……………………………………1分得A D ∠=∠(全等三角形的对应角相等),…………………………1分 所以//AE DF (内错角相等,两直线平行).…………………………1分26.(1)三角形的一个外角等于与它不相邻的两个内角和…………………………1分12∠=∠………………………………………………………………………1分因为AB AC =(已知),所以B C ∠=∠(等边对等角).……………………………………………1分在△BFD 和△CDE 中,12,,(B C BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩已知), ………………………………………………………1分所以△BFD ≌△CDE (A.A.S ),………………………………………1分(2)因为△BFD ≌△CDE ,所以DF DE =(全等三角形的对应边相等).……………………………1分因为△ABC 是等边三角形(已知),所以60B ∠=(等边三角形的每个内角等于60). 因为FDE B ∠=∠(已知),所以60FDE ∠=(等量代换).……………………………………………1分所以△DEF 是等边三角形(有一个内角等于60的等腰三角形是等边三角形).……………………………………………………………………………1分27.解:(1)a >2的理由是“垂线段最短”【说明】1.如果学生写出“直角三角形的斜边大于直角边”也同样给分. 2.如果学生想法正确,但表达不够清楚,酌情扣1分.(2)()12,0P a --,△1PAB 的面积为a ; ()22,0P a -,△2P AB 的面积为a ; ()32,0P ,△3PAB 的面积为4; ()40,0P ,△4P AB 的面积为2.(每个结论各1分)。
上海市普陀区中考数学第二次模拟试题考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:〔本大题共6题,每题4分,总分值24分〕[以下各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1. 以下计算中,错误的选项是 ······················· 〔▲〕 〔A 〕120180=; 〔B 〕422=-;〔C 〕2421=; 〔D 〕3131=-.2.以下二次根式中,最简二次根式是 ···················· 〔▲〕 〔A 〕a 9; 〔B 〕35a ; 〔C 〕22b a +; 〔D 〕21+a . 3.如果关于x 的方程022=++c x x 没有实数根,那么c 在2、1、0、3-中取值是 · 〔▲〕 〔A 〕2; 〔B 〕; 〔C 〕0; 〔D 〕3-.4.如图1,直线CD AB //,点E 、F 分别在AB 、CD 上,CFE ∠:EFB ∠3=:4,如果40B ∠=,那么BEF ∠= ······························ 〔▲〕 〔A 〕20; 〔B 〕40; 〔C 〕60; 〔D 〕80.5. 自1993年起,联合国将每年的3月22日定为“世界水日〞,宗旨是唤起公众的节水意识,加强水资源保护.某校在开展“节约每一滴水〞的活动中,从初三年级随机选出20名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表. 节约用水量〔单位:吨〕 1 2 家庭数46532ABCDF E图1这组数据的中位数和众数分别是······················〔▲〕〔A 〕,; 〔B 〕,; 〔C 〕,; 〔D 〕,.6. 如图2,两个全等的直角三角形纸片的直角边分别为a 、b )(b a ≠,将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有 ··········· 〔▲〕 〔A 〕3个; 〔B 〕4个; 〔C 〕5个; 〔D 〕6个.二、填空题:〔本大题共12题,每题4分,总分值48分〕 7.计算:xy x 3122⋅= ▲ . 8.方程32x x =+的根是 ▲ .9.大型纪录片?厉害了,我的国?上映25天,累计票房约为402700000元,成为中国纪录电影票房冠军.402700000用科学记数法表示是 ▲ .10.用换元法解方程312122=+-+x x x x 时,如果设y xx =+21,那么原方程化成以y 为“元〞的方程是 ▲ .11.正比例函数的图像经过点M (2-)、),(11y x A 、),(22y x B ,如果21x x <,那么1y ▲ 2y .〔填“>〞、“=〞、“<〞〕12.二次函数的图像开口向上,且经过原点,试写出一个符合上述条件的二次函数的解析式: ▲ .〔只需写出一个〕13.如果一个多边形的内角和是720,那么这个多边形的边有 ▲ 条.14.如果将“概率〞的英文单词 probability 中的11个字母分别写在11张一样的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母b 的概率是 ▲ .15.xx 年春节期间,反季游成为出境游的热门,中国游客青睐的目的地仍主要集中在温暖的东南亚地区.据调查发现xx 年春节期间出境游约有700万人,游客目的地分布情况的扇形图如图3所示,从中可知出境游东南亚 地区的游客约有 ▲ 万人.16. 如图4,在梯形ABCD 中,BC AD //,AD BC 3=,点E 、F 分别是边AB 、CD 的中点.设a AD =,b DC =,那么向量EC 用向量a 、b 表示是 ▲ .图2A东南亚欧美澳新16%港澳台 15%韩日11%其他13%图317. 如图5,矩形ABCD 中,如果以AB 为直径的⊙O 沿着BC 滚动一周,点B 恰好与点C 重合,那么y xO ABC图6ABBC的值等于 ▲ .〔结果保存两位小数〕18. 如图6,在平面直角坐标系xOy 中,△ABC 的顶点A 、C 在坐标轴上,点B 的坐标是(22).将△ABC 沿x 轴向左平移得到△111A B C ,点1B 落在函数6y x=-的图像上.如果此时四边形11AA C C 的面积等于552,那么点1C 的坐标是 ▲ .三、解答题:〔本大题共7题,总分值78分〕19.〔此题总分值10分〕先化简,再求值:42442222---++÷+x x x x x x x ,其中22x =-.20.〔此题总分值10分〕求不等式组()7153,31>34x x x x ⎧++⎪⎨--⎪⎩≥的整数解.21.〔此题总分值10分〕如图7,在Rt △ABC 中,90C ∠=,点D 在边BC 上,DE ⊥AB ,点E 为垂足,7AB =,45DAB ∠=,3tan 4B =. (1)求DE 的长; (2)求CDA ∠的余弦值.22.〔此题总分值10分〕小张同学尝试运用课堂上学到的方法,自主研究函数21y x =的图像与性质.下面是小张同学在研究过程中遇到的几个问题,现由你来完成:ABCDE 图7ABCDE F图4BC DO A 图5〔1〕函数21y x =的定义域是 ▲ ; 〔2〕下表列出了y 与x 的几组对应值:x … 2-32- m34- 12- 12341 32 2… y…14491694416914914…表中m 的值是 ▲ ;〔3〕如图8,在平面直角坐标系xOy 中,描出以表中各组对应值为坐标的点,试由描出的点画出该函数的图像; 〔4〕结合函数21y x =的图像,写出这个 函数的性质: ▲ .〔只需写一个〕23.〔此题总分值12分〕:如图9,梯形ABCD 中,AD ∥BC ,DE ∥AB ,DE 与对角线AC 交于点F ,FG ∥AD ,且FG EF =.〔1〕求证:四边形ABED 是菱形; 〔2〕联结AE ,又知AC ⊥ED ,求证:212AE EF ED =.24.〔此题总分值12分〕如图10,在平面直角坐标系xOy 中,直线3y kx =+与x 轴、y 轴分别相交于点A 、B ,并与图8ABC DE F G图9抛物线21742y x bx =-++的对称轴交于点()2,2C ,抛物线的顶点是点D .〔1〕求k 和b 的值;〔2〕点G 是y 轴上一点,且以点B 、C 、G 为顶点的三角形与△BCD 相似,求点G 的坐标; 〔3〕在抛物线上是否存在点E :它关于直线AB 的对称点F 恰好在y 轴上.如果存在,直接写出点E 的坐标,如果不存在,试说明理由.25.〔此题总分值14分〕P 是O ⊙的直径BA 延长线上的一个动点,P ∠的另一边交O ⊙于点C 、D ,两点位于AB 的上方,AB =6,OP m =,1sin 3P =,如图11所示.另一个半径为6的1O ⊙经过点C 、D ,圆心距1OO n =.〔1〕当6m =时,求线段CD 的长;〔2〕设圆心1O 在直线AB 上方,试用n 的代数式表示m ;〔3〕△1POO 在点P 的运动过程中,是否能成为以1OO 为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.参考答案及评分说明一、选择题:〔本大题共6题,每题4分,总分值24分〕图10xy1 1OOAB备用图PDOABC 图111.(B); 2.(C); 3.(A); 4.(C); 5.(D); 6.(B). 二、填空题:〔本大题共12题,每题4分,总分值48分〕 三、解答题〔本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,总分值78分〕19.解:原式()()22+22(2)22x x x x x x x -=-+-+ ··············· 〔3分〕122x x x =-++······················ 〔2分〕 12x x -=+.························· 〔1分〕 当2x =-时,原式=················· 〔1分〕··················· 〔1分〕=·················· 〔2分〕 20.解:由①得,2x ≥-. ························ 〔3分〕由②得,x <3. ························ 〔3分〕 ∴原不等式组的解集是2<3x -≤. ··············· 〔2分〕 所以,原不等式组的整数解是2-、1-、0、、2. ········· 〔2分〕21.解:〔1〕∵DE ⊥AB ,∴︒=∠90DEA又∵45DAB ∠=,∴AE DE =. ················· 〔1分〕7.323x y ; 8. 3x =;9. 810027.4⨯ ; 10. 32=-yy ; 11.>;12. 2y x =等;13.6; 14.112; 15.315; 16.b a212+; 17.;18.(5-211).在Rt △DEB 中,︒=∠90DEB ,43tan =B ,∴43=BE DE . ······· 〔1分〕 设x DE 3=,那么x AE 3=,x BE 4=.∵7AB =,∴743=+x x ,解得1=x . ·············· 〔2分〕 ∴3=DE . ·························· 〔1分〕 (2) 在Rt △ADE 中,由勾股定理,得23=AD . ··········· 〔1分〕同理得5=BD . ························ 〔1分〕 在Rt △ABC 中,由43tan =B ,可得54cos =B .∴528=BC . ···· 〔1分〕 ∴53=CD . ·························· 〔1分〕∴102cos ==∠AD CD CDA . ··················· 〔1分〕即CDA ∠ 22.解:〔1〕0x ≠的实数; ·························· 〔2分〕 〔2〕1-; ······························ 〔2分〕 〔3〕图(略); ····························· 〔4分〕 〔4〕图像关于y 轴对称; 图像在x 轴的上方;在对称轴的左侧函数值y 随着x 的增大而增大,在对称轴的右侧函数值y 随着x 的增大而减小; 函数图像无限接近于两坐标轴,但永远不会和坐标轴相交等. ····· 〔2分〕 23.证明:〔1〕∵ AD ∥BC ,DE ∥AB ,∴四边形ABED 是平行四边形. ······ 〔2分〕∵FG ∥AD ,∴FG CFAD CA=. ···················· 〔1分〕 同理EF CFAB CA = . ························ 〔1分〕 得FG AD =EF AB∵FG EF =,∴AD AB =. ···················· 〔1分〕 ∴四边形ABED 是菱形. ····················· 〔1分〕〔2〕联结BD ,与AE 交于点H .∵四边形ABED 是菱形,∴12EH AE =,BD ⊥AE . ········ 〔2分〕 得90DHE ∠= .同理90AFE ∠=.∴DHE AFE ∠∠=. ······················· 〔1分〕 又∵AED ∠是公共角,∴△DHE ∽△AFE . ············ 〔1分〕∴EH DEEF AE =. ························· 〔1分〕 ∴212AE EF ED =.······················· 〔1分〕 24.解:〔1〕 由直线3y kx =+经过点()2,2C ,可得12k =-. ············ 〔1分〕由抛物线21742y x bx =-++的对称轴是直线2x =,可得1b =. ····· 〔1分〕 (2) ∵直线132y x =-+与x 轴、y 轴分别相交于点A 、B ,∴点A 的坐标是()6,0,点B 的坐标是()0,3. ············ 〔2分〕 ∵抛物线的顶点是点D ,∴点D 的坐标是92,2⎛⎫ ⎪⎝⎭. ··········· 〔1分〕 ∵点G 是y 轴上一点,∴设点G 的坐标是()0,m .∵△BCG 与△BCD 相似,又由题意知,GBC BCD ∠=∠,∴△BCG 与△BCD 相似有两种可能情况: ············· 〔1分〕 ①如果BG BC CB CD =,解得1m =,∴点G 的坐标是()0,1.〔1分〕②如果BG BC CD CB =,那么352m -=,解得12m =,∴点G 的坐标是10,2⎛⎫ ⎪⎝⎭. 〔1分〕综上所述,符合要求的点G 有两个,其坐标分别是()0,1和10,2⎛⎫ ⎪⎝⎭.〔3〕点E 的坐标是91,4⎛⎫- ⎪⎝⎭或92,2⎛⎫ ⎪⎝⎭. ················· 〔2分+2分〕 25.解:〔1〕过点O 作OH ⊥CD ,垂足为点H ,联结OC .在Rt △POH 中,∵1sin 3P =,6PO =,∴2OH =. ········· 〔1分〕 ∵AB =6,∴3OC =. ······················ 〔1分〕由勾股定理得 CH = ····················· 〔1分〕∵OH ⊥DC ,∴2CD CH ==. ··············· 〔1分〕 〔2〕在Rt △POH 中,∵1sin 3P =, PO m =,∴3mOH =. ········ 〔1分〕 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. ················ 〔1分〕在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. ·············· 〔1分〕可得 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -=. ········· 〔2分〕〔3〕△1POO 成为等腰三角形可分以下几种情况:● 当圆心1O 、O 在弦CD 异侧时①1OP OO =,即m n =,由23812n n n-=解得9n =. ········· 〔1分〕即圆心距等于O ⊙、1O ⊙的半径的和,就有O ⊙、1O ⊙外切不合题意舍去.〔1分〕②11O P OO =n =,解得23m n =,即23n 23812n n-=,解得n ········· 〔1分〕 ● 当圆心1O 、O 在弦CD 同侧时,同理可得 28132n m n-=.∵1POO ∠是钝角,∴只能是m n =,即28132n n n-=,解得n . ·· 〔2分〕综上所述,n .如有侵权请联系告知删除,感谢你们的配合!。
图1普陀区第二学期九年级 数学期终考试调研卷2012.4.17(时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、单项选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.下列运算,计算结果错误的是( ▲ ).(A ) 437a a a = ; (B ) 633a a a ÷=; (C ) 325()a a =; (D ) 333()a b a b = . 2.经过点()2,4的双曲线的表达式是( ▲ ). (A )2y x =; (B )12y x=; (C )8y x =; (D )2y x =.3.如图1,飞镖投一个被平均分成6份的圆形靶子,那么飞镖落在阴影部分的概率是( ▲ ). (A )16; (B )13; (C )12; (D )23. 4.下列图形中是中心对称图形,但不是轴对称图形的是( ▲ ).(A ); (B(C ); (D ) .5. 已知四边形ABCD 中,90∠∠∠A B C ===,如果添加一个条件,即可判定该四边形是正方形,那么所添加的这个条件可以是( ▲ ). (A )90∠D =;(B )AB CD =; (C )AD BC =; (D )BC CD =.6.下列说法中正确的是( ▲ ).(A )某种彩票的中奖率是10%,则购买该种彩票100张一定中奖是必然事件; (B )如图2,在长方体ABCD -EFGH 中,与棱EF 、棱FG 都异面的棱是棱DH ; (C )如果一个多边形的内角和等于︒540,那么这个多边形是正五边形;(D )平分弦的直径垂直于这条弦.二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:22-= ▲ .8.方程212=-x 的根是 ▲ .9.用换元法解分式方程312122=+-+x x x x 时,如果设y x x =+12,那么原方程可以化为关于y 的方程是 ▲ .10.如果关于x 的方程210x ax a -+-=有两个相等的实数根,那么a 的值等于 ▲ . 11.已知正比例函数x k y )1(-=,函数值y 随自变量x 的值增大而减小,那么k 的取值范围是 ▲ .12.某种品牌的笔记本电脑原价为a 元,如果连续两次降价的百分率都为x ,那么两次降价后的价格为 ▲ 元.13.已知△ABC 的重心G 到BC 边上中点D 的距离等于2,那么中线AD 长等于 ▲ . 14.如果梯形的一条底边长为5,中位线长为7,那么另一条底边的长为 ▲ . 15.如图3,在△ABC 中,DE ∥BC ,如果DE=1,BC =4,那么△ADE 与△ABC 面积的比是 ▲ .ABCD EFG H图2CDEBA 图3 FCDEBA图4图5HGFCDEBA16.如图4,边长为1的菱形ABCD 的两个顶点B 、C 恰好落在扇形AEF 的弧EF 上时,弧BC 的长度等于 ▲ (结果保留π).17.在矩形ABCD 中,如果2AB = ,1BC = ,那么AB BC += ▲ .18.如图5,将边长为4的正方形ABCD 沿着折痕EF 折叠,使点B 落在边AD 的中点G 处,那么四边形BCFE 的面积等于 ▲ .三、解答题:(本大题共7题,满分78分)19.(本题满分10分)先化简,再求值:11)1112(22+÷+-+-a a a a a ,其中2=a .20.(本题满分10分)解方程组: 225602x xy y x y ⎧++=⎨+=⎩,.21.(本题满分10分)已知:如图6,在△ABC 中,CD ⊥AB ,sin A =45,AB =13,CD =12, 求AD 的长和tan B 的值.①②CDBA图6下面提供上海楼市近期的两幅业务图:图7(甲)所示为2011年6月至12月上海商品房平均成交价格的走势图(单位:万元/平方米);图7(乙)所示为2011年12月上海商品房成交价格段比例分布图(其中a 为每平方米商品房成交价格,单位:万元/平方米).(1)根据图7(甲),写出2011年6月至2011年12月上海商品房平均成交价格的中位数; (2)根据图7(乙),可知x = ▲ ;(3)2011年12月从上海市的内环线以内、内中环之间、中外环之间和外环线以外等四个区域中的每个区域的在售楼盘中随机抽出两个进行分析:共有可售商品房2400套,其中成交200套.请估计12月份在全市所有的60000套可售商品房中已成交的并且每平方米价格低于2万元的商品房的套数.23.(本题满分12分)如图8,四边形ABCD 中,BC AD //,点E 在CB 的延长线上,联结DE ,交AB 于点F ,联结DB ,AFD DBE ∠=∠,且2DE BE CE =⋅. (1) 求证:DBE CDE ∠=∠;(2)当BD 平分ABC ∠时,求证:四边形ABCD 是菱形.图8CAB时间(月)成交均价(万元/平方米)1.952.172.392.612.833.05图7(甲) 图7(乙)二次函数(216y x =+的图像的顶点为A ,与y 轴交于点B ,以AB 为边在第二象限内作等边三角形ABC .(1)求直线AB 的表达式和点C 的坐标. (2)点(),1M m 在第二象限,且△ABM 的面积等于△ABC 的面积,求点M 的坐标.(3)以x 轴上的点N 为圆心,1为半径的圆,与以点C 为圆心,CM 的长为半径的圆相切,直接写出点N 的坐标.25、(本题满分14分)已知,90ACB ∠=,CD 是ACB ∠的平分线,点P 在CD上,CP =的直角顶点放置在点P 处,绕着点P 旋转,三角板的一条直角边与射线CB 交于点E ,另一条直角边与直线CA 、直线CB 分别交于点F 、点G . (1)如图9,当点F 在射线CA 上时, ①求证: PF = PE .②设CF = x ,EG =y ,求y 与x 的函数解析式并写出函数的定义域. (2)联结EF ,当△CEF 与△EGP 相似时,求EG 的长.备用图ABC图9ABCEGPDF普陀区第二学期九年级数学期终考试试卷参考答案及评分说明一、单项选择题:(本大题共6题,每题4分,满分24分)1.(C); 2.(C); 3.(C); 4.(A); 5.(D); 6.(B).二、填空题:(本大题共12题,每题4分,满分48分)7.-4; 8. x = 9.123y y-= ; 10. 2; 11.1k <; 12. 2(1)a x -; 13.6; 14.9; 15.1:16;16.π3; 17 18.6.三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19.解:原式=)1()111(+⋅++-a aa a ………………………………………………………(3分)=aa a 11++- ……………………………………………………………………(2分)=aa 12+ ……………………………………………………………………………(2分) 当2=a 时,原式=21)2(2+223=……………………………………………………(3分)20.解法1:由①得:(2)(3)0x y x y ++=∴20x y +=或30x y += ………………………………………………(4分)原方程组可化为 20,2;x y x y +=⎧⎨+=⎩30,2.x y x y +=⎧⎨+=⎩……………………………………(2分) 分别解这两个方程组,得原方程组的解为114,2;x y =⎧⎨=-⎩223,1.x y =⎧⎨=-⎩ …………(4分) 解法2:由②得2y x =- ③ ………………………………………………………(1分) 把③代入①得225(2)6(2)0x x x x +-+-=整理得27120x x -+=……………………………………………………………(3分) 解得124,3x x ==…………………………………………………………………(2分) 分别代入③得112,1y y =-=-……………………………………………………(2分) ∴原方程组的解为114,2;x y =⎧⎨=-⎩223,1.x y =⎧⎨=-⎩ ………………………………………(2分)21.解: ∵CD ⊥AB ,∴∠CDA =90°…………………………………………………………………(1分) ∵ sin A =54=AC CD ,CD =12, ∴ AC =15…………………………………………………………………………(3分) ∴AD =9. …………………………………………………………………………(2分) ∴BD =4. …………………………………………………………………………(2分) ∴tan B =3=BDCD………………………………………………………………(2分)22、解:(1)2.68……………………………………………………………………………………(3分) (2)6…………………………………………………………………………………………(2分) (3)设12月份全市共成交商品房x 套,600002400200x=5000=x …………………………………………………………………………(3分)()50006%17%1150⨯+=(套)……………………………………………………(2分)∴估计12月份在全市所有的60000套可售商品房中已成交的并且每平方米价格低于2万元的商品房的成交套数为1150套.CAB23.(1)证明:∵CE BE DE ⋅=2,∴DEBECE DE =. ……………………………………………………………(2分)∵E E ∠=∠, ……………………………………………………………(1分)∴DBE∆∽CDE ∆.……………………………………………………………(1分)∴CDE DBE ∠=∠. ……………………………………………………………(1分)(2)∵CDE DBE ∠=∠, 又∵AFD DBE ∠=∠,∴=∠CDE AFD ∠.……………………………………………………………(1分)∴DC AB //. ……………………………………………………………(1分)又∵BC AD //,∴四边形ABCD 是平行四边形 …………………………………………………(1分)∵BC AD //,∴1∠=∠ADB . …………………………………………………………(1分)∵DB 平分ABC ∠,∴21∠=∠. ………………………………………………………(1分)∴2∠=∠ADB .∴AD AB =. …………………………………………………………(1分)∴四边形ABCD 是菱形. ……………………………………………………(1分)24.解:(1)二次函数(216y x =+的图像的顶点A ()-,与y 轴的交点B ()0,2,……(2分)设直线AB 的表达式为(0)y kx b k =+≠,可求得k =2b =.所以直线AB的表达式为2y x =+.…………………(1分)可得30BAO ∠= ,∵60BAC ∠=,∴90CAO ∠=.………………………………………………………………………(1分) 在Rt △BAO 中,由勾股定理得:AB =4.∴AC =4.点()C -.………………………………………………………………(1分)(2)∵点C 、M 都在第二象限,且△ABM 的面积等于△ABC 的面积,∴CM ∥AB .…………………………………………………………………………………(1分)设直线CM的表达式为y x m =+,点()C -在直线CM 上, 可得 6m =.∴直线CM的表达式为6y x =+.……………………………………………………(1分)可得点M的坐标:()-.……………………………………………………………(1分)(3)点N的坐标()3--,()3-,(),).…………………………………………………………………………………………(4分) 25. (1)①证明:过点P 作PM ⊥AC ,PN ⊥BC ,垂足分别为M 、N .…………………(1分) ∵CD 是ACB ∠的平分线, ∴PM =PN .由90PMC MCN CNP ∠=∠=∠= ,得90MPN ∠=. ∴190FPN ∠+∠=. ∵290FPN ∠+∠= , ∴12∠=∠.∴△PMF ≌△PNE .……………………………(3分) ∴PF = PE .②解:∵CP =∴1CN CM ==. ∵△PMF ≌△PNE , ∴1NE MF x ==-. ∴2CE x =-.……………………………………………………………………(2分)∵CF ∥PN ,∴CF CGPN GN=. ∴1xCG x=-.……………………………………………………………………(2分) ∴21xy x x=+--(0≤x <1).………………………………………………(2分) (2)当△CEF 与△EGP 相似时,点F 的位置有两种情况: ①当点F 在射线CA 上时,∵90GPE FCE ∠=∠=,1PEG ∠≠∠, ∴1G ∠=∠. ∴FG FE =. ∴CG CE =. 在Rt △EGP中,2EG CP ==.……………………(2分)②当点F 在AC 延长线上时,∵90GPE FCE ∠=∠=,12∠≠∠, ∴32∠=∠.∵1455∠=+∠,1452∠=+∠ , ∴52∠=∠.易证34∠=∠,可得54∠=∠.∴FC CP ==∴1FM =+易证△PMF ≌△PNE ,可得1EN =+.∵CF ∥PN ,∴CF CG PN GN=.∴1GN =.∴EG =2分)。
上海市普陀区中考数学二模试卷一、单项选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.(4分)(•普陀区二模)下列各数中无理数共有()①﹣0.21211211121111,②,③,④,⑤.A.1个B.2个C.3个D.4个.考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有:,,共有3个.故选C.点评:此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(4分)(•普陀区二模)如果a>1>b,那么下列不等式正确的个数是()①a﹣b>0,②a﹣1>1﹣b,③a﹣1>b﹣1,④.A.1B.2C.3D.4.考点:不等式的性质.分析:根据不等式的基本性质进行解答.解答:解:①由已知条件知a>b,则在该不等式的两边同时减去b得到a﹣b>0.故①正确;②由已知条件可设a=2,b=﹣1,则a﹣1=1,1﹣b=2,即a﹣1<1﹣b,故②错误;③由已知条件知a>b,则在该不等式的两边同时减去1得到a﹣1>b﹣1.故③正确;④当b<0时,.故④错误;综上所述,正确的结论有2个.故选B.点评:主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.(4分)(•上海)在下列方程中,有实数根的是()A.x2+3x+1=0 B.C.x2+2x+3=0 D.考点:根的判别式;算术平方根;解分式方程.分析:一元二次方程要有实数根,则△≥0;算术平方根不能为负数;分式方程化简后求出的根要满足原方程.解答:解:A、△=9﹣4=5>0,方程有实数根;B、算术平方根不能为负数,故错误;C、△=4﹣12=﹣8<0,方程无实数根;D、化简分式方程后,求得x=1,检验后,为增根,故原分式方程无解.故选A.点评:总结:1、一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根,(2)△=0⇔方程有两个相等的实数根,(3)△<0⇔方程没有实数根;2、算术平方根不能为负数;3、分式方程要验根.4.(4分)(•普陀区二模)下列语句正确的是()A.“上海冬天最低气温低于﹣5℃”,这是必然事件B.“在去掉大小王的52张扑克牌中抽13张牌,其中有4张黑桃”,这是必然事件C.“电视打开时正在播放广告”,这是不可能事件D.“从由1,2,5组成的没有重复数字的三位数中任意抽取一个数,这个三位数能被4整除”,这是随机事件考点:随机事件.分析:确定事件包括必然事件和不可能事件.必然事件就是一定发生的事件,即发生的概率是1的事件.不可能事件是指在一定条件下,一定不发生的事件.随机事件是可能发生也可能不发生的事件.解答:解:A、B、C是随机事件,原说法错误,D中由1,2,5组成的没有重复数字的三位数中任意抽取一个数,这个三位数可能被4整除,也可能不能被4整除,是随机事件,正确故选D.点评:解决本题要正确理解必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(4分)(•普陀区二模)我县6月份某一周的日最高气温(单位:℃)分别为28,30,29,31,32,28,25,这周的最气温的平均值为()A.28℃B.29℃C.30℃D.31℃考点:算术平均数.专题:计算题.分析:本题可把所有的气温加起来再除以7即可.平均数是指在一组数据中所有数据之和再除以数据的个数.解答:解:依题意得:平均气温=(28+30+29+31+32+28+27)÷7=29℃.故选B.点评:本题考查的是平均数的求法.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.6.(4分)(•普陀区二模)对于一个正多边形,下列四个命题中,错误的是()A.正多边形是轴对称图形,每条边的垂直平分线是它的对称轴B.正多边形是中心对称图形,正多边形的中心是它的对称中心C.正多边形每一个外角都等于正多边形的中心角D.正多边形每一个内角都与正多边形的中心角互补考点:正多边形和圆.专题:常规题型.分析:利用正多边形的对称轴的性质、对称性、中心角的定义及中心角的性质作出判断即可.解答:解:A、正多边形是轴对称图形,每条边的垂直平分线是它的对称轴,正确,故此选项错误;B、正奇数多边形多边形不是中心对称图形,错误,故本选项正确;C、正多边形每一个外角都等于正多边形的中心角,正确,故本选项错误;D、正多边形每一个内角都与正多边形的中心角互补,正确,故本选项错误.故选B.点评:本题考查了正多边形和圆的知识,解题的关键是正确的理解正多边形的有关的定义.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.(4分)(•普陀区二模)计算:(﹣a)3•a﹣3=﹣1.考点:负整数指数幂.分析:根据负整数指数幂的运算法则进行计算即可.解答:解:原式=﹣a3•=﹣1.故答案为:﹣1.点评:本题考查的是负整数指数幂,即负整数指数幂等于相应的正整数指数幂的倒数.8.(4分)(•普陀区二模)函数的定义域是x≥0且x≠2.考点:函数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:,解得:x≥0且x≠2.故答案是:x≥0且x≠2.点评:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9.(4分)(•普陀区二模)已知,若b+d≠0,则=.考点:比例的性质.专题:计算题.分析:由一已知式子和原式可得,利用比例的合比性质即可求得原式的值.解答:解:∵,∴==.点评:熟练掌握比例的合比性质并灵活运用.10.(4分)(•普陀区二模)某城市现有固定居住人口约为一千九百三十万,用科学记数法表示为1.93×107人.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将19300000用科学记数法表示为1.93×107.故答案为:1.93×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(4分)(•普陀区二模)不等式组的解集是1<x<2.考点:解一元一次不等式组.分析:求出每个不等式的解集,根据找不等式组解集的规律找出即可.解答:解:,∵解不等式①得:x>1,解不等式②得:x<2,∴不等式组的解集为1<x<2,故答案为:1<x<2;点评:本题考查了解一元一次不等式,解一元一次不等式组的应用,关键是能根据不等式的解集找出不等式组的解集.12.(4分)(•潍坊)分解因式:27x2+18x+3=3(3x+1)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式3,再对剩余项9x2+6x+1利用完全平方公式分解因式即可.完全平方公式:a2±2ab+b2=(a±b)2.解答:解:27x2+18x+3,=3(9x2+6x+1),=3(3x+1)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次因式分解,分解因式要彻底.13.(4分)(•普陀区二模)如果两个相似三角形的面积之比是16:9,那么它们对应的角平分线之比是4:3.考点:相似三角形的性质.分析:先根据相似三角形面积的比求出其相似比,再根据其对应的角平分线的比等于相似比即可解答.解答:解:∵两个相似三角形的面积比是16:9,∴这两个相似三角形的相似比是4:3,∵其对应角平分线的比等于相似比,∴它们对应的角平分线比是4:3.故答案为4:3.点评:本题考查的是相似三角形的性质,即相似三角形对应边的比、对应高线的比、对应角平分线的比、周长的比都等于相似比;面积的比等于相似比的平方.14.(4分)(•普陀区二模)有6张分别写有数字1、2、3、4、5、6的卡片,它们的背面相同,现将它们的背面朝上,从中任意摸出一张是数字5的机会是.考点:概率公式.分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.解答:解:由题意可知,6张卡片中1张是5,所以任意摸出一张是数字5的概率是.故答案为:.点评:本题考查概率的求法与运用.一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.(4分)(•普陀区二模)如图,在平行四边形ABCD中,点E、F分别是AB、CD上的中点,记.用含、的式子表示向量=+.考点: *平面向量.分析:首先连接EF,由四边形ABCD是平行四边形与点E、F分别是AB、CD上的中点,即可得==,然后根据平行四边形法则,即可求得的值.解答:解:连接EF,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵点E、F分别是AB、CD上的中点,∴DF=AE,即==,∴=+=+.故答案为:+.点评:此题考查了平面向量的知识与平行四边形的性质.解此题的关键是注意数形结合思想的应用与平行四边形法则.16.(4分)(•普陀区二模)为了了解中学生的身体发育情况,对第二中学同年龄的80名学生的身高进行了测量,经统计,身高在150.5﹣155.5厘米之间的頻数为5,那么这一组的頻率是.考点:频数与频率.分析:根据身高在150.5﹣155.5厘米之间的頻数为5,共有80个数,再根据频率=即可求出答案.解答:解:∵身高在150.5﹣155.5厘米之间的頻数为5,共有80个数,∴这一组的頻率是=;故答案为:.点评:此题考查了频数与频率,用到的知识点是频率=.17.(4分)(•普陀区二模)地面控制点测得一飞机的仰角为45°,若此时地面控制点与该飞机的距离为2000米,则此时飞机离地面的高度是1000米(结果保留根号).考点:解直角三角形的应用-仰角俯角问题.分析:根据题意画出示意图,利用解直角三角形的知识可得出答案.解答:解:如图所示:由题意得,∠CAB=45°,AC=2000m,则BC=ACsin∠CAB=2000×=m;即飞机离地面的高度是1000米.故答案为:1000.点评:本题考查了解直角三角形的应用,解答本题的关键是利用仰角的知识构造直角三角形.18.(4分)(•普陀区二模)已知在△AOB中,∠B=90°,AB=OB,点O的坐标为(0,0),点A的坐标为(0,8),点B在第一象限内,将这个三角形绕原点O旋转75°后,那么旋转后点B的坐标为(2,﹣2)或(﹣2,2).考点:坐标与图形变化-旋转.分析:先根据点A的坐标求出OA的长,再根据等腰直角三角形的性质求出OB的长,然后分①逆时针旋转时,过点B′作B′C′⊥y轴于C′,根据旋转角求出∠B′OC′=30°,然后求出B′C′、OC′的长,再写出旋转后点B的坐标即可;②顺时针旋转时,过点B″作B″C″⊥x轴于C″,根据旋转角求出∠B″OC″=30°,然后求出B″C″、OC″,然后写出旋转后点B对应的点的坐标即可.解答:解:∵A(0,8),∴OA=8,∵∠B=90°,AB=OB,∴△AOB是等腰直角三角形,∴OB=OA=×8=4,∠AOB=45°,①逆时针旋转时,过点B′作B′C′⊥y轴于C′,∵旋转角为75°,∴∠B′OC′=75°﹣45°=30°,∴B′C′=OB′=×4=2,OC′=4×=2,∴旋转后点B的坐标为(﹣2,2);②顺时针旋转时,过点B″作B″C″⊥x轴于C″,∵旋转角为75°,∴∠B″OC″=75°﹣45°=30°,∴B″C″=OB″=×4=2,OC″=4×=2,∴旋转后点B的坐标为(2,﹣2);综上所述,旋转后点B的坐标为(2,﹣2)或(﹣2,2).点评:本题考查了坐标与图形变化﹣旋转,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键,难点在于要分情况讨论,作出图形更形象直观.三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.(10分)(•普陀区二模)计算:.考点:实数的运算;零指数幂;特殊角的三角函数值.分析:本题涉及二次根式化简、零指数幂、特殊角的三角函数值、绝对值四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式==.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、二次根式、绝对值等考点的运算.20.(10分)(•普陀区二模)解方程组:.考点:高次方程.分析:先由①得:x﹣y=2,再由②得(x﹣y)2+2(x+y)=12,最后把x﹣y=2代入(x﹣y)2+2(x+y)=12中,得到一个关于x,y的方程组,求出x,y的值即可.解答:解:,由①得:x﹣y=2,③由②得:(x﹣y)2+2(x+y)=12,④将③代入④得:x+y=4,可得:,解方程组得:,则原方程组的解为:.点评:此题考查了高次方程,解题的关键是把高次方程转化成低次方程,再按照低次方程的步骤进行求解即可.21.(10分)(•普陀区二模)如图:已知,四边形ABCD是平行四边形,AE∥BD,交CD的延长线于点E,EF⊥BC交BC延长线于点F,求证:四边形ABFD是等腰梯形.考点:等腰梯形的判定;平行四边形的性质.专题:证明题.分析:首先证明四边形ABDE是平行四边形,可得AB=DE,再根据平行四边形的性质可得CD=DE,再根据直角三角形的性质可证明DF=CD=DE,进而得到AB=DE,再说明线段AB与线段DF不平行即可得到四边形ABFD是等腰梯形.解答:证明:∵四边形ABCD是平行四边形,∴AD∥BC;AB∥CD,AB=CD,∴AB∥DE;又∵AE∥BD,∴四边形ABDE是平行四边形.∴AB=DE.∴CD=DE.∵EF⊥BC,∴DF=CD=DE.∴AB=DF.∵CD、DF交于点D,∴线段AB与线段DF不平行.∴四边形ABFD是等腰梯形.点评:此题主要考查了平行四边形的性质与判定,以及等腰梯形的判定,关键是掌握两腰相等的梯形叫做等腰梯形.22.(10分)(•普陀区二模)一辆汽车,新车购买价20万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值11.56万元,求这辆车第二、三年的年折旧率.考点:一元二次方程的应用.专题:增长率问题.分析:设这辆车第二、三年的年折旧率为x,则第二年这就后的价格为20(1﹣20%)(1﹣x)元,第三年折旧后的而价格为20(1﹣20%)(1﹣x)2元,与第三年折旧后的价格为11.56万元建立方程求出其解即可.解答:解:设这辆车第二、三年的年折旧率为x,有题意,得20(1﹣20%)(1﹣x)2=11.56.整理得:(1﹣x)2=0.7225...解得:x1=0.15,x2=1.85(不合题意,舍去).∴x=0.15,即x=15%.答:这辆车第二、三年的年折旧率为15%.点评:本题是一道折旧率问题,考查了列一元二次方程解实际问题的运用,解答本题时设出折旧率,表示出第三年的折旧后价格并运用价格为11.56万元建立方程是关键.23.(12分)(•普陀区二模)已知:如图,⊙O的半径为5,弦AB的长等于8,OD⊥AB,垂足为点D,DO的延长线与⊙O相交于点C,点E在弦AB的延长线上,CE与⊙O相交于点F,cosC=.求:(1)CD的长;(2)EF的长.考点:垂径定理;勾股定理;解直角三角形.分析:(1)连接OA,根据垂径定理求出AD,根据勾股定理求出OD,即可求出CD(CD=OD+OA);(2)作OH⊥CE,垂足为点H,根据cosC=求出CH,求出CF,在△CDE中,根据cosC=求出CE,相减即可求出EF.解答:解:(1)连接OA.∵OD⊥AB,AB=8,∴AD=AB=4,∵OA=5,∴由勾股定理得:OD=3,∵OC=5,∴CD=8.(2)作OH⊥CE,垂足为点H.,∵OC=5,cosC=,∴CH=4,∵OH⊥CE,∴由垂径定理得:CF=2CH=8,又∵CD=8,cosC=,∴CE=10,∴EF=10﹣8=2.点评:本题考查了垂径定理,勾股定理,锐角三角形函数定义等知识点,主要考查学生运用定理进行计算的能力,题目比较典型,是一道比较好的题目.24.(12分)(•普陀区二模)如图,抛物线y=x2+bx﹣c经过直线y=x﹣3与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;(2)点P为抛物线上的一个动点,求使S△APC:S△ACD=5:4的点P的坐标;(3)点M为平面直角坐标系上一点,写出使点M、A、B、D为平行四边形的点M的坐标.考点:二次函数综合题.专题:综合题.分析:(1)对于一次函数y=x﹣3,分别令x与y为0求出对应y与x的值,确定出A与B的坐标,代入抛物线解析式得到关于b与c的方程组,求出方程组的解得到b与c的值,即可确定出抛物线解析式;(2)由抛物线解析式求出C与D坐标,根据P为抛物线上的点,设P(a,a2﹣2a﹣3),三角形APC由AC为底,P纵坐标绝对值为高,利用三角形面积表示出,三角形ACD面积由AC为底,D 纵坐标绝对值为高表示出,根据题意列出关于a的方程,求出方程的解得到a的值,即可确定出此时P的坐标;(3)画出图形,如图所示,根据题意得到A、B、C分别为M1M3、M1M2、M2M3的中点,由四边形ADBM1为平行四边形,利用平行四边形的对角线互相平分得到AB与M1D互相平分,即E为AB中点,E为M1D中点,根据A与B的坐标求出E的坐标,再利用线段中点坐标公式求出M1坐标;进而求出M2、M3的坐标即可.解答:解:(1)∵直线y=x﹣3与坐标轴的两个交点A、B,∴点B(0,﹣3),点A(3,0),将A与B坐标代入抛物线y=x2+bx﹣c得:,解得:c=3,b=﹣2,则抛物线的解析式是y=x2﹣2x﹣3;(2)∵抛物线的解析式是y=x2﹣2x﹣3,∴C(﹣1,0),顶点D(1,﹣4),由点P为抛物线上的一个动点,故设点P(a,a2﹣2a﹣3),∵S△APC:S△ACD=5:4,∴(×4×|a2﹣2a﹣3|):(×4×4)=5:4,整理得:a2﹣2a﹣3=5或a2﹣2a﹣3=﹣5(由△<0,得到无实数解,舍去),解得:a1=4,a2=﹣2,则满足条件的点P的坐标为P1(4,5),P2(﹣2,5);(3)如图所示,A、B、C分别为M1M3、M1M2、M2M3的中点,∵四边形ADBM1为平行四边形,∴AB与M1D互相平分,即E为AB中点,E为M1D中点,∵A(3,0),B(0,﹣3),∴E(,﹣),又∵D(1,﹣4),∴M1(2,1),∴M2(﹣2,﹣7),M3(4,﹣1),则满足题意点M的坐标为:M1(2,1),M2(﹣2,﹣7),M3(4,﹣1).点评:此题考查了二次函数综合题,涉及的知识有:平行四边形的判定与性质,坐标与图形性质,一次函数与坐标轴的交点,二次函数的性质,以及待定系数法确定函数解析式,熟练掌握待定系数法是解本题的关键.25.(14分)(•南京)如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.P为BC的中点,动点Q从点P出发,沿射线PC方向以2cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s.(1)当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;(2)已知⊙O为△ABC的外接圆.若⊙P与⊙O相切,求t的值.考点:圆与圆的位置关系;勾股定理;直线与圆的位置关系;相似三角形的判定与性质.专题:几何综合题;动点型.分析:(1)根据已知求出AB=10cm,进而得出△PBD∽△ABC,利用相似三角形的性质得出圆心P到直线AB的距离等于⊙P的半径,即可得出直线AB与⊙P相切;(2)根据BO=AB=5cm,得出⊙P与⊙O只能内切,进而求出⊙P与⊙O相切时,t的值.解答:解:(1)直线AB与⊙P相切,如图,过P作PD⊥AB,垂足为D,在Rt△ABC中,∠ACB=90°,∵AC=6cm,BC=8cm,∴AB=10cm,∵P为BC中点,∴PB=4cm,∵∠PDB=∠ACB=90°,∠PBD=∠ABC,∴△PBD∽△ABC,∴,即,∴PD=2.4(cm),当t=1.2时,PQ=2t=2.4(cm),∴PD=PQ,即圆心P到直线AB的距离等于⊙P的半径,∴直线AB与⊙P相切;(2)∵∠ACB=90°,∴AB为△ABC的外接圆的直径,∴BO=AB=5cm,连接OP,∵P为BC中点,PO为△ABC的中位线,∴PO=AC=3cm,∵点P在⊙O内部,∴⊙P与⊙O只能内切,∴当⊙P在⊙O内部时:5﹣2t=3,当⊙O在⊙P内部时2t﹣5=3,∴t=1或4,∴⊙P与⊙O相切时,t的值为1或4.点评:此题主要考查了相似三角形的性质与判定以及直线与圆的位置关系和圆与圆的位置关系,正确判定直线与圆的位置关系是重点知识同学们应重点复习.。
新世纪教育网精选资料 版权全部 @新世纪教育网上海市初中数学教课质量抽样剖析试卷(2012.5.18)一、选择题:(本大题共 6 题,每题 4 分,满分 24 分) 【以下各题的四个选项中, 有且只有一个选项是正确的, 选择正确项的代号并填涂在答题纸 的相应地点上】 1.假如点 P 与点 Q ( - 2,3)对于 x 轴对称,那么点 P 的坐标是( )( A )( 2,3); ( B )( - 2,3); ( C )( 2,- 3); ( D )( - 2,- 3).2.在以下二次根式中,与a 同为同类二次根式的是()( A ) 2a ;( B )3a 2; ( ) a 3 ; ( D ) a 4 .C3.假如从 1、 2、 3 这三个数字中随意选用两个数字,构成一个两位数,那么这个两位数是 素数的概率等于( )(A )1;(B )1;(C ) 1;(D )1.23464.已知某班学生上学时搭车、步行、骑车的人数散布条形图和扇形图如下图(两图都不 完好),那么以下结论中错误的选项是( ) 人数 ( A )该班总人数为 40 人;20搭车 50%( B )骑车人数占总人数的 20%;( C )步行人数为 30 人;8骑车步行 30%( D )搭车人数是骑车人数的2.5 倍.搭车步行骑车(第 4 题图)5.如图, 假如在高为 2m ,坡度为 1∶ 2 的楼梯上铺地毯, 那么地毯的 长度起码应截取( )( A )2m ; (B ) 6m ;( C ) 2 5 m ;(D ) 6 2 5 m .(第 5 题图)6.已知:⊙ O 1、⊙ O 2 的半径分别是 3 和 4,那么以下表达中,必定正确的选项是( )( A )当 O 1O 2 3时,⊙ O 1 与⊙ O 2 订交; ( B )当 O 1O 2 1时,⊙ O 1 与⊙ O 2 内含; ( C )当 O 1O 2 2 时,⊙ O 1 与⊙ O 2 没有公共点; ( D )当 O 1O 26 时,⊙ O 1 与⊙ O 2 有两个公共点.二、填空题:(本大题共 12 题,每题 4 分,满分 48 分)【请将结果直接填入答题纸的相应地点上】7.计算: a 2 a 3 =.8.在实数范围内分解因式: 2 x 2 8=.9.不等式组x 12 ,的解集是.2) 3 x2( x210.假如 x=6 是方程 3x 2( x t) 12 的根,那么 t= .11.已知函数 f ( x) 2x1 ,那么 f ( 2).12.已知一次函数 y=kx+b ( k ≠0)的图像经过点( 0,1),且 y 随 x 的增大而增大,请你写出 一个切合上述条件的一次函数分析式,这个分析式能够是.新世纪教育网-- 中国最大型、最专业的中小学教育—资1—源门户网站。
上海市普陀区2012年高三年级第二次质量调研 数学试卷 (理科) 2012.04说明:本试卷满分150分,考试时间120分钟。
本套试卷另附答题纸,每道题的解答必须..写在答题纸的相应位置,本卷上任何解答都不作评分依据.........................。
一、填空题(本大题满分56分)本大题共有14小题,要求直接将结果填写在答题纸对应的空格中.每个空格填对得4分,填错或不填在正确的位置一律得零分. 1. 函数22()sin cos22x x f x =-的最小正周期是 .2. 二项式6)1(xx -的展开式中的常数项是 .(请用数值作答)3. 函数1log121-=x y 的定义域是 . 4. 设1e 与2e 是两个不共线的向量,已知122AB e k e =+ ,123CB e e =+ ,122CD e e =-,则当A B D 、、三点共线时,k = .5. 已知各项均为正数的无穷等比数列{}n a中,11a =,31a =-,则此数列的各项和S = .6. 已知直线l 的方程为230x y --=,点(1,4)A 与点B 关于直线l 对称,则点B 的坐标为 .7. 如图,该框图所对应的程序运行后输出的结果S 的值为 .8. 若双曲线的渐近线方程为3y x =±,它的一个焦点的坐标为0),则该双曲线的标准方程为 .9. 如图,需在一张纸上印上两幅大小完全相同,面积都是32cm 2的照片. 排版设计为纸上左右留空各3cm ,上下留空各2.5cm ,图间留空为1cm .照此设计,则这张纸的最小面积是 cm 2.10. 给出问题:已知A B C △满足cos cos a A b B ⋅=⋅,试判定A B C △的形状.某学生的解答如下:解:(i )由余弦定理可得,第7题图第9题图22222222b c aa c ba b bcac+-+-⋅=⋅,⇔()()()2222222abc a b ab-=-+,⇔222c a b =+,故A B C △是直角三角形.(ii )设A B C △外接圆半径为R .由正弦定理可得,原式等价于2sin cos 2sin cos R A A R B B =sin 2sin 2A B ⇔=A B ⇔=,故A B C △是等腰三角形.综上可知,A B C △是等腰直角三角形.请问:该学生的解答是否正确?若正确,请在下面横线中写出解题过程中主要用到的思想方法;若不正确,请在下面横线中写出你认为本题正确的结果. .11. 已知数列{}n a 是等比数列,其前n 项和为n S .若1020S =,2060S =,则3010S S = .12.2,的正六棱柱的所有顶点都在一个球面上,则此球的体积为 .13. 用红、黄、蓝三种颜色分别去涂图中标号为1,2,3,,9 的9个小正方形(如右图),需满足任意相邻(有公共边的)小正方形所涂颜色都不相同,且标号为“1、5、9”的小正方形涂相同的颜色. 则符合条件的所有涂法中,恰好满足“1、3、5、7、9”为同一颜色,“2、4、6、8”为同一颜色的概率为 .14. 设*N n ∈,n a 表示关于x 的不等式144log log (54)21n x x n -+⨯-≥-的正整数解的个数,则数列{}n a 的通项公式n a = .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个结论是正确的,必须把正确结论的代号写在答题纸相应的空格中. 每题选对得5分,不选、选错或选出的代号超过一个(不论是否都写在空格内),或者没有填写在题号对应的空格内,一律得零分. 15. “lg ,lg ,lg x y z 成等差数列”是“2y xz =”成立的 ( )A .充分非必要条件;B .必要非充分条件;C .充要条件;D .既非充分也非必要条件.第13题图16. 设θ是直线l 的倾斜角,且cos 0a θ=<,则θ的值为 ( )A. arccos a π-;B. arccos a ;C. arccos a -;D. arccos a π+.17. 设全集为R ,集合22|14x M x y ⎧⎫=+=⎨⎬⎩⎭,3|01x N x x -⎧⎫=≤⎨⎬+⎩⎭,则集合2231|24x x y ⎧⎫⎪⎪⎛⎫++=⎨⎬ ⎪⎝⎭⎪⎪⎩⎭可表示为 ( )A. M N ;B. M N ;C. R C M N ⋂;D. R M C N ⋂18. 对于平面α、β、γ和直线a 、b 、m 、n ,下列命题中真命题是( )A .若,,a m a n ⊥⊥,m n αα≠≠⊂⊂,则a α⊥; B. 若//,,a b b α≠⊂则//a α; C. 若,,//,//a b a b ββαα≠≠⊂⊂,则//a β; D. 若//,,,a a b βαγβγ⋂=⋂=则//a b .三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸规定的方框内写出必要的步骤. 19. (本题满分12分)已知函数()2f x kx =+,0k ≠的图像分别与x 轴、y 轴交于A 、B 两点,且22A B i j =+,函数6)(2--=x x x g . 当x 满足不等式()()f xg x >时,求函数()1()g x y f x +=的最小值.20. (本题满分12分,第1小题满分6分,第2小题满分6分)如图,已知圆锥体S O 的侧面积为15π,底面半径O A 和O B 互相垂直,且3O A =,P 是母线B S 的中点. (1)求圆锥体的体积;(2)异面直线S O 与PA 所成角的大小(结果用反三角函数表示).21. (本大题满分14分,第1小题满分7分,第2小题满分7分)已知A B C △中,1A C =,23A B C π∠=.设B A C x ∠=,记()f x AB BC =⋅ .AB第20题图(1) 求()f x 的解析式及定义域;(2)设()6()1g x m f x =⋅+,是否存在实数m ,使函数)(x g 的值域为31,2⎛⎤ ⎥⎝⎦?若存在,求出m 的值;若不存在,请说明理由.22. (本大题满分16分,第1小题满分5分,第2小题满分5分,第3小题满分6分)已知数列{}n a 是首项为2的等比数列,且满足n n n pa a 21+=+*(N )n ∈. (1) 求常数p 的值和数列{}n a 的通项公式;(2) 若抽去数列{}n a 中的第一项、第四项、第七项、……、第23-n 项、……,余下的项按原来的顺序组成一个新的数列{}n b ,试写出数列{}n b 的通项公式;(3) 在(2)的条件下,设数列{}n b 的前n 项和为n T .是否存在正整数n ,使得1113n nT T +=?若存在,试求所有满足条件的正整数n 的值;若不存在,请说明理由.23. (本大题满分20分,第1小题满分4分,第2小题满分6分,第3小题最高分10分)设点F 是抛物线L :22y px =(0)p >的焦点,123n P P P P 、、、、是抛物线L 上的n个不同的点(3,n ≥*N n ∈).(1) 当2p =时,试写出抛物线L 上的三个定点1P 、2P 、3P 的坐标,从而使得 123||||||6FP FP FP ++=;(2)当3n >时,若1230n FP FP FP FP ++++=, 求证:123||||||||n FP FP FP FP np ++++=;(3) 当3n >时,某同学对(2)的逆命题,即:“若123||||||||n FP FP FP FP np ++++= ,则1230n FP FP FP FP ++++=.” 开展了研究并发现其为假命题.请你就此从以下三个研究方向中任选一个开展研究:① 试构造一个说明该逆命题确实是假命题的反例(本研究方向最高得4分); ② 对任意给定的大于3的正整数n ,试构造该假命题反例的一般形式,并说明你的理由(本研究方向最高得8分);③ 如果补充一个条件后能使该逆命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由(本研究方向最高得10分).【评分说明】本小题若选择不止一个研究方向,则以实得分最高的一个研究方向的得分作为本小题的最终得分.2012年普陀区高三第二次质量调研数学试卷参考答案一、填空题(每小题4分,满分56分):1. π2;2. 20-;3. (文) )1(∞+,; (理)(0,1)(12) ,; 4. 8-; 5. 2232+; 6. )2,5(; 7. 3; 8. 1922=-yx ; 9. 196;10. 等腰或直角三角形; 11. (文)6;(理)7; 12. (文)π34;(理) 29π;13. (文)108;(理)181; 14. 1*341,N n n -⋅+∈.二、选择题(每题5分,满分20分):三、解答题(满分74分): 19.(本题满分12分) 解:由题意知:)0,2(kA -、)2,0(B ,则)2,2()2,2(==kAB可解得:1=k ,即2)(+=x x f因为)()(x g x f >,即622-->+x x x ,解不等式得到()4,2-∈x2()15()2g x x x y f x x +--==+2(2)5(2)112522x x x x x +-++==++-++因为()4,2-∈x ,则()6,0)2(∈+x 所以35212)(1)(-≥-+++=+x x x f x g ,当且仅当212+=+x x ,即12=+x ,1-=x 时,等号成立.所以,当1-=x 时,)(1)(x f x g +的最小值为3-.xCBA20.(本题满分12分)解:(1)由题意,15O A SB ππ⋅⋅=得5B S =,故4SO ===从而体积2211341233V O A SO πππ=⋅⋅=⨯⨯=.(2)如图2,取O B 中点H ,联结PH AH 、.由P 是SB 的中点知P H SO ∥,则A P H ∠(或其补角)就是异面直线S O 与P A 所成角.由SO ⊥平面O A B ⇒PH ⊥平面O A B ⇒PH AH ⊥. 在O A H ∆中,由O A O B ⊥得2AH ==;在R t A P H ∆中,90AHP O ∠=,122P H SB ==,2AH =,则tan 4AH APH PH∠==,所以异面直线S O 与P A所成角的大小arctan4.21. (本题满分14分,其中第1小题7分,第2小题7分)解:(1)如图,在ABC ∆中,由23A B C π∠=,x BAC =∠,可得x ACB -=∠3π,又 1A C =,故由正弦定理得2sin sin()sin33ABBC AC xx ππ===-⇒)3AB x π=-、BC x =.则函数()f x AB BC =⋅ 2||||cos sin sin()333A B B C x x ==- ππ21sin sin )322x x x =-212sin 63x x =-112cos 2)66x x =+-11sin(2)366x π=+-,其中定义域为0,3x ⎛⎫∈ ⎪⎝⎭π.说明:亦可用积化和差方法化简:2111()sin sin()[coscos(2)]cos(2)33333336f x x x x x ==-=---=--ππππ.(2)()6()12sin(2)16g x m f x m x m =+=+-+π由0,3x ⎛⎫∈ ⎪⎝⎭π可得52(,)666x πππ+∈⇒)62sin(π+x ]1,21(∈.显然,0m ≠,则1O 当0>m 时,()(1,1]g x m ∈+,则)(x g 的值域为]23,1(⇔231=+m ⇔21=m ;2O 当0m <时,()[1,1)g x m ∈+,不满足)(x g 的值域为]23,1(;因而存在实数21=m ,使函数)(x g 的值域为31,2⎛⎤ ⎥⎝⎦.22. (本大题满分16分,第1小题满分5分,第二小题满分5分,第3小题满分6分)(1)解:由n n n pa a a 2,211+==+得222+=p a ,42223++=p p a ,又因为存在常数p ,使得数列{}n a 为等比数列,则3122a a a =即)422(2)22(22++=+p p p ,所以1=p .故数列{}n a 为首项是2,公比为2的等比数列,即nn a 2=.此时11222++=+=n n n n a 也满足,则所求常数p 的值为1且*2(N )n n a n =∈.(2)解:由等比数列的性质得:(i )当*2(N )n k k =∈时,kk n a b 332==;(ii ) 当*21(N )n k k =-∈时,13132--==k k n a b ,所以312*322,21,(N )2,2,n n nn k b k n k +⎧=-⎪=∈⎨⎪=⎩. (3)(文科)解:注意到21{}n b -是首项14b =、公比8q =的等比数列,2{}n b 是首项28b =、公比8q =的等比数列,则(i )当2n k =*(N )k ∈时,21321242()()n k k k T T b b b b b b -==+++++++4(81)8(81)8181kk--=+--2128121281277nk⋅-⋅-==;(ii )当21n k =-*(N )k ∈时,12212212812581258128777n kkkn k k k T T T b +-⋅-⋅-⋅-==-=-==.即12*25812,217(N )12812,27n n nn k T k n k+⎧⋅-⎪=-⎪=∈⎨⎪⋅-⎪=⎩.(3)(理科)解:(续文科解答过程)假设存在正整数n 满足条件,则1111118133n n n n n nnnnT T b b b T T T T +++++==+=⇔=,则(i )当*2,(N )n k k =∈时, 3212122288888128121281237k kkn k kknkb b T T +++⋅====⇒=⋅-⋅-1k ⇒=,即当2n =时满足条件;(ii )当*21,(N )n k k =-∈时, 128788968581258123197kkkn k k knnb b T T +⋅====⇒=⋅-⋅-.因为*N k ∈,所以此时无满足条件的正整数n . 综上可得,当且仅当2n =时,1113n nT T +=.23. (本大题满分20分,第1小题满分4分,第2小题满分6分,第3小题最高分10分) (理)解:(1)抛物线L 的焦点为(,0)2p F ,设111222333(,)(,)(,)P x y P x y P x y 、、,分别过123P P P 、、作抛物线L 的准线l 的垂线,垂足分别为123Q Q Q 、、.由抛物线定义得123112233123||||||||||||()()()222p p pFP FP FP P Q P Q P Q x x x ++=++=+++++623321=+++=px x x因为2p =,所以3321=++x x x , 故可取,,)2,1()2,21(21P P 3P )6,23(满足条件.(2)设111222333(,)(,)(,)(,)n n n P x y P x y P x y P x y 、、、、,分别过123n P P P P 、、、、作抛物线L 的准线l 垂线,垂足分别为123n Q Q Q Q 、、、、.由抛物线定义得 123112233||||||||||||||||n n n FP FP FP FP P Q P Q P Q P Q ++++=++++123()()()()2222n p p pp x x x x =++++++++123()2n np x x x x =+++++又因为1230n FP FP FP FP ++++=⇒123()()()()02222n p p p p x x x x -+-+-++-=⇒221np x x x n =+++ ;所以123||||||||n FP FP FP FP ++++ 123()2n np x x x x =+++++ np =.(3) ①取4=n 时,抛物线L 的焦点为(,0)2p F ,设111222333(,)(,)(,)P x y P x y P x y 、、,),(444y x P 分别过123P P P 、、4P 、作抛物线L 的准线l 垂线,垂足分别为123Q Q Q 、、4Q 、.由抛物线定义得=+++44332211Q P Q P Q P Q P +++=244321p x x x x ++++p 4=,则p x x x x 24321=+++,不妨取22,411p y p x ==;,22p x =p y =2;,23p x =p y -=3;443,42p x y ==,则=+++4321FP FP FP FP (p x x x x 24321-+++,)4321y y y y +++2⎛= ⎝⎭0≠.故1,42p P ⎛⎫⎪⎝⎭,2,2p P p ⎛⎫ ⎪⎝⎭,3,2p P p ⎛⎫- ⎪⎝⎭,4342p P ⎛ ⎝⎭是一个当4n =时,该逆命题的一个反例.(反例不唯一)② 设111222333(,)(,)(,)(,)n n n P x y P x y P x y P x y 、、、、,分别过123n P P P P 、、、、作 抛物线L 的准线l 的垂线,垂足分别为123n Q Q Q Q 、、、、,由123||||||||n FP FP FP FP np ++++=及抛物线的定义得np np x x x n =++++221 ,即221np x x x n =+++ .因为上述表达式与点111222333(,)(,)(,)(,)n n n P x y P x y P x y P x y 、、、、的纵坐标无关,所以只要将这n 点都取在x 轴的上方,则它们的纵坐标都大于零,则 =+++n FP FP FP 21(,221np x x x n -+++ )21n y y y +++(=,0)21n y y y +++ ,而021>+++n y y y ,所以021≠+++n FP FP FP .(说明:本质上只需构造满足条件且120n y y y +++≠ 的一组n 个不同的点,均为反例.) ③ 补充条件1:“点i P 的纵坐标i y (1,2,,i n = )满足 1230n y y y y ++++= ”,即: “当3n >时,若123||||||||n FP FP FP FP np ++++=,且点i P 的纵坐标i y (1,2,,i n = )满足1230n y y y y ++++= ,则1230n FP FP FP FP ++++=”.此命题为真.事实上,设111222333(,)(,)(,)(,)n n n P x y P x y P x y P x y 、、、、,分别过123n P P P P 、、、、作抛物线L 准线l 的垂线,垂足分别为123n Q Q Q Q 、、、、,由12||||||n FP FP FP np +++=,及抛物线的定义得np np x x x n =++++221 ,即221np x x x n =+++ ,则=+++n FP FP FP 21(,221np x x x n -+++ )21n y y y +++(=,0)21n y y y +++ ,又由1230n y y y y ++++= ,所以1230n FP FP FP FP ++++=,故命题为真.补充条件2:“点k P 与点1n k P -+(n 为偶数,*N )k ∈关于x 轴对称”,即:“当3n >时,若123||||||||n FP FP FP FP np ++++=,且点k P 与点1n k P -+(n 为偶数,*N )k ∈关于x 轴对称,则1230n FP FP FP FP ++++=”.此命题为真.(证略)23.(文)(1)解:抛物线L 焦点(1,0)F ,准线l 方程为:1-=x .由抛物线定义得11||1FP x =+ ,22||1FP x =+ ,33||1FP x =+,∴ 73||||||321321=+++=++x x x FP FP FP .(2)证明:由)0,1(F ,),1(111y x FP -=,),1(222y x FP -=,…,),1(n n n y x FP -= , 1230n FP FP FP FP ++++=⇒0)1()1()1(21=-++-+-n x x x ,即n x x x n =+++)(21 .则12||||||n FP FP FP +++)1()1()1(21++++++=n x x xn x x x n ++++=)(21 n 2=.(3)经推广的命题:“当3n >时,若021=+++n FP FP FP ,则np FP FP FP n =+++||||||21 .” 其逆命题为:“当3n >时,若np FP FP FP n =+++||||||21 ,则021=+++n FP FP FP ”. 该逆命题为假命题.不妨构造特殊化的一个反例:设2p =,4n =,抛物线x y 42=,焦点)0,1(F .由题意知:1234||||||||8FP FP FP FP +++=;根据抛物线的定义得:8)1()1()1()1(4321=+++++++x x x x ⇒44321=+++x x x x ;不妨取四点坐标分别为)0,0(1P 、)2,1(2P 、)2,1(3-P 、)22,2(4P ,但0)22,0()22,1()2,0()2,0()0,1(4321≠=+-++-=+++FP FP FP FP ,所以逆命题是假命题.。
普陀区2012学年第二学期九年级数学3月调研试卷一、选择题(每题4分,满分24分)1、下列二次根式中,最简二次根式是 ( ) (A )x 63 (B )142-x (C )32x (D )x 1 2、下列运算正确的是 ( )(A )232121a a a =÷ (C )()2222a a =(B )632a a a =⋅(D )()()22b a b a b a +-=---3、下列方程中,没有实数根的是 ( )(A )122--=x x (B )x x =+1 (C )0112=+-x x (D )x x 3422=+ 4、不等式组⎩⎨⎧-≤-->x x x 28132的最小整数解是 ( )(A )-1(B )0 (C )2 (D )35、对角线互相平分且相等的四边形是 ( ) (A )菱形 (B )矩形 (C )正方形 (D )等腰梯形6、下列命题中,真命题的个数有 ( )①长度相等的两条弧是等弧;②正多边形既是轴对称图形,又是中心对称图形; ③相等的圆心角所对的弧相等; ④垂直弦的直径平分这条弦. (A )1个 (B )2个 (C )3个 (D )4个二、填空题(每题4分,满分48分)7、计算:1-11+x = . 8、如果两个相似三角形的面积比为1∶2,那么它们的周长比为 .9、掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为奇数的概率为 .10、在实数范围内分解因式:221x x --= . 11、数据2、4、5、5、6、8的方差是 .12、如图,在ABC ∆中,点G 是重心, 设向量AB a = ,GD b =,那么向量BC =(结果用a 、b 表示).学校 班级 姓名学号 _____________________________________________________装____________订___________线____________________________13、点11(,)A x y ,点22(,)B x y 是双曲线2y x=-上的两点,若120x x <<,则1y 2y (填“=”、“>”、“<”).14、在△ABC 中,点D 、E 分别在边AB 和AC 上,且DE ∥BC , 如果AD =5,DB =10,那么ADE S ∆:ABC S ∆的值为 .15、如图,在高楼前D 点测得楼顶的仰角为30o ,向高楼前进60米到C 点,又测得楼顶的仰角为45o ,则该高楼的高度 大约为___________米.(结果可保留根号)16、矩形ABCD 中,AD =4,CD =2,边AD 绕A 旋转使得点D 落在CB 的延长线上的P 处,那么∠DPC 的度数为 _.17、如图,是一个隧道的截面,如果路面AB 宽为8米,净高CD 为8米,那么这个隧道所在圆的半径OA 是 米.18、已知两圆的圆心距为4,其中一个圆的半径长为5,那么当两圆内切时,另一圆的半径为 . 三、解答题(第19~22题各10分,第23、24题各12分,第25题14分,满分78分)19、计算:13123622127)3(-++⨯+-+--)(.20、解方程组:⎩⎨⎧=-+-=+.012,5222y xy x y x )2()1((第17题)(第15题图)(第12题图)21. 在四边形ABCD 中, 0090,60=∠=∠=∠D B A ,3,2==CD BC , 求AB 的长.DCBA22、今年3月12日,某校九年级部分学生参加植树节活动,参加植树学生植树情况的部分统计结果如图所示.请根据统计图形所提供的有关信息,完成下列问题:(1)求参加植树的学生人数; (2)求学生植树棵数的平均数(精确到1)(3)请将该条形统计图补充完整.植树棵数23.(本题12分)如图,在⊙O 中,AD 、BC 相交于点E ,OE 平分∠(1)求证:CD AB =;(2)如果⊙O 的半径为5,CB AD ⊥,1=DE ,求AD 的长.24.(本题满分12分)如图,直线n x y +-=2(n >0)与轴轴、y x 分别交于点B A 、,16=∆OAB S ,抛物线)0(2≠+=a bx ax y 经过点A ,顶点M 在直线n x y +-=2上.(1)求n 的值; (2)求抛物线的解析式;(3)如果抛物线的对称轴与x 轴交于点N ,那么在对称轴上找一点P ,使得OPN ∆和AMN ∆相似,求点P 的坐标.25、在梯形ABCD 中,∠ABC= 90,AD ∥BC ,AB=8cm ,BC=18cm ,54sin =∠BCD ,点P 从点B 开始沿BC 边向终点C 以每秒3cm 的速度移动,点Q 从点D 开始沿DA 边向终点A 以每秒2cm 的速度移动,设运动时间为t 秒.(1)如图:若四边形ABPQ 是矩形,求t 的值; (2)若题设中的“BC=18cm ”改变为“BC=k cm ”,其它条件都不变,要使四边形PCDQ 是等腰梯形,求t 与k 的函数关系式,并写出k 的取值范围;(3)如果⊙P 的半径为6cm ,⊙Q 的半径为4cm ,在移动的过程中,试探索:t 为何值时⊙P 与⊙Q 外离、外切、相交?数学试题参考答案及评分标准一.选择题(本题共6小题,每小题4分,满分24分)二.填空题(本大题共12小题,每小题4分,满分48分)7.1+x x ; 8.1∶2; 9.21; 10.()()2121+---x x ; 11.310; 12.26-; 13.<; 14.91; 15.30330+;16.015; 17.5; 18.9或1. 三.解答题(本大题共7小题,满分78分)19.解:13123622127)3(-++⨯+-+--)(231321231+++-+-= ………………………………5分备用图备用图23321231-++-+-=………………………………2分333-= ………………………………3分20.解: 由(2)得:01=--y x 或01=+-y x .………………………………(2分) 原方程组可化为:⎩⎨⎧=--=+;01,52y x y x ⎩⎨⎧=+-=+.01,52y x y x …………………(4分) 解这两个方程组得原方程组的解为:⎪⎪⎩⎪⎪⎨⎧==;34,3711y x⎩⎨⎧==;2,122y x ………(4分) 说明:学生如果利用代入消元法求解,参照给分。
图1
普陀区2012学年度第二学期九年级数学期终考试调研卷
(时间:100分钟,满分:150分)
考生注意:
1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.
2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.
一、单项选择题:(本大题共6题,每题4分,满分24分)
[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]
1.下列运算,计算结果错误的是( ▲ ).
(A ) 4
3
7
a a a = ; (B ) 6
3
3
a a a ÷=; (C ) 325()a a =; (D ) 333()a
b a b = . 2.经过点()2,4的双曲线的表达式是( ▲ ). (A )2y x =; (B )12y x =
; (C )8
y x
=; (D )2y x =. 3.如图1,飞镖投一个被平均分成6份的圆形靶子,那么飞镖落在阴影部分的概率是( ▲ ). (A )
16; (B )13; (C )12; (D )2
3
. 4.下列图形中是中心对称图形,但不是轴对称图形的是( ▲ ).
(A ); (B
(C )
; (D ) .
5. 已知四边形ABCD 中,90
∠∠∠A B C ===,如果添加一个条件,即可判定该四边形是正方形,那么所添加的这个条件可以是( ▲ ). (A )90
∠D =;
(B )AB CD =; (C )AD BC =; (D )BC CD =.
6.下列说法中正确的是( ▲ ).
(A )某种彩票的中奖率是10%,则购买该种彩票100张一定中奖是必然事件; (B )如图2,在长方体ABCD -EFGH 中,与棱EF 、棱FG 都异面的棱是棱DH ; (C )如果一个多边形的内角和等于︒540,那么这个多边形是正五边形;
(D )平分弦的直径垂直于这条弦.
二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:2
2-= ▲ .
8.方程212=-x 的根是 ▲ .
9.用换元法解分式方程
31
2122=+-+x x
x x 时,如果设y x x =+12,那么原方程可以化为关于y 的方程是 ▲ .
10.如果关于x 的方程2
10x ax a -+-=有两个相等的实数根,那么a 的值等于 ▲ . 11.已知正比例函数x k y )1(-=,函数值y 随自变量x 的值增大而减小,那么k 的取值范围是 ▲ .
12.某种品牌的笔记本电脑原价为a 元,如果连续两次降价的百分率都为x ,那么两次降价后的价格为 ▲ 元.
13.已知△ABC 的重心G 到BC 边上中点D 的距离等于2,那么中线AD 长等于 ▲ . 14.如果梯形的一条底边长为5,中位线长为7,那么另一条底边的长为 ▲ . 15.如图3,在△ABC 中,DE ∥BC ,如果DE=1,BC =4,那么△ADE 与△ABC 面积的比是 ▲ .
16.如图4,边长为1的菱形ABCD 的两个顶点B 、C 恰好落在扇形AEF 的弧EF 上时,弧BC
的长度等于 ▲ (结果保留π).
17.在矩形ABCD 中,如果2AB = ,1BC = ,那么AB BC +
= ▲ .
18.如图5,将边长为4的正方形ABCD 沿着折痕EF 折叠,使点B 落在边AD 的中点G 处,那么四边形BCFE 的面积等于 ▲ .
A
B
C
D E
F
G H
图2
C D
E
B
A 图3 F
C
D
E
B A
图4 图5 H
G
F
C
D
E
B
A
三、解答题:(本大题共7题,满分78分)
19.(本题满分10分)
先化简,再求值:11
)11
12(2
2+÷+-+-a a a a a ,其中2=a .
20.(本题满分10分)
解方程组: 225602x xy y x y ⎧++=⎨+=⎩,.
21.(本题满分10分)
已知:如图6,在△ABC 中,CD ⊥AB ,sin A =4
5
,AB =13,CD =12, 求AD 的长和tan B 的值.
22.(本题满分10分)
①
②
C
D
B
A
图6
下面提供上海楼市近期的两幅业务图:图7(甲)所示为2011年6月至12月上海商品房平均成交价格的走势图(单位:万元/平方米);图7(乙)所示为2011年12月上海商品房成交价格段比例分布图(其中a 为每平方米商品房成交价格,单位:万元/平方米).
(1)根据图7(甲),写出2011年6月至2011年12月上海商品房平均成交价格的中位数; (2)根据图7(乙),可知x = ▲ ;
(3)2011年12月从上海市的内环线以内、内中环之间、中外环之间和外环线以外等四个区域中的每个区域的在售楼盘中随机抽出两个进行分析:共有可售商品房2400套,其中成交200套.请估计12月份在全市所有的60000套可售商品房中已成交的并且每平方米价格低于2万元的商品房的套数.
23.(本题满分12分)
如图8,四边形ABCD 中,BC AD //,点E 在CB 的延长线上,联结DE ,交AB 于点F ,联结DB ,AFD DBE ∠=∠,且2
DE BE CE =⋅. (1) 求证:DBE CDE ∠=∠;
(2)当BD 平分ABC ∠时,求证:四边形ABCD 是菱形.
24. (本题满分12分)
图8
C
A
B
时间(月)成交均价(万元/平方米)
1.95
2.172.392.612.83
3.05
图7(甲) 图7(乙)
二次函数(2
1
6
y x =+的图像的顶点为A ,与y 轴交于点B ,以AB 为边在第二象
限内作等边三角形ABC .
(1)求直线AB 的表达式和点C 的坐标. (2)点(),1M m 在第二象限,且△ABM 的面积等于△ABC 的面积,求点M 的坐标.
(3)以x 轴上的点N 为圆心,1为半径的圆,与以点C 为圆心,CM 的长为半径的圆相切,直接写出点N 的坐标.
25、(本题满分14分)
已知,90ACB ∠=
,CD 是ACB ∠的平分线,点P 在CD
上,CP =
.将三角板
的直角顶点放置在点P 处,绕着点P 旋转,三角板的一条直角边与射线CB 交于点E ,另一条直角边与直线CA 、直线CB 分别交于点F 、点G . (1)如图9,当点F 在射线CA 上时, ①求证: PF = PE .
②设CF = x ,EG =y ,求y 与x 的函数解析式并写出函数的定义域. (2)联结EF ,当△CEF 与△EGP 相似时,求EG 的长.
备用图
A
B
C
图9
A
B
C
E
G
P
D
F。