根的判别式与韦达定理专项
- 格式:wps
- 大小:192.07 KB
- 文档页数:7
一元二次方程根的判别式及韦达定理常见题型及注意事项一、一元二次方程跟的判别式的常见题型 题型1:不解方程,判断一元二次方程根的情况.6232)3(;0123)2(;0345)1(222x x x x x x =+=++=--题型2:证明一元二次方程根的情况求证:无论k 取何实数,关于x 的一元二次方程:2(1)40x k x k -++-=总有两个不等实根。
题型3:已知一元二次方程根的情况..,求方程中未知系数的取值范围 1.( 2011·重庆)已知关于x 的一元二次方程......(a -1)x 2-2x +1=0有两个不相等的......实数根,则a 的取值范围是( )A.a <2 B,a >2 C.a <2且a ≠1 D.a <-2· 变式1:(2010·安徽芜湖)关于x 的方程..(a -5)x 2-4x -1=0有实数根....,则a 满足() A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠5注意:要特别注意二次项系数是否为0,即原方程是否“一定为一元二次方程”。
变式2:(2010 ·成都)若关于x 的一元二次方程2420x x k ++=有两个实数根,求k 的取值范围及k 的非负整数....值.变式3:已知关于x 的一元二次方程(12)10k x k x --=有两个实数根,求k 的取值范围二、一元二次方程根与系数的关系------韦达定理的常见题型 题型1:已知一元二次方程的一根,求另一根及未知系数k 的值 已知23-是方程210x kx ++=的一根,则方程的另一根是 ,k = 。
题型2:求与一元二次方程根有关的代数式的值; 1. 已知12,x x 是方程22430xx --=的两根,计算: (1)2212x x +; ⑵ 1211x x +;⑶212()x x -变式:已知,a b是方程2201230x x -+=的两实根,求22(20103)(20103)a a b b -+-+的值题型3:已知一元二次方程两根的关系.....,求方程中未知系数的取值 1. 关于x 的一元二次方程22(21)10xk x k +-+-=的两个实根的平方和等于9,求k 的值变式1: (2011·荆州)关于x 的方程0)1(2)13(2=+++-a x a ax有两个不相等的实根1x 、2x ,且有a x x x x -=+-12211,则a 的值是( )A .1B .-1C .1或-1D . 2注意:要特别注意应用韦达定理的前提条件是原方程有实根,即原方程:△≥0。
专题复习二 根的判别式与韦达定理重点提示: (1)根的判别式ac b 42-主要应用于判断方程根的情况.利用判别式判断方程根的情况时要注意方程是不是一元二次方程,如果方程的类型不确定还要进行分类讨论.(2)韦达定理主要反映一元二次方程根与系数的关系,利用韦达定理的前提条件是方程有解,即042≥-ac b .【夯实基础巩固】1. 已知x 1,x 2是方程x 2+2x ﹣5=0的两根,则的值为( B )A .﹣B .C .D .﹣2.已知x 2+px +q =0的两根是3,﹣4,则代数式x 2+px +q 分解因式的结果是( C )A . (x +3)(x +4)B . (x ﹣3)(x ﹣4)C . (x ﹣3)(x +4)D . (x +3)(x ﹣4)3.关于x 的方程x 2﹣2mx ﹣m ﹣1=0的根的情况是( A )A . 有两个不相等的实数根B . 有两个相等的实数根C . 有两个实数根D . 没有实数根4.关于x 的方程x 2﹣(m ﹣1)x +m ﹣2=0的两根互为倒数,则m 的值是( C )A . 1B . 2C . 3D . 45.关于x 的方程x 2﹣(m ﹣3)x +m 2=0有两个不相等的实数根,则m 的最大整数值是( B )A . 2B . 1C . 0D . ﹣16.已知关于x 的一元二次方程x 2+kx +1=0有两个相等的实数根,则k = ±2 .7.已知x 1,x 2是方程的两根,则的值为 3 .8.已知a ,b 是一元二次方程x 2﹣2x ﹣1=0的两个实数根,则代数式(a ﹣b )(a +b ﹣2)+ab 的值等于 ﹣1 .9.已知关于x 的方程x 2+2mx +m 2﹣1=0.(1)不解方程,判别方程根的情况.(2)若方程有一个根为3,求m 的值.(1)∵∆=(2m )2﹣4×1×(m 2﹣1)=4>0,∴方程x 2+2mx +m 2﹣1=0有两个不相等的实数根.(2)∵x2+2mx+m2﹣1=0有一个根是3,∴32+2m×3+m2﹣1=0,解得m=﹣4或m=﹣2.10.已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根.(1)求实数m的最大整数值.(2)在(1)的条件下,方程的实数根是x1,x2,求代数式x12+x22﹣x1x2的值.(1)∵x2﹣2x+m=0有两个不相等的实数根,∴ =8﹣4m>0,解得m<2,∴m的最大整数值为1.(2)∵m=1,∴此一元二次方程为x2﹣2x+1=0.∴x1+x2=2,x1x2=1.∴x12+x22﹣x1x2=(x1+x2)2﹣3x1x2=8﹣3=5.【能力提升培优】11.若a,b,c为三角形三边,则关于x的一元二次方程x2+(a﹣b)x+c2=0的根的情况是(C)A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定12.已知一元二次方程ax2+bx+c=0(a≠0),给出下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+bx+c=0两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根.其中真命题有(C)A.1个B.2个C.3个D.0个13.设x1,x2是关于x的方程x2+px+q=0的两根,x1+1,x2+1是关于x的方程x2+qx+p=0的两根,则p,q的值分别为(A)A.﹣1,﹣3 B.1,3 C.1,﹣3 D.﹣1,3【解析】∵x1,x2是x2+px+q=0的两根,x1+1,x2+1是x2+qx+p=0的两根,∴x1+x2=-p,x1x2=q,x1+1+x2+1= x1+x2+2=-q,(x1+1)(x2+1)= x1x2+(x1+x2)+1=p.∴-p+2=-q,q-p+1=p.∴p=-1,q=-3.14.若一元二次方程x2﹣(a+2)x+2a=0的两个实数根分别是3,b,则a+b=5.15.已知m,n是方程x2﹣2x﹣1=0的两根,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,则a的值等于﹣9.16.已知关于x的方程x2﹣(a+b)x+ab﹣1=0,x1,x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③.则正确结论的序号是①②.17.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1x2,求k的值.(1)∵原方程有两个不相等的实数根,∴∆=(2k+1)2﹣4(k2+1)=4k2+4k+1﹣4k2﹣4=4k﹣3>0,解得k>.(2)∵k>,∴x1+x2=﹣(2k+1)<0.又∵x1x2=k2+1>0,∴x1<0,x2<0.∴|x1|+|x2|=﹣x1﹣x2=﹣(x1+x2)=2k+1.∵|x1|+|x2|=x1x2,∴2k+1=k2+1.∴k1=0,k2=2.又∵k>,∴k=2.18.设m是不小于﹣1的实数,关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1,x2.(1)若+=1,求的值.(2)求+﹣m2的最大值.∵方程有两个不相等的实数根,∴∆= 4(m﹣2)2﹣4(m2﹣3m+3)=﹣4m+4>0,解得m<1.∴﹣1≤m<1.(1)∵x1+x2=﹣2(m﹣2),x1x2=m2﹣3m+3,∴+===1,解得m1=,m2=(不合题意,舍去).∴=﹣2.(2)+﹣m2=﹣m2=﹣2(m﹣1)﹣m2=﹣(m+1)2+3.当m=﹣1时,最大值为3.【中考实战演练】19.【烟台】等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为(B)A.9B.10 C.9或10 D.8或10【解析】∵a,b,2是等腰三角形的三边长,∴a=2,b<4或a<4,b=2或a=b>1. ∵a,b是x2-6x+n-1=0的两根,∴a+b=6.∴a=b=3.∴ab=n-1=9.∴n=10.20.已知m,n是关于x的一元二次方程x2﹣2ax+a2+a﹣2=0的两实根,那么m+n的最大值是4.【开放应用探究】21.若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2﹣6x﹣27=0,x2﹣2x﹣8=0,x2+3x﹣=0,x2+6x ﹣27=0,x2+4x+4=0,都是“偶系二次方程”.(1)判断方程x2+x﹣12=0是否是“偶系二次方程”,并说明理由.(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”?请说明理由.(1)不是.理由如下:解方程x2+x﹣12=0得x1=3,x2=﹣4.∴|x1|+|x2|=3+4=7=2×3.5.∵3.5不是整数,∴x2+x﹣12=0不是“偶系二次方程.(2)存在.理由如下:∵x2﹣6x﹣27=0和x2+6x﹣27=0是偶系二次方程,∴假设c=mb2+n.当b=﹣6,c=﹣27时,﹣27=36m+n.∵x2=0是偶系二次方程,∴n=0,m=﹣.∴c=﹣b2.∴可设c=﹣b2.对于任意一个整数b,c=﹣b2时, =b2﹣4c=4b2.∴x1=﹣b,x2=b.∴|x1|+|x2|=2|b|,∵b是整数,∴对于任何一个整数b,当c=﹣b2时,关于x的方程x2+bx+c=0是“偶系二次方程”.。
八年级数学竞赛专题训练试卷(三)一元二次方程根的判别式与韦达定理一、选择题(每小题4分,共40分)1.若m ,n 是二次方程x 2+1994x+7=0的两根,那么(m 2+1993m+6)(n 2+1995n+8)等于( )(A)2000 (B)1994 (C)1986 (D)72.若a b ≠1,且有5a 2+2001a+9=0及9b 2+2001b+5=0,则b a的值是 ( ) (A)95 (B)59 (C)20015- (D)20019- 3.已知一元二次方程px 2-qx -p=0有两根a 和b ,则以1a 和1b 为根的一元二次方程是 ( )(A)px 2+qx -p =0 (B)px 2+qx+p=0(C)qx 2+px -q=0 (D)qx 2+px+q=04.已知3m 2-2m -5=0,5n 2+2n -3=0,其中m ,n 为实数,则1m n-= ( ) (A)0 (B)83 (C)53 (D)0或835.方程x 2+px+1997=0有两个正整数根x 1,x 2,则()()1211px x ++= ( )(A)1 (B)-1 (C)-0.5 (D)12 6.两个质数a ,b 恰好是整系数方程x 2-99x+m=0的两个根,则b a a b+的值为 ( ) (A)9413 (B)9413194 (C)941399 (D)9413977.设x 1,x 2是二次方程x 2+x -3=0的两个根,那么3212419x x -+的值等于 ( )(A)-4 (B)8 (C)6 (D)08.若方程8x 2-(m -1)x+(m -7)=0有一个正根,一个负根,则 ( )(A) m >7 (B) m >1 (C) m <1 (D) m <79.设关于x 的方程ax 2 +(a+2)x+9a=0有两个不相等的实数根x 1,x 2且x 1<1<x 2,那么a 的取值范围是 ( )(A)2275a -<< (B)25a > (C)27a <- (D)2011a -<< 10.已知方程ax 2+bx+c=0的两实根是a ,c(ac ≠0),则方程9cx 2+3bx+a=0的根的情况是( )(A)必有一根为13 (B)必有一根为19(C)两根分别为13,13- (D)必有一根为13或13- 二、填空题(每小题4分,共40分)11.关于x 的一元二次方程x 2-x+a(1-a)=0有两个不相等的正根,则a 可取值为_________ (只要填写一个可能的数值即可).12.当m________时,关于x 的方程4x 2-(m 2-m -2)x -m=0的两根互为相反数.13.已知x ,y 满足x 2-7x+1=0,y 2-7y+1=0,则y x x y+=_________. 14.已知方程x 2-x -4=0的两根为x 1,x 2,则x 1 +x 2=________,2112224x x x x -+-=______. 15.已知菱形ABCD 的边长是5,对角线AC 与BD 交于点O ,且AO ,BO 的长分别是关于x 的方程x 2 +(2m -1)x+m 2 +3=0的根,则m 的值为________.16.已知关于x 的一元二次方程ax 2 +bx+c=0没有实数根,甲由于看错了二次项的系数误求得两根为2和4;乙由于看错了某一项的系数的符号,误求得两根为-1和4,那么23b c a+的值为_______. 17.方程(2002x) 2-2001×2003x -1=0的较大根为a ,x 2 +2002x -2003=0的较小根为b ,则a 2-b=_________.18.已知二次方程(ab -2b)x 2 +2(b -a)x+2x -ab=0有两个相等的实数根,那么11a b+=____. 19.已知实数a ,b ,c 满足a+b+c=0,a 2 +b 2 +c 2=6,则a 的最大值为_________.20.若α,β为x 2 +2x -5=0的两根,则22ααβα++的值为__________.三、解答题(21题满分10分,22题、23题每题满分15分,共40分)21.已知方程a(2x+a)=x(1-x)的两实数根为x 1,x 2,设S =(1)当a=-2时,求S 的值.(2)当a 取什么整数时,S 的值为1 ?(3)是否存在负数a ,使S 2的值不小于25 ?若存在,请指出a 的取值范围,若不存在,请说明理由.22.已知方程x 2 +(m+1)x+2m -1=0的两根都是整数,求m 的整数值.23.已知实数a,b,c满足a+b+2c=1,223602a b c+++=,求a,b,c的值.参考答案一、选择题1.C 2.A 3.A 4.D 5.C 6.B 7.D 8.D . 9.D 10.D二、填空题11.12a ≠即可. 12.m=2. 13.2或47. 14.1,5. 15.m=-3. 16.6 17.2004. 18.1 19.2. 20.0.三、解答题21.(1)由题意易求得S=3.(2) a 取0时,S=1.(3)存在负数a ,使S 2≥25.因212225S a a =-+≥且a <0,所以l -4a ≥25,则a ≤-6.22.m=5或m=3.23.32a b ==,c=-1.。
根的判别式ac b 42-根的判别式的作用:①判定根的个数;②求待定系数的值;③应用于其它。
例1、若关于x 的方程0122=-+x k x 有两个不相等的实数根,则k 的取值范围是 。
例2、已知方程022=+-mx mx 有两个不相等的实数根,则m 的值是 . 例3、关于x 的方程()0212=++-m mx x m 有实数根,则m 的取值范围是( )A.10≠≥且m mB.0≥mC.1≠mD.1>m例4、已知关于x 的方程()0222=++-k x k x(1)求证:无论k 取何值时,方程总有实数根;(2)若等腰∆ABC 的一边长为1,另两边长恰好是方程的两个根,求∆ABC 的周长。
例5、已知二次三项式2)6(92-++-m x m x 是一个完全平方式,试求m 的值.例6、已知关于x 的方程0k x 4k 2x 2=++-有两个不相等的实数根,(1)求k 的取值范围。
(2)化简4k 4k 2k 2+-+--针对练习:1、当k 时,关于x 的二次三项式92++kx x 是完全平方式。
2、当k 取何值时,多项式k x x 2432+-是一个完全平方式?这个完全平方式是什么?3.关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足( )A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠54.对任意实数m ,求证:关于x 的方程042)1(222=++-+m mx x m 无实数根.5.k 为何值时,方程0)3()32()1(2=+++--k x k x k 有实数根.6. 已知a 、b 、c 是ABC ∆三条边的长,那么方程()042=+++c x b a cx 的根的情况是考点五、方程类问题中的“分类讨论”典型例题:例1、关于x 的方程()03212=-++mx x m⑴有两个实数根,则m 为 ,⑵只有一个根,则m 为 。
例2、如果关于x 的方程022=++kx x 及方程022=--k x x 均有实数根,问这两方程是否有相同的根?若有,请求出这相同的根及k 的值;若没有,请说明理由。
《一元二次方程根的判别式和根与韦达定理》 同步练习一、填空题和选择题1、(泸州)设12,x x 是方程2330x x +-=的两个实数根,则2112x x x x +的值为 A.5 B.-5 C.1 D.-12、(眉山)已知关于x 的一元二次方程032=--x x 的两个实数根分别为α、β,则(α+3)(β+3)=______3、(2牡丹江)若关于x 的一元二次方程为ax 2+bx+5=0(a ≠0)的解是x=1,则2013﹣a ﹣b 的值是( )A .2018B . 2008C . 2014D . 20124. (2012湖北襄阳)如果关于x 的一元二次方程2kx 2k 1x 10-++=有两个不相等的实数根,那么k 的取值范围是【 】A .k <12B .k <12且k ≠0C .﹣12≤k <12D .﹣12≤k <12且k ≠05、(2013•自贡)已知关于x 的方程x 2﹣(a+b )x+ab ﹣1=0,x 1、x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③.则正确结论的序号是 .(填上你认为正确结论的所有序号) 二、解答题1.设关于x 的方程kx 2-(2k +1)x +k =0的两实数根为x 1、x 2,,若,4171221=+x x x x 求k 的值.2、(2013• 日照)已知,关于x 的方程x 2-2mx = -m 2+2x 的两个实数根1x 、2x 满足12x x =,求实数m 的值.3、(2013•孝感)已知关于x 的一元二次方程x 2﹣(2k+1)x+k 2+2k=0有两个实数根x 1,x 2.(1)求实数k 的取值范围;(2)是否存在实数k 使得≥0成立?若存在,请求出k 的值;若不存在,请说明理由.4、(2013•荆州)已知:关于x的方程kx2-(3k-1)x+2(k-1)=0(1)求证:无论k为何实数,方程总有实数根;(2)若此方程有两个实数根x1,x2,且│x1-x2│=2,求k的值.5. (2010.十堰)已知关于x的方程mx2-(3m-1)x+2m-2=0(1)求证:无论m取任何实数时,方程恒有实数根.(2)若关于x的二次函数y= mx2-(3m-1)x+2m-2的图象与x轴两交点间的距离为2时,求抛物线的解析式.6、如图,平行四边形 ABCD中,两条对角线交于O点,且AO、BO的长分别是关于x的方程3)12(22=++-+mxmx的根。
一元二次方程根的判别式练习题1.若关于x 的一元二次方程2340mx x +-=有实数根,则m 的值为____.2.若一元二次方程213)420k x x --=(+有实数根,则k 的取值范围是____. 3.若关于x 的二次方程221kx x x +=-有实数根,则k 的取值范围是____. 4.如果关于x 的一元二次方程2()2460x ax x +=--没有实数根,那么a 的最小整数值是 。
5.若m 是非负整数且一元二次方程22121)10)m x m x -+--=((有两个实数根,则m 的值为____.6.二次方程221631720k x k x ---+=()()有两个实数根,则k 为___. 7.方程220x x m ++=有两个相等实数根,则m= 。
8.若方程221210a x bx c x -=()++(+)的两个实数根相等,则a ,b ,c 的关系式为_____.9.当m 时,关于x 的方程3x 2-2(3m+1)x+3m 2-1=0有两个不相等的实数根。
10.关于x 的一元二次方程22()3231310x m x m ++=--的根的判别式的值等于4,则m= 。
11.关于x 的方程()22110kx k x k +++=-的实根的情况是 。
12.关于x 的方程()()2221240k x kx k +++=-的根的情况是 。
13.当k <1时,方程2214210k x kx k ++-=()+有____实数根. 14.方程222393440x x x x ++=(+)()+解的情况是_解. 15.求证:关于x 的方程()()2221240m x mx m +++=-没有实数根。
16.已知关于x 的方程220x x m =--无实根(m 为实数),证明关于x 的方程()222212110()x mx m x ++++=-也无实根。
17.m 为何值时,方程()2214210m x mx m +++=-。
第十讲:一元二次方程实数根与韦达定理(初中衔接)一、知识要点实系数一元二次方程:()200ax bx c a ++=≠的两个根为12,x x ,1.根的判别式24b ac ∆=-:当0∆<时,方程没有实根;当0∆=时,时,有两个不相等的实根。
2.韦达定理重要公式 二、例题分析例1.已知方程220x x m --=()m R ∈没有实根,试判断关于x 的方程 221x mx +++()()222110m x -+=有无实根。
例2.(1)已知12,x x 是方程22310x x --=的根,求22332112121222121211,,,,x x x x x x x x x x x x ++++-的值;练习:如果,a b 是方程012=-+x x 的两个根,那么代数式3223b ab b a a +++的值是 。
(2)若方程2(32)0x x a +--=的两实根均小于1,求实数a 的取值范围;(3)已知方程01532=+-x x ,求解新方程使它的根是原方程根的平方;(4)已知方程0252=-+x x ,作一个新的一元二次方程,使它的根分别是已知方程各根的平方的倒数;练习:已知方程25230x x +-=求作一个方程,使它的根是原方程根的负倒数。
(5)已知抛物线21244y mx mx m =-+与x 轴的两个交点的坐标为12(,0),(,0)A x B x (12x x <),且221234x x +=。
①求12,,m x x 的值;②在抛物线上是否存在点C ,使ABC ∆是一个顶角为0120的等腰三角形?若存在,请求出所有点C 的坐标;若不存在,请说明理由。
例3.设关于x 的方程:()()2222134420x a x a ab b ++++++=有实根,求实数,a b 的值。
例4.已知,m k 为有理数,当k 为何值时,方程22443240x mx x m m k -++-+=有有理根?例5.已知,x y 均为实数,且满足221x y x x =++,求y 的最大值和最小值。
第4周 根的判别式与韦达定理例1、若关于x 的方程0122=-+x k x 有两个不相等的实数根,则k 的取值范围是 。
例2、关于x 的方程()0212=++-m mx x m 有实数根,则m 的取值范围是( )A.10≠≥且m mB.0≥mC.1≠mD.1>m例3、已知关于x 的方程()0222=++-k x k x(1)求证:无论k 取何值时,方程总有实数根;(2)若等腰∆ABC 的一边长为1,另两边长恰好是方程的两个根,求∆ABC 的周长。
例4、已知二次三项式2)6(92-++-m x m x 是一个完全平方式,试求m 的值.说明:若二次三项式为一个完全平方式,则其相应方程的判别式0=∆即:若042=-ac b ,则二次三项式c bx ax ++2)0(≠a 为完全平方式;反之,若c bx ax ++2)0(≠a 为完全平方式,则042=-ac b .例5、m 为何值时,方程组⎩⎨⎧=+=+.3,6222y mx y x有两个不同的实数解?有两个相同的实数解?k 时,关于x 的二次三项式92++kx x 是完全平方式。
★2、当k 取何值时,多项式k x x 2432+-是一个完全平方式?这个完全平方式是什么? ★3、已知方程022=+-mx mx 有两个不相等的实数根,则m 的值是 .★★4、k 为何值时,方程组⎩⎨⎧=+--+=.0124,22y x y kx y★★★5、当k 取何值时,方程(1)有两组相等的实数解,并求此解; 04234422=+-++-k m m x mx x (2)有两组不相等的实数解; 的根与m 均为有理数?(3)没有实数解.一、填空题:1、下列方程①012=+x ;②02=+x x ;③012=-+x x ;④02=-x x 中,无实根的方程是 。
2、已知关于x 的方程022=+-mx x 有两个相等的实数根,那么m 的值是 。
3、如果二次三项式k x x 2432+-在实数范围内总能分解成两个一次因式的积,则k 的取值范围是 。
x 2 - 2 |x |-15 = ( )A. 0B. - 2C. 2D. 8 【解答】解:①当 x > 0 时,方程化为: x 2 - 2x - 15 = 0, 即 (x + 3) (x - 5) = 0, ∴ x + 3 = 0,x - 5 = 0, 解得 x 1 = -3( 舍去 ),x 2 = 5,②当 x < 0 时,方程化为: x 2 + 2x - 15 = 0, 即 (x - 3) (x + 5) = 0, ∴ x - 3 = 0,x + 5 = 0, 解得 x 3 = 3( 舍去 ),x 4 = -5,③当 x = 0 时,方程不成立.∴ 此方程的所有实数根的和为: 5 + (-5) = 0.或原方程可化为: (|x |-5) (|x |+3) = 0, 即 |x |-5 = 0,|x |+3 = 0, ∴ |x | = 5,|x | = -3( 舍去 ), 解得 x = 5 或 -5,∴ 此方程的所有实数根的和为: 5 + (-5) = 0.故选:A .x x 2 + (2m + 1)x + m 2 - 1 =(1(2【解答】解: (1) ∵ 关于 x 的一元二次方程 x 2 + (2m + 1)x + m 2 - 1 = 0 有两个不相等的实数根, ∴ b 2 - 4ac = (2m + 1)2 - 4(m 2 - 1) = 4m + 5 > 0,解得:m > - ,即 m 的取值范围是 m > - ;(2) 由 (1) 知:当 m > - 时,方程有两个不相等的实数根,∵ m 为不大于 1 的整数, ∴ m = 0,-1,1,又m = 0 时,方程北2+ 北 - 1 = 0 的根不是整数,当m = -1 时,则方程为北2- 北 = 0,解得:北1=1,北2=0,即当m = -1 时,方程的解是北1= 1,北2= 0.当m = 1 时,则方程为北2+ 3北 = 0,解得:北1= -3,北2= 0,即当m = 1 时,方程的解是北1= -3,北2= 0.(北 - 3)2 + (y - 3)2 =(北yy北【解答】解:设y= k北,则直线y= k北与圆 (北 - 3)2 + (y - 3)2 = 6 相切时k有最大值和最小值,把y = k北代入 (北 - 3)2 + (y - 3)2 = 6,得 (1 + k2)北2 - 6(k + 1)北 + 12 = 0,∴ Δ= 36(k + 1)2 - 4 × 12 × (1 + k2) = 0,即k2 - 6k + 1 = 0,解此方程得,k = 3 + 2 2 或3 - 2 2.所以y北= k 的最大值是3+ 2 2.北2北(北≥ 0)解:北2北28 = 2北 4 = 2(北 2 +北 2 ,因为北≥ 0,所以北 + 2 的最小值是2,所以北 2 的最大值是2,所以2 + 北 2 的最大值是4,即北2北 (北≥ 0) 的最大值是4.2北北【解答】解:2北北22210= 2北北2 6 = 2(北北2= 2 + 北2 2,∵ 北2≥ 0,∴北2 + 2 的最小值为2,∴北2 2的最大值为3,∴2 + 北2 2的最大值为5,∴分式2北北的最大值是5,故答案为:5.x(m - 4)x 2 + (2m - 1)x +1 = 0 s s【解答】解:根据题意得 m - 4 ≠ 0 且 Δ = (2m - 1)2 - 4(m - 4) ≥ 0,解得 m ≠ 4, x 1 + x 2 = - ,x 1x 2 =,s =+== -2m + 1,由于 m ≠ 4, 所以 s ≠ -7. 故答案为 s ≠ -7.x2x 2 - 4mx + 2m 2 + 3m - 2 = 0(1)m(2) x 1x 2mx 12+ x 22【解答】解: (1) ∵ 一元二次方程 2x 2 - 4mx + 2m 2 + 3m - 2 = 0 有两个实数根, ∴ b 2 - 4ac = (-4m )2 - 4 × 2(2m 2 + 3m - 2) ≥ 0, ∴ -24m + 16 ≥ 0, ∴ m ≤ ,∴ 实数 m 的取值范围为≤ ;(2) ∵ x 1 + x 2 = 2m ,x 1 •x 2 = (2m 2 + 3m - 2),∴ x 12+ x 22= (x 1 + x 2)2 - 2x 1x 2 = (2m )2 - 2 × (2m 2 + 3m - 2) = 2m 2 - 3m + 2 = 2(m - 2+, ∵ m ≤ , < ,∴ 当 m = 时,x + x 12 22= 2(- 2+ = ,∴ 当 m = 时,x 12+ x 22有最小值,最小值是 .1.(x - 1) (x 2 - 2x + m ) =0m()A. 0 ≤ m ≤ 1B. ≤ mC. ≤ m ≤ 1D. < m ≤ 1【解答】解:∵ 方程(x- 1) (x2 - 2x+m) =0 有三根,∴ x1 = 1,x2 - 2x+m= 0 有根,方程x2 - 2x+m= 0 的Δ = 4 - 4m≥0,得m≤ 1.又∵ 原方程有三根,且为三角形的三边和长.∴ 有x2 + x3 > x1 = 1,|x2 - x3 | < x1 = 1,而x2 + x3 = 2 > 1 已成立;当|x2 - x3 | < 1 时,两边平方得:(x2 + x3)2 - 4x2x3 < 1.即:4 - 4m<1.解得m>.∴ <m≤ 1.故选:D.x(k- 1)2x2 + (2k+ 1)x+1 =k( )A. k> k ≠ 1B. k≥ k≠ 1C. k >D. k ≥【解答】解:当k - 1 ≠ 0,即k≠ 1 时,此方程为一元二次方程.∵ 关于x的方程(k- 1)2x2 + (2k+ 1)x+1 = 0 有实数根,∴Δ = (2k+ 1)2- 4 × (k- 1)2× 1 = 12k- 3 ≥ 0,解得k≥;当k- 1 = 0,即k= 1 时,方程为3x+1 = 0,显然有解;综上,k的取值范围是k≥,故选:D.3. m n x2 - 5x+ 1 = 0 S1= + S2= + ⋯St = + (t)S1 + S2 +⋯ S t= t2 - 56t( )A. 7B. 8C. 9D. 10【解答】解:∵ m,n是方程x2 - 5x+ 1 = 0 的两个根,∴m+n= 5,mn= 1,∴S1 = +1 + m+ 1 + n=(1 +m) (1 +n)2 + (m+ n)1+m+n+mn2 + 51 + 1 + 5= 1==,解得 - 3 < a < 1 2 2 .1 + m2 1 + n 2 S 2 = +1 + m2 + 1 + n 2 =(1 + m 2) (1 + n 2) 2 + (m + n )2 - 2mn =1 + (m + n )2 - 2mn + (mn )22 + 5 - 21 + 5 -2 + 1= 1 …, ∴ S t =+= 1,∴ S 1 + S 2 +… S t = t 2 - 56, 1 + 1 +… +1 = t 2 - 56, t = t 2 - 56, t 2 - t - 56 = 0, (t - 8) (t + 7) = 0,解得: t = 8 或 t = -7( 舍去 ). 故选:B .4.xx 2 - 2mx - 4m +1 = 0 (m - 2)2 - 2m (m - 1)【解答】解:由题意可知: Δ = 4m 2 - 2(1 - 4m ) = 4m 2 + 8m - 2 = 0, ∴ m 2 + 2m = ,∴ (m - 2)2 - 2m (m - 1) = -m 2 - 2m + 4 = - + 4= 7 2 ,故答案为: x 2 + 4ax - 4a + 3 = 0x 2 + (a - 1)x + 1 + a 2 = 0x 2 + 2ax - 2a + 3 = 0a(16a 2 + 16a - 12 < 0【解答】解:不妨假设三个方程都没有实数根,则有〈(a - 1)2 - 4(a 2 + 1) < 0 ,(4a 2 - 4(3 - 2a ) < 01 1=,故答案为:a≤ - 或a≥.6. x (1 - 2k )x2 - 2x - 1 = 0 k【解答】解:∵ 关于x的一元二次方程 (1 - 2k)x2 - 2x- 1 = 0 有两个不相等的实数根,(1 - 2k≠ 0∴〈k+ 3 ≥ 0 ,( △ = (-2)2 - 4(1 - 2k) × (-1) > 0解得: -3 ≤ k<4 且k≠ 1x x2 + ax- 1 = (x+ 1)2 + a(x+ 1) - 1 =【解答】解:∵ 关于x的一元二次方程x2 + ax- 1 = 0 的两个根分别为m、n,∴ m2 + am- 1 = 0,n2 + an- 1 = 0,设x+ 1 =m或n,则 (x+ 1)2 + a(x+ 1) - 1 = 0,∴ (x+ 1)2 + a(x+ 1) - 1 = 0 的根为x= m- 1 或n- 1,故答案为:x= m- 1 或n- 1.8. x y(2x+ 1)2 + y2 + (y- 2x)2 = x+ y【解答】解:由 (2x+ 1)2 + y2 + (y- 2x)2 = ,得(3x+ 1)2 + 3(x- y)2 = 0,则〈( x= -解得〈,故x+ y= - - = - .x(a+ b)x2 + 2cx+ (b- a) =a b c△ABC(1x= -△ABC(2△ABC(3△ABC【解答】解: (1)△ABC是等腰三角形,理由:当x= -1 时,(a+ b) - 2c+ (b- a) = 0,2.故答案为: -3 ≤ k<4 且k≠.( y= - 312 ∴ b = c ,∴ △ABC 是等腰三角形,(2)△ABC 是直角三角形,理由: ∵ 方程有两个相等的实数根, ∴ Δ = (2c )2 - 4(a + b ) (b - a ) = 0, ∴ a 2 + c 2 = b 2,∴ △ABC 是直角三角形;(3) ∵ △ABC 是等边三角形, ∴ a = b = c ,∴ 原方程可化为: 2ax 2 + 2ax = 0, 即:x 2 + x = 0, ∴ x (x + 1) = 0, ∴ x 1 = 0,x 2 = -1,即:这个一元二次方程的根为 x 1 = 0,x 2 = -1.10.xax 2 + bx + c = 02t2tax 2 + bx + c = a (x - t ) (x - 2t ) = ax 2 - 3atx + 2t 2a b 2 - ac = 0K =b 2 - acK = 0 ax 2 + bx + c = 0 (1x 2 - x - 2 = x 2 - 6x +8 = )(2(x - 2) (mx + n ) =4m 2 + 5mn + n(3) xx 2 -x + n = 0(m ≥ 0)A (m n )y =3x - 8【解答】解: (1) 在方程①x 2 - x - 2 = 0 中,K = (-1)2 - × 1 × (-2) = 10 ≠ 0;在方程② x 2 - 6x + 8 = 0 中,K = (-6)2 - × 1 × 8 = 0. ∴ 是倍根方程的是②x 2 - 6x + 8 = 0.故答案为:②.(2) 整理 (x - 2) (mx + n ) =0 得:mx 2 + (n - 2m )x - 2n = 0, ∵ (x - 2) (mx + n ) =0 是倍根方程, ∴ K = (n - 2m )2 - 9 m • (-2n ) = 0,∴ 4m2 + 5mn+n2 = 0.(3) ∵ x2 - x+ n= 0 是倍根方程,∴ K= (-)2 - × n= 0,整理得:m= 3n.∵ A(m,n) 在一次函数y= 3x- 8 的图象上,∴n= 3m- 8,∴n= 1,m= 3,∴ 此方程的表达式为x2 - 3x+ = 0.11. m-1 x x2 + 2(m - 2)x+ m2 - 3m+3 = 0x1x2(1) x2+ x22= 6m1(2) +【解答】解:∵ 方程有两个不相等的实数根,∴ Δ = b2 - 4ac= 4(m- 2)2 - 4(m2 - 3m+ 3) = -4m+ 4 > 0,∴m< 1,结合题意知: -1 ≤ m< 1.(1) ∵ x2+ x22= (x1 + x2)2 - 2x1x2 = 4(m- 2)2 - 2(m2 - 3m+ 3) = 2m2 - 10m+ 10 = 61∴ m= ,∵ -1 ≤ m< 1,∴ m= ;(2) + = == = 2(m2 - 3m+ 1) = 2(m- 2 - (-1 ≤ m< 1).∵对称轴m= ,2 > 0,∴当m= -1 时,式子取最大值为10.12. x2 + px+ q= 0 x1x2x1 + x2 = -p x1 •x2 = q(1) p= -4q= 3x2 + px+ q= 0则 x 1 + x 2 = x 1x 2 = - n ,x 1 • x 2 = x 1x 2 = n ,(2) a b a 2 - 15a - 5 = 0b 2 - 15b - 5 = 0 +(3x x 2 + mx + n = 0(n ≠ 0【解答】解: (1) 当 p = -4,q = 3,则方程为 x 2 - 4x + 3 = 0,解得: x 1 = 3,x 2 = 1.(2) ∵ a 、b 满足 a 2 - 15a - 5 = 0,b 2 - 15b - 5 = 0, ∴ a 、b 是x 2 - 15x - 5 = 0 的解, 当 a ≠ b 时,a + b = 15,ab = -5, + ==== -47;当 a = b 时,原式 = 2.(3) 设方程 x 2 + mx + n = 0,(n ≠ 0),的两个根分别是 x 1,x 2, 1 1 x 1 + x 2 m 1 1 1 1 则方程 x 2 + x + = 0 的两个根分别是已知方程两根的倒数.以上就是韦达定理与根的判别式的全部内容~。
一、解一元二次方程1、()()513+=-x x x x2、x x 5322=- 3、2260x y -+= 4、01072=+-x x 5、()()623=+-x x 6、()()03342=-+-x x x 二、根的判别式练习题三、根与系数的关系(韦达定理)1、如果方程)0(02≠=++a c bx ax 的两根是1x 、2x ,那么21x x += ,21x x ⋅= 。
2、已知1x 、2x 是方程04322=-+x x 的两个根,那么:21x x += ;21x x ⋅= ;=+2111x x ;=+2221x x ;=++)1)(1(21x x ;||21x x -= 。
3、以2和3为根的一元二次方程(二次项系数为1)是 。
4、如果关于x 的一元二次方程022=++a x x 的一个根是1-2,那么另一个根是 ,a 的值为 。
5、如果关于x 的方程x 2+6x+k=0的两根差为2,那么k= 。
6、已知方程2x 2+mx -4=0两根的绝对值相等,则m= 。
7、一元二次方程px 2+qx+r=0(p ≠0)的两根为0和-1,则q ∶p= 。
8、已知方程x 2-mx+2=0的两根互为相反数,则m= 。
9、已知关于x 的一元二次方程(a 2-1)x 2-(a+1)x+1=0两根互为倒数,则a = 。
10、已知关于x 的一元二次方程mx 2-4x -6=0的两根为x 1和x 2,且21x x +=-2,则m= ,21x x ⋅ = 。
11、已知方程3x 2+x -1=0,要使方程两根的平方和为913,那么常数项应改为 。
12、已知二次项系数为1的一元二次方程,它的两根之和为5,两根之积为6,则这个方程为 。
13、若α、β为实数且|α+β-3|+(2-αβ)2=0,则以α、β为根的一元二次方程为 。
(其中二次项系数为1)14、已知关于x 的一元二次方程x 2-2(m -1)x+m 2=0。
若方程的两根互为倒数,则m= ;若方程两根之和与两根积互为相反数,则m= 。
一、概念习题1、方程782=x 的一次项系数是 ,常数项是 。
2、若方程()021=--m x m 是关于x 的一元一次方程,⑴求m 的值;⑵写出关于x 的一元一次方程。
3、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。
4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( )A.m=n=2B.m=2,n=1C.n=2,m=1D.m=n=15、方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为 。
6、已知322-+y y 的值为2,则1242++y y 的值为 。
7、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
8、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。
9、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根,则m 的值为 。
10、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。
11、已知关于x 的方程022=-+kx x 的一个解与方程311=-+x x 的解相同。
⑴求k 的值 ⑵方程另一个解。
12、已知m 是方程012=--x x 的一个根,则代数式=-m m 2。
13、已知a 是0132=+-x x 的根,则=-a a 622。
14、方程()()02=-+-+-a c x c b x b a 的一个根为( ) A 1- B 1 C c b - D a -15、若=•=-+yx 则y x 324,0352 。
二、解法习题直接开平方法1、解关于x 的方程:();08212=-x ()216252x -=0; ()();09132=--x (4)02=-b ax2、若()()2221619+=-x x ,则x 的值为 。
一元二次方程两种关系【知识点1 一元二次方程根的判别式】一元二次方程根的判别式:∆=b2−4ac.①当∆=b2−4ac>0时,原方程有两个不等的实数根;②当∆=b2−4ac=0时,原方程有两个相等的实数根;③当∆=b2−4ac<0时,原方程没有实数根.【例1】下列关于x的方程有两个不相等的实数根的是()A.x2﹣2x+2=0 B.x(x﹣2)=﹣1 C.(x﹣k)(x+k)=2x+1 D.x2+1=0 【变式1】关于x的一元二次方程x2+(﹣k+2)x﹣4+k=0根的情况,下列说法正确的是()A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.无法确定【变式2】函数y=kx+b的图象如图所示,则关于x的一元二次方程x2+bx+k﹣1=0的根的情况是()A.没有实数根 B.有两个相等的实数根 C.有两个不相等的实数根 D.无法确定【变式3】已知a,b,c分别是△ABC的边长,则一元二次方程(a+b)x2+2cx+a+b=0的根的情况是()A.没有实数根 B.有两个相等的实数根C.有两个不相等的实数根 D.无法判断【练习 1】关于x的一元二次方程2x2+5x﹣1=0根的说法,正确的是()A.方程没有实数根 B.方程有两个相等实数根C.方程有两个不相等实数根 D.方程有一个实数根【练习 2】已知关于x 的不等式组{x −m >07−2x >1无解,且关于y 的一元二次方程my 2+4y+1=0有两个不相等的实数根,则整数m 为 .【练习 3】对于一元二次方程ax 2+bx+c =0(a ≠0),有下列说法:①若a+b+c =0,则b2﹣4ac ≥0;②若方程ax 2+c =0有两个不相等的实根,则方程ax 2+bx+c =0必有两个不相等的实根;③若c 是方程ax 2+bx+c =0的一个根,则一定有ac+b+1=0成立;④若x 0是一元二次方程ax 2+bx+c =0的根,则b 2﹣4ac =(2ax 0+b )2,其中说法正确的有 .(填序号)【例2】关于x 的一元二次方程ax 2﹣2x+2=0有两个不相等实数根,则a 的值可以( ) A .1B .12C .0D .﹣1【变式1】关于x 的一元二次方程(a+2)x 2﹣3x+1=0有实数根,则a 的取值范围( ) A .a ≤14且a ≠﹣2B .a ≤14C .a <14且a ≠﹣2D .a <14【变式2】方程kx 2﹣6x+1=0有实数根,则k 的取值范围是( ) A .k ≤9B .k ≤9且≠0C .k ≠0D .k >9【变式3】关于x 的方程kx 2+√k +1x+2=0有实根,则k 的取值范围是 . 【变式4】关于x 的方程x 2+bx+c =0有两个相等的实数根,x 取m 和m+2时,代数式x 2+bx+c 的值都等于n ,则n = .【练习1】关于x 的一元二次方程ax 2﹣2x+2=0有两个相等的实数根,则a 的值为 .【练习2】已知关于x 的一元二次方程5x 2+2x+m =0有实数根,则m 的取值范围是 . 【练习3】关于x 的方程(k ﹣1)2x 2+(2k+1)x+1=0有实数根,则k 的取值范围是( ) A .k >14且k ≠1B .k ≥14且k ≠1C .k >14D .k ≥14【例3】关于x 的一元二次方程x 2+(2m ﹣1)x+m 2﹣1=0有两个不相等的实数根 (1)求m 的取值范围;(2)若m 是满足条件的最大整数,求方程的根.【变式1】已知关于x的一元二次方程x2﹣mx﹣2=0(1)若x=﹣1是这个方程的一个根,求m的值和方程的另一根;(2)对于任意的实数m,判断方程的根的情况,并说明理由.【变式2】已知关于x的一元二次方程x2﹣(k+2)x+2k=0.(1)若x=1是这个方程的一个根,求k的值和它的另一根;(2)求证:无论k取任何实数,方程总有实数根.(3)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.【变式3】关于x的一元二次方程x2﹣mx+2m﹣4=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求m的取值范围.【变式4】已知:关于x的方程kx2﹣(4k﹣3)x+3k﹣3=0(1)求证:无论k取何值,方程都有实根;(2)若x=﹣1是该方程的一个根,求k 的值;(3)若方程的两个实根均为正整数,求k的值(k为整数).【练习1】已知关于x的方程x2﹣2x+2k﹣1=0有两个实数根.(1)求k的取值范围;(2)若k为正整数,求此时方程的解.【练习2】已知关于x的方程x2﹣(m+3)x+4m﹣4=0的两个实数根.(1)求证:无论m取何值,这个方程总有实数根.(2)若等腰三角形ABC的一边长a=5,另两边b,c的长度恰好是这个方程的两个根,求△ABC的周长.【练习3】关于x的一元二次方程(m﹣1)x2﹣2mx+m+1=0(1)求证:方程总有两个不相等的实数根.(2)m为何整数时,此方程的两个根都是正整数?(3)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求m的值.【知识点2 一元二次方程的根与系数的关系-韦达定理】如果一元二次方程ax 2+bx +c =0(a ≠0)的两个实数根是, 那么,;注意它的使用条件为a ≠0, Δ≥0. 【例1】如果1是方程2x 2+bx ﹣4=0的一个根,则方程的另一个根是( ) A .﹣2B .2C .﹣1D .1【变式1】若一元二次方程x 2﹣x ﹣2=0的两根为x 1,x 2,则(1+x 1)+x 2(1﹣x 1)= . 【变式2】设x 1,x 2是方程x 2+3x ﹣3=0的两个实数根,则x 2x 1+x1x 2的值为 .【变式3】已知a 、b 是方程2x 2+5x+1=0的两实数根,则式子a √a b+b √b a的值为 .【练习1】一元二次方程x 2﹣4x+a =0的两根之积为2,则常数a 的值( ) A .﹣2B .−12C .12D .2【练习2】已知m ,n 是关于x 的一元二次方程x 2﹣3x ﹣2=0的两个根,则(m ﹣1)(n ﹣1)的值为( ) A .2B .0C .﹣4D .﹣5【练习3】一元二次方程x 2+4x+1=0的两个根是x 1,x 2,则x2x 1−x1x 2的值为 .(其中x 2>x 1)【例2】若a 、b 是方程x 2+x ﹣2021=0的两根,则a 2+2a+b = .【变式1】一元二次方程x 2﹣3x+1=0的两个根为x 1,x 2,则x 12+3x 2+x 1x 2+1的值为( ) A .10B .9C .8D .7【变式2】设x 1、x 2是方程x 2﹣4x+1=0的两个根,则x 13+4x 22+x 1﹣1的值为 . 【练习1】如果方程x 2﹣x ﹣2=0的两个根为α,β,那么α2+β﹣2αβ的值为( ) A .7B .6C .﹣2D .0【练习2】已知α、β是方程x 2﹣x ﹣1=0的两个实数根,则α4+3β的值是( ) A .4B .4√2C .5D .5√221x x ,a b x x -=+21acx x =21【例3】如果m、n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+2023=.【变式1】已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则a2+b2的值为()A.36 B.50 C.28 D.25【变式2】已知a2﹣2a﹣1=0,b2+2b﹣1=0,且ab≠1,则ab+b+1b的值为.【变式3】已知实数α,β满足α2+3α﹣1=0,β2﹣3β﹣1=0,且αβ≠1,则1α2+3β的值为.【例4】已知:关于x的一元二次方程x2+√m x+m﹣3=0有两个实数根.(1)求m的取值范围;(2)设方程的两根为x1,x2,且满足x12+x22=5,求m的值.【变式1】已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根为x1,x2,使得x1x2﹣x12﹣x22=﹣16成立,则k的值.【变式2】关于x的一元二次方程x2﹣2x+m=0的二根为x1,x2,且x12﹣x1+x2=3x1x2,则m =.【变式3】已知α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根.(1)试确定m的取值范围;(2)当1α+1β=−1时,求m的值.【变式4】已知关于x的方程x2+(m+2)x+2m﹣1=0(1)求证:无论m取任何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x1,x2满足x1﹣x2=2,求m的值.=0的两个实数根为α和β,若【练习1】已知二次方程x2+(2m+1)x+m2﹣2m+32|α|+|β|=4,求m的值.【练习2】已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0的两根x1和x2,且x12﹣2x1+2x2=x1x2,则k的值是.【练习3】已知关于x的一元二次方程x2﹣(2m+4)x+m2+4m=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根.(2)设方程的两个实数根分别为x1,x2;①求代数式x12+x22−4x1x2的最大值;②若方程的一个根是6,x1和x2是一个等腰三角形的两条边,求等腰三角形的周长.【例5】定义新运算“a*b”:对于任意实数a,b,都有a*b=a2+b2﹣2ab﹣2,其中等式右边是通常的加法、减法、乘法运算,例如:5*6=52+62﹣2×5×6﹣2=﹣1.若方程x*k =xk(k为实数)是关于x的方程,则方程的根的情况为()A.只有一个实数根 B.有两个相等的实数根C.有两个不相等的实数根 D.没有实数根【变式1】对于实数m、n,定义一种运算:m△n=mn+n.(1)求﹣2△√32得值;有两个相等的实数根,求实数a的值.(2)如果关于x的方程x△(a△x)=−14【变式2】如果关于x 的一元二次方程ax 2+bx+c =0有两个实数根x 1,x 2,且满足数轴上x 1,x 2所表示的点到2所表示的点的距离相等,则称这样的方程为“关于2的等距方程”以下“关于2的等距方程”的说法,正确的有 .(填序号) ①方程x 2﹣4x =0是关于2的等距方程;②当5m =﹣n 时,关于x 的方程(x+1)(mx+n )=0一定是关于2的等距方程; ③若方程ax 2+bx+c =0是关于2的等距方程,则必有b =﹣4a (a ≠0); ④当两根满足x 1=3x 2,关于x 的方程px 2﹣x +34=0是关于2的等距方程.【变式3】如果关于x 的一元二次方程ax 2+bx+c =0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,研究发现了此类方程的一般性结论,设其中一根为t ,则另一根为2t ,因此ax 2+bx+c =a (x ﹣t )(x ﹣2t )=ax 2﹣3atx+2t 2a ,所以有b 2−92ac =0;我们记“K =b 2−92ac ”,即K =0时,方程ax 2+bx+c =0为倍根方程:下面我们根据所获信息来解决问题:(1)以下为倍根方程的是 ;(写出序号) ①方程x 2﹣x ﹣2=0;②x 2﹣6x+8=0;(2)若关于的x 方程mx 2+(n ﹣2m )x ﹣2n =0是倍根方程,求4m 2+5mn+n 2的值; (3)若A (m ,n )在一次函数y =3x ﹣8的图象上,且关于x 的一元二次方程x 2−√mx +23n =0是倍根方程,求此倍根方程.【课后练习】1.关于x的一元二次方程x2+4x+2=0根的情况是()A.没有实数根 B.有两个不相等的实数根C.只有一个实数根 D.有两个相等的实数根2.若方程x2+3x+c=0没有实数根,则c的取值范围是()A.c<94B.c<49C.c>49D.c>943.关于x的一元二次方程﹣kx2﹣6x+3=0有两个不相等的实数根,则k的取值范围是()A.k>﹣3 B.k<3 C.k<3且k≠0 D.k>﹣3且k≠0 4.已知x1,x2是一元二次方程x2﹣2x=0的两个实数根,下列结论正确的是()A.x1+x2=﹣2 B.x1•x2=0 C.x1+x2=0 D.x1•x2=﹣2 5.设x1,x2是一元二次方程x2﹣3x+2=0的两个实数根,则x1﹣x1x2+x2的值为.6.已知a,b是方程x2+x﹣1=0的两个实数根,则a2﹣b+2023的值是()A.2025 B.2024 C.2023 D.20227.已知关于x的方程2x2+(m+2)x+m=0;(1)证明:方程总有实数根;(2)若方程有一个根大于1,求m的范围.8.已知关于x的一元二次方程mx2﹣(m+2)x+m4=0有两个不相等的实数根x1,x2.(1)求m的取值范围;(2)若1x1+1x2=4m,求m的值.。
二次函数与根的判别式、韦达定理讲点1:公共点问题【例1】如图,抛物线y =-x 2+4x -3的顶点为M ,直线y =-2x -9与y 轴交于点C ,与直线MO 交于点D ,现将抛物线的顶点在直线OD 上平移,平移后的抛物线与射线CD (含顶点C )只有一个公共点,求它的顶点横坐标的值或取值范围.CO DM yx【练】如图,已知抛物线y =-x 2+2x +8与x 轴交于点A,B 两点,与y 轴交于点C ,点D 为抛物线的顶点,直线CD 交x 轴于点E ,过点B 作x 轴的垂线,交直线CD 于点F ,将抛物线沿其对称轴平移,使抛物线与线段EF 总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?FD CE A B O y x讲点2:距离问题【例2】如图,抛物线y =a(x -1)2+4与x 轴交于A,B 两点,与y 轴交于点C ,点D 是抛物线的顶点,已知CD =2,在抛物线上共有三个点到直线BC 的距离为m ,求m 的值.CD BAOyx【练】如图,抛物线y =ax 2-6ax +5a 与x 轴交于A,B 两点(A 左,B 右),若抛物线与直线y =2x 的最近点之间的距离为255,求a 的值. yxO B A讲点3:隐藏判别式【例3】如图,点P 是直线l :y =-2x -2上的点,过点P 的另一条直线m 交抛物线y =x 2与A,B 两点,试证明:对于直线l 上任意给定的一点P ,在抛物线上都能找到点A ,使得PA =AB 成立.PBAO yx【练】如图,已知二次函数y =a(x 2-6x +8)(a >0)的图象与x 轴分别交于点A,B ,与y 轴交于点C ,点D 是抛物线的顶点.当点P 在抛物线对称轴上时,设点P 的纵坐标t 是大于3的常数,试问:是否存在一个正数a ,使得四条线段PA,PB,PC,PD 与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.CPDB AO y x讲点4:交点间的距离【例4】已知二次函数y =x 2-2mx +m 2+m 的图象与函数y =kx +1的图象交于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点.(1)如图1,当k =1,m 取不同值时,猜想AB 的长是否不变?并证明你的猜想;A BxOy(2)如图2,当m =0,k 取不同值时,猜想△AOB 的形状,并证明你的猜想.BAyOx【例5】如图,抛物线y =x 2-4x +5与y 轴交于点C ,过点N (1,2)作直线l ,交抛物线于点P ,交y 轴于点E ,连接PC ,若PE =PC ,求直线l 的解析式.lE P CN Oy x【练】如图,抛物线C 1:y =x 2+4x +3交x 轴于A,B 两点,交y 轴于点C ,将抛物线C 1沿y 轴翻折得新抛物线C 2,过点C 作直线l 交抛物线C 1于点M ,交抛物线C 2于点N ,若MN =82,求直线l 的解析式.A B xyO C三、对称问题【例6】如图,已知抛物线y =x 2-2x -3,直线y =kx -1与抛物线交于P,Q 两点,且y 轴平分线段PQ ,求k 的值.QPO y x【练】如图,已知抛物线y =x 2-4x +3,过点D (0,-52)的直线与抛物线交于点M,N ,与x 轴交于点E ,且点M,N 关于点E 对称,求直线MN 的解析式.yxNEMD O四、与面积结合【例7】如图,抛物线y =x 2-4x +5顶点为M ,平移直线y =x 交抛物线于点H,K ,若S △MHK =3,求平移后直线的解析式.【课后反馈】1.如图,已知抛物线y =x 2-2x -3与x 轴交于A,B 两点,与y 轴交于点C ,将抛物线沿对称轴向上平移k 个单位长度后与线段BC 交于D,E 两个不同的点,求k 的取值范围.E C DB A O yx2.如图,抛物线y =ax 2-6ax +5a 与x 轴交于A,B 两点(A 左,B 右),若抛物线不通过直线y =2x 上方的点,求抛物线顶点纵坐标的取值范围.yxO B A3.如图,抛物线y =14x 2+32x +2与x 轴交于A,B 两点(点A 在点B 的左边),与y 轴交于点C ,将抛物线沿直线BC 平移,与射线AC (含点A )仅有一个公共点,求抛物线顶点横坐标的值或取值范围.CBAOyx4.如图,已知抛物线C :y =x 2-2x +4和直线l :y =-2x +8,直线y =kx (k >0)与抛物线C 交于A,B 两点,与直线l 交于点P ,分别过A,B,P 作x 轴的垂线,垂足依次为A 1、B 1、P 1,若11OA +11OB =1u OP ,求u 的值.A 1B 1P 1B AP O yx5.如图1,抛物线C 1:y =x 2+4x +3顶点为M ,抛物线C 2与抛物线C 1开口方向相反,形状相同,顶点为N ,且M,N 关于点P (0,2)对称. (1)求抛物线C 2的解析式;N MPOyx(2)直线y =m 交抛物线C 1于点A,B ,交抛物线C 2于点C,D ,若AB =2CD ,求m 的值;DCB ANMOyx。
一元二次方程根与系数的关系应用例析及训练对于一元二次方程ax?+bx+c = 0(a式0),当判别式心= b?_4ac兰0时,其求根公式为:%、=―' b——4ac;当2ab c.:_0时,设一元二次方程的两根为X「x2,有:x-i x2,x-i x2;根与系数的这种关系又称为韦达定理;它的a ab c逆定理也是成立的,即当x-i x2,x-i x2时,那么为、x2则是方程ax2bx c = 0(a = 0)的两根。
一元二次方程a a的根与系数的关系,综合性强,应用极为广泛,在中学数学中占有极重要的地位,也是数学学习中的重点。
学习中,除了要求熟记一元二次方程ax2 bx c =0(a =0)根的判别式厶二b2 -4ac存在的三种情况外,还常常要求应用韦达定理解答一些变式题目,以及应用求根公式求出方程ax2 bx 0(^- 0)的两个根为、x2,进而分解因式,即ax2bx • c = a(x-xj(x-x2)。
下面就对韦达定理的应用可能出现的问题举例做些分析,希望能带来小小的帮助。
一、根据判别式,讨论一元二次方程的根。
例1:已知关于x的方程(1) X2 -(1-2a)x • a2 -3 =0有两个不相等的实数根,且关于x的方程⑵x2-2x,2a-1=:0没有实数根,问a取什么整数时,方程(1)有整数解?分析:在同时满足方程(1),(2)条件的a的取值范围中筛选符合条件的a的整数值。
解:a的取值范围,并依靠熟练的解不等式的基本技说明:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定能和一定的逻辑推理,从而筛选出a,这是解答本题的基本技巧。
二、判别一元二次方程两根的符号。
例2:不解方程,判别方程2x2・3x-7=0两根的符号。
判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,倘若由题中x1 x^:: 0,所以可判定方程的根为一正一负;倘若为x2 0,仍需考虑x1 X2的正负,倘若x1 x2 • 0,则方程有两个正数根;倘若x1 X2:::0,则方程有两个负数根。
初中数学培优:韦达定理与根的判别式一、利用根的判别式求字母的取值范围【典例】已知方程x2﹣2|x|﹣15=0,则此方程的所有实数根的和为()A.0B.﹣2C.2D.8【解答】解:①当x>0时,方程化为:x2﹣2x﹣15=0,即(x+3)(x﹣5)=0,∴x+3=0,x﹣5=0,解得x1=﹣3(舍去),x2=5,②当x<0时,方程化为:x2+2x﹣15=0,即(x﹣3)(x+5)=0,∴x﹣3=0,x+5=0,解得x3=3(舍去),x4=﹣5,③当x=0时,方程不成立.∴此方程的所有实数根的和为:5+(﹣5)=0.或原方程可化为:(|x|﹣5)(|x|+3)=0,即|x|﹣5=0,|x|+3=0,∴|x|=5,|x|=﹣3(舍去),解得x=5或﹣5,∴此方程的所有实数根的和为:5+(﹣5)=0.故选:A.【巩固】关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为不大于1的整数,且方程的根为整数,求满足条件的m的值及对应的方程的根.【解答】解:(1)∵关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根,∴b2﹣4ac=(2m+1)2﹣4(m2﹣1)=4m+5>0,解得:m>−54,即m的取值范围是m>−54;(2)由(1)知:当m>−54时,方程有两个不相等的实数根,∵m为不大于1的整数,∴m=0,﹣1,1,又m=0时,方程x2+x﹣1=0的根不是整数,当m=﹣1时,则方程为x2﹣x=0,解得:x1=1,x2=0,即当m=﹣1时,方程的解是x1=1,x2=0.当m=1时,则方程为x2+3x=0,解得:x1=﹣3,x2=0,即当m=1时,方程的解是x1=﹣3,x2=0.二、利用根的判别式求最值【典例】满足(x﹣3)2+(y﹣3)2=6的所有实数对(x,y)中,的最大值是多少?【解答】解:设y=kx,则直线y=kx与圆(x﹣3)2+(y﹣3)2=6相切时k有最大值和最小值,把y=kx代入(x﹣3)2+(y﹣3)2=6,得(1+k2)x2﹣6(k+1)x+12=0,∴Δ=36(k+1)2﹣4×12×(1+k2)=0,即k2﹣6k+1=0,解此方程得,k=3+22或3﹣22.所以=k的最大值是3+22.【巩固】阅读下面的材料,并解答问题:分式2r8r2(≥0)的最大值是多少?解:2r8r2=2r4+4r2=2(r2)+4r2=2+4r2,因为x≥0,所以x+2的最小值是2,所以4r2的最大值是2,所以2+4r2的最大值是4,即2r8r2(≥0)的最大值是4.根据上述方法,试求分式22+102+2的最大值是.【解答】解:22+102+2=22+4+62+2=2(2+2)+62+2=2+62+2,∵x2≥0,∴x2+2的最小值为2,∴62+2的最大值为3,∴2+62+2的最大值为5,∴分式22+102+2的最大值是5,故答案为:5.三、韦达定理与根的判别式综合【典例】若关于x的一元二次方程(m﹣4)x2+(2m﹣1)x+1=0的两个实数根的倒数和为s,则s的取值范围是.【解答】解:根据题意得m﹣4≠0且Δ=(2m﹣1)2﹣4(m﹣4)≥0,解得m≠4,x1+x2=−2K1K4,x1x2=1K4,s=11+12=1+212=−2m+1,由于m≠4,所以s≠﹣7.故答案为s≠﹣7.【巩固】已知关于x的一元二次方程2x2﹣4mx+2m2+3m﹣2=0有两个实数根.(1)求实数m的取值范围;(2)设x1,x2是原方程的两个实数根,当m为何值时,x12+x22有最小值?并求这个最小值.【解答】解:(1)∵一元二次方程2x2﹣4mx+2m2+3m﹣2=0有两个实数根,∴b2﹣4ac=(﹣4m)2﹣4×2(2m2+3m﹣2)≥0,∴﹣24m+16≥0,∴m≤23,∴实数m的取值范围为≤23;(2)∵x1+x2=2m,x1•x2=12(2m2+3m﹣2),∴x12+x22=(x1+x2)2﹣2x1x2=(2m)2﹣2×12(2m2+3m﹣2)=2m2﹣3m+2=2(m−34)2+78,∵m≤23,23<34,∴当m=23时,x12+x22=2(23−34)2+78=89,∴当m=23时,x12+x22有最小值,最小值是89.巩固练习1.如果方程(x﹣1)(x2﹣2x+m)=0的三根可作为一个三角形的三边之长,则实数m的取值范围是()A.0≤m≤1B.34≤m C.34≤m≤1D.34<m≤1【解答】解:∵方程(x﹣1)(x2﹣2x+m)=0有三根,∴x1=1,x2﹣2x+m=0有根,方程x2﹣2x+m=0的Δ=4﹣4m≥0,得m≤1.又∵原方程有三根,且为三角形的三边和长.∴有x2+x3>x1=1,|x2﹣x3|<x1=1,而x2+x3=2>1已成立;当|x2﹣x3|<1时,两边平方得:(x2+x3)2﹣4x2x3<1.即:4﹣4m<1.解得m>34.∴34<m≤1.故选:D.2.关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,则k的取值范围是()A.k>14且k≠1B.k≥14且k≠1C.k>14D.k≥14【解答】解:当k﹣1≠0,即k≠1时,此方程为一元二次方程.∵关于x的方程(k﹣1)2x2+(2k+1)x+1=0有实数根,∴Δ=(2k+1)2﹣4×(k﹣1)2×1=12k﹣3≥0,解得k≥14;当k﹣1=0,即k=1时,方程为3x+1=0,显然有解;综上,k的取值范围是k≥14,故选:D.3.已知m,n是方程x2−5x+1=0的两个根.记S1=11++11+,S2=11+2+11+2,…,S t=11++ 11+(t为正整数).若S1+S2+…S t=t2﹣56,则t的值为()A.7B.8C.9D.10【解答】解:∵m,n是方程x2−5x+1=0的两个根,∴m+n=5,mn=1,∴S1=11++11+=1+r1+(1+p(1+p=2+(rp==1,S2=11+2+11+2=1+2+1+2(1+2)(1+2)=2+(rp2−2B1+(rp2−2B+(B)2=2+5−21+5−2+1=1,…,∴S t=11++11+=1,∴S1+S2+…S t=t2﹣56,1+1+…+1=t2﹣56,t=t2﹣56,t 2﹣t ﹣56=0,(t ﹣8)(t +7)=0,解得:t =8或t =﹣7(舍去).故选:B .4.若关于x 的一元二次方程12x 2﹣2mx ﹣4m +1=0有两个相等的实数根,则(m ﹣2)2﹣2m (m ﹣1)的值为.【解答】解:由题意可知:Δ=4m 2﹣2(1﹣4m )=4m 2+8m ﹣2=0,∴m 2+2m =12,∴(m ﹣2)2﹣2m (m ﹣1)=﹣m 2﹣2m +4=−12+4=72,故答案为:725.设下列三个一元二次方程:x 2+4ax ﹣4a +3=0;x 2+(a ﹣1)x +1+a 2=0;x 2+2ax ﹣2a +3=0,至少有一个方程有实根,则实数a 的取值范围是.【解答】解:不妨假设三个方程都没有实数根,则有162+16−12<0(−1)2−4(2+1)<042−4(3−2p <0,解得−32<a <12.故答案为:a ≤−32或a ≥12.6.已知关于x 的一元二次方程(1﹣2k )x 2﹣2+3x ﹣1=0有两个不相等的实数根,则k 的取值范围.【解答】解:∵关于x 的一元二次方程(1﹣2k )x 2﹣2+3x ﹣1=0有两个不相等的实数根,∴1−2≠0+3≥0△=(−2+3)2−4(1−2p ×(−1)>0,解得:﹣3≤k <4且k ≠12.故答案为:﹣3≤k <4且k ≠12.7.关于x 的一元二次方程x 2+ax ﹣1=0的两个根分别为m 、n ,则(x +1)2+a (x +1)﹣1=0的根为.【解答】解:∵关于x 的一元二次方程x 2+ax ﹣1=0的两个根分别为m 、n ,∴m 2+am ﹣1=0,n 2+an ﹣1=0,设x+1=m或n,则(x+1)2+a(x+1)﹣1=0,∴(x+1)2+a(x+1)﹣1=0的根为x=m﹣1或n﹣1,故答案为:x=m﹣1或n﹣1.8.已知实数x,y满足(2x+1)2+y2+(y﹣2x)2=13,求x+y的值.【解答】解:由(2x+1)2+y2+(y﹣2x)2=13,得(3x+1)2+3(x﹣y)2=0,则3+1=0−=0,解得=−13=−13,故x+y=−13−13=−23.9.已知关于x的一元二次方程(a+b)x2+2cx+(b﹣a)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.【解答】解:(1)△ABC是等腰三角形,理由:当x=﹣1时,(a+b)﹣2c+(b﹣a)=0,∴b=c,∴△ABC是等腰三角形,(2)△ABC是直角三角形,理由:∵方程有两个相等的实数根,∴Δ=(2c)2﹣4(a+b)(b﹣a)=0,∴a2+c2=b2,∴△ABC是直角三角形;(3)∵△ABC是等边三角形,∴a=b=c,∴原方程可化为:2ax2+2ax=0,即:x2+x=0,∴x(x+1)=0,∴x1=0,x2=﹣1,即:这个一元二次方程的根为x1=0,x2=﹣1.10.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,研究发现了此类方程的一般性结论:设其中一根为t,则另一个根为2t,因此ax2+bx+c=a(x﹣t)(x﹣2t)=ax2﹣3atx+2t2a,所以有b2−92ac=0;我们记“K=b2−92ac”即K=0时,方程ax2+bx+c=0为倍根方程;下面我们根据此结论来解决问题:(1)方程①x2﹣x﹣2=0;方程②x2﹣6x+8=0这两个方程中,是倍根方程的是(填序号即可);(2)若(x﹣2)(mx+n)=0是倍根方程,求4m2+5mn+n2的值;(3)关于x的一元二次方程x2−B+23n=0(m≥0)是倍根方程,且点A(m,n)在一次函数y=3x﹣8的图象上,求此倍根方程的表达式.【解答】解:(1)在方程①x2﹣x﹣2=0中,K=(﹣1)2−92×1×(﹣2)=10≠0;在方程②x2﹣6x+8=0中,K=(﹣6)2−92×1×8=0.∴是倍根方程的是②x2﹣6x+8=0.故答案为:②.(2)整理(x﹣2)(mx+n)=0得:mx2+(n﹣2m)x﹣2n=0,∵(x﹣2)(mx+n)=0是倍根方程,∴K=(n﹣2m)2−92m•(﹣2n)=0,∴4m2+5mn+n2=0.(3)∵2−B+23=0是倍根方程,∴=(−p2−92×23=0,整理得:m=3n.∵A(m,n)在一次函数y=3x﹣8的图象上,∴n=3m﹣8,∴n=1,m=3,∴此方程的表达式为2−3+23=0.11.设m是不小于﹣1的实数,关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1、x2,(1)若x12+x22=6,求m值;(2)求B121−1+B221−2的最大值.【解答】解:∵方程有两个不相等的实数根,∴Δ=b2﹣4ac=4(m﹣2)2﹣4(m2﹣3m+3)=﹣4m+4>0,∴m<1,结合题意知:﹣1≤m <1.(1)∵x 12+x 22=(x 1+x 2)2﹣2x 1x 2=4(m ﹣2)2﹣2(m 2﹣3m +3)=2m 2﹣10m +10=6∴=∵﹣1≤m <1,∴=(2)B 121−1+B 221−2=n 12+22−12(1+2)](1−1)(1−2)=o23−82+8K2)2−=2oK1)(2−3r1)oK1)=2(2−3+1)=2(−32)2−52(﹣1≤m <1).∵对称轴m =32,2>0,∴当m =﹣1时,式子取最大值为10.12.如果方程x 2+px +q =0的两个根是x 1,x 2,那么x 1+x 2=﹣p ,x 1•x 2=q ,请根据以上结论,解决下列问题:(1)若p =﹣4,q =3,求方程x 2+px +q =0的两根.(2)已知实数a 、b 满足a 2﹣15a ﹣5=0,b 2﹣15b ﹣5=0,求+的值;(3)已知关于x 的方程x 2+mx +n =0,(n ≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数.【解答】解:(1)当p =﹣4,q =3,则方程为x 2﹣4x +3=0,解得:x 1=3,x 2=1.(2)∵a 、b 满足a 2﹣15a ﹣5=0,b 2﹣15b ﹣5=0,∴a 、b 是x 2﹣15x ﹣5=0的解,当a ≠b 时,a +b =15,ab =﹣5,+=2+2B=(rp 2−2BB=152−2×(−5)−5=−47;当a =b 时,原式=2.(3)设方程x 2+mx +n =0,(n ≠0),的两个根分别是x 1,x 2,则11+12=1+212=−,11•12=112=1,则方程x 2+x +1=0的两个根分别是已知方程两根的倒数.。
一元二次方程根的判别式及韦达定理常见题型及注意事项一、一元二次方程跟的判别式的常见题型题型1:不解方程,判断一元二次方程根的情况题型2:证明一元二次方程根的情况求证:无论k 取何实数,关于x 的一元二次方程:2(1)40x k x k -++-=总有两个不等实根。
题型3:已知一元二次方程根的情况..,求方程中未知系数的取值范围 1.( 2011·重庆)已知关于x 的一元二次方程......(a -1)x 2-2x +1=0有两个不相等的......实数根,则a 的取值范围是( )A.a <2 B,a >2 C.a <2且a ≠1 D.a <-2·变式1:(2010·安徽芜湖)关于x 的方程..(a -5)x 2-4x -1=0有实数根....,则a 满足() A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠5 注意:要特别注意二次项系数是否为0,即原方程是否“一定为一元二次方程”。
变式2:(2010 ·成都)若关于x 的一元二次方程2420x x k ++=有两个实数根,求k 的取值范围及k 的非负整数....值. 变式3:已知关于x 的一元二次方程(12)10k x k x ---=有两个实数根,求k 的取值范围 二、一元二次方程根与系数的关系------韦达定理的常见题型题型1:已知一元二次方程的一根,求另一根及未知系数k 的值已知23-是方程210x kx ++=的一根,则方程的另一根是 ,k = 。
题型2:求与一元二次方程根有关的代数式的值;1. 已知12,x x 是方程22430x x --=的两根,计算: (1)2212x x +; ⑵ 1211x x +;⑶212()x x - 变式:已知,a b 是方程2201230x x -+=的两实根,求22(20103)(20103)a a b b -+-+的值题型3:已知一元二次方程两根的关系.....,求方程中未知系数的取值 1. 关于x 的一元二次方程22(21)10x k x k +-+-=的两个实根的平方和等于9,求k 的值 变式1: (2011·荆州)关于x 的方程0)1(2)13(2=+++-a x a ax 有两个不相等的实根1x 、2x ,且有a x x x x -=+-12211,则a 的值是( )A .1B .-1C .1或-1D . 2 注意:要特别注意应用韦达定理的前提条件是原方程有实根,即原方程:△≥0。
根的判别式与韦达定理专题
一、导入:脑经急转弯
(1)猪圈里的猪出来了,怎么办?{猜一个明星} (2)猪圈里的猪又出来了,怎么办?{猜一个明星} (3)猪圈里的猪出第3次来了,怎么办?{猜一个明星} 二、知识点回顾:
1、一元二次方程及其根的含义
2、一元二次方程的常用解法 三、知识点精讲
1、判别式的意义及一元二次方程根的情况。
(1)定义:把 叫做一元二次方程)0(0c bx ax 2≠=++a 的根的判别式,通常用符号“ ”表示。
(2)一元二次方程。
当0>∆时, ; 当0=∆时, ; 当0<∆时, 。
2.∆的“来历”:
任何一个一元二次方程)0a 0c bx ax 2≠=++(用配方法将其变形为
04,044-2a b x 2
2
22>∴≠=+a a a
ac b )( ,因此对于被开方数224a 4ac -b 来说,只需研究4ac -b 2 为如下几种情况的方程的根。
(1)当 4ac -b 2>0时,方程有两个不相等的实数根。
即
(2)当 时,方程有两个相等的实数根,即 。
(3)当 时,方程没有实数根。
3.韦达定理:
(1)=+21x x (2)=21x x 4.根的符号问题:
(1)两根同为正: ; (2)两根同为负: ; (3)两根一正一负: 。
例1、不解方程,判别下列方程的根的情况:
(1)22x +3x-4=0; (2)216y +9=24y ; (3)25x +1-7x=0()
【变式训练1】:
1.不解方程,判别下列方程的情况: (1) (5) ;
例2、方程0232
=+-x kx 有两个相等的实数根,则k= 。
【变式训练2】:
1.若关于x 的一元二次方程0342=+-x kx 有实数根,则k 的非负整数值是 。
2.已知k>0且一元二次方程11232-=++k x kx 有两个相等的实数根,则k= 。
3.当k 不小于-14
时,一元二次方程
()()0x 12x 22=+---k k k 根的情况是 。
例3、关于x 的方程()0191322=-+--m x m mx 有两个实数根,则m 的范围是 。
【变式训练3】: 1.如果关于x
的一元二次方程
()()01222
=+---m x m x m 只有一个实数根,那么方程()()0422=-++-m x m mx 的根的情况是 。
2.如果关于x 的一元二次方程
()05222=+++-m x m mx 没有实数根,那么关于x 的方程()()02252=++--m x m x m 的实根个数是 。
计算对称式的值:
例4、若12x x ,是方程2
x 2x 20070+-=的两个根,试求下列各式的值:
(1) 2212x x +; (2) 12
11
x x +;
(3) 12(x 5)(x 5)--; (4) 12|x x |-.
【变式训练4】:
1.设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值为_________
2.已知x 1,x 2是方程2x 2-7x +4=0的两根,则x 1+x 2= ,x 1·x 2= ,
(x 1-x 2)2
=
3.已知方程2x 2
-3x+k=0的两根之差为21
2
,则k=
例5、关于x 的方程()0322=---+m x m x 的两根的平方不大于25,求最大的整数m 。
【变式训练5】:
1.关于x 的方程()063222=++-+m x m x 的两实根之积是两实根之和的2倍,求m 的值。
2.设21,x x 是关于x 的一元二次方程()()021222=-+++m x m x 的两实根,当m 取什么值时,
()15221=-x x ?
3.已知关于x 的一元二次方程221
x (1)x 104
k k -+++=,根据下列条件,分别求出k 的值.
(1) 方程两实根的积为5; (2) 方程的两实根12x ,x 满足12|x |x =.
例6、已知一元二次方程021102=++-a x x 。
(1)当a 为何值时,方程有一正、一负两个根?(2)此方程会有两个负根吗?为什么?
【变式训练6】:
1.已知关于x 的一元二次方程01422=-++m x x 有两个非零实数根。
(1)求m 的取值范围;
(2)两个非零实数根能否同为正数或同为负数?若能,请求出相应的m 的取值范围,若不能,请说明理由。
四、巩固练习 (一)选择题:(每个4分,共计20分)
1、已知x =1是一元二次方程x 2
+bx -2=0的一个根,则方程的另一个根是( ) A.1 B.2 C.-2 D.-1
2、已知一元二次方程x 2-4x +3=0两根为x 1、x 2, 则x 1·x 2=( ) A. 4 B. 3 C. -4 D. -3
3、已知关于x 的一元二次方程x 2+bx +a =0有一个根是-a (a ≠0),则a -b 的值为 A .-1 B .0 C .1 D .2
4、已知a 、b 是关于x 的一元二次方程01nx x 2=-+的两实数根,则式子b a
a b +的值是( )
A.2n 2+
B.2n 2+-
C.2n 2-
D.2n 2-- 5、以3和—2为根的一元二次方程是( )
A.06x x 2=-+
B.06x x 2=++
C.06x x 2=--
D.06x x 2=+-
(二)填空题:(每个4分,共20分)
1.若一元二次方程x 2+(a 2-2)x -3=0的两根是1和-3,则a= ;
2.若关于x 的一元二次方程x 2+2(m -1)x+4m 2=0有两个实数根,且这两个根互为倒数,那么m 的值为 ;
3.已知21x ,x 为一元二次方程01x 3x 2=++的两实根,则.__________20x 3x 22
1=+-
4.一元二次方程02x 5x 2=+-与06x 2x 2=++的所有实数根的和为___________.
5.关于x 的一元二次方程方程01x 2ax 2=++的两个实数根同号,则a 的取值范围是__________.
(三)解答题:(60分) 1、关于的一元二次方程x 2+2x +k +1=0的实数解是x 1和x 2。
(1)求k 的取值范围;
(2)如果x 1+x 2-x 1x 2<-1且k 为整数,求k 的值。
2.m 取什么值时,方程
()01222
=-++x x m 有两个不相等的实数根?
3.m 取什么值时,方程()()0132
2=++--m x m x 有两个不相等的实数根?
4.已知:关于x的方程2x(mx-4)=x2-6有两个实数根,求m的最大整数值.
5.求证:不论m为任何实数,关于x的方程x2-2mx+6m-10=0总有两个不相等的实数根.
6.已知
1
4=
-
+
+b
a
,当k取何值时,方程0
2=
+
+b
ax
kx有两个不相等的实数根?
五、思维拓展
1.已知方程()()2
2
1k
x
x=
-
-,k为实数,且k≠0,不解方程证明:
(1)这个方程有两个不相等的实数根;(2)一个根大于1,另一个根小于1。