高中数学必修一第三章测试题
- 格式:doc
- 大小:625.00 KB
- 文档页数:26
高中数学必修一第三章《函数的应用》单元测试卷及答案2套测试卷一(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.函数y =1+1x的零点是( )A .(-1,0)B .-1C .1D .02.设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)3.某企业2010年12月份的产值是这年1月份产值的P 倍,则该企业2010年度产值的月平均增长率为( )A .P P -1 B .11P -1C .11PD .P -1114.如图所示的函数图象与x 轴均有交点,其中不能用二分法求图中交点横坐标的是( )A .①③B .②④C .①②D .③④5.如图1,直角梯形OABC 中,AB∥OC,AB =1,OC =BC =2,直线l∶x=t 截此梯形所得位于l 左方图形面积为S ,则函数S =f(t)的图象大致为图中的( )图16.已知在x 克a%的盐水中,加入y 克b%的盐水,浓度变为c%,将y 表示成x 的函数关系式为( )A .y =c -ac -b x B .y =c -ab -c x C .y =c -bc -axD .y =b -cc -ax 7.某单位职工工资经过六年翻了三番,则每年比上一年平均增长的百分率是( ) (下列数据仅供参考:2=1.41,3=1.73,33=1.44,66=1.38)A .38%B .41%C .44%D .73%8.某工厂生产某种产品的固定成本为200万元,并且生产量每增加一单位产品,成本增加1万元,又知总收入R 是单位产量Q 的函数:R(Q)=4Q -1200Q 2,则总利润L(Q)的最大值是________万元,这时产品的生产数量为________.(总利润=总收入-成本)( )A .250 300B .200 300C .250 350D .200 3509.在一次数学实验中,运用图形计算器采集到如下一组数据:x -2.0 -1.0 0 1.00 2.00 3.00 y0.240.5112.023.988.02则x 、y )A .y =a +bxB .y =a +b xC .y =ax 2+bD .y =a +b x10.根据统计资料,我国能源生产自1986年以来发展得很快,下面是我国能源生产总量(折合亿吨标准煤)的几个统计数据:1986年8.6亿吨,5年后的1991年10.4亿吨,10年后的1996年12.9亿吨,有关专家预测,到2001年我国能源生产总量将达到16.1亿吨,则专家是以哪种类型的函数模型进行预测的?( )A .一次函数B .二次函数C .指数函数D .对数函数11.用二分法判断方程2x 3+3x -3=0在区间(0,1)内的根(精确度0.25)可以是(参考数据:0.753=0.421875,0.6253=0.24414)( )A .0.25B .0.375C .0.635D .0.82512.有浓度为90%的溶液100g ,从中倒出10g 后再倒入10g 水称为一次操作,要使浓度低于10%,这种操作至少应进行的次数为(参考数据:lg 2=0.3010,lg 3=0.4771)( )A .19B .20C .21D .22二、填空题(本大题共4小题,每小题5分,共20分)13.用二分法研究函数f(x)=x 3+2x -1的零点,第一次经计算f(0)<0,f(0.5)>0,可得其中一个零点x 0∈________,第二次计算的f(x)的值为f(________).14.若函数f(x)=a x-x -a(a>0,且a≠1)有两个零点,则实数a 的取值范围为________.15.一批设备价值a 万元,由于使用磨损,每年比上一年价值降低b%,则n 年后这批设备的价值为________________万元.16.函数f(x)=x 2-2x +b 的零点均是正数,则实数b 的取值范围是________. 三、解答题(本大题共6小题,共70分)17.(10分)华侨公园停车场预计“十·一”国庆节这天停放大小汽车1200辆次,该停车场的收费标准为:大车每辆次10元,小车每辆次5元.(1)写出国庆这天停车场的收费金额y(元)与小车停放辆次x(辆)之间的函数关系式,并指出x 的取值范围.(2)如果国庆这天停放的小车占停车总辆数的65%~85%,请你估计国庆这天该停车场收费金额的范围.18.(12分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为a ,通过x 块玻璃后强度为y.(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下?(lg 3≈0.4771)19.(12分)某医药研究所开发一种新药,据监测,如果成人按规定的剂量服用,服用药后每毫升中的含药量y(微克)与服药的时间t(小时)之间近似满足如图所示的曲线,其中OA 是线段,曲线AB 是函数y =ka t(t≥1,a>0,且k ,a 是常数)的图象.(1)写出服药后y 关于t 的函数关系式;(2)据测定,每毫升血液中的含药量不少于2微克时治疗疾病有效.假设某人第一次服药为早上6∶00,为保持疗效,第二次服药最迟应当在当天几点钟?(3)若按(2)中的最迟时间服用第二次药,则第二次服药后3小时,该病人每毫升血液中的含药量为多少微克(精确到0.1微克)?20.(12分)已知一次函数f(x)满足:f(1)=2,f(2)=3, (1)求f(x)的解析式;(2)判断函数g(x)=-1+lg f 2(x)在区间[0,9]上零点的个数.21.(12分)截止到2009年底,我国人口约为13.56亿,若今后能将人口平均增长率控制在1%,经过x 年后,我国人口为y 亿.(1)求y 与x 的函数关系式y =f(x);(2)求函数y =f(x)的定义域;(3)判断函数f(x)是增函数还是减函数?并指出函数增减的实际意义.22.(12分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x 个,零件的实际出厂单价为P 元,写出函数的表达式; (3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)答案1.B [由1+1x =0,得1x=-1,∴x =-1.]2.B [由题意x 0为方程x 3=(12)x -2的根,令f (x )=x 3-22-x,∵f (0)=-4<0,f (1)=-1<0,f (2)=7>0, ∴x 0∈(1,2).]3.B [设1月份产值为a ,增长率为x ,则aP =a (1+x )11, ∴x =11P -1.]4.A [对于①③在函数零点两侧函数值的符号相同,故不能用二分法求.] 5.C [解析式为S =f (t ) =⎩⎪⎨⎪⎧12t ·2t 0≤t ≤112×1×2+t -1×21<t ≤2=⎩⎪⎨⎪⎧t 20≤t ≤12t -11<t ≤2∴在[0,1]上为抛物线的一段,在(1,2]上为线段.]6.B [根据配制前后溶质不变,有等式a %x +b %y =c %(x +y ),即ax +by =cx +cy ,故y =c -a b -cx .] 7.B [设职工原工资为p ,平均增长率为x , 则p (1+x )6=8p ,x =68-1=2-1=41%.]8.A [L (Q )=4Q -1200Q 2-Q -200=-1200(Q -300)2+250,故总利润L (Q )的最大值是250万元,这时产品的生产数量为300.]9.B [∵x =0时,b x无意义,∴D 不成立. 由对应数据显示该函数是增函数,且增幅越来越快, ∴A 不成立. ∵C 是偶函数,∴x =±1的值应该相等,故C 不成立. 对于B ,当x =0时,y =1, ∴a +1=1,a =0;当x =1时,y =b =2.02,经验证它与各数据比较接近.]10.B [可把每5年段的时间视为一个整体,将点(1,8.6),(2,10.4),(3,12.9)描出,通过拟合易知它符合二次函数模型.]11.C [令f (x )=2x 3+3x -3,f (0)<0,f (1)>0,f (0.5)<0,f (0.75)>0,f (0.625)<0,∴方程2x 3+3x -3=0的根在区间(0.625,0.75)内, ∵0.75-0.625=0.125<0.25,∴区间(0.625,0.75)内的任意一个值作为方程的近似根都满足题意.]12.C [操作次数为n 时的浓度为(910)n +1,由(910)n +1<10%,得n +1>-1lg 910=-12lg3-1≈21.8,∴n ≥21.] 13.(0,0.5) 0.25解析 根据函数零点的存在性定理. ∵f (0)<0,f (0.5)>0,∴在(0,0.5)存在一个零点,第二次计算找中点,即0+0.52=0.25. 14.(1,+∞)解析 函数f (x )的零点的个数就是函数y =a x与函数y =x +a 交点的个数,如下图,由函数的图象可知a >1时两函数图象有两个交点,0<a <1时两函数图象有唯一交点,故a >1.15.a (1-b %)n解析 第一年后这批设备的价值为a (1-b %);第二年后这批设备的价值为a (1-b %)-a (1-b %)·b %=a (1-b %)2; 故第n 年后这批设备的价值为a (1-b %)n. 16.(0,1]解析 设x 1,x 2是函数f (x )的零点,则x 1,x 2为方程x 2-2x +b =0的两正根,则有⎩⎪⎨⎪⎧Δ≥0x 1+x 2=2>0x 1x 2=b >0,即⎩⎪⎨⎪⎧4-4b ≥0b >0.解得0<b ≤1.17.解 (1)依题意得y =5x +10(1200-x ) =-5x +12000,0≤x ≤1200. (2)∵1200×65%≤x ≤1200×85%, 解得780≤x ≤1020,而y =-5x +12000在[780,1 020]上为减函数, ∴-5×1020+12000≤y ≤-5×780+12000. 即6900≤y ≤8100,∴国庆这天停车场收费的金额范围为[6 900,8 100]. 18.解 (1)依题意:y =a ·0.9x,x ∈N *. (2)依题意:y ≤13a ,即:a ·0.9x≤a3,0.9x≤13=0.91log 30.9,得x ≥log 0.913=-lg32lg3-1≈-0.47710.9542-1≈10.42.答 通过至少11块玻璃后,光线强度减弱到原来的13以下.19.解 (1)当0≤t <1时,y =8t ;当t ≥1时,⎩⎪⎨⎪⎧ka =8,ka 7=1.∴⎩⎪⎨⎪⎧a =22,k =8 2.∴y =⎩⎪⎨⎪⎧8t , 0≤t <1,8222t,t ≥1.(2)令82·(22)t≥2,解得t ≤5. ∴第一次服药5小时后,即第二次服药最迟应当在当天上午11时服药. (3)第二次服药后3小时,每毫升血液中含第一次所服药的药量为y 1=82×(22)8=22(微克);含第二次服药后药量为y 2=82×(22)3=4(微克),y 1+y 2=22+4≈4.7(微克). 故第二次服药再过3小时,该病人每毫升血液中含药量为4.7微克. 20.解 (1)令f (x )=ax +b ,由已知条件得⎩⎪⎨⎪⎧a +b =22a +b =3,解得a =b =1,所以f (x )=x +1(x ∈R ).(2)∵g (x )=-1+lg f 2(x )=-1+lg (x +1)2在区间[0,9]上为增函数,且g (0)=-1<0,g (9)=-1+lg102=1>0,∴函数g (x )在区间[0,9]上零点的个数为1个. 21.解 (1)2009年底人口数:13.56亿. 经过1年,2010年底人口数:13.56+13.56×1%=13.56×(1+1%)(亿). 经过2年,2011年底人口数:13.56×(1+1%)+13.56×(1+1%)×1% =13.56×(1+1%)2(亿). 经过3年,2012年底人口数:13.56×(1+1%)2+13.56×(1+1%)2×1% =13.56×(1+1%)3(亿).∴经过的年数与(1+1%)的指数相同.∴经过x年后人口数为13.56×(1+1%)x(亿).∴y=f(x)=13.56×(1+1%)x.(2)理论上指数函数定义域为R.∵此问题以年作为时间单位.∴此函数的定义域是{x|x∈N*}.(3)y=f(x)=13.56×(1+1%)x.∵1+1%>1,13.56>0,∴y=f(x)=13.56×(1+1%)x是增函数,即只要递增率为正数,随着时间的推移,人口的总数总在增长.22.解(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x0个,则x0=100+60-510.02=550.因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元.(2)当0<x≤100时,P=60;当100<x<550时,P=60-0.02·(x-100)=62-x50;当x≥550时,P=51.所以P=f(x)=⎩⎪⎨⎪⎧60,0<x≤10062-x50,100<x<550,51,x≥550(x∈N).(3)设销售商的一次订购量为x个时,工厂获得的利润为L元,则L=(P-40)x=⎩⎪⎨⎪⎧20x,0<x≤10022x-x250,100<x<550,11x,x≥550(x∈N).当x=500时,L=6000;当x=1000时,L=11000.因此,当销售商一次订购500个零件时,该厂获得的利润是6000元;如果订购1000个,利润是11000元.测试卷二(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.设方程|x 2-3|=a 的解的个数为m ,则m 不可能等于( )A .1B .2C .3D .42.将进货单价为80元的商品按90元一个售出时,能卖出400个,已知该商品每个涨价1元,其销售量就减少20个,为了赚得最大利润,售价应定为( )A .每个110元B .每个105元C .每个100元D .每个95元3.今有一组实验数据如下表,现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是( )A .y =log 2tB .y =12C .y =t 2-12D .y =2t -24.某商场对顾客实行购物优惠活动,规定一次购物付款总额: (1)如果不超过200元,则不给予优惠;(2)如果超过200元但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.某人两次去购物,分别付款168元和423元,假设他去一次购买上述同样的商品,则应付款是( )A .413.7元B .513.7元C .548.7元D .546.6元5.方程x 2+ax -2=0在区间[1,5]上有解,则实数a 的取值范围为( )A .(-235,+∞) B .(1,+∞) C .[-235,1]D .(-∞,-235]6.设f(x)是区间[a ,b]上的单调函数,且f(a)f(b)<0,则方程f(x)=0在区间[a ,b]( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一实根7.方程x 2-(2-a)x +5-a =0的两根都大于2,则实数a 的取值范围是( )A .a<-2B .-5<a<-2C .-5<a≤-4D .a>4或a<-48.四人赛跑,其跑过的路程f(x)和时间x 的关系分别是:f 1(x)=12x ,f 2(x)=14x ,f 3(x)=log 2(x +1),f 4(x)=log 8(x +1),如果他们一直跑下去,最终跑到最前面的人所具有的函数关系是( )A .f 1(x)=12xB .f 2(x)=14xC .f 3(x)=log 2(x +1)D .f 4(x)=log 8(x +1)9.函数f(x)=ln x -2x的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(e,3)D .(e ,+∞)10.已知f(x)=(x -a)(x -b)-2的两个零点分别为α,β,则( )A .a<α<b<βB .α<a<b<βC .a<α<β<bD .α<a<β<b11.设f(x)是连续的偶函数,且当x>0时是单调函数,则满足f(2x)=f(x +1x +4)的所有x之和为( )A .-92B .-72C .-8D .812.在某种金属材料的耐高温实验中,温度随着时间变化的情况由微机记录后再显示的图象如图所示.现给出下面说法:①前5分钟温度增加的速度越来越快; ②前5分钟温度增加的速度越来越慢; ③5分钟以后温度保持匀速增加; ④5分钟以后温度保持不变. 其中正确的说法是( )A .①④B .②④C .②③D .①③二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f(x)=⎩⎪⎨⎪⎧log 2x x>03xx≤0,且关于x 的方程f(x)+x -a =0有且只有一个实根,则实数a 的取值范围是______________.14.要建造一个长方体形状的仓库,其内部的高为3m ,长与宽的和为20m ,则仓库容积的最大值为________.15.已知函数f(x)=⎩⎪⎨⎪⎧2x-1, x>0,-x 2-2x ,x≤0.若函数g(x)=f(x)-m 有3个零点,则实数m 的取值范围为________.16.若曲线|y|=2x+1与直线y =b 没有公共点,则b 的取值范围是________. 三、解答题(本大题共6小题,共70分)17.(10分)讨论方程4x 3+x -15=0在[1,2]内实数解的存在性,并说明理由.18.(12分)(1)已知f(x)=23x-1+m 是奇函数,求常数m 的值; (2)画出函数y =|3x-1|的图象,并利用图象回答:k 为何值时,方程|3x-1|=k 无解?有一解?有两解?19.(12分)某出版公司为一本畅销书定价如下: C(n)=⎩⎪⎨⎪⎧12n ,1≤n≤24,n ∈N *,11n ,25≤n ≤48,n ∈N *,10n ,n ≥49,n ∈N *,这里n 表示定购书的数量,C (n )是定购n 本书所付的钱数(单位:元).若一本书的成本价是5元,现有甲、乙两人来买书,每人至少买1本,两人共买60本,问出版公司最少能赚多少钱?最多能赚多少钱?20.(12分)是否存在这样的实数a,使函数f(x)=x2+(3a-2)x+a-1在区间[-1,3]上与x轴恒有一个交点,且只有一个交点?若存在,求出范围;若不存在,请说明理由.21.(12分)已知a是实数,函数f(x)=2ax2+2x-3-a,如果函数y=f(x)在区间[-1,1]上有零点,求实数a的取值范围.22.(12分)我国是水资源比较贫乏的国家之一,各地采用价格调控等手段以达到节约用水的目的.某市用水收费标准是:水费=基本费+超额费+定额损耗费,且有如下三条规定:①若每月用水量不超过最低限量m立方米时,只付基本费9元和每户每月定额损耗费a 元;②若每月用水量超过m立方米时,除了付基本费和定额损耗费外,超过部分每立方米付n元的超额费;③每户每月的定额损耗费a不超过5元.(1)求每户每月水费y(元)与月用水量x(立方米)的函数关系式;(2)该市一家庭今年第一季度每月的用水量和支付的费用如下表所示:m,n,a的值.答案1.A [在同一坐标系中分别画出函数y1=|x2-3|和y2=a的图象,如图所示.可知方程解的个数为0,2,3或4,不可能有1个解.] 2.D [设售价为x 元,则利润y =[400-20(x -90)](x -80)=20(110-x )(x -80)=-20(x 2-190x +8800) =-20(x -95)2+4500.∴当x =95时,y 最大为4500元.]3.C [当t =4时,y =log 24=2,y =12log 4=-2,y =42-12=7.5,y =2×4-2=6.所以y =t 2-12适合,当t =1.99代入A 、B 、C 、D4个选项,y =t 2-12的值与表中的1.5接近,故选C.]4.D [购物超过200元,至少付款200×0.9=180(元),超过500元,至少付款500×0.9=450(元),可知此人第一次购物不超过200元,第二次购物不超过500元,则此人两次购物总金额是168+4230.9=168+470=638(元).若一次购物,应付500×0.9+138×0.7=546.6(元).]5.C [令f (x )=x 2+ax -2,则f (0)=-2<0, ∴要使f (x )在[1,5]上与x 轴有交点,则需要⎩⎪⎨⎪⎧f 1≤0f 5≥0,即⎩⎪⎨⎪⎧a -1≤023+5a ≥0,解得-235≤a ≤1.]6.D [∵f (a )·f (b )<0,∴f (x )在区间[a ,b ]上存在零点,又∵f (x )在[a ,b ]上是单调函数,∴f (x )在区间[a ,b ]上的零点唯一,即f (x )=0在[a ,b ]上必有唯一实根.]7.C [由题意知⎩⎪⎨⎪⎧Δ≥02-a2>2f 2>0,解得-5<a ≤-4.]8.B [在同一坐标系下画出四个函数的图象,由图象可知f 2(x )=14x 增长的最快.]9.B [f (2)=ln2-22=ln2-1<1-1=0,f (3)=ln3-23>1-23=13>0.故零点所在区间为(2,3).]10.B [设g (x )=(x -a )(x -b ),则f (x )是由g (x )的图象向下平移2个单位得到的,而g (x )的两个零点为a ,b ,f (x )的两个零点为α,β,结合图象可得α<a <b <β.]11.C [∵x >0时f (x )单调且为偶函数, ∴|2x |=|x +1x +4|,即2x (x +4)=±(x +1). ∴2x 2+9x +1=0或2x 2+7x -1=0. ∴共有四根.∵x 1+x 2=-92,x 3+x 4=-72,∴所有x 之和为-92+(-72)=-8.]12.B [因为温度y 关于时间t 的图象是先凸后平行直线,即5分钟前每当t 增加一个单位增量Δt ,则y 随相应的增量Δy 越来越小,而5分钟后y 关于t 的增量保持为0.故选B.]13.(1,+∞)解析 由f (x )+x -a =0, 得f (x )=a -x ,令y =f (x ),y =a -x ,如图,当a >1时,y =f (x )与y =a -x 有且只有一个交点, ∴a >1. 14.300m 3解析 设长为x m ,则宽为(20-x )m ,仓库的容积为V , 则V =x (20-x )·3=-3x 2+60x,0<x <20,由二次函数的图象知,顶点的纵坐标为V 的最大值. ∴x =10时,V 最大=300(m 3). 15.(0,1)解析 函数f (x )=⎩⎪⎨⎪⎧2x-1, x >0,-x 2-2x ,x ≤0的图象如图所示,该函数的图象与直线y =m 有三个交点时m ∈(0,1),此时函数g (x )=f (x )-m 有3个零点.16.[-1,1]解析 分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b 没有公共点,则b 应满足的条件为b ∈[-1,1].17.解 令f (x )=4x 3+x -15, ∵y =4x 3和y =x 在[1,2]上都为增函数. ∴f (x )=4x 3+x -15在[1,2]上为增函数,∵f (1)=4+1-15=-10<0,f (2)=4×8+2-15=19>0, ∴f (x )=4x 3+x -15在[1,2]上存在一个零点, ∴方程4x 3+x -15=0在[1,2]内有一个实数解. 18.解 (1)∵f (x )=23x -1+m 是奇函数,∴f (-x )=-f (x ),∴23-x -1+m =-23x -1-m .∴2·3x1-3x +m =21-3x -m , ∴23x -11-3x+2m =0. ∴-2+2m =0,∴m =1.(2)作出直线y =k 与函数y =|3x-1|的图象,如图.①当k <0时,直线y =k 与函数y =|3x-1|的图象无交点,即方程无解;②当k =0或k ≥1时,直线y =k 与函数y =|3x-1|的图象有唯一的交点,所以方程有一解;③当0<k <1时,直线y =k 与函数y =|3x-1|的图象有两个不同的交点,所以方程有两解.19.解 设甲买n 本书,则乙买(60-n )本(不妨设甲买的书少于或等于乙买的书),则n ≤30,n ∈N *.①当1≤n ≤11且n ∈N *时,49≤60-n ≤59,出版公司赚的钱数f (n )=12n +10(60-n )-5×60=2n +300; ②当12≤n ≤24且n ∈N *时,36≤60-n ≤48, 出版公司赚的钱数f (n )=12n +11(60-n )-5×60=n +360;③当25≤n ≤30且n ∈N *时,30≤60-n ≤35, 出版公司赚的钱数f (n )=11×60-5×60=360. ∴f (n )=⎩⎪⎨⎪⎧2n +300, 1≤n ≤11,n ∈N *,n +360,12≤n ≤24,n ∈N *,360,25≤n ≤30,n ∈N *.∴当1≤n ≤11时,302≤f (n )≤322; 当12≤n ≤24时,372≤f (n )≤384; 当25≤n ≤30时,f (n )=360.故出版公司最少能赚302元,最多能赚384元. 20.解 若实数a 满足条件, 则只需f (-1)f (3)≤0即可.f (-1)f (3)=(1-3a +2+a -1)(9+9a -6+a -1)=4(1-a )(5a +1)≤0,所以a ≤-15或a ≥1.检验:(1)当f (-1)=0时a =1, 所以f (x )=x 2+x .令f (x )=0,即x 2+x =0,得x =0或x =-1. 方程在[-1,3]上有两根,不合题意,故a ≠1. (2)当f (3)=0时a =-15,此时f (x )=x 2-135x -65.令f (x )=0,即x 2-135x -65=0,解得,x =-25或x =3.方程在[-1,3]上有两根,不合题意,故a ≠-15.综上所述,a ∈(-∞,-15)∪(1,+∞).21.解 当a =0时,函数为f (x )=2x -3,其零点x =32不在区间[-1,1]上.当a ≠0时,函数f (x )在区间[-1,1]分为两种情况: ①函数在区间[-1,1]上只有一个零点,此时:⎩⎪⎨⎪⎧Δ=4-8a -3-a ≥0f -1·f 1=a -5a -1≤0或⎩⎪⎨⎪⎧Δ=4-8a -3-a =0-1≤-12a ≤1,解得1≤a ≤5或a =-3-72.②函数在区间[-1,1]上有两个零点,此时⎩⎪⎨⎪⎧Δ>0-1<-12a <1f -1f 1≥0,即⎩⎪⎨⎪⎧8a 2+24a +4>0-1<-12a<1a -5a -1≥0.解得a ≥5或a <-3-72.综上所述,如果函数在区间[-1,1]上有零点,那么实数a 的取值范围为(-∞,-3-72]∪[1,+∞). 22.解 (1)依题意,得y =⎩⎪⎨⎪⎧9+a ,0<x ≤m , ①9+n x -m +a ,x >m .②其中0<a ≤5.(2)∵0<a ≤5,∴9<9+a ≤14.由于该家庭今年一、二月份的水费均大于14元,故用水量4立方米,5立方米都大于最低限量m 立方米.将⎩⎪⎨⎪⎧x =4,y =17和⎩⎪⎨⎪⎧x =5,y =23分别代入②,得⎩⎪⎨⎪⎧17=9+n 4-m +a , ③23=9+n 5-m +a .④③-④,得n =6.代入17=9+n (4-m )+a ,得a =6m -16. 又三月份用水量为2.5立方米,若m <2.5,将⎩⎪⎨⎪⎧x =2.5,y =11代入②,得a =6m -13,这与a =6m -16矛盾.∴m ≥2.5,即该家庭三月份用水量2.5立方米没有超过最低限量.将⎩⎪⎨⎪⎧x =2.5,y =11代入①,得11=9+a ,由⎩⎪⎨⎪⎧a =6m -16,11=9+a ,解得⎩⎪⎨⎪⎧a =2,m =3.∴该家庭今年一、二月份用水量超过最低限量,三月份用水量没有超过最低限量,且m =3,n =6,a =2.。
最新人教版高中数学必修一第三章试卷(含答案)
第三章函数的概念与性质
一、单选题
1.下列函数是奇函数的是()
A.B.C.D.
2.幂函数的图象经过点,则的值为()
A.1B.-1C.0D.2
3.已知函数是定义在R上偶函数,且在内是减函数,若,则满足的实数x的取值范围为()
A.B.
C.D.
4.设函数的定义域为,有下列三个命题,这些命题中,真命题的个数是()
①若存在常数,使得任意,有,则是函数的最大值
②若存在,使得对任意,且,有,则是函数的最大值
③若的最大值为2,则的最大值也为2
A.0个B.1个C.2个D.3个
5.函数,,则的值域为()
A.B.
C.D.
6.已知是定义在上的偶函数,且在区间单调递减,则不等式
的解集为()
A.B.C.D.
二、多选题
7.已知函数,下列说法正确的是()
A.函数的图象的对称中心是(0,1)B.函数在R上是增函数
C.函数是奇函数D.方程的解为
8.已知偶函数满足,在区间上,下列判断正确的是()
A.B.在上是减函数
C.函数在处取得最大值D.函数没有最小值
三、填空题
9.函数的值域是_________.
10.若函数,则__________.
11.已知函数,若对,不等式恒成立,则实数的取值范围是______.
12.已知函数,,若在区间上的最大值是3,则的取值范围是______.
四、解答题
13.已知实数是常数,函数.求函数的定义域,判断函数的奇偶性,并说明理由.。
高中数学必修一第三章函数的概念与性质必须掌握的典型题单选题1、若函数f (x )=x α的图象经过点(9,13),则f (19)=( ) A .13B .3C .9D .8答案:B分析:将(9,13)代入函数解析式,即可求出α,即可得解函数解析式,再代入求值即可.解:由题意知f (9)=13,所以9α=13,即32α=3−1,所以α=−12,所以f (x )=x −12,所以f (19)=(19)−12=3.故选:B2、已知函数f (x )的定义域为(3,5),则函数f (2x +1)的定义域为( ) A .(1,2)B .(7,11)C .(4,16)D .(3,5) 答案:A分析:根据3<2x +1<5求解即可∵f (x )的定义域为(3,5),∴3<x <5,由3<2x +1<5,得1<x <2,则函数f (2x +1)的定义域为(1,2) 故选:A.3、函数f (x )=x 2−1的单调递增区间是( ) A .(−∞,−3)B .[0,+∞) C .(−3,3)D .(−3,+∞) 答案:B分析:直接由二次函数的单调性求解即可.由f (x )=x 2−1知,函数为开口向上,对称轴为x =0的二次函数,则单调递增区间是[0,+∞). 故选:B.4、已知函数f (x )是定义在R 上的偶函数,f (x )在[0,+∞)上单调递减,且f (3)=0,则不等式(2x −5)f (x −1)<0的解集为( )A .(−2,52)∪(4,+∞)B .(4,+∞)C .(−∞,−2)∪[52,4]D .(−∞,−2) 答案:A分析:根据偶函数的性质及区间单调性可得(−∞,0)上f(x)单调递增且f(−3)=f(3)=0,进而确定f(x)的区间符号,讨论{2x −5>0f(x −1)<0 、{2x −5<0f(x −1)>0求解集即可.由题设,(−∞,0)上f(x)单调递增且f(−3)=f(3)=0, 所以(−∞,−3)、(3,+∞)上f(x)<0,(−3,3)上f(x)>0, 对于(2x −5)f(x −1)<0,当{2x −5>0f(x −1)<0 ,即{x >52x −1<−3 或{x >52x −1>3 ,可得x >4; 当{2x −5<0f(x −1)>0 ,即{x <52−3<x −1<3,可得−2<x <52; 综上,解集为(−2,52)∪(4,+∞). 故选:A5、已知幂函数f(x)=k ⋅x α的图象经过点(3,√3),则k +α等于( ) A .32B .12C .2D .3答案:A分析:由于函数为幂函数,所以k =1,再将点(3,√3)代入解析式中可求出α的值,从而可求出k +α 解:因为f(x)=k ⋅x α为幂函数,所以k =1,所以f(x)=x α, 因为幂函数的图像过点(3,√3), 所以√3=3α,解得α=12,所以k +α=1+12=32,故选:A6、已知幂函数y =x a 与y =x b 的部分图像如图所示,直线x =m 2,x =m (0<m <1)与y =x a ,y =x b 的图像分别交于A ,B ,C ,D 四点,且|AB |=|CD |,则m a +m b =( )A.1B.1C.√2D.22答案:B分析:表示出|AB|,|CD|,由幂函数的图象可得b>1>a>0,从而得(m2)a>(m2)b,m a>m b,再由|AB|=|CD|,代入化简计算,即可求解出答案.由题意,|AB|=(m2)a−(m2)b,|CD|=m a−m b,根据图象可知b>1>a>0,当0<m<1时,(m2)a> (m2)b,m a>m b,因为|AB|=|CD|,所以m2a−m2b=(m a+m b)(m a−m b)=m a−m b,因为m a−m b>0,可得m a+m b=1.故选:B,则f(x)()7、设函数f(x)=x3−1x3A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减答案:A分析:根据函数的解析式可知函数的定义域为{x|x≠0},利用定义可得出函数f(x)为奇函数,再根据函数的单调性法则,即可解出.因为函数f(x)=x3−1定义域为{x|x≠0},其关于原点对称,而f(−x)=−f(x),x3所以函数f(x)为奇函数.又因为函数y=x3在(0,+∞)上单调递增,在(−∞,0)上单调递增,而y =1x 3=x −3在(0,+∞)上单调递减,在(−∞,0)上单调递减,所以函数f(x)=x 3−1x 3在(0,+∞)上单调递增,在(−∞,0)上单调递增. 故选:A .小提示:本题主要考查利用函数的解析式研究函数的性质,属于基础题. 8、下列函数为奇函数的是( ) A .y =x 2B .y =x 3C .y =|x|D .y =√x 答案:B分析:根据奇偶函数的定义判断即可;解:对于A :y =f (x )=x 2定义域为R ,且f (−x )=(−x )2=x 2=f (x ), 所以y =x 2为偶函数,故A 错误;对于B :y =g (x )=x 3定义域为R ,且g (−x )=(−x )3=−x 3=−g (x ), 所以y =x 3为奇函数,故B 正确;对于C :y =ℎ(x )=|x |定义域为R ,且ℎ(−x )=|−x |=|x |=ℎ(x ), 所以y =|x |为偶函数,故C 错误;对于D :y =√x 定义域为[0,+∞),定义域不关于原点对称, 故y =√x 为非奇非偶函数,故D 错误; 故选:B 多选题9、下列各组函数中,两个函数是同一函数的有( ) A .f (x )=x 与g (x )=√x 33B .f (x )=x +1与g (x )=x 2−1x−1C .f (x )=|x |x 与g (x )={1,x >0−1,x <0D .f (t )=|t −1|与g (x )=|x −1| 答案:ACD分析:根据两个函数为同一函数的定义,对四个选项逐个分析可得答案.对于A ,f(x)=x ,g(x)=√x 33=x ,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故A 正确;对于B,f(x)=x+1,g(x)=x+1(x≠1),两个函数的定义域不同,所以两个函数不为同一函数,故B不正确;对于C,f(x)={1,x>0−1,x<0,g(x)={1,x>0−1,x<0,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故C正确;对于D,f(t)=|t−1|与g(x)=|x−1|的对应关系和定义域都相同,所以两个函数为同一函数,故D正确. 故选:ACD10、已知函数f(x)={x+2,x≤−1x2,−1<x<2,关于函数f(x)的结论正确的是()A.f(x)的定义域为R B.f(x)的值域为(−∞,4)C.f(1)=3D.若f(x)=3,则x的值是√3E.f(x)<1的解集为(−1,1)答案:BD解析:根据解析式判断定义域,结合单调性求出值域,分段代值即可求解方程,分段解不等式,得出不等式解集.由题意知函数f(x)的定义域为(−∞,2),故A错误;当x≤−1时,f(x)的取值范围是(−∞,1],当−1<x<2时,f(x)的取值范围是[0,4),因此f(x)的值域为(−∞,4),故B正确;当x=1时,f(1)=12=1,故C错误;当x≤−1时,x+2=3,解得x=1(舍去),当−1<x<2时,x2=3,解得x=√3或x=−√3(舍去),故D正确;当x≤−1时,x+2<1,解得x<−1,当−1<x<2时,x2<1,解得−1<x<1,因此f(x)<1的解集为(−∞,−1)∪(−1,1);故E错误.故选:BD.小提示:此题考查分段函数,涉及定义域,值域,根据函数值求自变量取值,解不等式,关键在于分段依次求解.11、已知幂函数f(x)图像经过点(4,2),则下列命题正确的有()A .函数为增函数B .函数为偶函数C .若x ≥9,则f (x )≥3D .若x 2>x 1>0,则f (x 1)+f (x 2)2>f (x 1+x 22)答案:AC解析:先代点求出幂函数的解析式f(x)=x 12,根据幂函数的性质直接可得单调性和奇偶性,由x ≥9时,可得√x ≥3可判断C ,利用(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2展开和0比即可判断D.设幂函数f(x)=x α将点(4,2)代入函数f(x)=x α得:2=4α,则α=12.所以f(x)=x 12,显然f(x)在定义域[0,+∞)上为增函数,所以A 正确.f(x)的定义域为[0,+∞),所以f(x)不具有奇偶性,所以B 不正确. 当x ≥9时,√x ≥3,即f(x)≥3,所以C 正确. 当若0<x 1<x 2时, (f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2=x 1+x 2+2√x 1x 24−x 1+x 22=2√x 1x 2−x 1−x 24=−(√x 1−√x 2)24<0.即f (x 1)+f (x 2)2<f (x 1+x 22)成立,所以D 不正确.故选:AC小提示:关键点睛:本题主要考查了幂函数的性质,解答本题的关键是由(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2,化简得到−(√x 1−√x 2)24,从而判断出选项D 的正误,属于中档题.填空题12、已知函数f(x),g(x)分别是定义在R 上的偶函数和奇函数,f(x)+g(x)=2⋅3x ,则函数f(x)=_____. 答案:3x +3−x分析:由已知可得f(−x)+g(−x)=2⋅3−x ,结合两函数的奇偶性可得f (x )−g (x )=2⋅3−x ,利用方程组的思想即可求出f (x ).解:因为f(x)+g(x)=2⋅3x ,所以f(−x)+g(−x)=2⋅3−x ,又f(x),g(x)分别是定义在R 上的偶函数和奇函数,所以f (−x )=f (x ),g (−x )=−g (x ); 所以f(−x)+g(−x)=f (x )−g (x )=2⋅3−x,则{f (x )+g (x )=2⋅3x f (x )−g (x )=2⋅3−x,两式相加得,2f (x )=2⋅3x +2⋅3−x ,所以f (x )=3x +3−x . 故答案为:3x +3−x . 小提示:关键点睛:本题的关键是由函数的奇偶性得到f (x )−g (x )=2⋅3−x ,从而可求出函数的解析式. 13、函数y =log 0.4(−x 2+3x +4)的值域是________. 答案:[−2,+∞)解析:先求出函数的定义域为(−1,4),设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),根据二次函数的性质求出单调性和值域,结合对数函数的单调性,以及利用复合函数的单调性即可求出y =log 0.4(−x 2+3x +4)的单调性,从而可求出值域.解:由题可知,函数y =log 0.4(−x 2+3x +4), 则−x 2+3x +4>0,解得:−1<x <4, 所以函数的定义域为(−1,4), 设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),则x ∈(−1,32)时,f (x )为增函数,x ∈(32,4)时,f (x )为减函数,可知当x =32时,f (x )有最大值为254,而f (−1)=f (4)=0,所以0<f (x )≤254,而对数函数y =log 0.4x 在定义域内为减函数, 由复合函数的单调性可知,函数y =log 0.4(−x 2+3x +4)在区间(−1,32)上为减函数,在(32,4)上为增函数,∴y ≥log 0.4254=−2,∴函数y =log 0.4(−x 2+3x +4)的值域为[−2,+∞). 所以答案是:[−2,+∞).小提示:关键点点睛:本题考查对数型复合函数的值域问题,考查对数函数的单调性和二次函数的单调性,利用“同增异减”求出复合函数的单调性是解题的关键,考查了数学运算能力.14、已知函数f (x )=x 2−4x +3,g (x )=mx +3−2m ,若对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立,则实数m 的取值范围为______. 答案:(−∞,−2]∪[2,+∞)分析:求出函数f (x )在[0,4]上的值域A ,再分情况求出g (x )在[0,4]上的值域,利用它们值域的包含关系即可列式求解.“对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立”等价于“函数f (x )在[0,4]上 的值域包含于g (x )在[0,4]上的值域”,函数f (x )=(x −2)2−1,当x ∈[0,4]时,f(x)min =f(2)=−1,f(x)max =f(0)=f(4) =3,即f (x )在[0,4]的值域A =[−1,3],当m =0时,g(x)=3,不符合题意,当m >0时,g (x )在[0,4]上单调递增,其值域B 1=[3−2m,3+2m],于是有A ⊆B 1,即有{3−2m ≤−13+2m ≥3,解得m ≥2,则m ≥2,当m <0时,g (x )在[0,4]上单调递减,其值域B 2=[3+2m,3−2m],于是有A ⊆B 2,即有{3+2m ≤−13−2m ≥3,解得m ≤−2,则m ≤−2, 综上得:m ≤−2或m ≥2,所以实数m 的取值范围为(−∞,−2]∪[2,+∞). 所以答案是:(−∞,−2]∪[2,+∞) 解答题15、已知二次函数f (x )=ax 2−2x (a >0) (1)若f (x )在[0,2]的最大值为4,求a 的值;(2)若对任意实数t,总存在x1,x2∈[t,t+1],使得|f(x1)−f(x2)|≥2.求a的取值范围.答案:(1)2;(2)[8,+∞).分析:由解析式可知f(x)为开口方向向上,对称轴为x=1a的二次函数;(1)分别在1a ≥2和0<1a<2两种情况下,根据函数单调性可确定最大值点,由最大值构造方程求得结果;(2)将问题转化为f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,分别在1a ≤t、1a≥t+1、t<1a≤t+12和t+12<1a<t+1,根据f(x)单调性可得f(x)max−f(x)min,将f(x)max−f(x)min看做关于t的函数,利用恒成立的思想可求得结果.由f(x)解析式知:f(x)为开口方向向上,对称轴为x=1a的二次函数,(1)当1a ≥2,即0<a≤12时,f(x)在[0,2]上单调递减,∴f(x)max=f(0)=0,不合题意;当0<1a <2,即a>12时,f(x)在[0,1a]上单调递减,在[1a,2]上单调递增,∴f(x)max=max{f(0),f(2)},又f(0)=0,f(2)=4a−4,f(x)在[0,2]的最大值为4,∴f(x)max=f(2)=4a−4=4,解得:a=2;综上所述:a=2.(2)若对任意实数t,总存在x1,x2∈[t,t+1],使得|f(x1)−f(x2)|≥2,则f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,①当1a≤t时,f(x)在[t,t+1]上单调递增,∴f(x)max−f(x)min=f(t+1)−f(t)=2at+a−2≥2,当t≥1a时,y=2at+a−2单调递增,∴(2at+a−2)min=2a⋅1a+a−2=a,∴a≥2;②当1a ≥t+1,即t≤1a−1时,f(x)在[t,t+1]上单调递减,∴f(x)max−f(x)min=f(t)−f(t+1)=−2at−a+2≥2,当t≤1a−1时,y=−2at−a+2单调递减,∴(−2at−a+2)min=−2a(1a−1)−a+2=a,∴a≥2;③当t<1a ≤t+12,即1a−12≤t<1a时,f(x)在[t,1a]上单调递减,在[1a,t+1]上单调递增,∴f(x)max−f(x)min=f(t+1)−f(1a )=a(t+1)2−2(t+1)+1a≥2,当1a −12≤t<1a时,又a>0,12<1a+12≤t+1<1a+1,令m=t+1,则y=am2−2m+1a 在[1a+12,1a+1)上单调递增,∴a(1a +12)2−2(1a+12)+1a≥2,解得:a≥8;④当t+12<1a<t+1,即1a−1<t<1a−12时,f(x)在[t,1a]上单调递减,在[1a,t+1]上单调递增,∴f(x)max−f(x)min=f(t)−f(1a )=at2−2t+1a≥2,当1a −1<t<1a−12时,y=at2−2t+1a在(1a−1,1a−12)上单调递减,∴a(1a −12)2−2(1a−12)+1a≥2,解得:a≥8;综上所述:a的取值范围为[8,+∞).小提示:关键点点睛:本题考查根据二次函数最值求解参数值、恒成立问题的求解,本题解题关键是能够将问题转化为f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,从而通过对于函数单调性的讨论得到最值.。
一、选择题1.已知函数()xxf x e e -=-,则不等式()()2210f xf x +--<成立的一个充分不必要条件为( ) A .()2,1- B .()0,1 C .1,12⎛⎫-⎪⎝⎭D .()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭2.已知定义在R 上的偶函数()f x 满足:当0x ≥时,()2x f x =,且(2)(3)f x af x +≤-对一切x ∈R 恒成立,则实数a 的取值范围为( ) A .1,32⎡⎫+∞⎪⎢⎣⎭B .1,32⎛⎤-∞ ⎥⎝⎦C .[32,)+∞D .(0,32]3.下列函数中,是奇函数且在()0,∞+上单调递增的是( ) A .y x =B .2log y x =C .1y x x=+D .5y x =4.已知32()2f x x ax ax =++,对任意两个不等实数12,[1,)x x ∈+∞,都有()()2112120x f x x f x x x ->-,则a 的取值范围( )A .2a ≥-B .2a ≤-C .4a ≥-D .4a ≤-5.已知函数()f x 是定义在1,2⎛⎫+∞ ⎪⎝⎭上的单调函数,且11()()2f x f f x x ⎡⎤+=⎢⎥⎣⎦,则(1)f 的值为( ) A .1B .2C .3D .46.函数()21x f x x-=的图象大致为( )A .B .C .D .7.函数()22368f x x x x =---+-的值域是( )A .35,5⎡⎤-⎣⎦B .[]1,5C .2,35⎡⎤+⎣⎦D .35,35⎡⎤-+⎣⎦8.已知函数()3()log 91xf x x =++,则使得()2311log 10f x x -+-<成立的x 的取值范围是( ) A .20,⎛⎫ ⎪ ⎪⎝⎭B .(,0)(1,)-∞⋃+∞C .(0,1)D .(,1)-∞9.已知函数2,1()1,1x ax x f x ax x ⎧-+≤=⎨->⎩,若存在1212,,x x R x x ∈≠,使得()()12f x f x =成立,则实数a 的取值范围是( ) A .2a <-或2a > B .2a > C .22a -<< D .2a <10.已知函数()22x f x =-,则函数()y f x =的图象可能是( )A .B .C .D .11.设函数()()212131log 1313x xe e xf x x --=++++,则做得()()31f x f x ≤-成立的x 的取值范围是( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .11,,42⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭ D .11,42⎡⎤⎢⎥⎣⎦12.设函数()f x 的定义域为D ,如果对任意的x D ∈,存在y D ∈,使得()()f x f y =-成立,则称函数()f x 为“呆呆函数”,下列为“呆呆函数”的是( ) A .2sin cos cos y x x x =+ B .2x y = C .ln x y x e =+D .22y x x =-13.若函数()314,025,0xx f x x x x ⎧⎛⎫+≤⎪ ⎪=⎨⎝⎭⎪--+>⎩,,当[],1x m m ∈+时,不等式()()2-<+f m x f x m 恒成立,则实数m 的取值范围是( )A .(),4-∞-B .(),2-∞-C .()2,2-D .(),0-∞14.关于函数1()lg 1xf x x-=+,有下列三个命题: ①对于任意(1,1)x ∈-,都有()()f x f x -=-;②()f x 在(1,1)-上是减函数;③对于任意12,(1,1)x x ∈-,都有121212()()()1x x f x f x f x x ++=+; 其中正确命题的个数是( ) A .0B .1C .2D .315.下列函数中,在[)1,+∞上为增函数的是 A .()22y x =-B .1y x =-C .11y x =+ D .()21y x =-+二、填空题16.函数24xy x =+的严格增区间是_____________. 17.已知定义域为()0,∞+的函数()y f x =满足:对任意()0,x ∈+∞,恒有()()2 2 f x f x =成立;当(]1,2x ∈时,()2f x x =-,给出如下结论:①对任意m ∈Z ,都有()20mf =;②函数()y f x =的值域为[)0,+∞; ③存在n ∈Z ,使得()219nf +=;④“函数()y f x =在区间(),a b 上是严格减函数”的充要条件是“存在k ∈Z ,使得()1(,)2,2k k a b +⊆”.其中所有正确结论的序号是__________ 18.已知函数()()1502f x x x x =+->,则()f x 的递减区间是____. 19.设12{21 2}33k ∈--,,,,,若(1 0)(0 1)x ∈-,,,且||k x x >,则k 取值的集合是___________.20.函数22y x x c =--在[]0,a 上的最大值为b ,则b a -最小值为__________.21.函数()f x 与()g x 的图象拼成如图所示的“Z ”字形折线段ABOCD ,不含(0,1)A 、(1,1)B 、(0,0)O 、(1,1)C --、(0,1)D -五个点,若()f x 的图象关于原点对称的图形即为()g x 的图象,则其中一个函数的解析式可以为__________.22.设函数()f x 是定义在()0,∞+上的可导函数,其导函数为()f x ',且有()()2f x xf x x '+>,则不等式()()()220202020420x f x f ---≤的解集为______.23.已知()f x =2243,023,0x x x x x x ⎧-+≤⎨--+<⎩不等式()(2)f x a f a x +>-在[a ,a +1]上恒成立,则实数a 的取值范围是________.24.如果函数f (x )=(2)1,1,1x a x x a x -+<⎧⎨≥⎩满足对任意12x x ≠,都有()()1212f x f x x x -->0成立,那么实数a 的取值范围是________.25.如果方程24x +y |y |=1所对应的曲线与函数y =f (x )的图象完全重合,那么对于函数y =f (x )有如下结论:①函数f (x )在R 上单调递减;②y =f (x )的图象上的点到坐标原点距离的最小值为1; ③函数f (x )的值域为(﹣∞,2];④函数F (x )=f (x )+x 有且只有一个零点. 其中正确结论的序号是_____.26.函数()ln f x x x x =+的单调递增区间是_______.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据解析式可判断出()f x 是定义在R 的增函数且是奇函数,不等式可化为()()221f x f x <+,即得221x x <+,解出即可判断.【详解】可得()f x 的定义域为R ,x y e =和x y e -=-都是增函数,()f x ∴是定义在R 的增函数,()()x x f x e e f x --=-=-,()f x ∴是奇函数,则不等式()()2210f x f x +--<化为()()()2211f xf x f x <---=+,221x x ∴<+,解得112x -<<,则不等式成立的充分不必要条件应是1,12⎛⎫- ⎪⎝⎭的真子集, 只有B 选项满足. 故选:B. 【点睛】本题考查利用函数的单调性和奇偶性解不等式,解题的关键是判断出()f x 是增函数且是奇函数,从而将不等式化为()()221f xf x <+求解.2.C解析:C 【分析】根据题意,可得()f x 的解析式,分别求得当23x -≤≤时,3x >时,2x <-时,(2)f x +和(3)f x -的表达式,结合题意,即可求得a 的范围,综合即可得答案.【详解】由题意知:2,0()2,0x x x f x x -⎧≥=⎨<⎩当23x -≤≤时,20,30x x +≥-≥,所以2322x x a +-≤⋅,所以212x a -≥, 因为23x -≤≤,所以215max (2)232x a -≥==;当3x >时,20,30x x +>-<, 所以2(3)22x x a +--≤⋅,所以5232a ≥=; 当2x <-时,20,30x x +<-> 所以(2)322x x a -+-≤⋅,所以51232a -≥=, 综上32a ≥. 故选:C 【点睛】解题的关键是根据题意求得()f x 的解析式,分类讨论,将(2)f x +和(3)f x -进行转化,考查分类讨论的思想,属中档题.3.D解析:D 【分析】对四个选项一一一判断:A 、B 不是奇函数,C 是奇函数,但在()0,∞+上不单调. 【详解】 对于A :y =()0,∞+上单调递增,但是非奇非偶,故A 错误;对于B :2log y x =为偶函数,故B 错误; 对于C :1y x x=+在(0,1)单减,在(1,+∞)单增,故C 错误; 对于D :5y x =既是奇函数也在()0,∞+上单调递增,符合题意. 故选:D 【点睛】四个选项互不相关的选择题,需要对各个选项一一验证.4.C解析:C 【分析】首先变形条件,得到函数()()f xg x x=在[)1,+∞单调递增,利用二次函数的单调性,求a 的取值范围.【详解】[)12,1,x x ∈+∞,不等式两边同时除以12x x ()()()()12211212121200f x f x x f x x f x x x x x x x --∴>⇔>--, 即函数()()f x g x x=在[)1,+∞单调递增,()22g x x ax a =++, 函数的对称轴是4a x =-,则14a-≤,解得:4a ≥-.故选:C 【点睛】关键点点睛:本题的关键是原式等价为()()121212f x f x x x x x ->-,从而通过构造函数,确定函数的单调性,转化为二次函数的单调性解决问题.5.A解析:A 【分析】采用赋值法,在11()()2f x f f x x ⎡⎤+=⎢⎥⎣⎦中,分别令1x =和1x a =+,联立两个式子,根据函数的单调性可解. 【详解】解:根据题意知,设(1)0f a =≠, 令1x =,则[]1(1)(1)12f f f +=,则()112af a +=,()112f a a+=, 令1x a =+,则11(1))21(1f a f f a a ⎡⎤+++=⎢⎥⎣⎦+, 所以()11121f a f a a ⎛⎫+==⎪+⎝⎭, 又因为函数()f x 是定义在1,2⎛⎫+∞ ⎪⎝⎭上的单调函数, 所以11121a a +=+,2210a a --=,所以1a =或12a =-(舍去),()11f =.故选:A. 【点睛】思路点睛:抽象函数求函数值问题一般是换元法或者赋值法,再结合函数的性质解方程即可.6.D解析:D 【分析】分析函数()f x 的奇偶性及其在区间()0,∞+上的单调性,由此可得出合适的选项. 【详解】函数()21x f x x -=的定义域为{}0x x ≠,()()()2211x x f x f x x x----===-, 函数()f x 为偶函数,其图象关于y 轴对称,排除B 、C 选项;当0x >时,()211x f x x x x-==-,因为y x =,1y x =-在区间()0,∞+上都是增函数,所以函数()f x 在()0,∞+上单调递增,排除A 选项, 故选:D. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左、右位置;从函数的值域,判断图象的上、下位置;(2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 利用上述方法排除、筛选选项.7.A解析:A 【详解】由()()2223682x 31x 3f x x x x =---+-=----,知2680x x -+-≥,解得[]2,4.x ∈令()2t 231x 3x =----,则()21x 323x t --=--.,即为()2y 1x 3=--和y 23x t =--两函数图象有交点,作出函数图象,如图所示:由图可知,当直线和半圆相切时t 最小,当直线过点A(4,0)时,t 最大. 3t 114-=+,解得35t =±35t =-当直线过点A(4,0)时,2430t ⨯--=,解得t 5=.所以t 35,5⎡⎤∈⎣⎦,即() 35,5f x ⎡⎤∈⎣⎦.故选A.8.C解析:C 【分析】令21t x x =-+,则3()1log 10f t -<,从而33log (91)1log 10tt ++-<,即可得到133log (91)log (91)1t t ++<++,然后构造函数3()log (91)t g t t =++,利用导数判断其单调性,进而可得23114x x ≤-+<,解不等式可得答案 【详解】令21t x x =-+,则221331()244t x x x =-+=-+≥,3()1log 10f t -<,所以33log (91)1log 10tt ++-<, 所以133log (91)log (91)1t t ++<++,令3()log (91)tg t t =++,则9ln 929'()11(91)ln 391t tt t g t ⨯=+=+++,所以90t >,所以'()0g t >, 所以()g t 在3[,)4+∞单调递增, 所以由()(1)g t g <,得314t ≤<, 所以23114x x ≤-+<,解得01x <<, 故选:C 【点睛】关键点点睛:此题考查不等式恒成立问题,考查函数单调性的应用,解题的关键是换元后对不等式变形得133log (91)log (91)1t t ++<++,再构造函数3()log (91)tg t t =++,利用函数的单调性解不等式.9.D解析:D 【分析】若存在1212,,x x R x x ∈≠,使得()()12f x f x =成立,则说明()f x 在R 上不单调,分0a =,0a <和0a >三种情况讨论求解. 【详解】若存在1212,,x x R x x ∈≠,使得()()12f x f x =成立,则说明()f x 在R 上不单调,当0a =时,2,1()1,1x x f x x ⎧-≤=⎨->⎩,图象如图,满足题意;当0a <时,函数2y x ax =-+的对称轴02ax =<,其图象如图,满足题意;当0a >时,函数2y x ax =-+的对称轴02ax =>,其图象如图,要使()f x 在R 上不单调,则只要满足12a<,解得2a <,即02a <<.综上,2a <. 故选:D. 【点睛】本题考查分段函数的单调性的应用及二次函数的性质的应用,得出()f x 在R 上不单调是解题的关键.10.B解析:B 【分析】先将函数化成分段函数的形式,再根据函数在不同范围上的性质可得正确的选项. 【详解】()22,12222,1x xxx f x x ⎧-≥=-=⎨-<⎩易知函数()y f x =的图象的分段点是1x =,且过点()1,0,()0,1,又()0f x ≥,故选:B . 【点睛】本题考查函数图象的识别,此类问题一般根据函数的奇偶性、单调性、函数在特殊点处的函数的符号等来判别,本题属于基础题.11.D解析:D 【分析】先判断()f x 是偶函数且在0,上递减,原不等式转化为31x x ≥-,再解绝对值不等式即可. 【详解】()()()211221133111log 13log 131313x x xxe e e e xxf x x x ---⎛⎫=+++=+++ ⎪++⎝⎭,()121311log 1,,313x xe e xy x y y -⎛⎫=+== ⎪+⎝⎭在0,上都递减所以()f x 在0,上递减,又因为()()()()121311log 1313x xe e xf x x f x ----⎛⎫-=+-++= ⎪+⎝⎭,且()f x 的定义域为R ,定义域关于原点对称, 所以()f x 是偶函数, 所以()()()()313131f x f x f x f x x x ≤-⇔≤-⇔≥-,可得113142x x x x -≤-≤⇒≤≤,x 的取值范围是11,42⎡⎤⎢⎥⎣⎦, 故选:D. 【点睛】将奇偶性与单调性综合考查一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.12.C解析:C 【分析】根据“呆呆函数”的定义可知:函数()f x 的值域关于原点对称,由此逐项判断. 【详解】根据定义可知:()f x 为“呆呆函数”⇔()f x 的值域关于原点对称, A .2111sin cos cos sin 2cos 2222y x x x x x =+=++1242y x π⎛⎫=++∈ ⎪⎝⎭⎣⎦,此时值域不关于原点对称,故不符合; B .()20,xy =∈∞+,值域不关于原点对称,故不符合;C .ln x y x e =+,当0x →时,y →-∞,当x →+∞时,+y →∞, 所以()ln ,xy x e =+∈-∞+∞,值域关于原点对称,故符合;D .()[)222111,y x x x =-=--∈-+∞,值域不关于原点对称,故不符合, 故选:C. 【点睛】本题考查新定义函数,涉及到函数值域的分析,主要考查学生的分析理解能力,难度一般.13.B解析:B 【分析】先判断函数的单调性,然后解答不等式,在恒成立的条件下求出结果 【详解】依题意得:函数()314,025,0xx f x x x x ⎧⎛⎫+≤⎪ ⎪=⎨⎝⎭⎪--+>⎩,在x ∈R 上单调递减,因为()()2-<+f m x f x m ,所以2m x x m ->+,即2x m <,在[],1x m m ∈+上恒成立,所以2(1)m m +<,即2m <-,故选B . 【点睛】本题考查了函数的单调性的应用,结合函数的单调性求解不等式,需要掌握解题方法14.D解析:D 【分析】当(1,1)x ∈-时,函数1()1xf x lgx-=+恒有意义,代入计算()()f x f x -+可判断①;利用分析法,结合反比例函数及对数函数的单调性和复合函数“同增异减”的原则,可判断②;代入分别计算12()()f x f x +和1212()1x x f x x ++,比照后可判断③. 【详解】 解:1()1xf x lgx-=+,当(1,1)x ∈-时, 1111()()()101111x x x xf x f x lg lg lg lg x x x x+-+--+=+===-+-+,故()()f x f x -=-,即①正确; 12()(1)11x f x lglg x x -==-++,由211y x=-+在(1,1)-上是减函数,故()f x 在(1,1)-上是减函数,即②正确; 12121212121212121211111()()()11111x x x x x x x x f x f x lglg lg lg x x x x x x x x ----+--+=+==+++++++; 12121212121212121212111()1111x x x x x x x x x x f lg lg x x x x x x x x x x +-+++--==+++++++,即③正确 故三个结论中正确的命题有3个 故选:D . 【点睛】本题以命题的真假判断为载体考查了函数求值,复合函数的单调性,对数的运算性质等知识点,属于中档题.15.B解析:B 【解析】对于A ,函数()22y x =-的图象是抛物线,对称轴是x =2,当x <2时是减函数,x >2时是增函数,∴不满足题意; 对于B ,函数1,111,1x x y x x x -≥⎧=-=⎨-<⎩,∴当1≥x 时,是增函数,x <1时,是减函数,∴满足题意; 对于C ,函数11y x =+,当x <−1,x >−1时,函数是减函数,∴不满足题意; 对于D ,函数()21y x =-+的图象是抛物线,对称轴是x =−1,当x >−1时是减函数,x <−1时是增函数,∴不满足题意;故选B.二、填空题16.【分析】根据的解析式可得为奇函数当时不妨令x>0设根据对勾函数的性质可求得的单调减区间可得的单调增区间综合分析即可得答案【详解】因为定义域为R 所以即在R 上为奇函数根据奇函数的性质可得在y 轴两侧单调性解析:[]22-,【分析】根据()f x 的解析式,可得()f x 为奇函数,当0x ≠时,21()44x f x x x x==++,不妨令x >0,设4()g x x x=+,根据对勾函数的性质,可求得()g x 的单调减区间,可得()f x 的单调增区间,综合分析,即可得答案. 【详解】因为2()4xy f x x ==+,定义域为R , 所以22()()()44x xf x f x x x ---===--++,即()f x 在R 上为奇函数,根据奇函数的性质可得,()f x 在y 轴两侧单调性相同, 当x =0时,()0y f x ==, 当0x ≠时,21()44x f x x x x==++,不妨令x >0,设4()g x x x=+, 根据对勾函数的性质可得,当02x <≤上单调递减,证明如下: 在(0,2]上任取12,x x ,且12x x <, 则12121212124444()()()f x f x x x x x x x x x -=+-+=-+-=1212124()x x x x x x ⎛⎫-- ⎪⎝⎭, 因为1202x x <<≤,所以1212120,40,0x x x x x x -<-<>, 所以121212124()()()0x x f x f x x x x x ⎛⎫--=-> ⎪⎝⎭,即12()()f x f x >,所以4()g x x x=+在(0,2]上为减函数, 所以21()44x f x x x x==++在(0,2]上为增函数,当0x +→时,()0f x →,0x -→,()0f x →,又(0)0f =,所以2()4xf x x =+在[0,2]为增函数 根据奇函数的性质,可得21()44x f x x x x==++在[2,0)-也为增函数,所以()f x 在 []22-,上为严格增函数, 故答案为:[]22-,【点睛】解题的关键是熟练掌握函数的奇偶性、单调性,并灵活应用,结合对勾函数的性质求解,考查分析理解,计算证明的能力,属中档题.17.①②④【分析】根据函数递推关系计算判断①求出时函数的值域然后由递推关系确定函数在上的值域判断②④解方程判断③【详解】①由题意又∴依此类推可得是负整数时设∴时①正确;②又当时时∴时的值域是又时依此类推解析:①②④ 【分析】根据函数递推关系计算(2)mf ,判断①.求出(1,2]x ∈时,函数的值域,然后由递推关系确定函数在(0,)+∞上的值域,判断②④.解方程()219nf +=判断③. 【详解】①由题意(2)220f =-=,又()()2 2 f x f x =,∴2(2)2(2)f f =,322(2)2(2)2(2)f f f ==,依此类推可得1(2)2(2)0m m f f -==,*m N ∈,1(1)(2)02f f ==,m 是负整数时,设,*m k k N =-∈,11111111(2)()()()(1)0222222k k k k kf f f f f ---======,∴m Z ∈时,(2)0m f =,①正确;②(1,2]x ∈,()2[0,1)f x x =-∈,又(2)2()f x f x =,当(2,4]x ∈时,()2()[0,2)2xf x f =∈,1(2,2]n n x +∈时,()2()[0,2)2n n n xf x f =∈,∴1x >时,()f x 的值域是[0,1)[0,2)[0,2)[0,)n =+∞,又1(,1]2x ∈时,11()(2)[0,)22f x f x =∈,依此类推01x <<时,都有()0f x ≥, 综上()f x 在(0,)+∞上的值域是[0,)+∞.②正确;③当0n ≤且n Z ∈时,(21)2(21)121n n n f +=-+=-<,不可能等于9, 当*n N ∈时,()11121212(1)221219222n n n n n n n n f f f ⎡⎤⎛⎫⎡⎤+=+=+=⨯--=-= ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,210n =,与n Z ∈矛盾.③错误;④根据函数上面的推导知()f x 在1(2,2]n n +上单调递减,1(2)0n f +=,n Z ∈,因此函数()y f x =在区间(),a b 上是严格减函数的充要条件是存在k ∈Z ,使得()1(,)2,2k k a b +⊆,④正确.故答案为:①②④. 【点睛】关键点点睛:本题考查分段函数的定义,考查函数的单调性与值域,分段函数值的计算.关键在求函数的值域.我们在1x >时,通过函数性质(2)2()f x f x =得出()f x 在1(2,2]n n +的值域是[0,2)n ,然后由这无数的集合求并集得出1x >时函数值的取值范围.18.【分析】将绝对值函数化为分段函数形式判断单调性【详解】由题意当时函数单调递减;当时函数在上单调递增在上单调递减;当时函数单调递增;综上所述函数的单调递减区间为故答案为:解析:()10,1,22⎛⎫⎪⎝⎭, 【分析】将绝对值函数化为分段函数形式,判断单调性. 【详解】由题意()151,02215151,222215,22x x x f x x x x x x x x x ⎧+-<<⎪⎪⎪=+-=--+<≤⎨⎪⎪++≥⎪⎩,当102x <<时,函数15()2f x x x =+-单调递减;当122x ≤<时,函数15()2f x x x =--+,在1(,1)2上单调递增,在(1,2)上单调递减; 当2x ≥时,函数15()2f x x x =+-单调递增; 综上所述,函数()152f x x x =+-的单调递减区间为()10,1,22⎛⎫ ⎪⎝⎭,, 故答案为:()10,1,22⎛⎫⎪⎝⎭,. 19.【分析】根据不能是奇函数排除和再利用幂函数的性质排除2即可得出【详解】若且则幂函数的图象一定在的上方故不可能为奇函数即不能取和当取时是偶函数故只需满足即可此时即则即则可取故取值的集合是故答案为:【点解析:2{2 }3-, 【分析】根据ky x =不能是奇函数排除1-和13,再利用幂函数的性质排除2即可得出. 【详解】若(10)(0 1)x ∈-,,,且||k x x >,则幂函数ky x =的图象一定在y x =的上方,故k y x =不可能为奇函数,即k 不能取1-和13, 当k 取22,,23-时,ky x =是偶函数,故只需满足(0 1)x ∈,即可, 此时k x x >,即11k x ->,则10k -<,即1k <,则k 可取22,3-,故k 取值的集合是2{2 }3-,. 故答案为:2{2 }3-,. 【点睛】本题考查幂函数的性质,解题的关键是正确理解幂函数的性质的特点,以及不同幂函数的图象特点.20.【分析】对称轴是因此的最大值在中取得然后分类讨论当时在中取得时在中取得求出然后作差根据不等式的性质求得的最大值【详解】设的对称轴是显然的最大值在中取得当时时此时若即时若时若时若即时时取等号若即时时取解析:32-【分析】22()2(1)1g x x x c x c =--=---,对称轴是1x =,因此()g x 的最大值在(0)g ,(1)g ,()g a 中取得.然后分类讨论,当02a <<时,在(0)g ,(1)g 中取得,2a ≥时,在(1)g ,()g a 中取得.求出b ,然后作差b a -,根据不等式的性质求得b a -的最大值. 【详解】设22()2(1)1g x x x c x c =--=---,(0)g c =-,(1)1g c =--,2()2g a a a c =--,()g x 的对称轴是1x =,显然()y g x =的最大值在(0)g ,(1)g ,()g a 中取得.当02a <<时,10c --≥,1c ≤-时,(0)b g c c ==-=-,此时b a c a -=--121>-=-,10c --<,若1c c --≤-,即112c -<≤-时,(0)b g c c ==-=-,13222b ac a -=-->-=-, 若1c c -->-,12c >-时,(1)111b g c c c ==--=+=+,1311222b ac a -=+->--=-,若2a ≥时,若212c a a c --≤--,即2212a a c --≤时,22()22b g a a a c a a c ==--=--,222221(2)3333222a a ab a a ac a a -----=--≥--=≥-,2a =时取等号,若212c a a c -->--,即2212a a c -->时,(1)11b gc c ==--=+1c =+,222141311222a a a ab ac a a ---+-=+->+-=≥-,2a =时取等号.综上所述,b a -的最小值是32-. 故答案为:32-. 【点睛】方法点睛:本题考查绝对值的最大值问题,解题关键是求出最大值b ,方法是分类讨论,由于有绝对值符号,引入二次函数2()2g x x x c =--后确定b 只能在(0)g ,(1)g ,()g a 中取得.然后分类讨论求得最大值.才可以作差b a -得其最小值.21.【分析】先根据图象可以得出f(x)的图象可以在OC 或CD 中选取一个再在AB 或OB 中选取一个即可得出函数f(x)的解析式【详解】由图可知线段OC 与线段OB 是关于原点对称的线段CD 与线段BA 也是关于原点解析:()1x f x ⎧=⎨⎩1001x x -<<<< 【分析】先根据图象可以得出f (x )的图象可以在OC 或CD 中选取一个,再在AB 或OB 中选取一个,即可得出函数f (x ) 的解析式. 【详解】由图可知,线段OC 与线段OB 是关于原点对称的,线段CD 与线段BA 也是关于原点对称的,根据题意,f (x) 与g (x) 的图象关于原点对称,所以f (x)的图象可以在OC 或CD 中选取一个,再在AB 或OB 中选取一个,比如其组合形式为: OC 和AB , CD 和OB , 不妨取f (x )的图象为OC 和AB ,OC 的方程为: (10)y x x =-<<,AB 的方程为: 1(01)y x =<<,所以,10()1,01x x f x x -<<⎧=⎨<<⎩,故答案为:,10()1,01x x f x x -<<⎧=⎨<<⎩【点睛】本题主要考查了函数解析式的求法,涉及分段函数的表示和函数图象对称性的应用,属于中档题.22.【分析】根据已知构造新函数利用导数求得函数的单调性根据函数的单调性列出不等式即可求解【详解】因为函数是定义在上的可导函数且有即设函数则所以函数在上单调递增又因为即所以则即的即不等式的解集为故答案为: 解析:(2020,2022]【分析】根据已知构造新函数,利用导数求得函数的单调性,根据函数的单调性,列出不等式,即可求解. 【详解】因为函数()f x 是定义在()0,∞+上的可导函数,且有()()2f x xf x x '+>, 即()()222xf x x f x x '+>设函数()()2g x x f x =,则()()()220g x xf x x f x '=+>,所以函数()g x 在()0,∞+上单调递增,又因为()()()220202020420x f x f ---≤,即()()()222020202022x f x f --≤, 所以(2020)(2)g x g -≤,则2020020202x x ->⎧⎨-≤⎩ ,即的20202022x <≤,即不等式的解集为(2020,2022]. 故答案为:(2020,2022]. 【点睛】本题主要考查了函数的单调性的应用,其中解答中构造新函数,结合题设条件求得新函数的单调性,结合新函数的性质求解是解答的关键,着重考查构造思想,以及推理与运算能力.23.(-∞-2)【分析】讨论分段函数各区间上单调递减且在处连续可知在R 上单调递减结合在aa +1上恒成立根据单调性列不等式求参数范围即可【详解】二次函数的对称轴是x =2∴该函数在(-∞0上单调递减即在(-解析:(-∞,-2) 【分析】讨论分段函数()f x 各区间上单调递减,且在3x =处连续可知()f x 在R 上单调递减,结合()(2)f x a f a x +>-在[a ,a +1]上恒成立,根据单调性列不等式求参数范围即可【详解】二次函数2143y x x =-+的对称轴是x =2∴该函数在(-∞,0]上单调递减,即在(-∞,0]上13y ≥同理,函数2223y x x =--+在(0,+∞)上单调递减,即在(0,+∞)上23y <∴分段函数()f x 在3x =处连续,()f x 在R 上单调递减由()(2)f x a f a x +>-有2x a a x +<-,即2x < a 在[a ,a +1]上恒成立 ∴2(a +1) < a ,解得a <-2 ∴实数a 的取值范围是(-∞,-2) 故答案为:(-∞,-2) 【点睛】本题考查了函数的单调性,确定分段函数在整个定义域内的单调性,再利用单调性和不等式恒成立的条件求参数范围24.【分析】先由条件判断出在R 上是增函数所以需要满足和单调递增并且在处对应的值大于等于对应的值解出不等式组即可【详解】对任意都有>0所以在R 上是增函数所以解得故实数a 的取值范围是故答案为:【点睛】本题考解析:3,22⎡⎫⎪⎢⎣⎭【分析】先由条件判断出()y f x =在R 上是增函数,所以需要满足(2)1y a x =-+和xy a = 单调递增,并且在1x =处xy a =对应的值大于等于(2)1y a x =-+对应的值,解出不等式组即可. 【详解】对任意12x x ≠,都有()()1212f x f x x x -->0,所以()y f x =在R 上是增函数,所以201(2)11a a a a->⎧⎪>⎨⎪-⨯+≤⎩,解得322a ≤<,故实数a 的取值范围是3,22⎡⎫⎪⎢⎣⎭. 故答案为:3,22⎡⎫⎪⎢⎣⎭. 【点睛】本题考查含有参数的分段函数根据单调性求参数范围问题,需要满足各部分单调并且在分段处的函数值大小要确定,属于中档题.25.②④【分析】根据题意画出方程对应的函数图象根据图像判断函数单调性值域最值以及函数零点个数的判断数形结合即可选择【详解】当y≥0时方程y|y|=1化为(y≥0)当y <0时方程y|y|=1化为(y <0)解析:②④ 【分析】根据题意,画出方程对应的函数图象,根据图像判断函数单调性、值域、最值以及函数零点个数的判断,数形结合即可选择.【详解】当y ≥0时,方程24x +y |y |=1化为2214x y +=(y ≥0), 当y <0时,方程24x +y |y |=1化为2214x y -=(y <0). 作出函数f (x )的图象如图:由图可知,函数f (x )在R 上不是单调函数,故①错误;y =f (x )的图象上的点到坐标原点距离的最小值为1,故②正确;函数f (x )的值域为(﹣∞,1],故③错误;双曲线2214x y -=的渐近线方程为y 12=±, 故函数y =f (x )与y =﹣x 的图象只有1个交点,即函数F (x )=f (x )+x 有且只有一个零点,故④正确.故答案为:②④.【点睛】本题考查函数单调性、值域以及零点个数的判断,涉及椭圆和双曲线的轨迹绘制,以及数形结合的数学思想,属综合中档题.26.【分析】求出函数的定义域并求出该函数的导数并在定义域内解不等式可得出函数的单调递增区间【详解】函数的定义域为且令得因此函数的单调递增区间为故答案为【点睛】本题考查利用导数求函数的单调区间在求出导数不解析:()2,e -+∞【分析】求出函数()y f x =的定义域,并求出该函数的导数,并在定义域内解不等式()0f x '>,可得出函数()y f x =的单调递增区间.【详解】函数()ln f x x x x =+的定义域为()0,∞+,且()ln 2f x x '=+,令()0f x '>,得2x e ->.因此,函数()ln f x x x x =+的单调递增区间为()2,e -+∞,故答案为()2,e -+∞. 【点睛】本题考查利用导数求函数的单调区间,在求出导数不等式后,得出的解集应与定义域取交集可得出函数相应的单调区间,考查计算能力,属于中等题.。
高中数学必修一第三章单元测试题《函数的应用》(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f(x)的图象如图所示,函数f(x)零点的个数为( )A.1个B.2个C.3个D.4个2.若函数y=f(x)在区间[a,b]上的图象为连续不断的一条曲线,则下列说法正确的是( )A.若f(a)f(b)>0,不存在实数c∈(a,b)使得f(c)=0B.若f(a)f(b)<0,存在且只存在一个实数c∈(a,b)使得f(c)=0C.若f(a)f(b)>0,有可能存在实数c∈(a,b)使得f(c)=0D.若f(a)f(b)<0,有可能不存在实数c∈(a,b)使得f(c)=0【补偿训练】下列函数中能用二分法求零点的是( )3.已知方程x=3-lgx,下列说法正确的是( )A.方程x=3-lgx的解在区间(0,1)内B.方程x=3-lgx的解在区间(1,2)内C.方程x=3-lgx的解在区间(2,3)内D.方程x=3-lgx的解在区间(3,4)内4.已知f(x)唯一的零点在区间(1,3),(1,4),(1,5)内,那么下面命题错误的是( )A.函数f(x)在(1,2)或[2,3]内有零点B.函数f(x)在(3,5)内无零点C.函数f(x)在(2,5)内有零点D.函数f(x)在(2,4)内不一定有零点5.设x0是方程lnx+x=4的解,则x在下列哪个区间内( )A.(3,4)B.(0,1)C.(1,2)D.(2,3)6.下列方程在区间(0,1)存在实数解的是( )A.x2+x-3=0B.x+1=0C.x+lnx=0D.x2-lgx=07.函数f(x)=3x-log2(-x)的零点所在区间是( )A. B.(-2,-1)C.(1,2)D.【补偿训练】在下列区间中,函数f(x)=e x+4x-3的零点所在的区间为( )A. B.C. D.【解析】选C.将选项代入f(x)=e x+4x-3.8.某种型号的手机自投放市场以来,经过两次降价,单价由原来的2000元降到1280元,则这种手机的价格平均每次降低的百分率是( )A.10%B.15%C.18%D.20%9.向高为H的圆锥形漏斗注入化学溶液(漏斗下方口暂时关闭),注入溶液量V与溶液深度h的函数图象是( )10.若方程a x-x-a=0有两个解,则a的取值范围是( )A.(1,+∞)B.(0,1)C.(0,+∞)D.∅【补偿训练】函数f(x)=+k有两个零点,则( )A.k=0B.k>0C.0≤k<1D.k<011.若函数f的零点与g=4x+2x-2的零点之差的绝对值不超过0.25,则f可以是( )A.f=4x-1B.f=(x-1)2C.f=e x-1D.f=ln12.如图表示一位骑自行车者和一位骑摩托车者在相距80km的两城镇间旅行的函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时,根据这个函数图象,推出关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发了1.5小时后,追上了骑自行车者.其中正确信息的序号是( )A.①②③B.①③C.②③D.①②二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2015·南昌高一检测)用“二分法”求方程x3-2x-5=0在区间[2,3]内的实根,取区间中点=2.5,那么下一个有根的区间是.为x14.已知函数f(x)=若关于x的方程f(x)-k=0有唯一一个实数根,则实数k的取值范围是.【补偿训练】若函数f(x)=|7x-1|-k有两个零点,则实数k的取值范围是.15.若函数f(x)=lgx+x-3的近似零点在区间(k,k+1)(k∈Z)内,则k= .16.定义在R上的偶函数y=f(x),当x≥0时,y=f(x)是单调递减的,f(1)·f(2)<0,则y=f(x)的图象与x轴的交点个数是.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(2015·杭州高一检测)已知函数f(x)的图象是连续的,有如下表格,判断函数在哪几个区间上有零点.x -2 -1.5 -1 -0.5 0 0.5 1 1.5 2f(x) -3.51 1.02 2.37 1.56 -0.38 1.23 2.77 3.45 4.8918.(12分)设f(x)=ax2+(b-8)x-a-ab的两个零点分别是-3,2.(1)求f(x).(2)当函数f(x)的定义域为[0,1]时,求其值域.19.(12分)用二分法求方程2x+x-8=0在区间(2,3)内的近似解.(精确度为0.1,参考数据:22.5≈5.657,22.25≈4.757,22.375≈5.187,22.4375≈5.417,22.75≈6.727)20.(12分)已知二次函数f(x)的图象过点(0,3),它的图象的对称轴为x=2,且f(x)的两个零点的平方和为10,求f(x)的解析式.21.(12分)(2015·徐州高一检测)在经济学中,函数f(x)的边际函数为Mf(x),定义为Mf(x)=f(x+1)-f(x),某公司每月最多生产100台报警系统装置,生产x台的收入函数为R(x)=3000x-20x2(单位:元),其成本函数为C(x)=500x+4000(单位:元),利润的函数等于收入与成本之差.求出利润函数p(x)及其边际利润函数Mp(x);判断它们是否具有相同的最大值;并写出本题中边际利润函数Mp(x)最大值的实际意义.22.(12分)A地某校准备组织学生及学生家长到B地进行社会实践,为便于管理,所有人员必须乘坐在同一列火车上;根据报名人数,若都买一等座单程火车票需17010元,若都买二等座单程火车票且花钱最少,则需11220元;已知学生家长与教师的人数之比为2∶1,从A到B的火车票价格(部分)如下表所示:(1)参加社会实践的老师、家长与学生各有多少人?(2)由于各种原因,二等座火车票单程只能买x张(x小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y与x之间的函数关系式.(3)请你做一个预算,按第(2)小题中的购票方案,购买单程火车票至少要花多少钱?最多要花多少钱?高中数学必修一第三章单元测试题《函数的应用》(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015·洛阳高一检测)函数f(x)的图象如图所示,函数f(x)零点的个数为( )A.1个B.2个C.3个D.4个【解析】选D.由图象知与x轴有4个交点,则函数f(x)共有4个零点.2.(2015·宜昌高一检测)若函数y=f(x)在区间[a,b]上的图象为连续不断的一条曲线,则下列说法正确的是( )A.若f(a)f(b)>0,不存在实数c∈(a,b)使得f(c)=0B.若f(a)f(b)<0,存在且只存在一个实数c∈(a,b)使得f(c)=0C.若f(a)f(b)>0,有可能存在实数c∈(a,b)使得f(c)=0D.若f(a)f(b)<0,有可能不存在实数c∈(a,b)使得f(c)=0【解析】选C.f(a)f(b)<0时,存在实数c∈(a,b)使得f(c)=0,f(a)f(b)>0时,可能存在实数c ∈(a,b)使得f(c)=0.【补偿训练】下列函数中能用二分法求零点的是( )【解析】选C.在A中,函数无零点,在B和D中,函数有零点,但它们在零点两侧的函数值的符号相同,因此它们都不能用二分法来求零点.而在C中,函数图象是连续不断的,且图象与x轴有交点,并且其零点两侧的函数值异号,所以C中的函数能用二分法求其零点.3.已知方程x=3-lgx,下列说法正确的是( )A.方程x=3-lgx的解在区间(0,1)内B.方程x=3-lgx的解在区间(1,2)内C.方程x=3-lgx的解在区间(2,3)内D.方程x=3-lgx的解在区间(3,4)内【解析】选C.2<3-lg2,3>3-lg3,又f(x)=x+lgx-3在(0,+∞)上是单调递增的,所以方程x=3-lgx 的解在区间(2,3)内.4.(2015·长沙高一检测)已知f(x)唯一的零点在区间(1,3),(1,4),(1,5)内,那么下面命题错误的是( )A.函数f(x)在(1,2)或[2,3]内有零点B.函数f(x)在(3,5)内无零点C.函数f(x)在(2,5)内有零点D.函数f(x)在(2,4)内不一定有零点【解析】选C.f(x)唯一的零点在区间(1,3),(1,4),(1,5)内,则区间(1,3)内必有零点,(2,5)内不一定有零点,(3,5)内无零点,所以选C.5.(2015·临川高一检测)设x0是方程lnx+x=4的解,则x在下列哪个区间内( )A.(3,4)B.(0,1)C.(1,2)D.(2,3)【解析】选D.令f(x)=lnx+x-4,由于f(2)=ln2+2-4<0,f(3)=ln3+3-4>0,f(2)·f(3)<0,又因为函数f(x)在(2,3)内连续,故函数f(x)在(2,3)内有零点,即方程lnx+x=4在(2,3)内有解.6.(2015·新余高一检测)下列方程在区间(0,1)存在实数解的是( )A.x2+x-3=0B.x+1=0C.x+lnx=0D.x2-lgx=0【解题指南】先从好判断的一次方程、二次方程入手,不好求解的利用函数图象的交点进行判断.【解析】选C.x2+x-3=0的实数解为x=和x=,不属于区间(0,1);x+1=0的实数解为x=-2,不属于区间(0,1);x2-lgx=0在区间(0,1)内无解,所以选C,图示如下:7.(2015·郑州高一检测)函数f(x)=3x-log2(-x)的零点所在区间是( )A. B.(-2,-1)C.(1,2)D.【解题指南】本题如果注意到定义域可排除C,D选项,用f(a)·f(b)<0去验证B选项即可得到答案.【解析】选B.f(x)=3x-log2(-x)的定义域为(-∞,0),所以C,D不能选;又f(-2)·f(-1)<0,且f(x)在定义域内是单调递增函数,故零点在(-2,-1)内.【补偿训练】在下列区间中,函数f(x)=e x+4x-3的零点所在的区间为( )A. B.C. D.【解析】选C.将选项代入f(x)=e x+4x-3.检验f f=(-2)(-1)<0,且f(x)=e x+4x-3的图象在上连续不断,故选C.8.某种型号的手机自投放市场以来,经过两次降价,单价由原来的2000元降到1280元,则这种手机的价格平均每次降低的百分率是( )A.10%B.15%C.18%D.20%【解析】选D.设平均每次降低的百分率为x,则2000(1-x)2=1280,解得x=0.2,故平均每次降低的百分率为20%.9.向高为H的圆锥形漏斗注入化学溶液(漏斗下方口暂时关闭),注入溶液量V与溶液深度h的函数图象是( )【解析】选A.注入溶液量V随溶液深度h的增加增长越来越快,故选A.10.若方程a x-x-a=0有两个解,则a的取值范围是( )A.(1,+∞)B.(0,1)C.(0,+∞)D.∅【解析】选A.画出y1=a x,y2=x+a的图象知a>1时成立.【补偿训练】函数f(x)=+k有两个零点,则( )A.k=0B.k>0C.0≤k<1D.k<0【解析】选D.在同一平面直角坐标系中画出y1=和y2=-k的图象:由图象知,-k>0即k<0.11.(2015·福州高一检测)若函数f的零点与g=4x+2x-2的零点之差的绝对值不超过0.25,则f可以是( )A.f=4x-1B.f=(x-1)2C.f=e x-1D.f=ln【解析】选A.f=4x-1的零点为x=,f=(x-1)2的零点为x=1,f=e x-1的零点为x=0,f=ln的零点为x=.现在我们来估算g=4x+2x-2的零点,因为g(0)= -1,g=1,g<0,且g(x)在定义域上是单调递增函数,所以g(x)的零点x∈,又函数f的零点与g=4x+2x-2的零点之差的绝对值不超过0.25,只有f=4x-1的零点适合.12.如图表示一位骑自行车者和一位骑摩托车者在相距80km的两城镇间旅行的函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时,根据这个函数图象,推出关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发了1.5小时后,追上了骑自行车者.其中正确信息的序号是( ) A.①②③ B.①③ C.②③ D.①②【解析】选A.由图象可得:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时,正确;②骑自行车者是变速运动,骑摩托车者是匀速运动,正确;③骑摩托车者在出发了1.5小时后,追上了骑自行车者,正确.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2015·南昌高一检测)用“二分法”求方程x3-2x-5=0在区间[2,3]内的实根,取区间中点为x=2.5,那么下一个有根的区间是.【解析】令f(x)=x3-2x-5,f(2.5)·f(2)<0所以下一个有根的区间是(2,2.5).答案:(2,2.5)14.已知函数f(x)=若关于x的方程f(x)-k=0有唯一一个实数根,则实数k的取值范围是.【解析】关于x的方程f(x)-k=0有唯一一个实数根,等价于函数y=f(x)与y=k的图象有唯一一个交点,在同一个平面直角坐标系中作出它们的图象.由图象可知实数k的取值范围是[0,1)∪(2,+∞).答案:[0,1)∪(2,+∞)【补偿训练】若函数f(x)=|7x-1|-k有两个零点,则实数k的取值范围是.【解析】函数f(x)=|7x-1|-k有两个零点,等价于方程k=|7x-1|有两个不等实根,即函数y=|7x-1|的图象与y=k的图象有两个公共点,结合图象知0<k<1.答案:(0,1)15.若函数f(x)=lgx+x-3的近似零点在区间(k,k+1)(k∈Z)内,则k= .【解题指南】由lgx+x-3=0,可得lgx=-x+3,令y1=lgx,y2=-x+3,结合两函数的图象,可大体判断零点所在的范围,然后结合零点的存在性定理来进行判断.【解析】由lgx+x-3=0,可得lgx=-x+3,令y1=lgx,y2=-x+3,结合两函数的图象,可大体判断零点在(1,3)内,又因为f(2)=lg2-1<0,f(3)=lg3>0,f(x)=lgx+x-3是单调递增函数,所以k=2. 答案:216.定义在R上的偶函数y=f(x),当x≥0时,y=f(x)是单调递减的,f(1)·f(2)<0,则y=f(x)的图象与x轴的交点个数是.【解析】f(1)·f(2)<0,y=f(x)在区间(1,2)内有一个零点,由偶函数的对称性知,在区间(-2,-1)内也有一个零点,所以共有2个零点.答案:2三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(2015·杭州高一检测)已知函数f(x)的图象是连续的,有如下表格,判断函数在哪几个区间上有零点.x -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 f(x) -3.51 1.02 2.37 1.56 -0.38 1.23 2.77 3.45 4.89 【解析】因为函数的图象是连续不断的,并且由对应值表可知f·f<0,f·f(0)<0,f·f<0,所以函数f在区间(-2,-1.5),(-0.5,0)以及(0,0.5)内有零点.18.(12分)设f(x)=ax2+(b-8)x-a-ab的两个零点分别是-3,2.(1)求f(x).(2)当函数f(x)的定义域为[0,1]时,求其值域.【解析】(1)因为f(x)的两个零点分别是-3,2,所以即解得a=-3,b=5,f(x)=-3x2-3x+18.(2)由(1)知f(x)=-3x2-3x+18的对称轴x=-,函数开口向下,所以f(x)在[0,1]上为减函数,f(x)的最大值f(0)=18,最小值f(1)=12,所以值域为[12,18].19.(12分)用二分法求方程2x+x-8=0在区间(2,3)内的近似解.(精确度为0.1,参考数据:22.5≈5.657,22.25≈4.757,22.375≈5.187,22.4375≈5.417,22.75≈6.727)【解析】设函数f(x)=2x+x-8,则f(2)=22+2-8=-2<0,f(3)=23+3-8=3>0,所以f(2)·f(3)<0,说明这个函数在区间(2,3)内有零点x0,即原方程的解.用二分法逐次计算,列表如下:区间中点的值中点函数近似值(2,3) 2.5 0.157(2,2.5) 2.25 -0.993(2.25,2.5) 2.375 -0.438(2.375,2.5) 2.437 5 -0.145 5由表可得x0∈(2,2.5),x0∈(2.25,2.5),x0∈(2.375,2.5),x0∈(2.4375,2.5).因为|2.4375-2.5|=0.0625<0.1,所以方程2x+x-8=0在区间(2,3)内的近似解可取为2.4375.20.(12分)(2015·潍坊高一检测)已知二次函数f(x)的图象过点(0,3),它的图象的对称轴为x=2,且f(x)的两个零点的平方和为10,求f(x)的解析式.【解题指南】设出解析式,利用根与系数的关系求出未知量.【解析】设二次函数为f(x)=ax2+bx+c(a≠0).由题意知:c=3,-=2.设x1,x2是方程ax2+bx+c=0的两根,则+=10,所以(x1+x2)2-2x1x2=10,所以-=10,所以16-=10,所以a=1.代入-=2中,得b=-4.所以f(x)=x2-4x+3.21.(12分)(2015·徐州高一检测)在经济学中,函数f(x)的边际函数为Mf(x),定义为Mf(x)=f(x+1)-f(x),某公司每月最多生产100台报警系统装置,生产x台的收入函数为R(x)=3000x-20x2(单位:元),其成本函数为C(x)=500x+4000(单位:元),利润的函数等于收入与成本之差.求出利润函数p(x)及其边际利润函数Mp(x);判断它们是否具有相同的最大值;并写出本题中边际利润函数Mp(x)最大值的实际意义.【解析】p(x)=R(x)-C(x)=-20x2+2500x-4000,x∈[1,100],x∈N,所以Mp(x)=p(x+1)-p(x)=[-20(x+1)2+2500(x+1)-4000]-(-20x2+2500x-4000),=2480-40x,x∈[1,100],x∈N;所以p(x)=-20+74125,x∈[1,100],x∈N,故当x=62或63时,p(x)max=74120(元),因为Mp(x)=2480-40x为减函数,当x=1时有最大值2440.故不具有相等的最大值.边际利润函数取最大值时,说明生产第二台机器与生产第一台的利润差最大.22.(12分)A地某校准备组织学生及学生家长到B地进行社会实践,为便于管理,所有人员必须乘坐在同一列火车上;根据报名人数,若都买一等座单程火车票需17010元,若都买二等座单程火车票且花钱最少,则需11220元;已知学生家长与教师的人数之比为2∶1,从A到B的火车票价格(部分)如下表所示:运行区间公布票价学生票上车站下车站一等座二等座二等座A B 81(元) 68(元) 51(元)(1)参加社会实践的老师、家长与学生各有多少人?(2)由于各种原因,二等座火车票单程只能买x张(x小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y与x之间的函数关系式.(3)请你做一个预算,按第(2)小题中的购票方案,购买单程火车票至少要花多少钱?最多要花多少钱?【解析】(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,若都买二等座单程火车票且花钱最少,则全体学生都需买二等座火车票,依题意得:解得则2m=20,答:参加社会实践的老师、家长与学生各有10人、20人与180人.(2)由(1)知所有参与人员总共有210人,其中学生有180人,①当180≤x<210时,最经济的购票方案为:学生都买学生票共180张,(x-180)名成年人买二等座火车票,(210-x)名成年人买一等座火车票. 所以火车票的总费用(单程)y与x之间的函数关系式为:y=51×180+68(x-180)+81(210-x),即y=-13x+13950(180≤x<210).②当0<x<180时,最经济的购票方案为:一部分学生买学生票共x张,其余的学生与家长、老师一起购买一等座火车票共(210-x)张.所以火车票的总费用(单程)y与x之间的函数关系式为:y=51x+81(210-x),即y=-30x+17010(0<x<180).(3)由(2)小题知,当180≤x<210时,y=-13x+13950,由此可见,当x=209时,y的值最小,最小值为11233元,当x=180时,y的值最大,最大值为11610元.当0<x<180时,y=-30x+17010,由此可见,当x=179时,y的值最小,最小值为11640元,当x=1时,y的值最大,最大值为16980元.所以可以判断按(2)小题中的购票方案,购买单程火车票至少要花11233元,最多要花16980元.。
第三章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知2()1f x x =+,则[(1)]f f -的值等于( )A .2B .3C .4D .52.已知函数()1f x x =+,其定义域为{1,0,1,2}-,则函数的值域为( )A .[0,3]B .{0,3}C .{0,1,2,3}D .{|0}y y …3.函数y = )A .{|01}x x ……B .{| 1 1}x x x --<或>C .{|01}x x x ¹-<且D .{}|1 0x x x ¹-¹且4.已知二次函数()y f x =满足(2)(2)f x f x +=-,且函数图像截x 轴所得的线段长为8,则函数()y f x =的零点为( )A .2,6B .2,6-C .2-,6D .2-,6-5.若函数()y f x =的定义域是{|01}x x ≤≤,则函数()()(2)(01)F x f x a f x a a =+++<<的定义域是()A .1|22a a x x -ìü-íýîþ≤B .|12a x x a ìü--íýîþ≤C .{|1}x a x a --≤≤D .1|2a x a x -ìü-íýîþ≤≤6.如图所示,可表示函数()y f x =的图像的只可能是()A B C D7.已知函数2()1f x ax bx =++为定义在[2,1]a a -上的偶函数,则a b +的值是( )A .1B .1-C .1或1-D .0或18.若()f x 满足()()f x f x -=-,且在(,0)-¥上是增函数,(2)0f -=,则()0xf x <的解集是( )A .(2,0)(0,2)-UB .(,2)(0,2)-¥-UC .(,2)(2,)-¥-+¥U D .(2,0)(2,)-+¥U 9.设函数()f x 与()g x 的定义域是{|1}x x ι±R ,函数()f x 是一个偶函数,()g x 是一个奇函数,且1()()1f xg x x -=-,则()f x 等于( )A .2221x x -B .211x -C .221x -D .221x x -10.已知2()21(0)f x ax ax a =++>,若()0f m <,则(2)f m +与1的大小关系式为( )A .(2)1f m +<B .(2)1f m +=C .(2)1f m +>D .(2)1f m +…11.函数()f x =( )A .是奇函数但不是偶函数B .是偶函数但不是奇函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数12.已知2()2f x x x =+,若存在实数t ,使()3f x t x +…对[1,]x m Î恒成立,则实数m 的最大值是( )A .6B .7C .8D .9二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.已知1,[0,1],()2,[0,1],x f x x x Îì=í-Ïî,当[()]1f f x =时,x Î__________.14.关于x 的方程240x x a --=有四个不相等的实数根,则实数a 的取值范围为__________.15.已知函数719()1x f x x +=+,则()f x 的图像的对称中心是__________,集合{}*|()x f x Î=N __________.16.已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则52f f æöæöç÷ç÷èøèø的值是__________.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数2()2||1f x x x =--.(1)利用绝对值及分段函数知识,将函数()f x 的解析式写成分段函数;(2)在坐标系中画出()f x 的图像,并根据图像写出函数()f x 的单调区间和值域.18.(本小题满分12分)已知函数()f x 对任意实数x 均有()2(1)f x f x =-+,且()f x 在区间[0]1,上有解析式2()f x x =.(1)求(1)f -和(1.5)f 的值;(2)写出()f x 在区间[2,2]-上的解析式.19.(本小题满分12分)函数2()1ax bf x x +=+是定义在(,)-¥+¥上的奇函数,且1225f æö=ç÷èø.(1)求实数a ,b 的值.(2)用定义证明()f x 在(1,1)-上是增函数;(3)写出()f x 的单调减区间,并判断()f x 有无最大值或最小值.如有,写出最大值或最小值(无需说明理由).20.(本小题满分12分)已知定义域为R 的单调函数()f x ,且(1)f x -的图像关于点(1,0)对称,当0x >时,1()3x f x x=-.(1)求()f x 的解析式;(2)若对任意的t ÎR ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.21.(本小题满分12分)对于定义域为D 的函数()y f x =,若同时满足下列条件:①()f x 在D 内单调递增或单调递减;②存在区间[,]a b D Í,使()f x 在[,]a b 上的值域为[,]a b ,那么称()()x D y f x =Î为闭函数.(1)求闭函数3y x =-符合条件②的区间[,]a b .(2)判断函数31()(0)4f x x x x=+>是否为闭函数?并说明理由;(3)判断函数y k =+是否为闭函数?若是闭函数,求实数k 的取值范围.22.(本小题满分12分)设函数()f x 的定义域为R ,当0x >时,()1f x >,对任意,x y ÎR ,都有()()()f x y f x f y +=g ,且(2)4f =.(1)求(0)f ,(1)f 的值.(2)证明:()f x 在R 上为单调递增函数.(3)若有不等式1()2f x f x x æö+ç÷èøg <成立,求x 的取值范围.第三章测试答案解析一、1.【答案】D【解析】由条件知(-1)2f =,(2)5f =,故选D .2.【答案】C【解析】将x 的值依次代入函数表达式可得0,1,2,3,所以函数的值域为{0,1,2,3},故选C .3.【答案】C【解析】由条件知10x +¹且0x x ->,解得0x <且1x ¹-.故选C 4.【答案】C【解析】由于函数()y f x =满足(2)(2)f x f x +=-,所以直线2x =为二次函数()y f x =图像的对称轴,根据二次函数图像的性质,图像与x 轴的交点必关于直线2x =对称.又两交点间的距高为8,则必有两交点的横坐标分别为1246x =+=,2242x =-=-.故函数的零点为2-,6.故选C .5.【答案】A【解析】由条件知01,021,x a x a +ìí+î…………,又01a <<则122a ax --≤≤,故选A .6.【答案】D【解析】由函数定义可得,任意一个x 有唯一的y 与之对应,故选D .7.【答案】B【解析】因为函数2()1f x ax bx =++为定义在[2,1]a a -上的偶函数,所以21a a =-,1a =-,0b =,因此1a b +=-,故选B.8.【答案】A【解析】根据题意可知函数是奇函数,且在(,0)-¥,(0,)+¥上是增函数,对()0xf x <,分0x >,0x <进行讨论,可知解集为(2,0)(0,2)-U ,故选A.9.【答案】B【解析】1()()1f x g x x -=-∵,1()()1f x g x x ---=--∴,1()()1f xg x x +=--∴,21122()111f x x x x =-=-+-∴,21()1f x x =-,故选B .10.【答案】C【解析】因为2()21(0)f x ax ax a =++>,所以其图像的对称轴为直线1x =-,所以()(2)0f m f m =--<,又(0)1f =,所以(2)1f m +>,故选C .11.【答案】A【解析】由定义城可知x ,因此原式化简为()f x =,那么根据函数的奇偶性的定义,可知该函数是奇函数不是偶函数,故选A .12.【答案】C【解析】由题意知,对任意[1,]x m Î,2()2()3x t x t x +++…恒成立,这个不等式可以理解为()f x t +的图像在直线3y x =的图像的下面时x 的取值范围.要使m 最大,需使两图像交点的横坐标分别为1和m .当1x =时,3y =,代入可求得4t =-(0t =舍去).进而求得另一个交点为(8,24),故8m =.故选C.二、13.【答案】[0,1][2,3]{5}U U 【解析】因为1,[0,1],()2,[0,1],x f x x x Îì=í-Ïî所以要满足元[()]1f f x =,需()[0,1]f x Î,[0,1]x Î或2[0,1]x -Î或5x =,这样解得x 的取值范围是[0,1][2,3]{5}U U .14.【答案】(0,4)【解析】原方程等价于24x x a -=,在同一坐标系内作出函数24y x x =-与函数y a =的图像,如图所示:平移直线y a =,可得当04a <<时,两图像有4个不同的公共点,相应地方程240x x a --=有4个不相等的实数根,综上所述,可得实数a 的范围为04a <<.15.(1,7)-{13,7,5,4,3,0,1,2,3,5,11}-----【解析】因为函数71912()711x f x x x +==+++,则()f x 的图像的对称中心为(1,7)-,集合{|()}{13,7,5,4,3,0,1,2,3,5,11}x f x *Î=-----N 16.【答案】0【解析】因为()f x 是定义在R 上的偶函数,因此令12x =-,可知11112222f f æöæö-=-ç÷ç÷èøèø,所以102f æö=ç÷èø,分别令32x =-,52x =-,可得302f æö=ç÷èø,502f æö=ç÷èø,令1x =-.得(0)0f =,因此可知502f f æöæö=ç÷ç÷èøèø.三、17.【答案】(1)22321,0()2||121,0x x x f x x x x x x ì--=--=í+-î<….(2)图像如图所示.单调增区间为(1,0)-,(1,)+¥,单调减区间为(,1)-¥-,(0,1).值域为[2,)-+¥.18.【答案】(1)由题意知(1)2(11)2(0)0f f f -=--+=-=,1111(1,5)(10.5)(0.5)2248f f f =+=-=-´=-.(2)当[0,1]x Î时,2()f x x =;当(1,2]x Î时,1(0,1]x -Î,211()(1)(1)22f x f x x =--=--;当[1,0)x Î-时,1[0,1)x +Î,2()2(1)2(1)f x f x x =-+=-+;当[2,1)x Î--时,1[1,0)x +Î-,22()2(1)22(11)4(2)f x f x x x éù=-+=-´-++=+ëû.所以22224(2),[2,1),2(1),[1,0),(),[0,1],1(1),(1,2].2x x x x f x x x x x ì+Î--ï-+Î-ïï=íÎïï--Îïî19.【答案】(1)2()1ax bf x x +=+∵是奇函数()()f x f x -=-∴,2211ax b ax bx x -++=-++∴,0b =∴.故2()1axf x x =+,又1225f æö=ç÷èø∵,1a =∴(2)证明:由(1)知2()1xf x x =+,任取1211x x -<<<,()()()()()()1212121222121211111x x x x x xf x f x x x x x ---=-=++++1211x x -∵<<<,1211x x -∴<<,120x x -<,1210x x ->,2110x +>,2210x +>,()()120f x f x -∴<,即()()12f x f x <,()f x ∴在(1,1)-上是增函数.(3)单调减区间为(,1),(1,)-¥-+¥.当1x =-时,min 1()2f x =-;当1x =时,max 1()2f x =.20.【答案】(1)由题意知()f x 的图像关于点(0,0)对称,是奇函数,∴(0)0f =当0x <时,0x ->,1()3x f x x--=--∴,又∵函数()f x 是奇函数.∴()()f x f x -=-,1()3x f x x=-∴.综上所述,1(0),()30(0).x x f x xx ì-¹ï=íï=î(2)2(1)(0)03f f =-=∵<,且()f x 在R 上单调.∴()f x 在R 上单调递减.由()()22220f t t f t k -+-<,得()()2222f t t f t k ---<.∵()f x 是奇函数,∴()()2222f t t f k t --<,又∵()f x 是减函数,∴2222t t k t -->即2320t t k -->对任意t ÎR 恒成立,∴4120k D =+<,得13k -<.21.【答案】(1)由题意,3y x =-,在[,]a b 上单调递减,则33,,,b a a b b a ì=-ï=-íï>î解得1,1,a b =-ìí=î所以,所求区间为[1,1]-.(2)取11x =,210x =,则()()1273845f x f x ==,即()f x 不是(0,)+¥上的减函数.取,1110x -=,21100x =,()()12331010040400f x f x =++=<,即()f x 不是(0,)+¥上的增函数.所以,函数在定义域内不单调递增或单调递减,从而该函数不是闭函数.(3)若y k =是闭函数,则存在区间[,]a b ,在区间[,]a b 上,函数()f x 的值域为[,]a b,即a kb k ì=ïí=+ïî∴a ,b为方程x k =+的两个实根,即方程22(21)20(2,)x k x k x x k -++-=-……有两个不等的实根,故两根均大于等于2-,且对称轴在直线2x =-的右边.当2k -…时,有220,(2)2(21)20,212,2k k k ìïD ï-+++-íï+ï-î>…解得924k --….当2k ->时,有220,(21)20,21,2k k k k k k ìïD ï-++-íï+ïî>>…无解.综上所述,9,24k æùÎ--çúèû.22.【答案】(1)因为(20)(2)(0)f f f +=g ,所以44(0)f =×,所以(0)1f =,又因为24(2)(11)(1)f f f ==+=,且当0x >时,()1f x >,所以(1)2f =.(2)证明:当0x <时,0x ->,所以()1f x ->,而(0)[()]()()f f x x f x f x =+-=-g ,所以1()()f x f x =-,所以0()1f x <<,对任意的12,x x ÎR ,当12x x <时,有()()()]()()()1212222121f x f x f x x x f x f x f x x -=é-+-=--ë,因为120x x <<,所以120x x -<,所以()1201f x x -<<,即()1210f x x --<,所以()()120f x f x -<,即()()12f x f x <,所以()f x 在R 上是单调递增函数.(3)因为1()12f x f x æö+ç÷èøg <,所以11(1)f x f x æö++ç÷èø<,而()f x 在R 上是单调递增函数,所以111x x ++,即10x x+<,所以210x x +<,所以0x <,所以x 的取值范围是(,0)-¥.。
第三章《函数的应用》复习测试题(一)一、选择题1.(2012北京)函数的零点个数为( ).A.0B.1C.2D.3考查目的:考查函数零点的概念、函数的单调性和数形结合思想.答案:B.解析:(方法1):令得,,在平面直角坐标系中分别画出幂函数和指数函数的图象,可知它们只有一个交点,∴函数的零点只有一个.(方法2):∵函数在上单调递增,且,∴函数的零点只有一个.答案选B.2.(2010天津)函数的零点所在的一个区间是( ).A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)考查目的:考查函数零点的存在性定理.答案:B解析:∵,,∴答案选B.3.(2009福建)若函数的零点与的零点之差的绝对值不超过0.25,则可以是( ).A. B.C. D.考查目的:考查函数零点的概念和零点存在性定理.答案:A.解析:的零点为,的零点为,的零点为,的零点为.下面估算的零点. ∵,,∴的零点.依题意,函数的零点与的零点之差的绝对值不超过0.25,∴只有的零点符合题意,故答案选A.4.在研制某种新型材料过程中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( ).1.95 3.00 3.94 5.10 6.120.97 1.59 1.98 2.35 2.61A. B. C.D .考查目的:考查几类不同增长类型函数模型与实际问题的拟合程度.答案:D.解析:通过检验可知,只有函数较为接近,故答案选D.5.已知函数,,的零点分别为,,则的大小关系是( ).A. B.C. D.考查目的:考查函数零点的定义,指数函数、对数函数、幂函数、一次函数的图象,以及数形结合思想.答案:C.解析:由已知得,,在同一平面直角坐标系中,画出函数的图象,由图象可知,,故答案选C.6.(2010陕西)某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数与该班人数之间的函数关系用取整函数(表示不大于的最大整数)可以表示为( ).A. B. C.D.考查目的:考查函数的建模及其实际应用,意在考查分析问题与解决问题的能力.答案:B.解析:(方法1):当除以的余数0,1,2,3,4,5,6时,由题设知,且易验证,此时.当除以10的余数为7,8,9时,由题设知,易验证,此时.综上得,必有,故选B.(方法2):依题意知:若,则,由此检验知选项C,D错误.若,则,由此检验知选项A错误.故由排除法知,本题答案应选B.二、填空题7.(2009浙江)某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量(单位:千瓦时)高峰电价(单位:元/千瓦时)低谷月用电量(单位:千瓦时)低谷电价(单位:元/千瓦时)50及以下的部分0.56850及以下的部分0.288超过50至200的部分0.598超过50至200的部分0.318超过200的部分0.668超过200的部分0.388若某家庭5月份的高峰时间段用电量为千瓦时,低谷时间段用电量为千瓦时,则按这种计费方式,该家庭本月应付的电费为元(用数字作答).考查目的:考查分段函数在解决实际问题中的应用.答案:.解析:该家庭本月应付电费由两部分构成:高峰部分为,低谷部分为,这两部分电费之和为(元).8.(2009山东)若函数有两个零点,则实数的取值范围是__________.考查目的:考查函数零点的定义,指数函数与一次函数的图象,数形结合的思想.答案:.解析:设函数和函数,则函数有两个零点,就是函数的图象与函数的图象有两个交点.由图象可知,当时,两个函数的图象只有一个交点,不符合题意;当时,∵函数的图象过点(0,1),而直线所过的点一定在点(0,1)的上方,∴两个函数的图象一定有两个交点,∴实数的取值范围是.9.某电脑公司2012年的各项经营收入中,经营电脑配件的收入为400万元,占全年经营总收入的40%.该公司预计2014年经营总收入要达到1690万元,且计划从2012年到2014年,每年经营总收入的年增长率相同,则2013年预计经营总收入为________万元.考查目的:考查增长率模型在实际问题中的应用和读题审题能力.答案:1300.解析:设年平均增长率为,则,∴,∴2013年预计经营总收入为×=1300(万元).10.(2010全国I理15改编)若函数有四个零点,则实数的取值范围是 .考查目的:考查函数零点的定义,函数的图象与性质、不等式的解法,和数形结合思想.答案:.解析:在平面直角坐标系内,先画函数的图象.当时,,图象的顶点为,与轴交于点(0,-1);当时,,图象的顶点为,与轴交于点(0,-1).是一条与轴平行的直线.当时,直线与函数的图象有4个交点,即当,函数有四个零点.11.为了预防流感,某段时间学校对教室用药熏消毒法进行消毒.设药物开始释放后第小时教室内每立方米空气中的含药量为毫克.已知药物释放过程中,教室内每立方米空气中的含药量(毫克)与时间(小时)成正比.药物释放完毕后,与的函数关系式为(为常数).函数图象如图所示.则从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式为 .考查目的:考查待定系数法求指数函数、一次函数解析式的方法,以及阅读理解能力和分类讨论思想.答案:.解析:函数图象由一条线段与一段指数函数图象组成,它们的交点为(0.1,1).当时,由(毫克)与时间(小时)成正比设,∴,解得,∴.当时,将(0.1,1)代入得,∴,,∴函数关系式为.。
高中数学(必修一)第三章 函数的概念与性质幂函数 练习题(含答案解析)学校:___________姓名:___________班级:_____________一、单选题1.下列幂函数中,定义域为R 的是( ) A .1y x -= B .12y x -=C .13y x =D .12y x = 2.已知幂函数n y x =在第一象限内的图像如图所示,若112,2,,22n ⎧⎫∈--⎨⎬⎩⎭则与曲线1C 、2C 、3C、4C 对应的n 的值依次为( )A .12-、2-、2、12B .2、12、2-、12-C .2、12、12-、2-D .12-、2-、12、23.四个幂函数在同一平面直角坐标系中第一象限内的图象如图所示,则幂函数12y x =的图象是( )A .①B .①C .①D .①4.下列函数中,既是偶函数,又满足值域为R 的是( ) A .y =x 2B .1||||y x x =+C .y =tan|x |D .y =|sin x |5.如下图所示曲线是幂函数y =xα在第一象限内的图象,已知α取±2,±12四个值,则对应于曲线C 1,C 2,C 3,C 4的指数α依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12 D ..2,12,-2,-126.若幂函数()f x 经过点,且()8f a =,则=a ( )A .2B .3C .128D .5127.函数()0a y x x =≥和函数()0xy a x =≥在同一坐标系下的图像可能是( )A .B .C .D .8.式子)A .1633- B .1633--C .1633+D .1633-+9.对,a b ∈R ,记{},max ,,a a ba b b a b ≥⎧=⎨<⎩,函数()}2maxf x x -=的图象可能是( )A .B .C .D .二、解答题10.设函数()222f x x x =-+,[],1,x t t t R ∈+∈(1)求实数t 的取值范围,使()y f x =在区间[],1t t +上是单调函数; (2)求函数()f x 的最小值. 11.已知幂函数()223m m y x m --=∈Z 的图像与x 、y 轴都无交点,且关于y 轴对称,求m 的值,并画出它的草图.12.已知幂函数()()25mf x m m x =+-在()0,∞+上单调递增.(1)求()f x 的解析式;(2)若()31f x x k >+-在[1,1]-上恒成立,求实数k 的取值范围. 13.设函数()f x 是定义在R 上的奇函数,且()21x ax b f x x +=++.(1)求实数a ,b 的值;(2)当x ∈⎤⎦,不等式()()22f x mx x ≥-有解,求实数m 的取值范围.三、填空题14.若点(2,4)P ,0(3,)Q y 均在幂函数()y f x =的图象上,则实数0y =_____.15.已知实数a ,b 满足等式a 12=b 13,下列五个关系式:①0<b<a<1;①-1<a<b<0;①1<a<b ;①-1<b<a<0;①a =b.其中可能成立的式子有________.(填上所有可能成立式子的序号) 16.函数3223125y x x x =--+在[0,3]上的最大值等于__________.17.定义{}()max ,()a ab a b b a b ≥⎧=⎨<⎩,则{}2max 1,2x x x +--的最小值为_________.参考答案:1.C【分析】直接根据幂函数的定义域可直接判断,偶次根式被开方式必须大于等于0才有意义,分式则必须分母不为0【详解】对选项A,则有:0x≠对选项B,则有:0x>对选项C,定义域为:R对选项D,则有:0x≥故答案选:C2.C【解析】本题可根据幂函数的图像与性质并结合题目中的图像即可得出结果.【详解】由幂函数的图像与性质可知:在第一象限内,在1x=的右侧部分的图像,图像由下至上,幂的指数依次增大,故曲线1C、2C、3C、4C对应的n的值依次为:2、12、12-、2-,故选:C.【点睛】本题考查幂函数的图像与性质,在第一象限内,幂函数在1x=的右侧部分的图像,图像由下至上,幂的指数依次增大,考查数形结合思想,是简单题.3.D【解析】由幂函数12y x=为增函数,且增加的速度比较缓慢作答.【详解】幂函数12y x=为增函数,且增加的速度比较缓慢,只有①符合.故选:D.【点睛】本题考查幂函数的图象与性质,属于基础题.4.C【分析】由函数的值域首先排除ABD,对C进行检验可得.【详解】选项A,B中函数值不能为负,值域不能R,故AB错误,选项D值域为[]0,1,故D也错误,那么选项C为偶函数,当3(,)22xππ∈时,tan tany x x==,值域是R,因此在定义域内函数值域为R,故选:C5.B【分析】在图象中,作出直线1x m =>,根据直线x m =和曲线交点的纵坐标的大小,可得曲线1C ,2C ,3C ,4C 相应的α应是从大到小排列.【详解】在图象中,作出直线1x m =>,直线x m =和曲线的交点依次为,,,A B C D , 所以A B C D y y y y >>>,所以C A B D m m m m αααα>>>, 所以A B C D αααα>>>,所以可得曲线1C ,2C ,3C ,4C 相应的α依次为 2,12,-12,-2 故选:B【点睛】本题主要考查幂函数的图象和性质,意在考查学生对这些知识的理解掌握水平. 6.A【解析】设幂函数()f x x α=,代入点求出3α=,即可求解.【详解】设()f x x α=,因为幂函数()f x 经过点,所以f α==, 解得3α=,所以()38f a a ==,解得2a =, 故选:A 7.C【分析】按照x y a =和a y x =的图像特征依次判断4个选项即可.【详解】()0a y x x =≥必过(0,0),()0xy a x =≥必过(0,1),D 错误;A 选项:由x y a =图像知1a >,由a y x =图像可知01a <<,A 错误;B 选项:由x y a =图像知01a <<,由a y x =图像可知1a >,B 错误;C 选项:由x y a =图像知01a <<,由a y x =图像可知01a <<,C 正确. 故选:C. 8.A【分析】利用根式与分数指数幂互化和指数幂运算求解.【详解】231322333⎛⎫=-÷ ⎪⎝⎭, 21131326223333--=-=-,故选:A 9.A【分析】由()}2maxf x x -=2x -的较大者,在同一平面直角坐标系中作出两个函数的图象,取图象较高者即可得()f x 的图象.【详解】y =2y x 都是偶函数,当0x >时,12y x =在()0,∞+上单调递增,2yx 在()0,∞+上单调递减,当1x =2x -=在同一平面直角坐标系中作出y =和2yx 的图象,如图:()}2maxf x x -=2x -的较大者,所以()f x 图象是两个图象较高的,故选:A.10.(1)(][),01,-∞⋃+∞;(2)()2min21,01,0122,1t t f x t t t t ⎧+≤⎪=<<⎨⎪-+≥⎩【解析】(1)由题可得11t +≤或1t ≥,解出即可;(2)讨论对称轴在区间[],1t t +的位置,根据单调性即可求出. 【详解】(1)()f x 的对称轴为1x =,要使()y f x =在区间[],1t t +上是单调函数, 则11t +≤或1t ≥,解得0t ≤或1t ≥, 即t 的取值范围为(][),01,-∞⋃+∞;(2)()f x 的对称轴为1x =,开口向上,则当1t ≥时,()f x 在[],1t t +单调递增,()()2min 22f x f t t t ∴==-+,当11t t <<+,即01t <<时,()()min 11f x f ==,当11t +≤,即0t ≤时,()f x 在[],1t t +单调递减,()()2min 11f x f t t ∴=+=+,综上,()2min21,01,0122,1t t f x t t t t ⎧+≤⎪=<<⎨⎪-+≥⎩. 11.1m = ;草图见祥解【分析】根据幂函数的性质,可得到2230m m --<,再有图像关于y 对称,即可求得m 的值. 【详解】因为幂函数223()m m y x m Z --=∈的图像与坐标轴无交点,所以2230m m --<,解得13m -<<,又因为m Z ∈,所以0,1,2m =,因为图像关于y 对称,所以幂函数为偶函数, 当0m =时,则3y x -=为奇函数,不满足题意; 当1m =时,则4y x -= 为偶函数,满足题意; 当2m =时,则3y x -=为奇函数,不满足题意; 综上所述:1m = 草图(如下)【点睛】本题考查幂函数的性质和图像,需熟练掌握幂函数的性质和图像. 12.(1)2()f x x = (2)(),1-∞-【分析】(1)根据幂函数的定义和()f x 的单调性,求出m 得值; (2)结合第一问求出的2()f x x =,利用函数的单调性,解决恒成立问题. (1)()f x 是幂函数,则251m m +-=,2m ∴=或-3,()f x 在(0,)+∞上单调递增,则2m =所以2()f x x =; (2)()31f x x k >+-即2310x x k -+->,要使此不等式在[1,1]-上恒成立,只需使函数()231g x x x k =-+-在[1,1]-上的最小值大于0即可.①()231g x x x k =-+-在[1,1]-上单调递减,①()()11min g x g k ==--, 由10k -->,得1k <-.因此满足条件的实数k 的取值范围是(),1-∞-. 13.(1)0a =,0b = (2)1,4⎛⎤-∞ ⎥⎝⎦【分析】(1)根据定义在R 上的奇函数的性质以及定义即可解出;(2)由(1)可知,()21x f x x =+,根据分离参数法可得()()22112m x x ≤+-,再求出()()22112x x +-的最大值,即得解. (1)因为函数()f x 是定义在R 上的奇函数,所以()00f a ==,()()1111022f f b b-+-=+=+-,解得0b =,检验可知函数()21xf x x =+为奇函数,故0a =,0b =. (2)由(1)可知,()21x f x x =+,而x ∈⎤⎦,所以 ()()22f x mx x ≥-可化为()()22112m x x ≤+-,设[]23,4t x =∈,则()()()()[]222219121224,1024x x t t t t t ⎛⎫+-=+-=--=--∈ ⎪⎝⎭,而不等式()()22f x mx x ≥-有解等价于()()22max11412m x x ⎡⎤⎢⎥≤=+-⎢⎥⎣⎦,故实数m 的取值范围为1,4⎛⎤-∞ ⎥⎝⎦.14.9【分析】设出幂函数的解析式,代入P 点坐标求得这个解析式,然后令3x =求得0y 的值.【详解】设幂函数为()f x x α=,将()2,4P 代入得24,2αα==,所以()2f x x =,令3x =,求得2039y ==.【点睛】本小题主要考查幂函数解析式的求法,考查幂函数上点的坐标,属于基础题. 15.①①①【分析】在同一坐标系中画出函数121y x =,132y x =的图象,结合函数图象,进行动态分析可得,当01b a <<<时,当1a b <<时,当1a b ==时,1132a b =可能成立,10b a -<<<、10a b -<<<时,12a 没意义,进而即可得到结论【详解】10b a -<<<、10a b -<<<时,12a 没意义,①①不可能成立;’画出121y x =与132y x =的图象(如图), 已知1132x x m ==,作直线y m =, 若0m =或1,则a b =,①能成立; 若01m <<,则01b a <<<,①能成立;若1m ,则1a b <<,①能成立,所以可能成立的式子有①①①,故答案为①①①.【点睛】本题主要考查幂函数的图象与性质,意在考查灵活应用所学知识解答问题的能力,以及数形结合思想的应用,属于中档题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.16.5【分析】对3223125y x x x =--+求导,根据单调性求最大值.【详解】3223125y x x x =--+,则266126(2)(1)y x x x x '=--=-+当2x >时,0y '>,此时函数3223125y x x x =--+单调递增;当12x -<<时,0y '<,此时函数3223125y x x x =--+单调递减;当1x <-时,0y '>,此时函数3223125y x x x =--+单调递增.则函数3223125y x x x =--+在区间[0,2]内单调递减,在区间[2,3]内单调递增当0x =时,5y =,当3x =时,4y =-所以函数3223125y x x x =--+在0x =处取到最大值5所以函数3223125y x x x =--+在区间[0,3]上的最大值是5.故答案为:5.17.1【分析】根据题干中max 函数的定义,可以得到所求函数为分段函数,求出每一段的最小值,取其中的最小值即可 【详解】令212x x x +-=-得:3x =-或1x =,由题意可得:{}2221,3max 1,22,311,1x x x x x x x x x x x ⎧+-≤-⎪+--=--<<⎨⎪+-≥⎩,画出函数对应的图像如下:由图可得:当1x =时,{}2max 1,2x x x +--最小,代入解析式可得:最小值为1故答案为:1。
一、选择题1.下列各组函数中,表示同一个函数的是( )A .211x y x -=-与1y x =+B .y x =与log xa y a =(0a >且1a ≠)C .21y x =-与1y x =-D .lg y x =与21lg 2y x =2.函数12xy ⎛⎫= ⎪⎝⎭的大致图象是( ). A . B .C .D .3.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微:数形结合百般好,隔离分家万事休”.在数学学习中和研究中,常用函数的图象来研究函数的性质,页常用函数的解析式来琢磨函数图象的特征,如函数()22xy xx R =-∈的大致图象是( )A .B .C .D .4.已知函数()()3,<1log ,1a a x a x f x x x ⎧--=⎨≥⎩的值域..是R ,那么实数a 的取值范围是( ) A .31,2⎛⎤ ⎥⎝⎦B .()1,+∞C .()()0,11,3D .3,32⎡⎫⎪⎢⎣⎭5.已知函数22()lg[(1)(1)1]f x a x a x =-+++的值域为R .则实数a 的取值范围是( ) A .5[1,]3B .5(1,]3C .(]5,1(,)3-∞-⋃+∞D .()5,1[1,)3-∞-6.已知:23log 2a =,42log 3b =,232c -⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( )A .b c a <<B .b a c <<C .c b a <<D .c a b <<7.函数()212()log 4f x x =-的单调递增区间为( ). A .(0,+∞)B .(-,0)C .(2,+∞)D .(-,-2)8.已知函数()f x 是定义在R 上的单调递增的函数,且满足对任意的实数x 都有[()3]4x f f x -=,则()()f x f x +-的最小值等于( ).A .2B .4C .8D .129.函数1()1x f x a +=-恒过定点( )A .(1,1)B .(1,1)-C .(1,0)-D .(1,1)--10.如图是指数函数①y =x a ;②y =x b ;③y =c x ;④y =d x 的图象,则a ,b ,c ,d 与1的大小关系是( )A .a <b <1<c <dB .b <a <1<d <cC .1<a <b <c <dD .a <b <1<d <c11.函数2()ln(43)f x x x =+-的单调递减区间是( )A .32⎛⎤-∞ ⎥⎝⎦,B .3,42⎡⎫⎪⎢⎣⎭C .3,2⎡⎫+∞⎪⎢⎣⎭D .31,2⎛⎤- ⎥⎝⎦12.已知函数()2,01,0x x f x x x >⎧=⎨+≤⎩,若()()10f a f +=,则实数a 的值等于( )A .-3B .-1C .1D .3二、填空题13.下列命题中所有正确的序号是_____________.①函数1()3x f x a -=+(0a >且1)a ≠的图像一定过定点(1,4)P ; ②函数(1)f x -的定义域是(1,3),则函数()f x 的定义域为(2,4); ③若1log 12a>,则a 的取值范围是112⎛⎫⎪⎝⎭,; ④若22ln ln()x y x y -->-- (0x >,0y <),则0x y +<.14.函数()log 31a y x =+-.(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny ++=上(其中m ,0n >),则12m n+的最小值等于__________. 15.设函数2()ln(1)f x x x =+,若()23(21)0f a f a +-<,则实数a 的取值范围为_____.16.函数()()cos1log sin f x x =的单调递增区间是____________. 17.函数()()212log 56f x x x =-+的单调递增区...间是__________. 18.已知奇函数()()y f x x R =∈满足:对一切x ∈R ,()()11f x f x +=-且[]0,1x ∈时,()1xf x e =-,则()2019f f =⎡⎤⎣⎦__________.19.设函数122,1()1log ,1x x f x x x -⎧≤=⎨->⎩,则满足()2f x ≤的x 的取值范围是_______________.20.如果()231log 2log 9log 64x x x f x =-+-,则使()0f x <的x 的取值范围是______.三、解答题21.已知函数()log (1)log (1)a a f x x x =+--,(0a >且1a ≠) (1)求()f x 的定义域;(2)判断()f x 的奇偶性,并予以证明; (3)求使()0f x >的x 取值范围. 22.已知函数122()log 2xf x x-=+. (1)求函数()f x 的定义域,并判断其奇偶性;(2)判断()f x 在其定义域上的单调性,并用单调性定义证明. 23.已知函数()421()x x f x a a R =-+⋅-∈. (1)当1a =时,求()f x 的值域; (2)若()f x 在区间[]1,0-的最大值为14-,求实数a 的值. 24.已知函数35()log 5xf x x-=+. (1)求函数()f x 的定义域;(2)判断函数()f x 奇偶性,并证明你的结论.25.已知集合(){}2log 33A x x =+≤,{}213B x m x m =-<≤+. (1)若2m =-,求AB ;(2)若A B A ⋃=,求实数m 的取值范围.26.已知函数()f x 是定义在R 上的奇函数,当0x 时,()121xaf x =++. (1)求实数a 的值及()f x 的解析式; (2)求方程4|(1)|5f x -=的解.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分析各个选项中每组函数的定义域和对应关系,若定义域和对应关系均相同则为同一个函数,由此判断出正确选项. 【详解】A .211x y x -=-的定义域为{}1x x ≠,1y x =+的定义域为R ,所以不是同一个函数;B .y x =与log xa y a =的定义域均为R ,且log xa y a =即为y x =,所以是同一个函数; C.y =(][),11,-∞-+∞,1y x =-的定义域为R ,所以不是同一个函数;D .lg y x =的定义域为()0,∞+,21lg 2y x =的定义域为{}0x x ≠,所以不是同一个函数, 故选:B. 【点睛】思路点睛:同一函数的判断步骤:(1)先判断函数定义域,若定义域不相同,则不是同一函数;若定义域相同,再判断对应关系;(2)若对应关系不相同,则不是同一函数;若对应关系相同,则是同一函数.2.A解析:A 【分析】去绝对值符号后根据指数函数的图象与性质判断. 【详解】由函数解析式可得:1,022,0xx x y x ⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪<⎩可得值域为:01y <≤,由指数函数的性质知:在(),0-∞上单调递增;在()0,∞+上单调递减. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.3.A解析:A 【分析】分析函数()()22xf x xx R =-∈的奇偶性,结合()01f =可得出合适的选项.【详解】令()22=-xf x x ,该函数的定义域为R ,()()()2222xxf x x x f x --=--=-=,函数()22=-xf x x 为偶函数,排除B 、D 选项;又()010f =>,排除C 选项. 故选:A. 【点睛】函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)从函数的特征点,排除不合要求的图象.4.A解析:A 【分析】当0<a <1时,当1≥x 时,log 0a y x =≤,则当1x <时,()3y a x a =--的值域必须要包含()0,+∞,,当1a >时,当1≥x 时,[)log 0a y x =∈+∞,,则当1x <时,()3y a x a =--的值域必须要包含()0-∞,,从而可得答案. 【详解】由题意,()f x 的值域为R ,当0<a <1时,当1≥x 时,log 0a y x =≤,所以当1x <时,()3y a x a =--的值域必须要包含()0,+∞,当1x <时,()3y a x a =--单调递增,()332y a x a a =--<- 所以不满足()f x 的值域为R .当1a >时,当1≥x 时,[)log 0a y x =∈+∞,, 所以当1x <时,()3y a x a =--的值域必须要包含()0-∞,, 若3a =时,当1x <时,3y a =-=-,不满足()f x 的值域为R .若3a >时,当1x <时,()3y a x a =--单调递减,()332y a x a a =-->- 所以不满足()f x 的值域为R .若13a <<时,当1x <时,()3y a x a =--单调递增,()332y a x a a =--<- 要使得()f x 的值域为R ,则320a -≥,即32a ≤ 所以满足条件的a 的取值范围是:312a <≤, 故选:A .【点睛】关键点睛:本题考查根据函数的值域求参数的范围,解答本题的关键是当0<a <1时,当1≥x 时,log 0a y x =≤,则当1x <时,()3y a x a =--的值域必须要包含()0,+∞,,当1a >时,当1≥x 时,[)log 0a y x =∈+∞,,则当1x <时,()3y a x a =--的值域必须要包含()0-∞,,属于中档题. 5.A解析:A 【分析】当函数的值域为R 时,命题等价于函数()()22111y a x a x =-+++的值域必须包含区间()0+∞,得解 【详解】22()lg[(1)(1)1]f x a x a x =-+++的值域为R令()()22111y a x a x =-+++,则()()22111y a x a x =-+++的值域必须包含区间()0+∞,当210a -=时,则1a =± 当1a =时,21y x =+符合题意; 当1a =-时,1y =不符合题意;当1a ≠±时,()()222101410a a a ⎧->⎪⎨∆=+--≥⎪⎩,解得513a <≤ 513a ∴≤≤,即实数a 的取值范围是5[1,]3故选:A 【点睛】转化命题的等价命题是解题关键.6.A解析:A 【分析】由换底公式和对数函数的性质可得112b a <<<,再由指数函数的性质可得102c <<,即可得解. 【详解】23ln3ln12log =02ln 2ln 2a ==>,4212ln ln 2ln1323log =03ln 4ln 2ln 2b ====<, a b ∴>22223231log log 410,239222a c -⎛⎫⎛⎫<===< ⎪ ⎪⎭=⎝>⎭=⎝,b c a ∴<<, 故选:A 【点睛】方法点睛:本题考查了对数式、指数式的大小比较,比较大小的常用方法为同底的对数式和指数式利用其单调性进行比较,也可以借助于中间值0和1进行比较,考查了运算求解能力与逻辑推理能力,属于常考题.7.D解析:D 【分析】求出函数的定义域,根据对数型复合函数的单调性可得结果. 【详解】函数()212()log 4f x x =-的定义域为()(),22,-∞-+∞,因为函数()f x 是由12log y u =和24u x =-复合而成,而12log y u =在定义域内单调递减,24u x =-在(),2-∞-内单调递减,所以函数()212()log 4f x x =-的单调递增区间为(),2-∞-, 故选:D. 【点睛】易错点点睛:对于对数型复合函数务必注意函数的定义域.8.B解析:B 【分析】根据()3x f x -为定值,可假设()3xf x m =+,然后计算()()f x f x +-,并计算m 的值,然后使用基本不等式,可得结果. 【详解】由题可知:()3xf x -为定值故设()3xf x m -=,即()3xf x m =+又[()3]4xf f x -=,所以()341mf m m m =+=⇒= 则()31xf x =+()()3131x x f x f x -+-=+++则1()()32243x x f x f x +-=++≥= 当且仅当133xx =时,取等号 所以()()f x f x +-的最小值为:4故选:B 【点睛】本题考查基本不等式的应用,还考查镶嵌函数的应用,难点在于()3xf x -为定值,审清题意,细心计算,属中档题.9.C解析:C 【分析】根据指数函数性质求定点. 【详解】因为01a =,所以()011f a -=-=0,因此过定点()1,0-,选C.【点睛】本题考查指数函数性质以及定点问题,考查基本分析求解能力,属于基础题.10.B解析:B 【分析】根据指数函数的图象与性质可求解. 【详解】根据函数图象可知函数①y =x a ;②y =x b 为减函数,且1x =时,②y =1b <①y =1a , 所以1b a <<,根据函数图象可知函数③y =c x ;④y =d x 为增函数,且1x =时,③y =c 1>④y =d 1, 所以1c d >> 故选:B 【点睛】本题主要考查了指数函数的单调性,指数函数的图象,数形结合的思想,属于中档题.11.B解析:B 【分析】先求函数的定义域,再利用复合函数的单调性同增异减,即可求解. 【详解】由2430x x +->得2340x x --<,解得:14x -<<,2()ln(43)f x x x =+-由ln y t =和234t x x =-++复合而成,ln y t =在定义域内单调递增,234t x x =-++对称轴为32x =,开口向下, 所以 234t x x =-++在31,2⎛⎫- ⎪⎝⎭ 单调递增,在3,42⎡⎫⎪⎢⎣⎭单调递减, 所以2()ln(43)f x x x =+-的单调减区间为3,42⎡⎫⎪⎢⎣⎭,故选:B 【点睛】本题主要考查了利用同增异减求复合函数的单调区间,注意先求定义域,属于中档题12.A解析:A 【分析】先求得()1f 的值,然后根据()f a 的值,求得a 的值. 【详解】由于()1212f =⨯=,所以()()20,2f a f a +==-,22a =-在()0,∞+上无解,由12a +=-解得3a =-,故选A.【点睛】本小题主要考查分段函数求函数值,考查已知分段函数值求自变量,属于基础题.二、填空题13.①③④【分析】由指数函数的图象函数的定义域对数函数的性质判断各命题①令代入判断②利用函数的定义求出的定义域判断③由对数函数的单调性判断④引入新函数由它的单调性判断【详解】①令则即图象过点①正确;②则解析:①③④ 【分析】由指数函数的图象,函数的定义域,对数函数的性质判断各命题.①,令1x =代入判断,②利用函数的定义求出()f x 的定义域判断,③由对数函数的单调性判断,④引入新函数1()ln 2ln 2xxg x x x -⎛⎫=-=- ⎪⎝⎭,由它的单调性判断.【详解】①令1x =,则(1)4f =,即()f x 图象过点(1,4),①正确; ②13x <<,则012x <-<,∴()f x 的定义域是(0,2),②错;③1log 1log 2a a a ,∴0112a a <<⎧⎪⎨>⎪⎩,∴112a <<.③正确;④由22ln ln()x y x y -->-- (0x >,0y <),得ln 2ln()2x y x y --<--, 又1()ln 2ln 2xx g x x x -⎛⎫=-=- ⎪⎝⎭是(0,)+∞上的增函数, ∴由ln 2ln()2x y x y --<--,得x y <-,即0x y +<,④正确. 故答案为:①③④【点睛】关键点点睛:本题考查指数函数的图象,对数函数的单调性,函数的定义域问题,定点问题:(1)指数函数(0x y a a =>且1)a ≠的图象恒过定点(0,1);(2)对数函数log (0a y x a =>且1)a ≠的图象恒过定点(1,0),解题时注意整体思想的应用.14.8【分析】根据函数平移法则求出点得再结合基本不等式即可求解【详解】由题可知恒过定点又点在直线上故当且仅当时取到等号故的最小值等于8故答案为:8【点睛】本题考查函数平移法则的使用基本不等式中1的妙用属 解析:8【分析】根据函数平移法则求出点A ()2,1--,得21m n +=,再结合基本不等式即可求解【详解】由题可知,()log 31a y x =+-恒过定点()2,1--,又点A 在直线 10mx ny ++=上,故21m n +=,()121242448n m m n m n m n m n ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当122n m ==时取到等号,故12m n+的最小值等于8 故答案为:8【点睛】本题考查函数平移法则的使用,基本不等式中“1”的妙用,属于中档题15.【分析】根据已知可得为奇函数且在上单调递增不等式化为转化为关于自变量的不等式即可求解【详解】的定义域为是奇函数设为增函数在为增函数在为增函数在处连续的所以在上单调递增化为等价于即所以实数的取值范围为 解析:1(1,)3- 【分析】根据已知可得()f x 为奇函数且在R 上单调递增,不等式化为()23(12)f a f a <-,转化为关于自变量的不等式,即可求解.【详解】()f x 的定义域为R ,()()))ln10f x f x x x +-=+==,()f x ∴是奇函数,设,[0,)()x u x x =∈+∞为增函数,()f x 在[0,)+∞为增函数,()f x 在(,0)-∞为增函数,()f x 在0x =处连续的,所以()f x 在R 上单调递增,()23(21)0f a f a +-<,化为()23(12)f a f a <-,等价于2312a a <-,即213210,13a a a +-<-<<, 所以实数a 的取值范围为1(1,)3-.故答案为: 1(1,)3-【点睛】本题考查利用函数的单调性和奇偶性解不等式,熟练掌握函数的性质是解题的关键,属于中档题. 16.【分析】根据对数型复合函数单调性列不等式再根据正弦函数性质得结果【详解】单调递增区间为单调递减区间且所以故答案为:【点睛】本题考查对数型复合函数单调性以及正弦函数性质考查基本分析求解能力属基础题 解析:[2,2),()2k k k Z ππππ++∈ 【分析】根据对数型复合函数单调性列不等式,再根据正弦函数性质得结果.【详解】()()cos1cos1(0,1)log sin f x x ∈∴=单调递增区间为sin y x =单调递减区间且sin 0x >, 所以22,()2k x k k Z ππππ+≤<+∈, 故答案为:[2,2),()2k k k Z ππππ++∈【点睛】 本题考查对数型复合函数单调性以及正弦函数性质,考查基本分析求解能力,属基础题. 17.【分析】求出函数的定义域利用复合函数法可求得函数的单调递增区间【详解】对于函数有解得或所以函数的定义域为内层函数在区间上单调递减在区间上单调递增外层函数为减函数所以函数的单调递增区间为故答案为:【点 解析:(),2-∞【分析】求出函数()f x 的定义域,利用复合函数法可求得函数()()212log 56f x x x =-+的单调递增区间.【详解】对于函数()()212log 56f x x x =-+,有2560x x -+>,解得2x <或3x >. 所以,函数()()212log 56f x x x =-+的定义域为()(),23,-∞+∞,内层函数256u x x =-+在区间(),2-∞上单调递减,在区间()3,+∞上单调递增, 外层函数12log y u =为减函数,所以,函数()f x 的单调递增区间为(),2-∞. 故答案为:(),2-∞.【点睛】复合函数()y f g x ⎡⎤=⎣⎦的单调性规律是“同则增,异则减”,即()y f u =与()u g x =.若具有相同的单调性,则()y f g x ⎡⎤=⎣⎦为增函数,若具有不同的单调性,则()y f g x ⎡⎤=⎣⎦必为减函数.18.【分析】根据题意求得的周期性则可求再结合函数解析式求得函数值即可【详解】由题可知:因为对一切故关于对称;又因为是奇函数则可得故可得故函数是周期为的函数则又当故则故答案为:【点睛】本题考查利用函数周期 解析:31e e --【分析】根据题意,求得()f x 的周期性,则()2019f 可求,再结合函数解析式,求得函数值即可.【详解】由题可知:因为对一切x R ∈,()()11f x f x +=-,故()f x 关于1x =对称;又因为()f x 是奇函数,则可得()()()()()21111f x f x f x f x f x +=++=--=-=-,故可得()()()()4222f x f x f x f x +=++=-+=,故函数()f x 是周期为4的函数.则()()()201911f f f =-=-,又当[]0,1x ∈,()1x f x e =-,故()()201911f f e =-=-, 则()()()()()320191131e f f f e f e f e e -=-=--=--=-.故答案为:31e e --.【点睛】本题考查利用函数周期性求函数值,属综合中档题;难点在于求得函数的周期. 19.【分析】根据分段函数分段解不等式最后求并集【详解】当时因为解得:∴当时解得:所以综上原不等式的解集为故答案为:【点睛】本题主要考查了解分段函数不等式涉及指数与对数运算属于基础题解析:[0,)+∞【分析】根据分段函数,分段解不等式,最后求并集.【详解】当1x ≤时,1()2x f x -=,因为11x -≤,解得:0x ≥,∴01x ≤≤ ,当1x >时,2()1log 2f x x =-≤,2log 1x ≥-,解得:12x ≥,所以1x >, 综上,原不等式的解集为[)0,+∞.故答案为:[)0,+∞.【点睛】 本题主要考查了解分段函数不等式,涉及指数与对数运算,属于基础题.20.【分析】可结合对数化简式将化简为再解对数不等式即可【详解】由由得即当时故;当时无解综上所述故答案为:【点睛】本题考查对数化简公式的应用分类讨论求解对数型不等式属于中档题 解析:81,3⎛⎫ ⎪⎝⎭【分析】可结合对数化简式将()f x 化简为()1log 2log 3log 4x x x f x =-+-,再解对数不等式即可【详解】由()2323231log 2log 9log 641log 2log 3log 4x x x x x x f x =-+-=-+- 31log 2log 3log 41log 8x x x x =-+-=+,由()0f x <得81log 03x -<, 即8log log 3x x x >, 当1x >时,83x <,故81,3x ⎛⎫∈ ⎪⎝⎭;当()0,1x ∈时,83x >,无解 综上所述,81,3x ⎛⎫∈ ⎪⎝⎭ 故答案为:81,3⎛⎫ ⎪⎝⎭【点睛】本题考查对数化简公式的应用,分类讨论求解对数型不等式,属于中档题三、解答题21.(1){|11}x x -<<;(2)函数()f x 是奇函数,证明见解析;(3)当1a >时,01x <<;当01a <<时,10x -<<【分析】(1)根据对数的真数为正数列式可解得结果;(2)函数()f x 是奇函数,根据奇函数的定义证明即可;(3)不等式化为log (1)log (1)a a x x +>-后,分类讨论底数a ,根据对数函数的单调性可解得结果.【详解】(1)要使函数数()f x 有意义,则必有1010x x +>⎧⎨->⎩,解得11x -<<, 所以函数()f x 的定义域是{|11}x x -<< .(2)函数()f x 是奇函数,证明如下:∵(1,1)x ∈-,(1,1)x -∈-,()log (1)log (1)a a f x x x -=--+[]log (1)log (1)a a x x =-+--()f x =-,∴函数()f x 是奇函数(3)使()0f x >,即log (1)log (1)a a x x +>-当1a >时,有111010x x x x +>-⎧⎪->⎨⎪+>⎩,解得01x <<,当01a <<时,有111010x x x x +<-⎧⎪->⎨⎪+>⎩,解得10x -<<.综上所述:当1a >时,01x <<;当01a <<时,10x -<<.【点睛】方法点睛:已知函数解析式,求函数定义域的方法:有分式时:分母不为0;有根号时:开奇次方,根号下为任意实数,开偶次方,根号下大于或等于0;有指数时:当指数为0时,底数一定不能为0;有根号与分式结合时,根号开偶次方在分母上时:根号下大于0;有指数函数形式时:底数和指数都含有x ,指数底数大于0且不等于1;有对数函数形式时,自变量只出现在真数上时,只需满足真数上所有式子大于0,自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大0且不等于1.22.(1)定义域为(2,2)-,奇函数(2)函数()f x 在(2,2)-上为增函数,证明见解析【分析】(1)根据真数大于0可得定义域,根据奇函数的定义可得函数为奇函数;(2)设1222x x -<<<,根据对数函数的单调性可得12()()f x f x <,再根据定义可证函数()f x 在(2,2)-上为增函数.【详解】(1)由函数有意义得202x x->+,解得22x -<<, 所以函数的定义域为(2,2)-, 因为1112222()log log ()22x x f x f x x x -+-⎛⎫-===- ⎪-+⎝⎭, 所以函数为奇函数.(2)因为124()log 12f x x ⎛⎫=-+⎪+⎝⎭,所以函数()f x 在(2,2)-上为增函数, 证明:设1222x x -<<<,则120224x x <+<+<,则1244122x x >>++,则124411022x x -+>-+>++, 因为1012<<,所以12()()f x f x <,所以函数()f x 在(2,2)-上为增函数, 【点睛】思路点睛:判断函数的奇偶性的思路:①求出定义域,并判断其是否关于原点对称;②若定义域不关于原点对称,则函数为非奇非偶函数,若定义域关于原点对称,再判断()f x -与()f x 的关系,若()()f x f x -=-,则函数为奇函数;若()()f x f x -=,则函数为偶函数.23.(1)3,4⎛⎤-∞- ⎥⎝⎦;(2)a =【分析】(1)令()20,xt =∈+∞,可得21y t t =-+-,利用二次函数的性质可求出; (2)令12,12x t ⎡⎤=∈⎢⎥⎣⎦,可得21y t at =-+-,讨论对称轴2a t =的取值范围结合二次函数的性质即可求出.【详解】(1)()2()421221x x x x f x a a =-+⋅-=-+⋅-.令()20,xt =∈+∞,21y t at =-+-,1a =时,2213124y t t t ⎛⎫=-+-=--- ⎪⎝⎭在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减. ∴当12t =时,max 34y =-,∴3,4y ⎛⎤∈-∞- ⎥⎝⎦, 所以()f x 的值域为3,4⎛⎤-∞- ⎥⎝⎦. (2)令12,12x t ⎡⎤=∈⎢⎥⎣⎦,22211124a y t at t a ⎛⎫=-+-=---+ ⎪⎝⎭, 其图象的对称轴为2a t =. ①当122a ≤,即1a ≤时,函数y 在区间1,12⎡⎤⎢⎥⎣⎦上单调递减, 当12t =时,max 1111424y a =-+-=-,解得2a =,与1a ≤矛盾; ②当12a ≥,即2a ≥时,函数y 在区间1,12⎡⎤⎢⎥⎣⎦上单调递增, 当1t =时,max 1114y a =-+-=-,解得74a =,与2a ≥矛盾, ③当1122a <<,即12a <<时,函数y 在1,22a ⎡⎤⎢⎥⎣⎦上单调递增,在,12a ⎡⎤⎢⎥⎣⎦上单调递减.当2a t =时,2max 11144y a =-=-,解得a =,舍去a =综上,a =【点睛】思路点睛:求二次函数在闭区间[],a b 的最值的思路;(1)二次函数开口向上时,求函数的最大值,讨论对称轴和2a b +的大小求解; (2)二次函数开口向上时,求函数的最小值,讨论对称轴在(]()[),,,,,a a b b -∞+∞三个区间的范围求解.24.(1)(5,5)- (2)奇函数,见解析【分析】(1)若()f x 有意义,则需满足505x x->+,进而求解即可; (2)由(1),先判断定义域是否关于原点对称,再判断()f x -与()f x 的关系即可.【详解】(1)由题,则505x x->+,解得55x -<<,故定义域为()5,5-(2)奇函数,证明:由(1),()f x 的定义域关于原点对称,因为()()33355log log log 1055x x f x f x x x +--+=+==-+,即()()f x f x -=-, 所以()f x 是奇函数【点睛】本题考查具体函数的定义域,考查函数的奇偶性的证明.25.(1){}31A B x x ⋂=-<≤;(2)[][)1,24,m ∈-+∞ 【分析】(1)计算{}35A x x =-<≤,{}51B x x =-<≤,再计算交集得到答案.(2)A B A ⋃=,故B A ⊆,讨论B =∅和B ≠∅,计算得到答案.【详解】(1)(){}{}2log 3335A x x x x =+≤=-<≤,{}51B x x =-<≤, 故{}31A B x x ⋂=-<≤.(2){}35A x x =-<≤,A B A ⋃=,故B A ⊆, 当B =∅时,213m m -≥+,解得4m ≥;当B ≠∅时,4m <,故21335m m -≥-⎧⎨+≤⎩,解得12m -≤≤. 综上所述:[][)1,24,m ∈-+∞.【点睛】本题考查交集运算,根据集合的包含关系求参数,意在考查学生的计算能力和综合应用能力. 26.(1) 2a =-,()2121x x f x -=+;(2) 212log 3x =+或212log 3x =- 【分析】(1)根据奇函数(0)0f =求解a ,再根据奇函数的性质求解()f x 的解析式即可.(2)根据(1)可得()2121x x f x -=+为奇函数,可先求解4|()|5f t =的根,再求解4|(1)|5f x -=即可. 【详解】(1)因为()f x 是定义在R 上的奇函数,且当0x ≥时,()121x a f x =++,故0(0)1021a f =+=+,即102a +=,解得2a =-.故当0x ≥时,()22112121x x x f x -=-=++. 所以当0x < 时, ()()211221211221x x x x x x f x f x -----=--=-=-=+++.故()2121x x f x -=+ (2) 先求解4|()|5f t =,此时()214215t t f t -==±+. 当()()214421521215t t t t -=⇒+=-+,即29t =解得22log 92log 3t ==. 因为()2121x x f x -=+为奇函数,故当214215t t -=-+时, 22log 3t =-. 故4|(1)|5f x -=的解为212log 3x -=或212log 3x -=-, 解得212log 3x =+或212log 3x =-【点睛】本题主要考查了根据奇函数求解参数的值以及解析式的方法,同时也考查了根据函数性质求解绝对值方程的问题,属于中档题.。
高一数学必修一第三章测试题及答案:函数的应用数学在科学发展和现代生活生产中的应用非常广泛,小编准备了高一数学必修一第三章测试题及答案,具体请看以下内容。
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设U=r,A={x|x0},b={x|x1},则AUb=()A{x|01} b.{x|0c.{x|x0}D.{x|x1}【解析】 Ub={x|x1},AUb={x|0【答案】 b2.若函数y=f(x)是函数y=ax(a0,且a1)的反函数,且f(2)=1,则f(x)=()A.log2xb.12xc.log12xD.2x-2【解析】 f(x)=logax,∵f(2)=1,loga2=1,a=2.f(x)=log2x,故选A.【答案】 A3.下列函数中,与函数y=1x有相同定义域的是()A.f(x)=lnxb.f(x)=1xc.f(x)=|x|D.f(x)=ex【解析】∵y=1x的定义域为(0,+).故选A.【答案】 A4.已知函数f(x)满足:当x4时,f(x)=12x;当x4时,f(x)=f(x+1).则f(3)=()A.18b.8c.116D.16【解析】 f(3)=f(4)=(12)4=116.【答案】 c5.函数y=-x2+8x-16在区间[3,5]上()A.没有零点b.有一个零点c.有两个零点D.有无数个零点【解析】∵y=-x2+8x-16=-(x-4)2,函数在[3,5]上只有一个零点4.【答案】 b6.函数y=log12(x2+6x+13)的值域是()A.rb.[8,+)c.(-,-2]D.[-3,+)【解析】设u=x2+6x+13=(x+3)2+44y=log12u在[4,+)上是减函数,ylog124=-2,函数值域为(-,-2],故选c.7.定义在r上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是()A.y=x2+1b.y=|x|+1c.y=2x+1,x0x3+1,x0D.y=ex,x0e-x,x0【解析】∵f(x)为偶函数,由图象知f(x)在(-2,0)上为减函数,而y=x3+1在(-,0)上为增函数.故选c.【答案】 c8.设函数y=x3与y=12x-2的图象的交点为(x0,y0),则x0所在的区间是()A.(0,1)b.(1,2)c(2,3)D.(3,4)【解析】由函数图象知,故选b.【答案】 b9.函数f(x)=x2+(3a+1)x+2a在(-,4)上为减函数,则实数a 的取值范围是()A.a-3b.a3c.a5D.a=-3【解析】函数f(x)的对称轴为x=-3a+12,要使函数在(-,4)上为减函数,只须使(-,4)(-,-3a+12)即-3a+124,a-3,故选A.10.某新品牌电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则下列函数模型中能较好反映销量y与投放市场的月数x之间的关系的是()A.y=100xb.y=50x2-50x+100c.y=502xD.y=100log2x+100【解析】对c,当x=1时,y=100;当x=2时,y=200;当x=3时,y=400;当x=4时,y=800,与第4个月销售790台比较接近.故选c. 【答案】 c11.设log32=a,则log38-2log36可表示为()A.a-2b.3a-(1+a)2c.5a-2D.1+3a-a2【解析】 log38-2log36=log323-2log3(23)=3log32-2(log32+log33)=3a-2(a+1)=a-2.故选A.【答案】 A12.已知f(x)是偶函数,它在[0,+)上是减函数.若f(lgx)f(1),则x的取值范围是()A.110,1b.0,110(1,+)c.110,10D.(0,1)(10,+)【解析】由已知偶函数f(x)在[0,+)上递减,则f(x)在(-,0)上递增,f(lgx)f(1)01,或lgx0-lgx1110,或0或110x的取值范围是110,10.故选c.【答案】 c二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.已知全集U={2,3,a2-a-1},A={2,3},若UA={1},则实数a的值是________.【答案】 -1或214.已知集合A={x|log2x2},b=(-,a),若Ab,则实数a的取值范围是(c,+),其中c=________.【解析】 A={x|0【答案】 415.函数f(x)=23x2-2x的单调递减区间是________.【解析】该函数是复合函数,可利用判断复合函数单调性的方法来求解,因为函数y=23u是关于u的减函数,所以内函数u=x2-2x的递增区间就是函数f(x)的递减区间.令u=x2-2x,其递增区间为[1,+),根据函数y=23u是定义域上的减函数知,函数f(x)的减区间就是[1,+).【答案】 [1,+)16.有下列四个命题:①函数f(x)=|x||x-2|为偶函数;②函数y=x-1的值域为{y|y③已知集合A={-1,3},b={x|ax-1=0,ar},若Ab=A,则a的取值集合为{-1,13};④集合A={非负实数},b={实数},对应法则f:求平方根,则f是A到b的映射.你认为正确命题的序号为:________. 【解析】函数f(x)=|x||x-2|的定义域为(-,2)(2,+),它关于坐标原点不对称,所以函数f(x)=|x||x-2|既不是奇函数也不是偶函数,即命题①不正确;函数y=x-1的定义域为{x|x1},当x1时,y0,即命题②正确;因为Ab=A,所以bA,若b=,满足bA,这时a=0;若b,由bA,得a=-1或a=13.因此,满足题设的实数a的取值集合为{-1,0,13},即命题③不正确;依据映射的定义知,命题④正确.【答案】②④三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知函数f(x)=x2-3x-10的两个零点为x1,x2(x1【解析】 A={x|x-2,或x5}.要使Ab=,必有2m-1-2,3m+25,3m+22m-1,或3m+22m-1,解得m-12,m1,m-3,或m-3,即-121,或m-3.18.(本小题满分12分)已知函数f(x)=x2+2ax+2,x[-5,5].(1)当a=-1时,求f(x)的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.【解析】 (1)当a=-1时,f(x)=x2-2x+2=(x-1)2+1,x[-5,5].由于f(x)的对称轴为x=1,结合图象知,当x=1时,f(x)的最小值为1,当x=-5时,f(x)的最大值为37.(2)函数f(x)=(x+a)2+2-a2的图象的对称轴为x=-a,∵f(x)在区间[-5,5]上是单调函数,-a-5或-a5.故a的取值范围是a-5或a5.19.(本小题满分12分)(1)计算:27912+(lg5)0+(2764)-13;(2)解方程:log3(6x-9)=3.【解析】 (1)原式=25912+(lg5)0+343-13=53+1+43=4.(2)由方程log3(6x-9)=3得6x-9=33=27,6x=36=62,x=2.经检验,x=2是原方程的解.20.(本小题满分12分)有一批影碟机(VcD)原销售价为每台800元,在甲、乙两家商场均有销售,甲商场用下面的方法促销:买一台单价为780元,买两台单价为760元,依次类推,每多买一台单价均减少20元,但每台最低不低于440元;乙商场一律按原价的75%销售,某单位需购买一批此类影碟机,问去哪家商场购买花费较少?【解析】设购买x台,甲、乙两商场的差价为y,则去甲商场购买共花费(800-20x)x,由题意800-20x440.118(xN).去乙商场花费80075%x(xN*).当118(xN*)时y=(800-20x)x-600x=200x-20x2,当x18(xN*)时,y=440x-600x=-160x,则当y0时,1当y=0时,x=10;当y0时,x10(xN).综上可知,若买少于10台,去乙商场花费较少;若买10台,甲、乙商场花费相同;若买超过10台,则去甲商场花费较少.21.(本小题满分12分)已知函数f(x)=lg(1+x)-lg(1-x).(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性;【解析】 (1)由1+x0,1-x0,得-1函数f(x)的定义域为(-1,1).(2)定义域关于原点对称,对于任意的x(-1,1),有-x(-1,1),f(-x)=lg(1-x)-lg(1+x)=-f(x)f(x)为奇函数.22.(本小题满分14分)设a0,f(x)=exa+aex是r上的偶函数.(1)求a的值;(2)证明:f(x)在(0,+)上是增函数.【解析】 (1)解:∵f(x)=exa+aex是r上的偶函数,f(x)-f(-x)=0.exa+aex-e-xa-ae-x=0,即1a-aex+a-1ae-x=01a-a(ex-e-x)=0.由于ex-e-x不可能恒为0,当1a-a=0时,式子恒成立.又a0,a=1.(2)证明:∵由(1)知f(x)=ex+1ex,在(0,+)上任取x1f(x1)-f(x2)=ex1+1ex1-ex2-1ex2=(ex1-ex2)+(ex2-ex1)1ex1+x2.∵e1,0ex1+x21,(ex1-ex2)1-1ex1+x20,f(x1)-f(x2)0,即f(x1)f(x)在(0,+)上是增函数.高中是人生中的关键阶段,大家一定要好好把握高中,小编为大家整理的高一数学必修一第三章测试题及答案,希望大家喜欢。
第三章检测试题时间:120分钟分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.设集合A={x|-4<x<3},B={x|x≤2},则A∩B=(B)A.(-4,3) B.(-4,2]C.(-∞,2] D.(-∞,3)解析:∵集合A={x|-4<x<3},B={x|x≤2},∴A∩B={x|-4<x≤2},用区间表示为(-4,2],故选B.2.函数f(x)=|x-1|的图象是(B)解析:代入特殊点,∵f(1)=0,∴排除A,C;又f(-1)=2,∴排除D.3.函数y=f(x)是R上的偶函数,且在(-∞,0]上是增函数,若f(a)≤f(2),则实数a 的取值X围是(D)A.a≤2 B.a≥-2C.-2≤a≤2 D.a≤-2或a≥2解析:∵y=f(x)是R上的偶函数,且在(-∞,0]上是增函数,∴y=f(x)在[0,+∞)上是减函数,由f(a)≤f(2),得f(|a|)≤f(2).∴|a|≥2,得a≤-2,或a≥2.4.若函数f(x)满足f(3x+2)=9x+8,则f(x)的解析式是(B)A.f(x)=9x+8B.f(x)=3x+2C.f(x)=-3x-4D .f (x )=3x +2或f (x )=-3x -4解析:令3x +2=t ,则3x =t -2,故f (t )=3(t -2)+8=3t +2. 5.已知函数y =f (2x )+2x 是偶函数,且f (2)=1,则f (-2)=( A ) A .5 B .4 C .3D .2解析:设g (x )=y =f (2x )+2x ,∵函数y =f (2x )+2x 是偶函数,∴g (-x )=f (-2x )-2x =g (x )=f (2x )+2x ,即f (-2x )=f (2x )+4x ,当x =1时,f (-2)=f (2)+4=1+4=5,故选A.6.已知函数f (x )的定义域为(0,+∞),且在(0,+∞)上单调递增,则不等式f (x )>f (2x -3)的解集是( D )A .(-∞,3)B .(3,+∞)C .(0,3) D.⎝⎛⎭⎫32 ,3 解析:本题考查函数的单调性.因为函数f (x )在(0,+∞)上单调递增,所以f (x )>f (2x -3)⇔x >2x -3>0,解得32<x <3,故选D.7.甲、乙两种商品在过去一段时间内的价格走势如图所示.假设某人持有资金120万元,他可以在t 1至t 4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计).如果他在t 4时刻卖出所有商品,那么他将获得的最大利润是( C )A .40万元B .60万元C .120万元D .140万元解析:要想获取最大利润,则甲的价格为6元时,全部买入,可以买120÷6=20万份,价格为8元时,全部卖出,此过程获利20×2=40万元;乙的价格为4元时,全部买入,可以买(120+40)÷4=40万份,价格为6元时,全部卖出,此过程获利40×2=80万元,∴共获利40+80=120万元,故选C.8.一个偶函数定义在[-7,7]上,它在[0,7]上的图象如图所示,下列说法正确的是( C )A .这个函数仅有一个单调增区间B .这个函数有两个单调减区间C .这个函数在其定义域内有最大值是7D .这个函数在其定义域内有最小值是-7解析:结合偶函数图象关于y 轴对称可知,这个函数在[-7,7]上有三个单调递增区间,三个单调递减区间,且定义域内有最大值7,无法判断最小值是多少.9.函数f (x )=x 2-2ax +a +2在[0,a ]上的最大值为3,最小值为2,则a 的值为( C ) A .0 B .1或2 C .1D .2解析:二次函数y =x 2-2ax +a +2的图象开口向上,且对称轴为x =a ,所以该函数在[0,a ]上为减函数,因此有a +2=3且a 2-2a 2+a +2=2,得a =1.10.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( A )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)解析:∵f (x )是偶函数,∴f (-2)=f (2).又∵任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,∴f (x )在[0,+∞)上是减函数.又∵1<2<3,∴f (1)>f (2)=f (-2)>f (3),故选A. 11.函数f (x )是定义在R 上的奇函数,下列命题:①f (0)=0;②若f (x )在[0,+∞)上有最小值-1,则f (x )在(-∞,0]上有最大值1;③若f (x )在[1,+∞)上为增函数,则f (x )在(-∞,-1]上为减函数;④若x >0时,f (x )=x 2-2x ,则x <0时,f (x )=-x 2-2x .其中正确命题的个数是( C ) A .1 B .2 C .3D .4解析:f (x )为R 上的奇函数,则f (0)=0,①正确;其图象关于原点对称,且在对称区间上具有相同的单调性,最值相反且互为相反数,所以②正确,③不正确;对于④,x <0时,-x >0,f (-x )=(-x )2-2(-x )=x 2+2x ,又f (-x )=-f (x ),所以f (x )=-x 2-2x ,故④正确.12.已知当x ∈[0,1]时,函数y =(mx -1)2的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值X 围是( B )A .(0,1]∪[23,+∞)B .(0,1]∪[3,+∞)C .(0,2)∪[23,+∞)D .(0,2]∪[3,+∞)解析:根据题意,知y =(mx -1)2在区间⎝⎛⎭⎫0,1m 上为减函数,⎝⎛⎭⎫1m ,+∞上为增函数,函数y =x +m 为增函数.分两种情况讨论:①当0<m ≤1时,有1m ≥1,在区间[0,1]上,y =(mx -1)2为减函数,且其值域为[(m -1)2,1],函数y =x +m 为增函数,其值域为[m,1+m ],此时两个函数的图象有1个交点,符合题意;②当m >1时,有1m <1,y =(mx -1)2在区间⎝⎛⎭⎫0,1m 上为减函数,⎝ ⎛⎭⎪⎪⎫1m 1上为增函数.函数y =x +m 为增函数,在x ∈[0,1]上,其值域为[m,1+m ],若两个函数的图象有1个交点,则有(m -1)2≥1+m ,解得m ≤0或m ≥3.又m 为正数,故m ≥3.综上所述,m 的取值X 围是(0,1]∪[3,+∞),故选B.第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.设函数f (x )=⎩⎪⎨⎪⎧x 2+2,x ≥2,2x ,x <2,已知f (x 0)=8,则x 0= 6.解析:∵当x ≥2时,f (x )≥f (2)=6, 当x <2时,f (x )<f (2)=4, ∴x 20+2=8(x 0≥2),解得x 0= 6.14.若函数f (x )=x(x +1)(2x -a )为奇函数,则a =2.解析:由题意知x ≠-1且x ≠a2.因为函数f (x )为奇函数,所以其定义域应关于原点对称,故x ≠1,即a2=1,a =2.15.设奇函数f (x )在(0,+∞)上为增函数且f (1)=0,则不等式f (x )-f (-x )x <0的解集为(-1,0)∪(0,1).解析:因为f (x )为奇函数,所以不等式f (x )-f (-x )x <0化为f (x )x<0,即xf (x )<0,f (x )的大致图象如图所示.所以xf (x )<0的解集为(-1,0)∪(0,1).16.已知f (x )=⎩⎪⎨⎪⎧x 2-2x +a ,x >1,(3-2a )x -1,x ≤1是R 上的单调递增函数,则实数a 的取值X 围为⎣⎡⎭⎫1,32.解析:f (x )=⎩⎪⎨⎪⎧(x -1)2+a -1,x >1,(3-2a )x -1,x ≤1,显然函数f (x )在(1,+∞)上单调递增.故由已知可得⎩⎪⎨⎪⎧3-2a >0,a -1≥(3-2a )×1-1,解得1≤a <32.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0为奇函数.(1)求f (-1)以及实数m 的值;(2)在给出的直角坐标系中画出函数y =f (x )的图象并写出f (x )的单调区间.解:(1)由已知得f (1)=1, 又f (x )为奇函数, 所以f (-1)=-f (1)=-1.又由函数表达式可知f (-1)=1-m ,所以1-m =-1,所以m =2. (2)y =f (x )的图象如图所示.y =f (x )的单调递增区间为[-1,1].y =f (x )的单调递减区间为(-∞,-1)和(1,+∞). 18.(12分)已知二次函数f (x )的最小值为1,且f (0)=f (2)=3. (1)求f (x )的解析式;(2)若f (x )在区间[2a ,a +1]上不单调,某某数a 的取值X 围;(3)在区间[-1,1]上,y =f (x )的图象恒在y =2x +2m +1的图象上方,试确定实数m 的取值X 围.解:(1)由f (0)=f (2)知二次函数f (x )关于直线x =1对称,又函数f (x )的最小值为1, 故可设f (x )=a (x -1)2+1, 由f (0)=3,得a =2. 故f (x )=2x 2-4x +3.(2)要使函数不单调,则2a <1<a +1, 则0<a <12.(3)由已知,即2x 2-4x +3>2x +2m +1, 化简得x 2-3x +1-m >0,设g (x )=x 2-3x +1-m ,则只要g (x )min >0,∵x ∈[-1,1],∴g (x )min =g (1)=-1-m >0,得m <-1.19.(12分)已知函数f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2xx -1.求:(1)f (x )的解析式;(2)f (x )在[2,6]上的最大值和最小值.解:(1)因为函数f (x )是定义在R 上的奇函数, 则当x >0时,-x <0,f (x )=-f (-x )=--2x -x -1=-2xx +1,所以f (x )的解析式为f (x )=⎩⎪⎨⎪⎧2xx -1,x ≤0,-2xx +1,x >0.(2)任取2≤x 1≤x 2≤6,则f (x 1)-f (x 2)=-2x 1x 1+1-⎝ ⎛⎭⎪⎫-2x 2x 2+1=2x 2x 2+1-2x 1x 1+1=2(x 2-x 1)(x 2+1)(x 1+1), 由2≤x 1<x 2≤6可得2(x 2-x 1)(x 2+1)(x 1+1)>0,即f (x 1)>f (x 2),所以f (x )在[2,6]上单调递减. 故当x =2时,f (x )取得最大值-43;当x =6时,f (x )取得最小值-127.20.(12分)已知函数f (x )=x 2-|x 2-ax -2|,a 为实数. (1)当a =1时,求函数f (x )在[0,3]上的最小值和最大值;(2)若函数f (x )在(-∞,-1)和(2,+∞)上单调递增,某某数a 的取值X 围. 解:(1)当a =1时,f (x )=⎩⎪⎨⎪⎧x +2,x <-1或x >2,2x 2-x -2,-1≤x ≤2,结合图象可知f (x )在⎣⎡⎦⎤0,14上单调递减,在⎣⎡⎦⎤14 ,3上单调递增, f (x )在[0,3]上的最小值为f ⎝⎛⎭⎫14=-178, f (x )在[0,3]上的最大值为f (3)=5. (2)令x 2-ax -2=0,∵Δ=a 2+8>0, 必有两根x 1=a -a 2+82,x 2=a +a 2+82, ∴f (x )=⎩⎪⎨⎪⎧ax +2,x <x 1或x >x 2,2x 2-ax -2,x 1≤x ≤x 2,若函数f (x )在(-∞,-1)和(2,+∞)上单调递增,则⎩⎪⎨⎪⎧a >0,a -a 2+82≥-1a 4≤2,即可,解得1≤a ≤8.21.(12分)我国是水资源比较贫乏的国家之一,各地采用价格调控等手段以达到节约用水的目的.某市用水收费标准是:水费=基本费+超额费+定额损耗费,且有如下三条规定:①若每月用水量不超过最低限量m 立方米时,只付基本费9元和每户每月定额损耗费a 元;②若每月用水量超过m 立方米时,除了付基本费和定额损耗费时,超过部分每立方米付n 元的超额费;③每户每月的定额损耗费a 不超过5元.(1)求每户每月水费y (元)与月用水量x (立方米)的函数关系式; (2)该市一家庭今年第一季度每月的用水量和支付的费用如下表所示:的值. 解:(1)依题意,得y =⎩⎪⎨⎪⎧9+a0<x ≤m , ①9+n (x -m )+a ,x >m . ②其中0<a ≤5.(2)∵0<a ≤5,∴9<9+a ≤14.由于该家庭今年一、二月份的水费均大于14元,故用水量4立方米,5立方米都大于最低限量m 立方米.将⎩⎪⎨⎪⎧ x =4,y =17和⎩⎪⎨⎪⎧x =5,y =23分别代入②, 得⎩⎪⎨⎪⎧17=9+n (4-m )+a , ③23=9+n (5-m )+a . ④ ③-④,得n =6.代入17=9+n (4-m )+a ,得a =6m -16.又三月份用水量为2.5立方米,若m <2.5,将⎩⎪⎨⎪⎧x =2.5,y =11代入②,得a =6m -13, 这与a =6m -16矛盾.∴m ≥2.5,即该家庭三月份用水量2.5立方米没有超过最低限量. 将⎩⎪⎨⎪⎧ x =2.5,y =11代入①,得11=9+a , 由⎩⎪⎨⎪⎧ a =6m -16,11=9+a ,解得⎩⎪⎨⎪⎧ a =2,m =3.∴该家庭今年一、二月份用水量超过最低限量,三月份用水量没有超过最低限量,且m =3,n =6,a =2.22.(12分)已知f (x )是定义在R 上的奇函数,且f (x )=x +m x 2+nx +1. (1)求m ,n 的值;(2)用定义证明f (x )在(-1,1)上为增函数;(3)若f (x )≤a 3对x ∈⎣⎡⎦⎤-13,13恒成立,求a 的取值X 围. 解:(1)因为奇函数f (x )的定义域为R ,所以f (0)=0.故有f (0)=0+m 02+n ×0+1=0, 解得m =0.所以f (x )=x x 2+nx +1. 由f (-1)=-f (1).即-1(-1)2+n ×(-1)+1=-112+n ×1+1, 解得n =0.所以m =n =0.(2)证明:由(1)知f (x )=x x 2+1,任取-1<x 1<x 2<1. 则f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1 =x 1(x 22+1)-x 2(x 21+1)(x 21+1)(x 22+1)=x 1x 22-x 2x 21+(x 1-x 2)(x 21+1)(x 22+1) =(x 1-x 2)(1-x 1x 2)(x 21+1)(x 22+1). 因为-1<x 1<1,-1<x 2<1, 所以-1<x 1x 2<1.故1-x 1x 2>0,又因为x 1<x 2, 所以x 1-x 2<0,故f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以函数f (x )在(-1,1)上为增函数.(3)由(2)知f (x )在(-1,1)上为增函数,所以函数f (x )在⎣⎡⎦⎤-13,13上为增函数, 故最大值为f ⎝⎛⎭⎫13=310.由题意可得a 3≥310,解得a ≥910. 故a 的取值X 围为⎣⎡⎭⎫910,+∞.。
第三章综合测试第Ⅰ卷(选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}1111242x M N xx +⎧⎫=−=∈⎨⎬⎩⎭Z ,,<<,,则M N 为( )A .{}11−,B .{}1−C .{}0D .{}10−,2.在下列根式与分数指数幂的互化中,正确的是( ) A .())0.50x x −=≠B()130yy =<C.)340x xy y −⎛⎫=≠ ⎪⎝⎭D.13x−=3.已知关于x 的不等式42133x x −−⎛⎫⎪⎝⎭>,则该不等式的解集为( )A .[)4+∞,B .()4−+∞,C .()4−∞−,D .(]41−,4.下列函数中,值域为+R 的是( )A .125xy −=B .113xy −⎛⎫= ⎪⎝⎭C.y =D.y =5.已知函数()2020xx a x f x x −⎧⎪=⎨⎪⎩,≥,<若()()11f f −=,则a =( )A .14B .12C .1D .26.已知3114221133a b c π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,,,则下列不等式正确的是( )A .a b c >>B .b a c >>C .c a b >>D .c b a >>7.已知函数()()()x xf x x e ae x −=+∈R ,若()f x 是偶函数,记a m =,若()f x 是奇函数,记a n =,则2m n +的值为( )A .0B .1C .2D .1−8.在下图中,二次函数2y bx ax =+与指数函数xa yb ⎛⎫= ⎪⎝⎭的图象只可能是( )二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对得5分,选对但不全的得3分,有选错的得0分)9.若函数()1x y a b =+−(0a >,且1a ≠)的图象不经过第二象限,则有( ) A .1a >B .01a <<C .1b >D .0b ≤10.已知函数()133xxf x ⎛⎫=− ⎪⎝⎭,则()f x ( )A .是奇函数B .是偶函数C .在R 上是增函数D .在R 上是减函数11.设指数函数()x f x a =(0a >,且1a ≠),则下列等式中正确的是( ) A .()()()f x y f x f y +=B .()()()f x f x y f y −=C .()()()nf nx f x n =∈⎡⎤⎣⎦QD .()()()()nnnf xy f x f y n +=∈⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦N12.已知3515a b ==,则a b ,可能满足的关系是( ) A .4a b +>B .4ab >C .()()22112a b −+−>D .228a b +<第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.已知函数()f x 是指数函数,且35225f ⎛⎫−=⎪⎝⎭,则()f x =________. 14.函数()2223x xf x −⎛⎫= ⎪⎝⎭的单调递减区间是________,值域为________.15.已知函数()x af x e −=(a 为常数).若()f x 在区间[)1+∞,上是增函数,则a 的取值范围是________. 16.设函数()31121x x x f x x −⎧=⎨⎩,<,≥,则满足()()2f a f f a =⎡⎤⎣⎦的a 的取值范围是________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤) 17.(本小题满分10分)计算下列各式的值:(1)00.54413925421e −⎛⎫⎛⎫−++− ⎪ ⎪−⎝⎭⎝⎭;(2)若346a b c ==,则1112a b c+−.18.(本小题满分12分)函数()y F x =的图象如图所示,该图象由指数函数()x f x a =与幂函数()b g x x =“拼接”而成. (1)求()F x 的解析式;(2)比较b a 与a b 的大小;(3)若()()432bbm m −−+−<,求m 的取值范围.19.(本小题满分12分)设()0x xe aa f x a e =+>,是R 上的偶函数.(1)求a 的值;(2)证明()f x 在()0+∞,上是增函数.20.(本小题满分12分)某城市现有人口总数为100万,如果年自然增长率为1.2%,试解答下面的问题: (1)写出x 年后该城市的人口总数y (万人)与年数x (年)的函数关系式;(2)计算10年以后该城市人口总数(精确到0.1万);(3)计算大约多少年以后该城市人口总数将达到120万(精确到1年).()()()1015161 1.2% 1.1271 1.2% 1.1961 1.2% 1.21⎡⎤+≈+≈+≈⎣⎦,,21.(本小题满分12分)已知函数()x f x b a =(其中a b ,为常数,且01a a ≠>,)的图象经过点()()16324A B ,,,.(1)试确定()f x ;(2)若不等式110x xm a b ⎛⎫⎛⎫+− ⎪ ⎪⎝⎭⎝⎭≥在(]81x ∈−,时恒成立,求实数m 的取值范围.22.(本小题满分12分)已知()f x 是定义在()11−,上的奇函数,当()01x ∈,时,()241xx f x =+. (1)求()f x 在()11−,上的解析式;(2)求()f x 的值域.第三章综合测试 答案解析1.【答案】B【解析】1124112212x x x +−+−∵<<,∴<<,∴<<.又x ∈Z ,{}{}101N M N =−=−∴,,∴∩.2.【答案】C【解析】)33440x y xy y x −⎛⎫⎛⎫==≠ ⎪⎪⎝⎭⎝⎭,故选C .3.【答案】B【解析】依题意可知,原不等式可转化为4233x x −+−>,由于指数函数3x y =为增函数,故424x x x −+−−>,>,故选B . 4.【答案】B【解析】选项A 中函数的值域为()()011+∞,,,选项C 中函数的值域为[)0+∞,,选项D 中函数的值域为[)01,,故选B . 5.【答案】A【解析】根据题意可得()()()()121221221f f f f a −==−===,∴,解得14a =,故选A . 6.【答案】D【解析】因为13xy ⎛⎫= ⎪⎝⎭在R 上单调递减,且13024<<,所以1b a >>.又因为x y π=在R 上单调递增,且102>,所以1c >.所以c b a >>.故选D . 7.【答案】B【解析】当()f x 是偶函数时,()()f x f x =−,即()()x x xx x e ae x e ae −−+=−+,即()()10x x a e e x −++=①.因为①式对任意实数x 都成立,所以1a =−,即1m =−.当()f x 是奇函数时,()()f x f x =−−,即()()x x x x x e ae x e ae −−+=+,即()()10x x a e e x −−−=②. 因为②式对任意实数x 都成立,所以1a =,即1n =,所以21m n +=. 8.【答案】C【解析】由二次函数常数项为0可知函数图象过原点,排除A ,D ;B ,C 中指数函数单调递减,因此()01a b∈,,因此二次函数图象的对称轴02ax b=−<.故选C . 9.【答案】AD【解析】由题意当()1x y a b =+−)不过第二象限时,其为增函数,1a ∴>且110b +−≤,即1a >且0b ≤,故选AD . 10.【答案】AC【解析】()()113333xx xx f x f x −−⎡⎤⎛⎫⎛⎫−=−=−−=−⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦,所以()f x 是奇函数,A 正确;又3x y =为增函数,13xg ⎛⎫= ⎪⎝⎭为减函数,所以()133xx f x ⎛⎫=− ⎪⎝⎭为增函数,C 正确,故选A 、C .11.【答案】ABC【解析】因为()()()x y x y x y f x y a f x f y a a a +++===,,所以A 正确;()()()x y f x f x y a f y −−==,所以B 正确;()()()nnnx xf nx a a f x ===⎡⎤⎣⎦,所以C 正确;()()()()()()n nn nxy xyn x yf xy a a a a f x f y ====⎡⎤⎡⎤⎣⎦⎣⎦,所以D 错误,故选ABC . 12.【答案】ABC【解析】由3515a b ==,得()()315515315515351515baab b a ab b ab a ab ab b a =====,,∴,,∴,即1515ab a b a b ab +=+=,∴,又a b ,为不相等的正数,a b ab +∴>>,即4ab >,故A ,B 正确;()()22112a b −+−>等价于()222a b a b ++>,又a b ab +=,则222a b ab +>,故C 正确;因为2222248a b ab ab a b ++>,>,∴>,故D 错误.故选A 、B 、C .13.【答案】5x【解析】设()xf x a =(0a >,且1a ≠),由32f ⎛⎫−= ⎪⎝⎭得()31322225555x a a f x −−−====,∴,∴.14.【答案】[)1+∞,302⎛⎤⎥⎝⎦, 【解析】令22u x x =−,其单调递增区间为[)1+∞,,根据函数23uy ⎛⎫= ⎪⎝⎭是定义域上的减函数知,函数()f x 的单调递减区间就是[)1+∞,.由1u ≥,得23032u⎛⎫⎪⎝⎭<≤,所以()f x 的值域为302⎛⎤ ⎥⎝⎦,. 15.【答案】(]1−∞,【解析】令t x a =−,则t x a =−在区间[)a +∞,上单调递增,而t y e =在R 上为增函数,所以要使函数()x af x e−=在[)1+∞,上单调递增,则有1a ≤,所以a 的取值范围是(]1−∞,. 16.【答案】23⎡⎫+∞⎪⎢⎣⎭, 【解析】因2x y =与31y x =−在()1−∞,上没有公共点,故由()()2f a f f a =⎡⎤⎣⎦可得()1f a ≥,故有1311a a ⎧⎨−⎩<≥或121a a ⎧⎨⎩≥≥,解得a 的取值范围是23⎡⎫+∞⎪⎢⎣⎭,. 17.【答案】(1)原式221133e e =−++−=+. (2)设346a b c m ===,则0m >.346log log log a m b m c m ===∴,,.1111log 3log 4log 622m m m a b c +−=+−∴ log 3log 2log 6m m m =+−32log log 106mm ⨯===. 18.【答案】(1)依题意得11421142b a ⎧=⎪⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩,解得11612a b ⎧=⎪⎪⎨⎪=⎪⎩,所以()111641124x x F x x x ⎧⎛⎫⎪ ⎪⎪⎝⎭=⎨⎪⎪⎩,≤,>. (2)因为1122161111622b a a b ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,指数函数12xy ⎛⎫= ⎪⎝⎭单调递减,所以12161122⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<,即b a a b <.(3)由()()1122432m m −−+−<,得40320432m m m m +⎧⎪−⎨⎪+−⎩>>>,解得1332m −<<,所以m 的取值范围是1332⎛⎫− ⎪⎝⎭,.19.【答案】(1)因为()x xe af x a e =+是R 上的偶函数,所以()()f x f x =−,即x x x x e a e aa e a e −−+=+, 故()10x x a e e a −⎛⎫−−= ⎪⎝⎭,又x x e e −−不可能恒为0, 所以当10a a−=时,()()f x f x =−恒成立,故1a =. (2)证明:在()0+∞,上任取12x x <, 因为()()12121211f x f x ex ex ex ex −=+−− ()()()()()12121212211212121111ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex −−⎛⎫=−+−=−+−= ⎪⎝⎭, 又12100e x x >,>,>,所以121ex ex <<,所以1212010ex ex ex ex −−<,>,故()()120f x f x −<,即()()12f x f x <,所以()f x 在()0+∞,上是增函数.20.【答案】(1)1年后该城市人口总数为()100100 1.2%1001 1.2%y =+⨯=⨯+; 2年后该城市人口总数为()()()21001 1.2%1001 1.2% 1.2%1001 1.2%y =⨯++⨯+⨯=⨯+; 3年后该城市人口总数为()31001 1.2%y =⨯+;……;x 年后该城市人口总数为()1001 1.2%xy x +=⨯+∈N ,.(2)10年后该城市人口总数为()()10101001 1.2%100 1.012112.7y =⨯+=⨯≈万. (3)令120y =,则有()1001 1.2%120x⨯+=, 解方程可得1516x <<.故大约16年后该城市人口总数将达到120万.21.【答案】(1)因为()x f x b a =的图象过点()()16324A B ,,,,所以3624b a b a =⎧⎨=⎩,①,②÷②①得24a =,又0a >且1a ≠,所以23a b ==,,所以()32x f x =.(2)由(1)知110x x m a b ⎛⎫⎛⎫+− ⎪ ⎪⎝⎭⎝⎭≥在(]1x ∈−∞,时恒成立可化为1123x xm ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭≤在(]1x ∈−∞,时恒成立. 令()1123xxg x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,则()g x 在(]1−∞,上单调递减, 所以()()min 1151236m g x g ==+=≤, 即实数m 的取值范围是56⎛⎤−∞ ⎥⎝⎦,.22.【答案】(1)当()10x ∈−,时,()01x −∈,. ∵函数()f x 为奇函数,()()224114x xx xf x f x −−=−−=−=−++∴. 又()()()()()00020000f f f f f =−=−==,∴,.故当()11x ∈−,时,()f x 的解析式为()()()201410021041xx xx x f x x x ⎧∈⎪+⎪==⎨⎪⎪−∈−+⎩,,,,,. (2)因为()214xxf x =+在()01,上单调递减,从而由奇函数的对称性知()f x 在()10−,上单调递减. ∴当01x <<时,()1010224141f x ⎛⎫∈ ⎪++⎝⎭,,即()2152f x ⎛⎫∈ ⎪⎝⎭,;当10x −<<时,()010*******f x −−⎛⎫∈−− ⎪++⎝⎭,,必修第一册 6 / 6 即()1225f x ⎛⎫∈−− ⎪⎝⎭,. 而()00f =,故函数()f x 在()11−,上的值域为{}211205225⎛⎫⎛⎫−− ⎪ ⎪⎝⎭⎝⎭,,.。
2020-2021学年高中数学必修第一册第三章《函数的概念与性质》测试卷解析版一.选择题(共8小题)1.函数f(x)=√x−22的定义域为( ) A .(﹣1,2]B .[2,+∞)C .(﹣∞,﹣1)∪[1,+∞)D .(﹣∞,﹣1)∪[2,+∞) 解:函数f(x)=√x−22, 令x−2x 2+1≥0,得x ﹣2≥0,解得x ≥2,所以f (x )的定义域为[2,+∞).故选:B .2.函数y =f (x ﹣2)定义域是[0,4],则y =f (x +1)的定义域是( )A .[﹣3,1]B .[﹣2,2]C .[﹣1,3]D .[1,5]解:函数y =f (x ﹣2)定义域是[0,4],所以x ∈[0,4],所以x ﹣2∈[﹣2,2],所以y =f (x )的定义域是[﹣2,2];在函数y =f (x +1)中,令x +1∈[﹣2,2],解得x ∈[﹣3,1],所以y =f (x +1)的定义域是[﹣3,1].故选:A .3.∀x ∈R ,用函数M (x )表示函数f (x )=x ,g (x )=x 2中较大者,记为M (x )=max {f(x ),g (x )},则M (x )的值域为( )A .(1,+∞)B .(0,+∞)C .[1,+∞)D .[0,+∞)解:由题意可得,M (x )={x 2,x ≥1或x ≤0x ,0<x <1, 当x ≥1或x ≤0时,M (x )=x 2≥0,当0<x <1时,M (x )=x ∈(0,1),综上可得,M (x )的值域[0,+∞),故选:D .4.函数f (x )=2x +2﹣x 的值域为( )A .(﹣∞,﹣2]∪[2,+∞)B .[2,+∞)C .[0,+∞)D .(0,+∞) 解:∵x ∈R ,∴2x >0.∴函数f (x )=2x +2﹣x ≥2√2x ⋅2−x =2,当且仅当x =0时取等号. ∴函数f (x )=2x +2﹣x 的值域为[2,+∞).故选:B . 5.函数f (x )=3x+22x+1,x ∈[3,+∞)的值域是( )A .[117,+∞)B .[32,+∞)C .[117,2)D .(32,117] 解:f (x )=3x+22x+1=32(2x+1)+122x+1=32+14x+2,∵x ∈[3,+∞)∴f (x )为减函数∴当x =3时,f (x )=117,取得最大值;当x 接近+∞时,f (x )接近32, 所以f (x )的值域为(32,117]. 故选:D .6.若函数y =√ax −4ax+2的定义域为R ,则实数a 的取值范围是( ) A .(0,12] B .(0,12) C .[0,12] D .[0,12) 解:根据题意,ax 2﹣4ax +2>0的解集为R ,①a =0时,2>0恒成立,满足题意;②a ≠0时,{a >0△=16a 2−8a <0,解得0<a <12, 综上得,实数a 的取值范围是[0,12).故选:D .7.已知函数f (2x ﹣1)=4x +3(x ∈R ),若f (a )=15,则实数a 的值为( )A .2B .3C .4D .5 解:根据题意,函数f (2x ﹣1)=4x +3=2(2x ﹣1)+5,。
1高中数学必修一第三章测试题一、选择题:1.已知p >q >1,0<a <1,则下列各式中正确的是( )A .q p aa >B .a a qp >C .q pa a--> D .a a q p -->2、已知(10)xf x =,则(5)f = ( ) A 、510 B 、105 C 、lg10 D 、lg 5 3.函数x y a log =当x >2 时恒有y >1,则a 的取值范围是( )A .1221≠≤≤a a 且 B .02121≤<≤<a a 或 C .21≤<a D .2101≤<≥a a 或 4.北京市为成功举办2008年奥运会,决定从2003年到2007年五年间更新市内现有的全部出租车,若每年更新的车辆数比前一年递增10%,则2003年底更新现有总车辆数的(参考数据:1.14=1.46,1.15=1.61) ( ) A .10% B .16.4% C .16.8% D .20% 5. 设g (x )为R 上不恒等于0的奇函数,)(111)(x g b a x f x⎪⎭⎫⎝⎛+-=(a >0且a ≠1)为偶函数,则常数b 的值为( )A .2B .1C .21 D .与a 有关的值6.当a ≠0时,函数y ax b =+和y b ax=的图象只可能是( )7、设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则 ( ) A 、312y y y >> B 、213y y y >> C 、132y y y >> D 、123y y y >>8.设f (x )=a x ,g (x )=x 31,h (x )=log a x ,a 满足log a (1-a 2)>0,那么当x >1时必有 ( ) A .h (x )<g (x )<f (x ) B .h (x )<f (x )<g (x ) C .f(x )<g (x )<h (x ) D .f (x )<h (x )<g (x )9、某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是( )A 、减少7.84%B 、增加7.84%C 、减少9.5%D 、不增不减 10. 对于幂函数54)(x x f =,若210x x <<,则)2(21x x f +,2)()(21x f x f +大小关系是( ) A .)2(21x x f +>2)()(21x f x f + B . )2(21x x f +<2)()(21x f x f +2C . )2(21x x f +=2)()(21x f x f +D . 无法确定二、填空题11.已知函数f (x )的定义域是(1,2),则函数)2(xf 的定义域是 .12.我国2000年底的人口总数为M ,要实现到2010年底我国人口总数不超过N (其中M<N ),则人口的年平均自然增长率p 的最大值是 . 13.将函数xy 2=的图象向左平移一个单位,得到图象C 1,再将C 1向上平移一个单位得到图象C 2,作出C 2关于直线y =x 对称的图象C 3,则C 3的解析式为 .14.已知-1<a <0,则三个数331,,3a a a由小到大的顺序是 .15.942--=a ax y 是偶函数,且在),0(+∞是减函数,则整数a 的值是 .16.函数y=)124(log 221-+x x 的单调递增区间是 . 17.方程log 2(2x+1)log 2(2x +1+2)=2的解为 三、解答题:18、判断函数)()lg f x x =的奇偶性单调性。
高中数学必修一第三章测试题高中数学必修一第三章测试题一.选择题(共10小题)1.(2013•中山一模)函数f(x)=x2﹣bx+a的图象如图所示,则函数g(x)=lnx+f′(x)的零点所在的区间是(),,2.(2013•泸州一模)若函数f(x)唯一的一个零点同时在区间(0,16),(0,8),(0,4),(0,2)内,那么下列3.(2013•乐山二模)已知定义在R上的函数y=f(x)满足f(x+2)=f(x),当﹣1<x≤1时,f(x)=x3.若函数gD.4.(2013•滨州一模)定义在R上的奇函数f(x),当x≥0时,,则关于.D6.(2012•卢湾区二模)已知,,下列关于函数f(x)的命题:①函数y=f(x)是周期函数;②函数f(x)在[0,2]是减函数;③如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)﹣a有4个零点.其中真命题的个数是()8.(2012•荆州模拟)已知函数f(x)=2x+x,g(x)=x+log2x,h(x)=x3+x的零点依次为a,b,c,则a,b,c的9.(2012•江西模拟)某大学的信息中心A与大学各部门,各院系B、C、D、E、F、G、H、I之间拟建立信息联网工程,实际测算的费用如图所示(单位:万元),请观察图形,可以不建部分网线而使得信息中心与各部门、各院系都能联通(直接或中转),则最少的建网费用是()|x﹣1|二.填空题(共8小题)11.(2013•烟台一模)给出下列命题:①函数y=在区间[1,3]上是增函数;②函数f(x)=2x﹣x2的零点有3个;③函数y=sin x(x∈[﹣π,π])图象与x轴围成的图形的面积是S=;④若ξ~N(1,σ2),且P(0≤ξ≤1)=0.3,则P(ξ≥2)=0.2.其中真命题的序号是(请将所有正确命题的序号都填上):_________.12.(2013•奉贤区一模)已知函数若f(a)=,则a=_________.13.(2013•东城区模拟)设函数则函数g(x)=f(x)﹣log4x的零点个数为_________.14.(2012•南京一模)若方程lg|x|=﹣|x|+5在区间(k,k+1)(k∈Z)上有解,则所有满足条件的k的值的和为_________.15.(2012•黄浦区二模)已知函数f(x)=|x2﹣2ax+a|(x∈R),给出下列四个命题:①当且仅当a=0时,f(x)是偶函数;②函数f(x)一定存在零点;③函数在区间(﹣∞,a]上单调递减;④当0<a<1时,函数f(x)的最小值为a﹣a2.那么所有真命题的序号是_________.16.(2012•福建)对于实数a和b,定义运算“﹡”:a*b=设f(x)=(2x﹣1)﹡(x﹣1),且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则x1x2x3的取值范围是_________.17.(2012•东城区模拟)函数f(x)=ln(x+2)﹣的零点所在区间是(n,n+1),则正整数n=_________.18.(2011•闸北区二模)若函数f(x)=2|x﹣3|+log a x+1无零点,则a的取值范围为_________.三.解答题(共8小题)19.(2013•南开区二模)已知函数f(x)=alnx﹣bx2图象上一点P(2,f(2))处的切线方程为y=﹣3x+2ln2+2.(Ⅰ)求a,b的值;(Ⅱ)若方程f(x)+m=0在内有两个不等实根,求m的取值范围(其中e为自然对数的底数);(Ⅲ)令g(x)=f(x)﹣kx,若g(x)的图象与x轴交于A(x1,0),B(x2,0)(其中x1<x2),AB的中点为C (x0,0),求证:g(x)在x0处的导数g′(x0)≠0.20.(2013•潮州二模)设a>0,函数.(Ⅰ)证明:存在唯一实数,使f(x0)=x0;(Ⅱ)定义数列{x n}:x1=0,x n+1=f(x n),n∈N*.(i)求证:对任意正整数n都有x2n﹣1<x0<x2n;(ii)当a=2时,若,证明:对任意m∈N*都有:.21.(2012•密云县一模)已知函数f(x)=﹣+2ax2﹣3a2x+1,0<a<1.(Ⅰ)求函数f(x)的极大值;(Ⅱ)若x∈[1﹣a,1+a]时,恒有﹣a≤f′(x)≤a成立(其中f′(x)是函数f(x)的导函数),试确定实数a的取值范围.22.(2012•吉安二模)广东某民营企业主要从事美国的某品牌运动鞋的加工生产,按国际惯例以美元为结算货币,依据以往加工生产的数据统计分析,若加工产品订单的金额为X万美元,可获得的加工费近似地为ln(2x+1)万美元,受美联储货币政策的影响,美元€值,由于生产加工签约和成品交付要经历一段时间,收益将因美元赔值而损失mx万美元,其中m为该时段美元的贬值指数是m∈(0,1),从而实际所得的加工费为f(x)=ln(2x+1)﹣mx(万美元).(1)若某时期美元贬值指数m=,为确保企业实际所得加工费随X的增加而增加,该企业加工产品订单的金额X应在什么范围内?(2)若该企业加工产品订单的金额为X万美元时共需要的生产成本为x万美元,己知该企业加工生产能力为x∈[10,20](其中X为产品订单的金额),试问美元的贬值指数m在何范围时,该企业加工生产将不会出现亏损.23.(2012•湖南模拟)设函数,求证:(1);(2)函数f(x)在区间(0,2)内至少有一个零点;(3)设x1,x2是函数f(x)的两个零点,则.24.(2012•道里区二模)设函数,g(x)=2x2+4x+c.(1)试问函数f(x)能否在x=﹣1时取得极值?说明理由;(2)若a=﹣1,当x∈[﹣3,4]时,函数f(x)与g(x)的图象有两个公共点,求c的取值范围.25.(2011•浙江模拟)已知函数f(x)=x2﹣2lnx,h(x)=x2﹣x+a.(Ⅰ)求函数f(x)的极值;(Ⅱ)设函数k(x)=f(x)﹣h(x),若函数k(x)在[1,3]上恰有两个不同零点,求实数a的取值范围.26.(2011•闸北区二模)某分公司经销某种品牌产品,每件产品的成本为2元,并且每件产品需向总公司交a元(2≤a≤6)的管理费,预计当每件产品的销售价为x元(7≤x≤9)时,一年的销售量为(12﹣x)万件.(1)求该分公司一年的利润L(万元)与每件产品的售价x的函数关系式;(2)当每件产品的售价为多少元时,该分公司一年的利润L最大,并求L的最大值Q(a).高中数学必修一第三章测试题参考答案与试题解析一.选择题(共10小题)1.(2013•中山一模)函数f(x)=x2﹣bx+a的图象如图所示,则函数g(x)=lnx+f′(x)的零点所在的区间是(),,x=)+12.(2013•泸州一模)若函数f(x)唯一的一个零点同时在区间(0,16),(0,8),(0,4),(0,2)内,那么下列3.(2013•乐山二模)已知定义在R上的函数y=f(x)满足f(x+2)=f(x),当﹣1<x≤1时,f(x)=x3.若函数gD..故或4.(2013•滨州一模)定义在R上的奇函数f(x),当x≥0时,,则关于时,.D在(﹣6.(2012•卢湾区二模)已知,,1+f(x)的导函数y=f'(x)的图象如图所示.下列关于函数f(x)的命题:①函数y=f(x)是周期函数;②函数f(x)在[0,2]是减函数;③如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)﹣a有4个零点.其中真命题的个数是()8.(2012•荆州模拟)已知函数f(x)=2x+x,g(x)=x+log2x,h(x)=x3+x的零点依次为a,b,c,则a,b,c的9.(2012•江西模拟)某大学的信息中心A与大学各部门,各院系B、C、D、E、F、G、H、I之间拟建立信息联网工程,实际测算的费用如图所示(单位:万元),请观察图形,可以不建部分网线而使得信息中心与各部门、各院系都能联通(直接或中转),则最少的建网费用是()|x﹣1|二.填空题(共8小题)11.(2013•烟台一模)给出下列命题:①函数y=在区间[1,3]上是增函数;②函数f(x)=2x﹣x2的零点有3个;③函数y=sin x(x∈[﹣π,π])图象与x轴围成的图形的面积是S=;④若ξ~N(1,σ2),且P(0≤ξ≤1)=0.3,则P(ξ≥2)=0.2.其中真命题的序号是(请将所有正确命题的序号都填上):②④.解:①由于,令的解的个数,也是函数=0.2 12.(2013•奉贤区一模)已知函数若f(a)=,则a=﹣1或.=或或13.(2013•东城区模拟)设函数则函数g(x)=f(x)﹣log4x的零点个数为3个.14.(2012•南京一模)若方程lg|x|=﹣|x|+5在区间(k,k+1)(k∈Z)上有解,则所有满足条件的k的值的和为﹣1.15.(2012•黄浦区二模)已知函数f(x)=|x2﹣2ax+a|(x∈R),给出下列四个命题:①当且仅当a=0时,f(x)是偶函数;②函数f(x)一定存在零点;③函数在区间(﹣∞,a]上单调递减;④当0<a<1时,函数f(x)的最小值为a﹣a2.那么所有真命题的序号是①④.16.(2012•福建)对于实数a和b,定义运算“﹡”:a*b=设f(x)=(2x﹣1)﹡(x﹣1),且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则x1x2x3的取值范围是.=)轴的左边,得到,,),y=,(故答案为:17.(2012•东城区模拟)函数f(x)=ln(x+2)﹣的零点所在区间是(n,n+1),则正整数n=1.)﹣+在定义域内恒大于18.(2011•闸北区二模)若函数f(x)=2|x﹣3|+log a x+1无零点,则a的取值范围为.a故答案为三.解答题(共8小题)19.(2013•南开区二模)已知函数f(x)=alnx﹣bx2图象上一点P(2,f(2))处的切线方程为y=﹣3x+2ln2+2.(Ⅰ)求a,b的值;(Ⅱ)若方程f(x)+m=0在内有两个不等实根,求m的取值范围(其中e为自然对数的底数);(Ⅲ)令g(x)=f(x)﹣kx,若g(x)的图象与x轴交于A(x1,0),B(x2,0)(其中x1<x2),AB的中点为C (x0,0),求证:g(x)在x0处的导数g′(x0)≠0.,的单调性,结合单调性及在﹣在.①﹣②,得.,.⑤,20.(2013•潮州二模)设a>0,函数.(Ⅰ)证明:存在唯一实数,使f(x0)=x0;(Ⅱ)定义数列{x n}:x1=0,x n+1=f(x n),n∈N *.(i)求证:对任意正整数n都有x2n﹣1<x0<x2n;(ii)当a=2时,若,证明:对任意m∈N*都有:.,.在区间即存在唯一实数使,,由①知,即,注意到,时,∵,分)=21.(2012•密云县一模)已知函数f(x)=﹣+2ax2﹣3a2x+1,0<a<1.(Ⅰ)求函数f(x)的极大值;(Ⅱ)若x∈[1﹣a,1+a]时,恒有﹣a≤f′(x)≤a成立(其中f′(x)是函数f(x)的导函数),试确定实数a的取值范围.时,即,∴∴.时,即,,∴..的取值范围为22.(2012•吉安二模)广东某民营企业主要从事美国的某品牌运动鞋的加工生产,按国际惯例以美元为结算货币,依据以往加工生产的数据统计分析,若加工产品订单的金额为X万美元,可获得的加工费近似地为ln(2x+1)万美元,受美联储货币政策的影响,美元€值,由于生产加工签约和成品交付要经历一段时间,收益将因美元赔值而损失mx万美元,其中m为该时段美元的贬值指数是m∈(0,1),从而实际所得的加工费为f(x)=ln(2x+1)﹣mx(万美元).(1)若某时期美元贬值指数m=,为确保企业实际所得加工费随X的增加而增加,该企业加工产品订单的金额X应在什么范围内?(2)若该企业加工产品订单的金额为X万美元时共需要的生产成本为x万美元,己知该企业加工生产能力为x∈[10,20](其中X为产品订单的金额),试问美元的贬值指数m在何范围时,该企业加工生产将不会出现亏损.m==)﹣,对ln x,令,;即得美元的贬值指数,=)﹣,﹣=;时,都有ln,即+m=;)=≤;23.(2012•湖南模拟)设函数,求证:(1);(2)函数f(x)在区间(0,2)内至少有一个零点;(3)设x1,x2是函数f(x)的两个零点,则.系,得出)∵∴∴∴…24.(2012•道里区二模)设函数,g(x)=2x2+4x+c.(1)试问函数f(x)能否在x=﹣1时取得极值?说明理由;(2)若a=﹣1,当x∈[﹣3,4]时,函数f(x)与g(x)的图象有两个公共点,求c的取值范围.,则有x xx;当,而25.(2011•浙江模拟)已知函数f(x)=x2﹣2lnx,h(x)=x2﹣x+a.(Ⅰ)求函数f(x)的极值;(Ⅱ)设函数k(x)=f(x)﹣h(x),若函数k(x)在[1,3]上恰有两个不同零点,求实数a的取值范围.,最后解之即可.26.(2011•闸北区二模)某分公司经销某种品牌产品,每件产品的成本为2元,并且每件产品需向总公司交a元(2≤a≤6)的管理费,预计当每件产品的销售价为x元(7≤x≤9)时,一年的销售量为(12﹣x)万件.(1)求该分公司一年的利润L(万元)与每件产品的售价x的函数关系式;(2)当每件产品的售价为多少元时,该分公司一年的利润L最大,并求L的最大值Q(a).便可求出当时,此时,所以,当的最大值时,此时,元时,最大值。