八年级第一学期期中考数学科试题
- 格式:doc
- 大小:70.50 KB
- 文档页数:3
人教版八年级上册数学期中考试试题一、单选题1.下列图形中,其中不是轴对称图形的是()A .B .C .D .2.若正多边形的一个外角是60°,则该正多边形的边数是()A .4B .5C .6D .73.如图,△ABC 中BC 边上的高是()A .BDB .AEC .BED .CF4.若△ABC ≌△DEF ,AB =2,AC =4,且△DEF 的周长为奇数,则EF 的值为()A .3B .4C .3或5D .3或4或55.如图,在△ABC 中,点D 为BC 边上一点,连接AD ,取AD 的中点P ,连接BP ,CP .若△ABC 的面积为4cm 2,则△BPC 的面积为()A .4cm 2B .3cm 2C .2cm 2D .1cm 26.如图,在ABC 中,D 、E 分别为AB 、AC 边上的点,DA DE =,DB BE EC ==.若130ABC ∠=︒,则C ∠的度数为()A .20︒B .22.5︒C .25︒D .30°7.如图,将一副含30°,45°的直角三角板如图摆放,则∠1+∠2等于()A.200°B.210°C.180°D.225°8.如图,在△ABD与△ACD中,已知∠CAD=∠BAD,在不添加任何辅助线的前提下,依据“ASA”证明△ABD≌△ACD,需再添加一个条件,正确的是()A.∠B=∠C B.∠BDE=∠CDE C.AB=AC D.BD=CD9.在△ABC中,∠A=40°,∠B=60°,则∠C=()A.40°B.80°C.60°D.100°10.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC二、填空题11.若三角形三个内角度数的比为2:3:4,则此三角形是______三角形(填锐角、直角或钝角).12.已知ABC∆是等腰三角形,若它的周长为18,一条边的长为4,则它的腰长为__________.13.若△ABC的边AB、BC的长是方程组93x yx y+=⎧⎨-=⎩的解,设边AC的长为m,则m的取值范围是_____.14.如图,在△ABC 中,∠ACB =90º,∠ABC =60º,CD ⊥AB ,垂足为D ,若BD =1,则AD 的长为___________.15.如图,△ABC ≌△ADE ,且点E 在BC 上,若∠DAB =30°,则∠CED =_____.16.如图,ABC 为等边三角形,以边AC 为腰作等腰ACD △,使AC CD =,连接BD ,若32ABD ∠=︒,则CAD ∠=__________°.三、解答题17.如图,已知CD 为ACB ∠的平分线,AM CD ⊥于,46,8M B BAM ∠=︒∠=︒,求ACB ∠的度数.18.如图,∠C =∠E ,AC =AE ,点D 在BC 边上,∠1=∠2,AC 和DE 相交于点O .求证:△ABC ≌△ADE .19.如图,已知△ABC.(1)用直尺和圆规,作出边AC的垂直平分线,交AC于点E,BC于点D,(不写作法,保留作图痕迹)(2)在(1)的基础上,连接AD,若AE=5,△ABD的周长为20,则△ABC的周长是_______.20.已知a、b、c是三角形的三边长,①化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|;②若a+b=11,b+c=9,a+c=10,求这个三角形的各边.21.如图,在△ABC中,∠ACB=90°,D是AC上的一点,且AD=BC,DE⊥AC于D,AB=AE.求证:(1)AE⊥AB;(2)CD=DE﹣BC.22.如图,在△ABC中,∠ABC=45°,CD⊥AB于点D,AC的垂直平分线BE与CD交于点F,与AC交于点E.(1)判断△DBC的形状并证明你的结论.(2)求证:BF=AC.(3)试说明CE=12 BF.23.如图,在△ABC中,AB=AC,∠BAC=90°,点D、E分别在AB、BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.(1)求证:DE=EF.(2)判断BD和CF的数量关系,并说明理由.24.如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作△BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).25.如图1,在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,4),A(4,4),过C点作∠ECF分别交线段AB、OB于E、F两点.(1)若OF+BE=AB,求证:CF=CE.(2)如图2,∠ECF=45°,S△ECF=6,求S△BEF的值.参考答案1.A【解析】根据轴对称图形的定义:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,就可得到答案。
八年级数学上学期期中考试试卷及答案一、选择题(每题5分,共25分)1. 已知实数 $a$,$b$ 满足 $a^2 + b^2 = 6$,则下列选项中正确的是:A. $a^2 + b^2 \geq 6$B. $a^2 + b^2 \leq 6$C. $a^2 + b^2 = 6$D. $a^2 + b^2 \in [4,8]$2. 已知函数 $f(x) = x^3 - 3x$,则 $f'(x)$ 是:A. $f'(x) = 3x^2 - 3$B. $f'(x) = 3x^2$C. $f'(x) = 3x$D. $f'(x) = 1$3. 下列等式正确的是:A. $\sqrt[3]{27} = 3$B. $\sqrt{9} = 3$C. $\sqrt[4]{64} = 4$D. $\sqrt{2} \times \sqrt{2} = 2$4. 若 $a$,$b$ 是方程 $x^2 - 4x + 3 = 0$ 的根,则 $a + b$ 的值为:A. $1$B. $2$C. $3$D. $4$5. 已知等差数列的前三项分别为 $a-2$,$a$,$a+2$,则该数列的通项公式为:A. $a_n = 3n-4$B. $a_n = 2n-3$C. $a_n = n^2-3n+2$D. $a_n = 3n^2-4n+2$二、填空题(每题5分,共25分)1. 若 $a$,$b$ 是方程 $x^2 - 2ax + a^2 = 0$ 的根,则 $a^2 +b^2 = ______.$2. 函数 $f(x) = 2x^3 - 6x + 1$ 的导数 $f'(x)$ 在 $x = 1$ 处的值为______.3. 若等差数列的前三项分别为 $2$,$5$,$8$,则该数列的通项公式为 ______.4. 下列等式中正确的是 ______: $\sqrt{36} = 6$,$\sqrt[3]{27} = 3$,$\sqrt{9} = 3$,$\sqrt[4]{64} = 4$.5. 若复数 $z$ 满足 $|z| = 2$,且 $z$ 在复平面内对应的点位于第二象限,则 $z$ 可能的值为 ______.三、解答题(每题10分,共30分)1. 解方程:$2x^2 - 5x + 2 = 0$2. 已知函数 $f(x) = x^3 - 3x$,求 $f'(x)$ 的值。
八年级数学试卷上学期期中考试(全卷满分100分,考试时间120分钟)一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,共24分) 1、下列图案是轴对称图形的有( )。
A 、1个 B 、2个 C 、3个 D 、4个2、等腰三角形中,已知两边的长分别是9和4,则周长为( ) A 、22 B 、17 C 、17或22 D 、无法确定3、在下列各数:3.1415926、 10049、0.2、 1、7、11131、327、中,无理数的个数有 ( )A 、2B 、3C 、4D 、54、等腰三角形一腰上的高与另一腰的夹角为30,则顶角的度数为( )A.60 B.120 C.60150或 D.60或1205、16的平方根是( )A.2 B.±2 C.4 D.±4.6. 如图的△BDC ′是将矩形纸片ABCD 沿对角线BD 折叠得到的,图中(包括实线,虚线在内)共有全等三角形( ) A .2对 B .3对 C .4对 D .5对6.如图, ∠AOB 和一条定长线段A ,在∠AOB 内找一点P ,使P 到OA 、OB 的距离都等于A ,做法如下:(1)作OB 的垂线NH , 使NH =A ,H 为垂足.(2)过N 作NM ∥OB .(3)作∠AOB 的平 分线OP ,与NM 交于P .(4)点P 即为所求. 其中(3)的依据是( ) A .平行线之间的距离处处相等B .到角的两边距离相等的点在角的平分线上C .角的平分线上的点到角的两边的距离相等D .到线段的两个端点距离相等的点在线段的垂直平分线上 7. 如图,△ABC 的三边AB 、BC 、CA 长分别是20、30、40,其三条A CB D 角平分线将△ABC 分为三个三角形,则S △ABO ︰S △BCO ︰S △CAO 等于( ) A .1︰1︰1 B .1︰2︰3 C .2︰3︰4D .3︰4︰5 8.如图,从下列四个条件:①BC =B ′C , ②AC =A ′C ,③∠A ′CB =∠B ′CB ,④AB =A ′B ′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是(A .1个B .2个C .3个D .4个二、填空题(每小题4,共24分)9、如图,1-3,等腰△ABC 中,AB=AC,AD 则AD= ——————10、若(a-1)²+︱b-9︱=0,则ab的算术平方根为 . 11、已知直角三角形中30°角所对的直角边为2㎝,则斜边的长为 ———— 12、如图(1-4),要测量河两岸相对的两点A ,B 的距离,在AB 的垂线BF 上取两点C ,D ,使BC =CD ,再定出BF 的垂线DE ,使A ,C ,E 在一条直线上,这时测得DE =16米,则AB = 米。
2021-2022学年河北省保定师范附校八年级(上)期中数学试卷一、选择题(本大题共16个小题;1至10小题每小题3分;11至16小题每小题3分,共42分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数中,属于无理数的是()A.﹣2B.C.D.0.1010010002.(3分)如图是一个直角三角形,它的未知边的长x等于()A.13B.C.5D.3.(3分)下列各数中,没有平方根是()A.(﹣2)2B.0C.﹣(﹣2)D.﹣224.(3分)在第四象限内的点P到x轴、y轴的距离分别是1和4,则点P的坐标为()A.(1,4)B.(4,﹣1)C.(﹣4,1)D.(4,1)5.(3分)在下列各式中正确的是()A.=﹣2B.=3C.=8D.=2 6.(3分)如图,P是第一象限角平分线上一点,OP=2,则P点的坐标是()A.(2,2)B.()C.(2,)D.(,2)7.(3分)函数y=2x+1的图象过点()A.(﹣1,1)B.(﹣1,2)C.(0,1)D.(1,1)8.(3分)关于的叙述正确的是()A.在数轴上不存在表示的点B.=+C.=±2D.与最接近的整数是39.(3分)如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(﹣3,﹣2)B.(3,﹣2)C.(﹣2,﹣3)D.(2,﹣3)10.(3分)“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形,如图,其直角三角形的两条直角边的长分别是2和4,则小正方形与大正方形的面积比是()A.1:2B.1:4C.1:5D.1:1011.(2分)如图①,在由边长为1个单位长度的小正方形组成的网格中,点A、B都在格点上,则线段AB的长度在数轴(数轴不完整)上对应的点应落在如图②标注的()A.段①B.段②C.段③D.段④12.(2分)如x为实数,在“(﹣1)□x”的“□”中添上一种运算符号(在“+”、“﹣”、“×”、“÷”中选择),其运算结果是有理数,则x不可能是()A.﹣1B.+1C.3D.1﹣13.(2分)两个一次函数y=ax+b和y=bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.14.(2分)已知max表示取三个数中最大的那个数,例如:当x=9时,max=81.当max时,则x 的值为()A.B.C.D.15.(2分)如图,A(1,0),B(3,0),M(4,3),动点P从点A出发,以每秒1个单位长的速度向右移动,且经过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒,若直线l与线段BM有公共点,则t的取值范围为()A.2≤t≤6B.2≤t≤7C.3≤t≤6D.3≤t≤7 16.(2分)如图,在矩形ABCD中,AB=3,BC=4,在矩形内部有一动点P满足S△P AB=3S△PCD,则动点P到点A,B两点距离之和PA+PB的最小值为()A.5B.C.3+3D.2二、填空题(本大题共3个小题;17至18小题每小题3分;19小题4分每空2分。
人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列图形中,是轴对称图形的是()A.B.C.D.2.已知等腰三角形的两边长分别为6和1,则这个等腰三角形的周长为()A.13B.8C.10D.8或133.若一个多边形的内角和为720°,则这个多边形是()A.三角形B.四边形C.五边形D.六边形4.如图,用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,它所用到的识别方法是()A.SAS B.SSS C.ASA D.AAS5.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.50°B.60°C.85°D.80°6.如图,∠A=50°,P是等腰△ABC内一点,AB=AC,BP平分∠ABC,CP平分∠ACB,则∠BPC的度数为()A.100°B.115°C.130°D.140°7.如图,△ABC≌△DEF,若BC=12cm,BF=16cm,则下列判断错误的是()A.AB=DE B.BE=CF C.AB//DE D.EC=4cm8.如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BD=5,则DE的长为()A.3B.4C.5D.69.如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等的三角形共有( )A.四对B.三对C.二对D.一对10.如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM//BC交∠ABC的外角平分线于M,交AB、AC于F、E,下列结论:①MB⊥BD;②FD=FB;③MD=2CE,其中一定正确的有()A.0个B.1个C.2个D.3个二、填空题11.已知△ABC中,AB=6,BC=4,那么边AC的长可以是(填一个满足题意的即可). 12.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是_____________.13.点M与点N(-2,-3)关于y轴对称,则点M的坐标为.14.如图,D是AB边上的中点,将△ABC沿过点D的直线折叠,DE为折痕,使点A 落在BC上F处,若∠B=40°,则∠EDF=_____度.15.已知△ABC中,∠A=12∠B=13∠C,则△ABC是_____三角形.16.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,点D是BC边上的点,AB=18,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则BP+EP的最小值是____.三、解答题17.如图,A、F、B、D在一条直线上,AF=DB,BC=EF,AC=DE.求证:∠A=∠D.18.一个多边形,它的内角和比外角和还多180°,求这个多边形的边数.19.如图,已知△ABC,∠C=90°,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹).(2)连接AD,若∠B=35°,则∠CAD=°.20.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于原点O对称的△A1B1C1,并写出点C1的坐标;(2)求△ABC的面积.21.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.22.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.(1)求证:AD平分∠BAC;(2)连接EF ,求证:AD 垂直平分EF .23.如图,AD 为△ABC 的中线,BE 为△ABD 的中线.(1)∠ABE=15°,∠BED=55°,求∠BAD 的度数;(2)作△BED 的边BD 边上的高;(3)若△ABC 的面积为20,BD=2.5,求△BDE 中BD 边上的高.24.如图,在△ABC 中,∠BAC=120°,AB=AC=4,AD ⊥BC ,AD 到E ,使AE=2AD ,连接BE .(1)求证:△ABE 为等边三角形;(2)将一块含60°角的直角三角板PMN 如图放置,其中点P 与点E 重合,且∠NEM=60°,边NE 与AB 交于点G ,边ME 与AC 交于点F .求证:BG=AF ;(3)在(2)的条件下,求四边形AGEF 的面积.25.已知,如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,垂足分别是M 、N .试说明:PM PN =.参考答案1.B【详解】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.A【分析】分1是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【详解】①1是腰长时,三角形的三边分别为1、1、6,不能组成三角形,②1是底边时,三角形的三边分别为6、6、1,能组成三角形,周长=6+6+1=13,综上所述,三角形的周长为13.故选A.【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.3.D【分析】利用n边形的内角和可以表示成(n-2)•180°,结合方程即可求出答案.【详解】设这个多边形的边数为n,由题意,得(n-2)180°=720°,解得:n=6,则这个多边形是六边形.故选D.【点睛】本题主要考查多边形的内角和公式,比较容易,熟记n边形的内角和为(n-2)•180°是解题的关键.4.B【分析】根据作图的过程知道:OA=OB,OC=OC,AC=CB,所以由全等三角形的判定定理SSS可以证得△OAC≌△OBC.【详解】连接AC、BC,根据作图方法可得:OA=OB,AC=CB,在△OAC和△OBC中,OA OB OC OC AC CB =⎧⎪=⎨⎪=⎩,∴△OAC ≌△OBC (SSS ).故选:B .【点睛】本题考查了作图-基本作图及全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .5.C【分析】根据三角形角平分线的性质求出∠ACD ,根据三角形外角性质求出∠A 即可.【详解】∵CE 是△ABC 的外角∠ACD 的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A ,∴∠A=∠ACD-∠B=120°-35°=85°,故选C .【点睛】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.6.B【分析】根据等腰三角形两底角相等求出∠ACB ,然后求出∠PCB+∠PBC=∠ACB ,再根据三角形的内角和定理列式计算即可得解.【详解】∵∠A=50°,△ABC 是等腰三角形,∴∠ACB=12(180°-∠A )=12(180°-50)=65°,∵∠PBC=∠PCA ,∴∠PCB+∠PBC=∠PCB+∠PCA=∠ACB=65°,∴∠BPC=180°-(∠PCB+∠PBC )=180°-65°=115°.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,准确识图并求出∠PCB+∠PBC是解题的关键.7.D【分析】根据全等三角形的性质得出AB=DE,BC=EF,∠ACB=∠F,求出AC∥DF,BE=CF,即可判断各个选项.【详解】∵△ABC≌△DEF,∴AB=DE,BC=EF,∠ACB=∠F,∴AC∥DF,BC-EC=EF-EC,∴BE=CF,∵BC=12cm,BF=16cm,∴CF=BE=4cm,∴EC=12cm-4cm=8cm,即只有选项D错误;故选D.【点睛】本题考查了全等三角形的性质,平行线的判定的应用,能正确运用性质进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.8.B【分析】先根据角平分线的性质,得出DE=DC,再根据BC=9,BD=5,得出DC=9-5=4,即可得到DE=4.【详解】∵∠C=90°,AD平分∠BAC,DE⊥AB于E,∴DE=DC,∵BC=9,BD=5,∴DC=9-5=4,故选B.【点睛】本题主要考查了角平分线的性质的运用,解题时注意:角的平分线上的点到角的两边的距离相等.9.B【分析】找出全等的三角形即可得出选项.【详解】1、因为AB=AC,AD=AE,∠A=∠A,所以△ABE≌△ACD;2、因为BD=AB-AD,CE=AC-AE,所以BD=CE,又因为AB=AC,BC=BC,所以∠B=∠C,所以△BCD≌△CBE;3、当△ABE≌△ACD时,∠ABE=∠ACD,∠OBC=∠OCB,所以OB=OC,又因为BD=CE,所以△OBD≌△OCE,所以答案选择B项.【点睛】本题考查了全等的证明,熟悉掌握SAS,SSS,ASA是解决本题的关键.10.D【分析】如图,由BD分别是∠ABC及其外角的平分线,得到∠MBD=12×180°=90°,故①成立;证明BF=CE、BF=DF,得到FD=FB,故②成立;证明BF为直角△BDM的斜边上的中线,故③成立.【详解】如图,∵BD分别是∠ABC及其外角的平分线,∴∠MBD=12×180°=90°,故MB⊥BD,①成立;∵DF∥BC,∴∠FDB=∠DBC;∵∠FBD=∠DBC,∴∠FBD=∠FDB,∴FD=BF,②成立;∵∠DBM=90°,MF=DF,∴BF=12DM,而CE=BF,∴CE=12DM,即MD=2CE,故③成立.故选D.【点睛】该题主要考查了等腰三角形的判定及其性质、直角三角形的性质等几何知识点及其应用问题;应牢固掌握等腰三角形的判定及其性质、直角三角形的性质11.3,4,···(2到10之间的任意一个数)【解析】【分析】直接利用三角形三边关系得出AC的取值范围,进而得出答案.【详解】根据三角形的三边关系可得:AB-BC<AC<AB+BC,∵AB=6,BC=4,∴6-4<AC<6+4,即2<AC<10,∴AC的长可以是3,4,•••(2到10之间的任意一个数).故答案为3,4,•••(2到10之间的任意一个数).【点睛】此题主要考查了三角形三边关系,正确得出AC的取值范围是解题关键.12.60°【分析】连接BE,则BE的长度即为PE与PC和的最小值.再利用等边三角形的性质可得∠PBC=∠PCB=30°,即可解决问题.【详解】如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵△ABC是等边三角形,∴∠BCE=60°,∵BA=BC,AE=EC,∴BE⊥AC,∴∠BEC=90°,∴∠EBC=30°,∵PB=PC,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°.【点睛】本题考查等边三角形的性质和动点问题,解题的关键是知道当三点共线时PE+PC最小. 13.(2,-3).【分析】根据平面直角坐标系中任意一点P(x,y),关于y轴对称的点的坐标为(-x,y),将M的坐标代入从而得出答案.【详解】根据关于x轴、y轴对称的点的坐标的特点,∴点N(-2,-3)关于y轴对称的点的坐标是(2,-3).故答案为(2,-3).【点睛】本题主要考查了平面直角坐标系中关于y轴对称的点的坐标的特点,注意掌握任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴对称的点的坐标为(-x,y),比较简单.14.40【分析】先根据图形翻折不变的性质可得AD=DF,根据等边对等角的性质可得∠B=∠BFD,再根据三角形的内角和定理列式计算可得∠BDF的解,再根据平角的定义和折叠的性质即可求解.【详解】∵△DEF是△DEA沿直线DE翻折变换而来,∴AD=DF,∵D是AB边的中点,∴AD=BD,∴BD=DF,∴∠B=∠BFD,∵∠B=50°,∴∠BDF=180°-∠B-∠BFD=180°-40°-40°=100°,∴∠EDF=(180°-∠BDF)÷2=40°.故答案为40.【点睛】本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.15.直角【分析】设∠A=x°,则∠B=2x°,∠C=3x°,利用三角形内角和为180°求的x,进而求出∠C为90°,即可得出答案.【详解】设∠A=x°,则∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180°∴x°+2x°+3x°=180°∴x°=30°∴∠C=3x°=90°∴△ABC是直角三角形故答案为直角【点睛】本题考查三角形内角和定理的运用以及三角形形状的判定,熟练掌握三角形内角和定理是解题关键.16.9【分析】根据翻折变换的性质可得点C、E关于AD对称,再根据轴对称确定最短路线问题,BC与AD的交点D即为使PB+PE的最小值的点P的位置,然后根据直角三角形两锐角互余求出∠BAC=60°,再求出∠CAD=30°,然后解直角三角形求解即可.【详解】∵将△ACD沿直线AD翻折,点C落在AB边上的点E处,∴点C、E关于AD对称,∴点D即为使PB+PE的最小值的点P的位置,PB+PE=BC,∵∠C=90°,∠BAC=30°,∴BC=12 AB,∴BC=9.∴PB+PE的最小值为9.故答案为9.【点睛】本题考查了轴对称确定最短路线问题,翻折变换的性质,解直角三角形,难点在于判断出PB+PE取得最小值时点P与点D重合.17.详见解析.【分析】已知AF=DB,则AF+FB=DB+FB,可得AB=DF,结合已知AC=DE,BC=FE可证明△ABC≌△DFE,利用全等三角形的性质证明结论.【详解】证明:∵AF=DB,∴AF+FB=DB+FB ,即AB=DF在△ABC 和△DFE 中,AC DE BC FE AB DF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS ),∴∠A=∠D【点睛】本题考查了全等三角形的判定与性质.关键是由已知边相等,结合公共线段求对应边相等,证明全等三角形.18.多边形的边数为5【解析】【分析】根据多边形的外角和均为360°,已知该多边形的内角和比外角和还多180°,可以得出内角和为540°,再根据计算多边形内角和的公式(n-2)×180°,即可得出该多边形的边数.【详解】设多边形的边数为n ,则(n-2)×180°=360°+180°解得n=5答:多边形的边数为5【点睛】本题主要考查多边形的内角和和多边形的外角和.19.(1)详见解析;(2)20°.【解析】【分析】(1)线段垂直平分线的尺规作图;(2)通过线段垂直平分线的性质易得AD=BD ,从而∠BAD=∠B ,再求解即可.【详解】(1)如图,点D 即为所求.(2)在Rt△ABC中,∠B=35°,∴∠CAB=55°,又∵AD=BD,∴∠BAD=∠B=35°,∴∠CAD=∠CAB-∠DAB=55°-35°=20°.【点睛】本题主要考查了尺规作图,线段垂直平分线的作法;线段垂直平分线的性质. 20.(1)(-3,2);(2)2.5【解析】试题分析:(1)根据关于与原点对称的点横、纵坐标均为相反数求解即可;(2)△ABC的面积等于矩形的面积减去三个三角形的面积.(1)如图,C1坐标为(-3,2);(2)11123212131222 ABCS=⨯-⨯⨯-⨯⨯-⨯⨯3611 2.52=---=. 21.BE=0.8cm先证明△ACD ≌△CBE ,再求出EC 的长,解决问题.【详解】解:∵BE ⊥CE 于E ,AD ⊥CE 于D∴∠E =∠ADC =90°∵∠BCE +∠ACE =∠DAC +∠ACE =90°∴∠BCE =∠DAC∵AC =BC∴△ACD ≌△CBE∴CE =AD ,BE =CD =2.5﹣1.7=0.8(cm ).【点睛】本题考查全等三角形的性质和判定,准确找到全等条件是解题的关键.22.见解析【解析】【分析】(1)由于D 是BC 的中点,那么BD =CD ,而BE =CF ,DE ⊥AB ,DF ⊥AC ,利用HL 易证Rt Rt BDE CDF ≌,,可得DE =DF ,利用角平分线的判定定理可知点点D 在∠BAC 的平分线上,即AD 平分∠BAC ;(2)根据全等三角形的性质即可得到结论.【详解】(1)∵D 是BC 的中点∴BD =CD ,又∵BE =CF ,DE ⊥AB ,DF ⊥AC ,Rt Rt BDE CDF ≌,∴DE =DF ,∴点D 在∠BAC 的平分线上,∴AD 平分∠BAC ;(2)Rt Rt BDE CDF ≌,∴∠B =∠C ,∴AB =AC ,∴AB−BE=AC−CF,∴AE=AF,∵DE=DF,∴AD垂直平分EF.【点睛】本题考查了角平分线的性质定理:角的内部到角的两边距离相等的点在角平分线上. 23.(1)∠BAD=40°;(2)详见解析;(3)BD=2.5.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;(2)根据高线的定义,过点E作BD的垂线即可得解;(3)根据三角形的中线把三角形分成的两个三角形面积相等,先求出△BDE的面积,再根据三角形的面积公式计算即可.【详解】(1)在△ABE中,∵∠ABE=15°,∠BAD=40°,∴∠BED=∠ABE+∠BAD=15°+40°=55°;(2)如图,EF为BD边上的高;(3)∵AD为△ABC的中线,BE为△ABD的中线,∴S△ABD =12S△ABC,S△BDE=12S△ABD,S△BDE=14S△ABC,∵△ABC的面积为20,BD=2.5,∴S△BDE =12BD•EF=12×5•EF=14×20,解得EF=2.【点睛】本题考查了三角形的外角性质,三角形的面积,利用三角形的中线把三角形分成两个面积相等的三角形是解题的关键.24.(1)见解析;(2)见解析;(3)【解析】【分析】(1)先证明9030ABD BAE ∠=-∠= ,,可知AB =2AD ,因为AE =2AD ,所以AB =AE ,从而可知△ABE 是等边三角形.(2)由(1)可知:60ABE AEB ∠=∠= ,AE =BE ,然后求证BEG AEF ≌,即可得出BG =AF ;(3)由于S 四边形AGEF AEG AEF AEG BEG ABE S S S S S =+=+= 故只需求出△ABE 的面积即可.【详解】(1)AB =AC ,AD ⊥BC ,160,902BAE CAE BAC ADB ∴∠=∠=∠=∠= ,9030ABD BAE ∴∠=-∠= ,∴AB =2AD ,∵AE =2AD ,∴AB =AE ,60BAE ∠= ,∴△ABE 是等边三角形.(2)∵△ABE 是等边三角形,60ABE AEB ∴∠=∠= ,AE =BE ,由(1)60,CAE ∠= ∴∠ABE =∠CAE ,60NEM BEA ∠=∠= ,∴∠NEM −∠AEN =∠BEA −∠AEN ,∴∠AEF =∠BEG ,在△BEG 与△AEF 中,,GBE FAE BE AE BEG AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA).BEG AEF ∴ ≌∴BG =AF ;(3)由(2)可知:BEG AEF ≌,S BEG S AEF ∴= ,∴S 四边形AGEF AEG AEF AEG BEG ABES S S S S =+=+= ∵△ABE 是等边三角形,∴AE =AB =4,11422ABE S AE BD ∴=⋅=⨯⨯= ∴S四边形AGEF =25.见详解【分析】根据角平分线的定义可得∠ABD=∠CBD ,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB ,然后根据角平分线上的点到角的两边的距离相等证明即可.【详解】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD ,在△ABD 和△CBD 中,AB BC ABD CBD BD BD ⎪∠⎪⎩∠⎧⎨===∴△ABD ≌△CBD (SAS ),∴∠ADB=∠CDB ,∵点P 在BD 上,PM ⊥AD ,PN ⊥CD ,∴PM=PN .【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB 是解题的关键.。
八年级上册数学期中测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x + 3 = 7的解?A. x = 1B. x = 2C. x = 3D. x = 4答案:B2. 如果一个数的平方等于9,那么这个数可能是:A. 3B. -3C. 3或-3D. 以上都不对答案:C3. 一个数的绝对值是其本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或零D. 以上都不对答案:C4. 一个数的立方等于-8,那么这个数是:A. 2C. 8D. -8答案:B5. 下列哪个选项是不等式3x - 5 > 7的解集?A. x > 4B. x < 4C. x > 2D. x < 2答案:A6. 计算 (-2)^3 的结果是:A. -8B. 8C. -6D. 6答案:A7. 一个角是90°,那么它的补角是:A. 90°B. 180°C. 270°D. 360°答案:B8. 一个数的倒数是1/2,那么这个数是:B. 1/2C. 1D. 0答案:A9. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 4D. -4答案:A10. 一个数的立方根是2,那么这个数是:A. 8B. -8C. 2D. -2答案:A二、填空题(每题4分,共20分)1. 一个数的平方等于16,这个数是______。
答案:±42. 如果一个角的补角是120°,那么这个角是______。
答案:60°3. 一个数的绝对值是5,这个数可以是______。
答案:±54. 一个数的立方等于27,这个数是______。
答案:35. 一个数的倒数是1/3,那么这个数是______。
答案:3三、解答题(每题10分,共50分)1. 解方程:3x - 7 = 8。
答案:x = 52. 已知一个角是45°,求它的补角。
2023~2024学年第一学期八年级期中教学质量检测数学试题(2023.11)考试时间120分钟满分150分第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在平面直角坐标系中,点在()A.第一象限B.第二象限C.第三象限D.第四象限2.下列各式中,是最简二次根式的是()ABCD3.下列关于的函数是一次函数的是()A.B.C.D.4.是下面哪个二元一次方程的解()A.B.C.D.5.下列计算正确的是()ABCD6.一次函数的图象过点,且随的增大而减小,则的值为()A.B.或2C.1D.27.将第一象限的“小旗”各点的横坐标保持不变,纵坐标分别乘以,符合上述要求的图形是()A.B.C.D.8.某校规定学生体测成绩由三部分组成:长跑占成绩的,50米跑占成绩的,立定跳远占成绩的.小明上述三项成绩依次是92分,100分,80分,则小明本次的体测成绩为()分.A.95B.93C.91D.899.一次函数与的图象如图所示,下列选项正确的是()()1,2Ax2yx=y=21y x=-52y x=-53xy=⎧⎨=⎩27x y-=2y x=-+2x y=--231x y-=-+===2+=()20y mx m m=+≠()0,4y x m2-2-1-50%25%25%1y kx b=+2y mx n=+第9题图①对于函数来说,随的增大而减小;②函数的图象不经过第一象限;③A .①②B .①③C .②③D .①②③10.两地相距240千米,早上9点,甲车从地出发去地,20分钟后,乙车从地出发去地.甲、乙两车离开各自出发地的路程(千米)与甲车出发的时间(小时)之间的关系如图所示,下列描述中不正确的有()个.第10题图①甲车的平均速度是60千米/小时;②乙车的平均速度是80千米/小时;③甲车与乙车在早上10点相遇;④两车在10:40或10:58时相距20千米.A .1B .2C .3D .4第Ⅱ卷(非选择题共110分)二、填空题(本大题共6个小题,每小题4分,共24分.)11.如图,在“笑脸”的“嘴巴”上找一格点,这一格点的坐标可以为______(写出一点即可).第11题图12.赵老师每天登录“学习强国”进行学习,在获得信息和知识的同时,还能获得“点点通”奖励.上表是王1y kx b =+s t y kx n =+22k m n b -=-AB A B B A 12s s 、t老师最近一周每日“点点通”奖励情况,这组数据的平均数是______点.星期一二三四五六日“点点通”(点)15202523211719第12题图13.列方程组解题:“今有马二、牛一,直金七两;马三、牛二,直金十二两.马、牛各直金几何?”其大意是:2匹马,1头牛,一共价值7两;3匹马,2头牛,一共价值12两,问每匹马、每头牛各价值多少两?设每匹马两,每头牛两.根据题意,可列方程组为______.14.直线与直线相交于点,则关于的方程组的解为______.15.下表列出了一项实验的统计数据(单位:):5080100150 (30)455580…它表示皮球从一定高度落下时,弹跳高度是下落高度的一次函数,那么变量与之间的关系式为______.16.如图,在平面直角坐标系中,直线表达式为,点是直线上一点,直线过点,且与直线的夹角,则直线的表达式为______.第16题图三、解答题(本大题共10个小题,共86分.请写出文字说明、证明过程或演算步骤.)17.(本小题满分6分)计算:(1);(2.18.(本小题满分6分)解方程组:(1);(2).19.(本小题满分6分)x y 1y x =+y mx n =+()1,M b ,x y 1x yy mx n+=⎧⎨-=⎩cm x yy x y x AB 13y x =()3,1M AB CD M AB 45AMC ∠=︒CD (22++127x y x y =+⎧⎨+=⎩351458x y x y -=-⎧⎨+=⎩和都是方程的解,求与的值.20.(本小题满分8分)如图,直线是一次函数的图象,且经过点和点.第20题图(1)求和的值;(2)求直线与两坐标轴所围成的三角形的面积.21.(本小题满分8分)如图,在平面直角坐标系中,.第21题图(1)作出;(2)作出关于轴的对称图形;(3)求的面积.22.(本小题满分8分)2023年中秋、国庆双节假期期间,济南趵突泉景区共纳客200多万人次,为迎接游客,甲、乙两个纪念品商店对标价都是每个10元纪念印章推出优惠活动:甲商店购买5个以上,从第6个开始按标价的9折卖:乙商店从第1个开始就按标价的9.5折卖.(1)直接写出两商店优惠后的价格(元)与购买数量(个)的关系式();(2)小明要买8个纪念印章,到哪个商店购买比较省钱,请说明理由;21x y =-⎧⎨=⎩14x y =⎧⎨=⎩ax y b -=a b l y kx b =+()0,4A ()5,2B --k b l ()()()4,1,3,3,2,2A B C ----ABC △ABC △y 111A B C △111A B C △y x 5x >(3)若纪念印章的成本为每个7元,请写出甲商店的利润(元)与卖出数量(个)的关系(卖出5个以上).23.(本小题满分10分)2023年10月1日是中华人民共和国成立74周年,学校开展了“迎国庆·弘扬中华传统文化”知识竞赛活动,学校从初中三个年级各随机抽取10人进行相关测试,获得了他们的成绩(单位:分),并对数据(成绩)进行整理、描述和分析,下面给出了相关信息:a .30名同学中华传统文化知识测试成绩的统计图如图1:图1b .30名同学中华传统文化知识测试成绩的频数分布直方图如图2(数据分成6组:,).图2c .测试成绩在这一组的是:70 72 72 74 74 74 75 77d .小明的中华传统文化知识测试成绩为77分.根据以上信息,回答下列问题:(1)测试成绩在这一组的同学成绩的众数为______分;(2)小明的测试成绩在抽取的30名同学的成绩中从高到低排名第______名;(3)抽取的30名同学的成绩的中位数为______分;(4)序号(见图1横轴)为1-10的学生是七年级的,他们成绩的方差记为;序号为11-20的学生是八年级的,他们成绩的方差记为;序号为21-30的学生是九年级的,他们成绩的方差记为.直接写出①,②,③中最小的是______(填序号);(5)成绩80分及以上记为优秀,若该校初中三个年级1800w x 4050x ≤<5060,6070,7080,8090,90100x x x x x ≤<≤<≤<≤<≤<7080x ≤<7080x ≤<21s 22s 23s 21s 22s 23s名同学都参加测试,请估计成绩优秀的同学人数.24.(本小题满分10分)根据以下素材,探索完成任务.如何设计布料剪裁方案?素材1图1中是第31届世界大学生夏季运动会吉祥物“蓉宝”玩偶,经测量,制作该款吉祥物头部所需布料尺寸为,身子布料尺寸.图2是两部分布料的尺寸示意图.图1图2素材2某工厂制作该款式吉祥物,经清点库存时发现,需在市场上购进某型号布料加工制作该款式的玩偶.已知该布料长为,宽为.(剪裁时不计损耗)我是布料剪裁师任务一拟定剪裁方案若要不造成布料浪费,请你设计出一匹该布料的所有剪裁方案:方案一:剪裁头部布料16张和身子布料0张.方案二:剪裁头部布料______张和身子布料______张.方案三:剪裁头部布料______张和身子布料______张.任务二解决实际问题工厂目前已有裁剪好的12张头部布料和4张身子布料,经商议,现需购买一批该型号布料,其中一部分按照方案二裁剪,另一部分按照方案三裁剪,一共制作700个“蓉宝”玩偶.请问:需要购买该型号布料共多少匹(恰好全部用完)?25.(本小题满分12分)为激发学生们对科技的好奇心和探索欲,培养学生的创新意识和创新精神,某学校开展了“智能小车实验探究”50cm 15cm ⨯50cm 40cm ⨯240cm 50cm活动.某小组观察探究小车运动中的函数关系,如图,在一条长为的水平直线轨道上,放置一辆长为的智能小车,开始时小车左端与处挡板重合,然后以的速度匀速向右行驶,当小车接触到处的挡板时因为要改变方向需停顿,然后以相同的速度返回,至再次与处的挡板接触时小车停止运动.在这个过程中,设小车的右端与处挡板的距离为,小车出发后的时间为,请根据所给条件解决下列问题:第25题图(1)小车运动时间为时,的值为______;(2)小车从处驶向处的过程中,求与的函数表达式;(3)当小车左端与处挡板的距离比小车右端与处挡板距离的2倍多时,请求出的值.26.(本小题满分12分)如图,直线与轴、轴分别交于点,直线与轴、轴分别交于点.第26题图第26题备用图(1)直线过定点的坐标为______(填写合适的选项);A .B .C .D .(2)若直线将的面积分为两部分,请求出的值.(3)当时,将直线沿直线作轴对称得直线,此时直线与轴平行,直接写出此时的值.初二年级期中检测数学试题参考答案(2023.11)一、选择题(本大题共10个小题,每小题4分,共40分.)50cm 4cm A 2cm /s B 1s A B ()cm s ()s t 3s s cm B A s t A B 4cmt 1:l y =+x y ,60A B BAO ∠=︒、2:l y kx k =-+x y C D、y kx k =-+M ()1,3(32⎛⎝(2,2l AOB △1:7k 0k >2l 1l 3l 3lx 2:l y kx k =-+k题号12345678910答案ACDABABCDC二、填空题(本大题共6个小题,每小题4分,共24分.)题号111213141516答案答案不唯一20三.解答题(本大题共9个小题,共78分.请写出文字说明、证明过程或演算步骤)17.(满分共6分)(1)(218.(满分共6分)(1)解:将①代入②得:,解得:将代入①得:原方程组的解为(2)解:由①+②得:,解得:将代入②得:,解得:原方程组的解为19.(满分共6分)解:将代入,得:()0,2-273212x y x y +=⎧⎨+=⎩12x y =⎧⎨=⎩152y x =+1522y x =-+()2222431+=-=-=0+=-+=127x y x y =+⎧⎨+=⎩①②127y y ++=2y =2y =213x =+=∴32x y =⎧⎨=⎩351458x y x y -=-⎧⎨+=⎩①②77x =1x =1x =458y +=45y =∴145x y =⎧⎪⎨=⎪⎩21x y =-⎧⎨=⎩ax y b -=21a b--=将代入,得:解得:20.(满分共8分)解:(1)将点和点代入得:解得:,直线的表达式为(2)点把代入,得解得:点,即点21.(满分共8分)解:(1)即为所求;(2)即为所求;(3)22.(满分共8分)解:(1)14x y =⎧⎨=⎩ax y b -=4a b -=1,3a b ==-()0,4A ()5,2B --y kx b=+452b k b =⎧⎨-+=-⎩654k b ⎧=-⎪⎨⎪=⎩6,45k b ∴==∴l 645y x =-+ ()0,4,4A OA ∴=0y =645y x =+6405x +=103x =-∴10,03C ⎛⎫- ⎪⎝⎭103OC = ()0,4,4A OA ∴=11102042233AOC S OA OC ∴=⋅=⨯⨯=△ABC △111A B C △1111117251523122222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=△()500.910595y x x =+⨯⨯-=+甲0.95109.5y x x=⨯=乙(2)到乙商店购买较省钱把代入得:(元)把代入得:(元),到乙商店购买较省钱(3)23.(满分共10分)解:(1)74(2)11(3)73(4)③(5)(人)答:成绩优秀的同学人数为600人.24.(满分共10分)解:任务一:设一卷该布料裁切头部布料张,身子布料张,,,为非负整数,或或故答案为:8 30 6(方法二和方法三可以互换位置)任务二:设用卷该布料裁切头部布料8张,身子布料3张,用卷该布料裁切头部布料0张,身子布料6张,解得:(卷),需要购买该布料159卷.25.(满分共12分)解:(1)40(2)(秒)(3)①当小车从到运动时:解得:②当小车从到运动时:解得:或26.(满分共12分)解:(1)B8x =y 甲98577y =⨯+=甲8x =y 乙9.5876y =⨯=乙7677< ∴95725w x x x =+-=+10180060030⨯=m n 1540240m n +=4883nm -∴=,m n 160m n =⎧∴⎨=⎩83m n =⎧⎨=⎩0,6m n =⎧⎨=⎩x y 870012,367004x x y =-⎧⎨+=-⎩8673x y =⎧⎨=⎩8673159+= ∴()504223-÷= 23124∴+=()224s t ∴=⨯-248s t ∴=-A B ()224624t t =⨯-+16t =B A ()()50424822484t t ---=⨯-+31t =16t ∴=31t =(2)将代入得:将代入得:直线过定点,直线也过定点,是两直线的交点直线将的面积分为两部分,①当时,②当时,(3)0x=y =+y=(0,,B OB ∴=0y=y =+=4x ()4,0,4A OA ∴=11422AOB S OA OB ∴=⨯⨯=⨯⨯=△ 2l (M 1l (M M ∴ 2l AOB △1:70k>18BMD AOB S S ∴=⨯=△△12BMD M S BD x =⨯⨯=△BD=(0,D∴k ∴=0k<18AMC AOB S S ∴=⨯=△△12AMC M S AC y =⨯⨯= △23AC ∴=10,03C ⎛⎫∴ ⎪⎝⎭k ∴=k =。
八年级第一学期学期中考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm 黑色签字笔在答题卡上题号所提示的答题区域作答.答案写在试卷上无效.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只 有一项是符合题目要求的.) 1.4的算术平方根是( )A.±2B.2C.﹣2D.±16 2.下列各数中,是无理数的是( )A.3.1415926B.√4C.√﹣83D.π 3.下列各点在第二象限的是( )A.(﹣√3,0)B.(﹣2,1)C.(0,﹣1)D.(2,﹣1) 4.下列运算正确的是( )A.√2+√3=√5B.3√3-√3=3C.√3×√5=√15D.√24+√6=45.已知点(-1,y 1),(3,y 2)在一次函数y=2x+1的图象上,则y 1,y 2的大小关系是( ) A.y 1<y 2 B.y 1=y 2 C.y 1>y 2 D.不能确定6.已知(k ,b )为第四象限内的点,则一次函数y =kx -b 的图象大致( )A. B. C. D.7.已知{x =1y =﹣1是方程x -my=3的解,那么m 的值( )A.2B.﹣2C.4D.﹣48.我国古代《算法统宗》里有这样一首诗:"我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空."诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住:如果每一间客房住9人,那么就空出一间客房,设该店有客房x 间、房客y 人,下列方程组中正确的是( ) A.{7x +7=y9(x -1)=y B.{7x +7=y 9(x +1)=y C.{7x -7=y 9(x -1)=y D.{7x -7=y9(x +1)=y9.如图,△ABC 是直角三角形,点C 在数轴上对应的数为﹣2,且AC=3,AB=1,若以点C 为圆心,CB 为半径画弧交数轴于点M ,则A 和M 两点间的距离为( )A.0.4B.√10-2C.√10-3D.√5-1(第9题图) (第10题图)10.甲、乙两车从A 城出发匀速行驶至B 城,在整个行驶过程中,甲、乙两车离开A 城的距 离y (千米)与甲车行驶的时间1(小时)之间的函数关系如图所示,则下列结论:①A 、B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t =54或154.其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个第II 卷(非选择题共110分)二.填空题:(本大题共6个小题,每小题4分,共24分) 11.电影票上"8排5号"记作(8,5),则"6排7号"记作 . 12.。
苏科版八年级上册数学期中考试试卷一、单选题1.在这四个图形中,轴对称图形的是()A .B .C .D .2.4的平方根是()A .2B .-2C .±2D .±33.下列各组数为勾股数的是()A .9,12,15B .5,6,7C .1,5,5D .1,2,34.如图,在△ABC 和△DEF 中,∠A =∠D ,AF =DC ,添加下列条件中的一个仍无法证明△ABC ≌△DEF 的是()A .BC =EFB .AB =DEC .∠B =∠ED .∠ACB =∠DFE52,72π-)A .1个B .2个C .3个D .4个6.等腰三角形的两条边长分别为3和7,则这个等腰三角形的周长是()A .10B .13C .17D .13或177.到三角形三条边距离相等的点是此三角形()A .三条角平分线的交点B .三条中线的交点C .三条高的交点D .三边中垂线的交点8.如图,在ABC 中,以点A 为圆心,小于AC 长为半径作圆强,分别交AB ,AC 于点E 、F ,再分别以E 、F 为圆心,大于12EF 的同样长为半径作圆弧,两弧交于点P ,作射线AP ,交CB 于点D .90C ∠=︒,9cm BC =,6cm BD =,那么点D 到边AB 的距离是()A .3cmB .4cmC .5cmD .6cm9.如图,在矩形纸片ABCD 中,6AB =,8AD =,点E 是边AD 上的一点,将AEB △沿BE 所在的直线折叠,使点A 落在BD 上的点G 处,则AE 的长是()A .2B .3C .4D .510.如图,ABC 中,90C ∠=︒,D 为AC 上,点E 是AB 上一点,且90BDE ∠=︒,DB DE AE ==,若5BC =,则AD 的长是()A .7B .9.5C .53D .10二、填空题113x +x 的取值范围是________.12.由四舍五入法得到的近似数为38.510⨯精确到______位.1324(6)0x y -++=,则x y +=_____.14.比较大小:12______124+.(用“>”、“=”或“<”填空)151623=______.16.已知一个正数的两个平方根分别是x 和6x -,则这个正数等于______.17.如图,在ABC 中,DM ,EN 分别垂直平分AC 和BC ,交AB 于M ,N 两点.135ACB ∠=︒,则MCN ∠=______度.18.如图,四边形ABFE 、AJKC 、BCIH 分别是以Rt △ABC 的三边为一边的正方形,过点C 作AB 的垂线,交AB 于点D ,交FE 于点G ,连接HA 、CF .欧几里得编纂的《原本》中收录了用该图形证明勾股定理的方法.关于该图形的下面四个结论:①△ABH ≌△FBC ;②正方形BCIH 的面积=2△ABH 的面积;③矩形BFGD 的面积=2△ABH 的面积;④BD 2+AD 2+CD 2=BF 2.正确的有______.(填序号)三、解答题19.求下列各式中的x :(1)()219x +=(2)()32116x +=-20.计算:(2(2)(23--21.已知x+1的平方根是±2,2x+y ﹣2的立方根是2,求x 2+y 2的算术平方根.22.如图,在△ABC 中,∠ACB=90°,AC=20,BC=15,CD ⊥AB 于点D .求:(1)CD 的长;(2)BD 的长.23.如图,已知BE ⊥CD ,BE=DE ,BC=AD .(1)求证:△BEC ≌△DEA ;(2)求∠DFC 的度数.24.如图,在四边形ABCD 中,90ABD ACD ∠=∠=︒,E ,F 分别是BC 、AD 的中点.(1)若10AD =,求BF 的长;(2)求证:EF BC ⊥.25.如图,已知90MON ∠=︒,A 是射线OM 上一点,10cm OA =.动点P 从点A 出发,以1cm/s 的速度沿AO 水平向左运动,与此同时,动点Q 从点O 出发,也以1cm/s 的速度沿ON 竖直向上运动,连接PQ ,以PQ 为斜边向上作等腰直角三角形PQC .设运动时间为()s t ,其中0t 10<<.(1)当OPQ △与PCQ △全等时,求t 的值;(2)点C 是否在MON ∠的平分线上,若在,写出证明过程;若不在,请说明理由;(3)四边形OPCQ 的面积为______.26.【理解概念】当一个凸四边形的一条对角线把原四边形分成两个三角形.若其中有一个三角形是等腰直角三角形,则把这条对角线叫做这个四边形的“等腰直角线”,把这个四边形叫做“等腰直角四边形”,当一个凸四边形的一条对角线把原四边形分成两个三角形.若其中一个三角形是等腰直角三角形,另一个三角形是等腰三角形,则把这条对角线叫做这个四边形的“真等腰直角线”,把这个四边形叫做“真等腰直角四边形”.(1)【巩固新知】如图①,若AD=3,AD=DB=DC ,则四边形ABCD______(填“是”或“否”)真等腰直角四边形.(2)【深度理解】在图①中,如果四边形ABCD 是真等腰直角四边形,且∠BDC=90°,对角线BD 是这个四边形的真等腰直角线,当AD=4,AB=3时,则边BC 的长是______.(3)如图②,四边形ABCD 与四边形ABDE 都是等腰直角四边形,且∠BDC=90°,∠ADE=90°,BD>AD>AB,对角线BD、AD分别是这两个四边形的等腰直角线.求证:AC=BE.(4)【拓展提高】在图3中,已知:四边形ABCD是等腰直角四边形,对角线BD是这个四边形的等腰直角线.若BD正好是分得的等腰直角三角形的一条直角边,且AD=3,AB=4,∠BAD=45°,求AC的长.参考答案1.C【解析】【详解】解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项符合题意;D、不是轴对称图形,故本选项不符合题意;故选:C【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.2.C【解析】【分析】直接利用平方根的定义分析得出答案.【详解】解:4的平方根是:=±2.故选:C.【点睛】本题主要考查了平方根的定义,正确掌握相关定义是解题关键.3.A【解析】【分析】根据勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数判定则可.【详解】解:A、92+122=152,能构成直角三角形,是正整数,故是勾股数;B、52+62≠72,不能构成直角三角形,故不是勾股数;C、52+12≠52,不能构成直角三角形,故不是勾股数;D、12+22≠32,不能构成直角三角形,故不是勾股数.故选:A.【点睛】本题考查了勾股数的定义,注意:一组勾股数必须同时满足两个条件:①三个数都是正整数;②两个较小数的平方和等于最大数的平方.4.A【解析】【分析】根据AF=DC求出AC=DF,再根据全等三角形的判定定理逐个判断即可.【详解】解:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,A、BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本选项符合题意;B、AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△DEF,故本选项不符合题意;C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定定理AAS,能推出△ABC≌△DEF,故本选项不符合题意;D .∠ACB=∠DFE ,AC=DF ,∠A=∠D ,符合全等三角形的判定定理ASA ,能推出△ABC ≌△DEF ,故本选项不符合题意;故选:A .【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL .5.B【解析】【分析】根据无理数的定义,即无限不循环小数叫无理数判断即可;【详解】3==∴无理数有2π-,∴无理数有2个;故选B .【点睛】本题主要考查了无理数的判断,准确分析判断是解题的关键.6.C【解析】【分析】因为等腰三角形的两边为3和7,但已知中没有点明底边和腰,所以有两种情况,需要分类讨论,还要注意利用三角形三边关系考虑各情况能否构成三角形.【详解】解:当3为底时,其它两边都为7,3、7、7可以构成三角形,周长为17;当3为腰时,其它两边为3和7,∵3+3=6<7,所以不能构成三角形,故舍去,∴答案只有17.故选:C .【点睛】本题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.7.A【解析】【分析】根据角平分线的性质进行解答即可.【详解】解: 角平分线上任意一点,到角两边的距离相等,∴到三角形三条边距离相等的点是三角形三个内角的平分线的交点,故选:A .【点睛】本题考查的是角平分线的性质,熟知角平分线上任意一点,到角两边的距离相等是解答此题的关键.8.A【解析】【分析】如图,过D 作DK AB ⊥于,K 由角平分线的性质定理可得:,DC DK =从而可得答案.【详解】解:如图,过D 作DK AB ⊥于,K 由作图可得:AD 是BAC ∠的角平分线,而90,C ∠=︒,DC DK \= 9cm BC =,6cm BD =,3,CD \=3,DK \=所以点D 到边AB 的距离是3cm.故选A【点睛】本题考查的是角平分线的作图,角平分线的性质定理的应用,掌握“角平分线上的点到这个角的两边的距离相等”是解本题的关键.9.B【解析】【分析】根据折叠的性质可得6BG AB AE EG BGE A ===∠=∠,,,再由矩形的性质可得10BD =,从而得到4DG BD BG =-=,然后设AE x =,则,8EG x DE x ==-,在Rt DEG △中,由勾股定理,即可求解.【详解】解:根据题意得:6BG AB AE EG BGE A ===∠=∠,,,在矩形纸片ABCD 中,90BGE A ∠==︒,∴10BD ===,∴4DG BD BG =-=,设AE x =,则,8EG x DE x ==-,在Rt DEG △中,222DG EG DE +=,∴()22248x x +=-,解得:3x =,即3AE =.故选:B【点睛】本题主要考查了矩形与折叠,勾股定理,熟练掌握矩形的性质,折叠图形的性质是解题的关键.10.D【解析】【分析】过点E 作EF ⊥AC 于点F ,可证得△BDC ≌△DEF ,从而得到DF=BC=5,再根据等腰三角形的性质,可得AD=2DF,即可求解.【详解】解:如图,过点E作EF⊥AC于点F,∵∠BDE=90°,∴∠EDF=90°-∠BDC=∠DBC,在△BDC和△DEF中,∵∠C=∠EFD=90°,∠DBC=∠EDF,DB=DE,∴△BDC≌△DEF(AAS),∴DF=BC=5,∵DE=AE,EF⊥AC,∴AD=2DF=10.故选:D【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形的性质定理是解题的关键.x≥-11.3【解析】【分析】x+≥即可求解.根据被开数30【详解】x+≥,解:依题意得:30x≥-;∴3x≥-.故答案为:3【点睛】本题考查二次根式的意义:熟练掌握二次根式中被开方数是非负数的条件是解题的关键.12.百【解析】【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【详解】解:近似数8.5×103=8500,5位于百位,则该数精确到百位,故答案为:百.【点睛】本题考查了近似数和有效数字,对于用科学记数法表示的数,有效数字的计算方法以及与精确到哪一位是需要识记的内容,经常会出错.13.-2【解析】【详解】∵0,2(6)0y +≥,∴4060x y -=⎧⎨+=⎩,解得:46x y =⎧⎨=-⎩,∴4(6)2x y +=+-=-.点睛:(1)一个代数式的算术平方根、一个代数式的平方都是非负数;(2)两个非负数的和为0,则这两个非负数都为0.14.<【解析】【分析】12-10,>可得10,4>从而可得答案.【详解】解:12=Q10,->10,4\>1,\<24故答案为:<【点睛】本题考查的是实数的大小比较,掌握“作差法比较两个数的大小”是解本题的关键.15.3【解析】【分析】先化简二次根式,同步计算二次根式的除法运算,再合并同类项即可.【详解】=故答案为:316.9【分析】一个正数的平方根有两个,它们互为相反数,根据这个特点列方程求解,x从而可得答案.【详解】x-,解: 一个正数的两个平方根分别是x和6\+-=60,x x∴=x3,∴这个正数等于23=9,故答案为:9.17.90【分析】∠+∠的度数,然根据三角形内角和定理求出A B∠+∠,根据等腰三角形性质得ACM BCN后求解.【详解】解:135ACB︒∠=A B︒45∴∠+∠===AM CM BN CN,,,A ACMB BCN ∴∠=∠∠=∠45ACM BCN ︒∴∠+∠=()1354590MCN ACB ACM BCN ∴∠=∠-∠∠+∠=︒-︒=︒故答案为:90.18.①②③【解析】由“SAS”可证△ABH ≌△FBC ,故①正确;由平行线间的距离处处相等,可得S △ABH=S △BCH=12S 正方形BCIH ,故②正确;同理可证矩形BFGD 的面积=2△ABH 的面积,故③正确;由勾股定理可得BD 2+AD 2+2CD 2=BF 2,故④错误,即可求解.【详解】解:∵四边形ABFE 和四边形CBHI 是正方形,∴AB=FB ,HB=CB ,∠ABF=∠CBH=90°,∴∠CBF=∠HBA ,∴△ABH ≌△FBC (SAS ),故①正确;如图,连接HC ,∵AI ∥BH ,∴S △ABH=S △BCH=12S 正方形BCIH ,∴正方形BCIH 的面积=2△ABH 的面积,故②正确;∵CG ∥BF ,∴S △CBF=12×BF×BD=12S 矩形BDGF ,∴矩形BFGD的面积=2△ABH的面积,故③正确;∵BC2=CD2+DB2,AC2=CD2+AD2,BC2+AC2=AB2,∴BD2+CD2+CD2+AD2=AB2=BF2,∴BD2+AD2+2CD2=BF2,故④错误,故答案为:①②③.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,平行线的性质,勾股定理等知识,灵活运用这些性质解决问题是解题的关键.19.(1)x=2或x=-4;(2)x=-3.【解析】【分析】(1)利用平方根的定义求得x+1的值,然后再解关于x的方程即可;(2)先求得(x+1)3的值,然后依据立方根的定义列方程求解即可.(1)解:∵(x+1)2=9;∴x+1=±3,解得:x=2或x=-4;(2)解:∵2(x+1)3=-16,∴(x+1)3=-8.∴x+1=-2,解得x=-3.【点睛】本题主要考查的是立方根、平方根,熟记立方根及平方根的定义是解题的关键.20.(1)-2;【解析】【分析】(1)直接根据实数的运算法则计算即可;(2)先根据平方差公式和完全平方公式进行计算,再合并同类二次根式即可.(1)(2+=3-3+(-2)=-2;(2)3--解:(2(5-2)【点睛】本题考查的是二次根式的混合运算及实数的运算,掌握它们的运算法则是解决此题关键.21.5【解析】【分析】根据平方根、立方根的定义即可得到x、y的值,最后代入代数式求解即可.【详解】解:∵x+1的平方根是±2,∴x+1=4,∴x=3,∵2x+y﹣2的立方根是2,∴2x+y﹣2=8,把x的值代入解得:y=4,∴x2+y2=25,∴x2+y2的算术平方根为5.【点睛】本题主要考查了平方根、立方根的概念,求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.22.(1)CD 的长是12;(2)BD 的长为9.【解析】【分析】(1)根据勾股定理求出AB 的长,根据三角形的面积公式,代入计算即可求出CD 的长;(2)在Rt △BCD 中,直接根据勾股定理可求出BD 的长.(1)解:在Rt △ABC 中,∠ACB=90°,BC=15,AC=20,由勾股定理可得,AB=AC 2+BC 2=202+152=25,∵S △ABC=12AC•BC=12AB•CD ,∴AC•BC=AB•CD ,∵AC=20,BC=15,AB=25,∴20×15=25CD ,∴CD=12,∴CD 的长是12;(2)解:∵CD ⊥AB 于点D ,∴∠CDB=90°,在Rt △BCD 中,∠CDB=90°,BC=15,CD=12,由勾股定理可得,==9,∴BD 的长为9.【点睛】本题考查了勾股定理和三角形的面积公式,掌握直角三角形面积的不同表示方法及勾股定理的综合应用是本题的关键.23.(1)见解析(2)∠DFC=90°.【解析】【分析】(1)由“HL”可证Rt △BEC ≌Rt △DEA ;(2)由全等三角形的性质可得∠B=∠D ,由三角形内角和定理可求∠DFC=90°.(1)证明:∵BE ⊥CD ,∴∠BEC=∠DEA=90°,在Rt △BEC 和Rt △DEA 中:BE DE BC DA=⎧⎨=⎩,∴Rt △BEC ≌Rt △DEA (HL );(2)解:∵Rt △BEC ≌Rt △DEA ,∴∠B=∠D ,∵∠DAE=∠BAF ,∴∠BFA=∠DEA=90°,∴∠DFC=90°.【点睛】本题考查了全等三角形的判定和性质,证明三角形全等是解题的关键.24.(1)5(2)证明见解析【解析】【分析】(1)直接利用直角三角形斜边上的中线等于斜边的一半可得答案;(2)利用直角三角形斜边上的中线等于斜边的一半证明,BF CF =再利用等腰三角形的性质可得结论.(1)解: 90ABD ∠=︒,F 为AD 的中点,10,AD =1 5.2BF AD \==(2)证明:如图,连接,CF 90ABD ACD ∠=∠=︒,F 是AD 的中点,11,,22CF AD BF AD \==,CF BF ∴=E 是BC 的中点,.EF BC \^【点睛】本题考查的是直角三角形斜边上的中线等于斜边的一半,等腰三角形的三线合一的性质,掌握“直角三角形斜边上的中线的性质”是解本题的关键.25.(1)5(2)点C 是在MON ∠的平分线上,理由见解析(3)225cm 【解析】【分析】(1)根据题意可得当OPQ △与PCQ △全等时,OPQ △为等腰直角三角形,从而得到OQ=OP ,再由cm OQ t =,()10cm OP t =-,即可求解;(2)过点C 作CD ⊥ON 于点D ,CE ⊥OA 于点E ,可证得△DCQ ≌△ECP ,从而得到CD=CE ,即可求解;(3)过点C 作CF ⊥PQ 于点F ,可得12CF PQ =,根据题意可得cm AP OQ t ==,()10cm OP t =-,利用勾股定理可得22220100PQ t t =-+,从而得到2215cm 2OPQ S t ⎛⎫=-+ ⎪⎝⎭ ,221525cm 2PQC S t t ⎛⎫=-+ ⎪⎝⎭,再由四边形OPCQ 的面积为OPQ PQC S S + ,即可求解.(1)解:根据题意得:当OPQ △与PCQ △全等时,OPQ △为等腰直角三角形,即OQ=OP ,∵点P 从点A 出发,以1cm/s 的速度沿AO 水平向左运动,与此同时,动点Q 从点O 出发,也以1cm/s 的速度沿ON 竖直向上运动,∴cm,cm AP t OQ t ==,∵10cm OA =.∴()10cm OP t =-,∴10t t =-,解得:5t =,即当OPQ △与PCQ △全等时,t 的值为5;(2)解:点C 是在MON ∠的平分线上,理由如下:如图,过点C 作CD ⊥ON 于点D ,CE ⊥OA 于点E ,∵CD ⊥ON ,CE ⊥OA ,90MON ∠=︒,∴∠CDO=∠CEO=∠CEP=∠MON=90°,∴∠DCE=90°,∵PQC △是等腰直角三角形,∴CQ=CP ,∠PCQ=∠DCE=90°,∴∠DCQ=∠PCE ,∴△DCQ ≌△ECP ,∴CD=CE ,∵CD ⊥ON ,CE ⊥OA ,∴点C 是在MON ∠的平分线上;(3)解:如图,过点C 作CF ⊥PQ 于点F ,根据题意得:cm AP OQ t ==,∴()10cm OP t =-,∴()22222210220100PQ OQ OP t t t t =+=+-=-+,∵CF ⊥PQ ,PQC △是等腰直角三角形,∴12CF PQ =,∴()22111105cm 222OPQ S OQ OP t t t t ⎛⎫=⋅=-=-+ ⎪⎝⎭ ,22211111525cm 22242PQC S PQ CF PQ PQ PQ t t ⎛⎫=⋅=⋅==-+ ⎪⎝⎭,∴四边形OPCQ 的面积为22211525525cm 22OPQ PQC S S t t t t ⎛⎫+=-++-+= ⎪⎝⎭.【点睛】本题主要考查了全等三角形的判定和性质,等腰直角三角形的性质,角平分线的判定,动点问题,熟练掌握全等三角形的判定和性质,等腰直角三角形的性质,角平分线的判定定理是解题的关键.26.(1)是(3)见解析【解析】【分析】(1)利用勾股定理的逆定理证明∠BDC=90°,从而△BDC 是等腰直角三角形,又因为△ABD 是等腰三角形,即可得出结论;(2)由题意知△ABD 是等腰三角形,当AD=BD=4时,由勾股定理得:当BD=AB=3时,由勾股定理得:;(3)利用SAS 证明△ADC ≌△EDB ,得AC=BE ;(4)分∠BDC=90°和∠DBC=90°,分别构造等腰直角三角形,利用(3)中全等进行转化,从而解决问题.(1)解:∵AD=3,AD=DB=DC ,∴BD=CD=3,∵BD 2+CD 2=18,BC 2=()2=18,∴BD 2+CD 2=BC 2,∴△BDC 是等腰直角三角形,∵△ABD 是等腰三角形,∴四边形ABCD 是真等腰直角四边形,故答案为:是;(2)解:∵对角线BD是这个四边形的真等腰直角线,∴△ABD是等腰三角形,当AD=BD=4时,由勾股定理得:当BD=AB=3时,由勾股定理得:,综上:,故答案为:或(3)解:由题意知:△BDC和△ADE都是等腰直角三角形,∴BD=CD,AD=DE,∠BDC=∠ADE=90°,∴∠ADC=∠EDB,∴△ADC≌△EDB(SAS),∴AC=BE;(4)解:由题意知:△BDC是等腰直角三角形,当∠BDC=90°时,如图,作DE⊥AD,取DE=AD,连接AE,BE,由(3)同理得△ADC≌△EDB(SAS),∴AC=BE,∵AD=3,△ADE是等腰直角三角形,∴,∠EAD=45°,∵∠DAB=45°,∴∠EAB=90°,由勾股定理得∴当∠DBC=90°时,如图,同理可得综上:。
2023-2024学年第一学期八年级期中考试数学试卷(考试时间120分钟 满分120分).下列为轴对称图形的是( ).. . . ..以下列各组线段为边,能组成三角形的是( ),B ., C ., D .3.用直尺和圆规作一个角等于已知角的作图痕迹如图所示,则作图的依据是(A .SASB .SSSC .ASA )(第6题图) (第7题图) (第8题图)A .B .C .D .7.如图,的度数是()A .D .8.如图,点D ,E 分别在线段相交于O 点,已知下的哪个条件仍不能判定(第9题图) (第10题图)A .5B .8C .10D .10.如图,纸片中,,沿过点的直线折叠处,折痕为. 若,则的长是( )C .D .2cm 3cm 4cm 8cm 3cm 2cm BAD CAD ∠=∠BD CD =AB AC AC 1∠37︒65︒ABC V 6BC =B V E BD C ∠CD 7(第12题图) (第13题图) (第14题图)13.如图,,若,则的度数是 14.如图,B 处在A 处的南偏西的方向,C 处在A 处的南偏东的方向,C 处在北偏东的方向,则从处观测A ,B 两处的视角的度数为 .(第15题图) (第16题图)15.如图所示,平分,,那么的长度为16.如图,中,在线段上以v cm/s 的速度由共72分)17.(6分)如图所示,在△ABC 中,AE 是角平分线,AD 是高,∠BAC =80°,∠EAD =10°,求∠B 的度数.18.(6分)已知:如图,点B ,E ,C ,F 在同一直线上,,且,.求证:.ABC △≌135BAE DAC ∠︒∠=,CAE ∠43︒18︒75︒C ∠AC 180︒CE AD ⊥7cm AB =DE ABC V AB BC AB DE ∥AB DE =BE CF =ABC DEF ≌△△19.(6分)如图,在△ABC 中,AD 平分∠BAC ,点E 在BA 的延长线上,且EC ∥AD .证明:△ACE 是等腰三角形.20.(8分)如图,已知线段的两个端点坐标分别是.(1)画出线段关于x 轴对称的线段;(2)若点C 和点A 关于y 轴对称,画出点C 并写出其坐标C (____ ,____);(3)连接,计算的面积.21.(8分)如图,中,,平分,于E .(1)若,求的度数;(2)求证:直线是线段的垂直平分线.22.(8分)如图,点,在的边上,,.AB ()()2,1,4,3-AB A B '',CA CB ''A B C ''V ABC V 90ACB ∠=︒AD BAC ∠DE AB ⊥48BAC ∠=︒EDA ∠AD CE D E ABC V BC AB AC =AD AE =(1)如图1,求证:;(2)如图2,当时,过点作求的值.23.(10分)在平面直角坐标系中,点坐标为(1)直接写出点坐标.(2)如图,点为轴正半轴上一点,过点.(3)在(2)的前提下,求证:(1)求的度数;BD CE =AD CD =C CM ⊥CD BD -B B A y AB BC =BOC ∠(1)如图1,点D 是上的一点(点D 不与A 、C 重合),B 、F 、D 、E 四点共线,点F 在线段上,求的度数.(2)如图2,在第(1)题的条件下,若平分,探究与的数量关系,并证明结论.(3)如图3,F 是等腰直角三角形外一点,,求的面积.AC BD CE BD AF AE ⊥⊥,,AEB ∠BD ABC ∠CE BD ABC 456ABC AFB BF ∠∠==︒=,BFC V。
八年级上册数学期中考试(时刻:90分钟总分:100分)一.选择题(36分)1.下列结论正确的是()(A)有两个锐角相等的两个直角三角形全等;(B)一条斜边对应相等的两个直角三角形全等;(C)顶角和底边对应相等的两个等腰三角形全等;(D)两个等边三角形全等.2.下列四个图形中,不是轴对称图形的是()AB C3.已知,如图1,AD=AC,BD=BC,O为AB上一点,那么,图中共有()对全等三角形.A. 1B. 2图14.如图2,AD是ABC△的中线,E,F别离是AD和AD延长线上的点,且DE DF,连结BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个5.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是()A.形状相同B.周长相等C.面积相等D.全等6.已知一个等腰三角形两内角的度数之比为1:4,则那个等腰三角形顶角的度数为()A.20B.120C.20或120D.367.如图4,已知点O是△ABC内一点,且点O到三边的距离相等,∠A=40,则∠BOC=()A. 0110 B.0120 C.0130 D.01408.圆、正方形、长方形、等腰梯形中有唯一条对称轴的是()A. 圆B. 正方形C. 长方形D. 等腰梯形9.点(3,-2)关于x轴的对称点是( )A. (-3,-2)B. (3,2)C. (-3,2)D. (3,-2)10.下列长度的三线段,能组成等腰三角形的是()A. 1,1,2B. 2,2,5C. 3,3,5D. 3,4,5ADCB图2EFCOAB图411.等腰三角形的一个角是80°,则它的底角是 ( )A. 50°B. 80°C. 50°或80°D. 20°或80°12.若等腰三角形腰上的高是腰长的一半,则那个等腰三角形的底角是 ( )A. 75°或30°B. 75°C. 15°D. 75°和15°二.填空题(18分)13.若是△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等, 若是△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等.(填“必然”或“不必然”或“必然不”)14.点P (-1,2)关于x 轴对称点P 1的坐标为( ).15.如左下图.△ABC ≌△ADE ,则,AB= ,∠E=∠ .若∠BAE=120°∠BAD=40°.则∠BAC= . 16.如图3,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______.17.点M (-2,1)关于x 轴对称的点N 的坐标是________,直线MN 与x 轴的位置关系是___________.18.如图4,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △的面积为______.三.作图题(6分)19.最近几年来,国家实施“村村通”工程和农村医疗卫生改革,某县打算在张村、李村之间建一座定点医疗站P ,张、李两村座落在两相交公路内(如图所示).医疗站必需知足下列条件:①使其到两公路距离相等,②到张、李两村的距离也相等,请你通过作图确信P 点的位置.(不写作法,要保留作图痕迹)四.解答题(40分)20(本题8分).如图,AB=DF ,AC=DE ,BE=FC ,问:ΔABC 与ΔDEF 全等吗?AB 与DF 平行吗?请说明你的理由。
八年级上学期期中考试数学试卷(附参考答案与解析)班级:___________姓名:___________考号:___________一、选择题(每题3分,共36分)1.9的平方根为()A.3B.﹣3C.±3D.2.在给出的一组数中,无理数有()A.1个B.2个C.3个D.5个3.在△ABC中,∠A:∠B:∠C=1:1:2,则下列说法错误的是()A.∠C=90°B.a2=b2﹣c2C.c2=2a2D.a=b4.若点P关于x轴的对称点为P1(﹣2,3),则点P关于原点的对称点P2的坐标()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)5.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间x(小时)的函数关系用图象表示为下图中的()A.B.C.D.6.在△ABC中,AB=15,AC=8,AD是中线,且AD=8.5,则BC的长为()A.15B.16C.17D.187.某一次函数的图象经过点(1,2),且y随x的增大而减小,则这个函数的表达式可能是()A.y=2x+4B.y=3x﹣1C.y=﹣3x+1D.y=﹣2x+48.若的整数部分为x,小数部分为y,则的值是()A.B.C.1D.39.若表示a、b两个实数的点在数轴上的位置如图所示,则化简|a﹣b|+的结果为()A.2a B.2b C.﹣2a D.﹣2b10.下列语句中,说法错误的是()A.点(0,0)是坐标原点B.对于坐标平面内的任一点,都有唯一的一对有序实数与它对应C.点A(a,﹣b )在第二象限,则点B(﹣a,b)在第四象限D.若点P的坐标为(a,b),且a•b=0,则点P一定在坐标原点11.已知一个直角三角形的面积为96,并且两直角边的比为3:4,则这个三角形的斜边为()A.10B.20C.5D.1512.一次函数y=kx+b与y=kbx,它们在同一坐标系内的图象可能为()A.B.C.D.二、填空题(每题3分,共3×5=15分)13.的算术平方根是,﹣=.14.已知一次函数y=kx﹣1的图象不经过第二象限,则正比例函数y=(k+1)x必定经过第象限.15.若a<<b,且a,b为连续正整数,则b2﹣a2=.16.已知点P在第四象限,且到x轴的距离是5,到y轴的距离是4,则P点坐标为.17.函数y=3x+m的图象与两坐标轴围成的三角形面积为24,则m=.三、解答题(共69分)18.计算题(1)+(1﹣)0(2)已知:x=,y=,求的值.19.如图,在直角坐标系中,Rt△AOB的两条直角边OA,OB分别在x轴的负半轴,y轴的负半轴上,且OA=2,OB=1.将Rt△AOB绕点O按顺时针方向旋转90°,再把所得的像沿x轴正方向平移1个单位,得△CDO.(1)写出点A,C的坐标;(2)求点A和点C之间的距离.20.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系.(2)请作出△ABC关于y轴对称的△A′B′C′.(3)求△ABC的面积.21.阅读材料:小明发现一些含根号的式子可以写成另一个式子的平方如3+2=(1+)2,善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为正整数)则有:a+b=m2+2n2+2mn,所以a=m2+2n2,b=2mn.这样小明就找到了一种把a+b的式子化为平方式的方法.请仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得a=,b=(2)若a+4=(m+n)2(其中a、b、m、n均为正整数),求a的值.22.某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费,甲乙两厂所收取的费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示.(1)甲厂的制版费,其证书印刷单价,y与x的函数解析式.甲与x的函数解析式.(2)请求出印刷数量x≥2时,y乙(3)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?(4)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?23.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)若AO=n2+1,AD=n2﹣1,OD=2n(n为大于1的整数),求α的度数;(3)当α为多少度时,△AOD是等腰三角形?24.正方形ABCD的边长为4,将此正方形置于平面直角坐标系中,使AB边落在X轴的正半轴上,且A点的坐标是(1,0).(1)直线y=x经过点C,且与x轴交与点E,求四边形AECD的面积;(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F(﹣,0),且与直线y=3x平行,将(2)中直线l沿着y轴向上平移个单位交轴x于点M,交直线l1于点N,求△NMF的面积.参考答案与解析一、选择题(每题3分,共3×12=36分)1.9的平方根为()A.3B.﹣3C.±3D.【考点】平方根.【分析】根据平方根的定义求解即可,注意一个正数的平方根有两个.【解答】解:9的平方根有:=±3.故选C.2.在给出的一组数0,π,,3.14,,中,无理数有()A.1个B.2个C.3个D.5个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:π,和共有3个.故选C.3.在△ABC中,∠A:∠B:∠C=1:1:2,则下列说法错误的是()A.∠C=90°B.a2=b2﹣c2C.c2=2a2D.a=b【考点】勾股定理.【分析】首先根据△ABC角度之间的比,可求出各角的度数.∠C为90度.根据勾股定理可分别判断出各项的真假.【解答】解:由∠A:∠B:∠C=1:1:2;得:∠A=∠B=45°,∠C=90°;所以A正确.由勾股定理可得:c2=a2+b2,所以B错误.因为∠A=∠B=45°,则a=b,同时c2=a2+b2=2a2.所以C、D正确.故选B.4.若点P关于x轴的对称点为P1(﹣2,3),则点P关于原点的对称点P2的坐标()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)【考点】关于x轴、y轴对称的点的坐标;关于原点对称的点的坐标.【分析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,关于原点对称的点,横坐标与纵坐标都互为相反数,可得答案.【解答】解:点P关于x轴的对称点为P1(﹣2,3),得P(﹣2,﹣3)则点P关于原点的对称点P2的坐标(2,3)故选:A.5.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间x(小时)的函数关系用图象表示为下图中的()A.B.C.D.【考点】一次函数的应用;一次函数的图象.【分析】根据实际情况即可解答.【解答】解:蜡烛剩下的长度随时间增长而缩短,根据实际意义不可能是D,更不可能是A、C.故选B.6.在△ABC中,AB=15,AC=8,AD是中线,且AD=8.5,则BC的长为()A.15B.16C.17D.18【考点】全等三角形的判定与性质;勾股定理的逆定理.【分析】延长AD至E使ED=AD,利用好AD是中线这个条件,再根据题中的数据的特点正好符合勾股定理逆定理,得到直角三角形,根据直角三角形斜边上的中线的性质就可以求出BD 的长度了,再根据BC=2BD,所以BC的长也就求出了.【解答】解:延长AD至E,使DE=AD;连接BE,如图∵AD=8.5∴AE=2×8.5=17在△ACD和△BED中∵∴△ACD≌△BED(SAS)∴BE=AC=8BE2+AB2=82+152=289AE2=172=289所以∠ABE=90°∵在Rt△BED中,BD是中线∴BD=AE=8.5∴BC=2BD=2×8.5=17.故选:C.7.某一次函数的图象经过点(1,2),且y随x的增大而减小,则这个函数的表达式可能是()A.y=2x+4B.y=3x﹣1C.y=﹣3x+1D.y=﹣2x+4【考点】一次函数的性质.【分析】设一次函数关系式为y=kx+b,y随x增大而减小,则k<0;图象经过点(1,2),可得k、b之间的关系式.综合二者取值即可.【解答】解:设一次函数关系式为y=kx+b∵图象经过点(1,2)∴k+b=2;∵y随x增大而减小∴k<0.即k取负数,满足k+b=2的k、b的取值都可以.故选D.8.若的整数部分为x,小数部分为y,则的值是()A.B.C.1D.3【考点】二次根式的加减法.【分析】因为的整数部分为1,小数部分为﹣1,所以x=1,y=﹣1,代入计算即可.【解答】解:∵的整数部分为1,小数部分为﹣1∴x=1,y=﹣1∴=﹣(﹣1)=1.故选:C.9.若表示a、b两个实数的点在数轴上的位置如图所示,则化简|a﹣b|+的结果为()A.2a B.2b C.﹣2a D.﹣2b【考点】二次根式的性质与化简;实数与数轴.【分析】由数轴可判断出a<0,b<0,|a|<|b|,得出a﹣b>0,a+b<0,然后再根据这两个条件对式子化简.【解答】解:∵由数轴可得a<0,b<0,|a|<|b|∴a﹣b>0,a+b<0∴|a﹣b|+=|a﹣b|+|a+b|=a﹣b﹣(a+b)=﹣2b.故选:D.10.下列语句中,说法错误的是()A.点(0,0)是坐标原点B.对于坐标平面内的任一点,都有唯一的一对有序实数与它对应C.点A(a,﹣b )在第二象限,则点B(﹣a,b)在第四象限D.若点P的坐标为(a,b),且a•b=0,则点P一定在坐标原点【考点】点的坐标.【分析】根据各象限内点的坐标特征、有序实数对与平面的关系,解答即可.【解答】解:A、点(0,0)是坐标原点,故A不符合题意;B、对于坐标平面内的任一点,都有唯一的一对有序实数与它对应,故B不符合题意;C、点A(a,﹣b )在第二象限,得a<0,﹣b>0﹣a>0,b<0,则点B(﹣a,b)在第四象限,故C不符合题意;D、若点P的坐标为(a,b),且a•b=0,则点P一定在坐标轴上,故D符合题意;故选:D.11.已知一个直角三角形的面积为96,并且两直角边的比为3:4,则这个三角形的斜边为()A.10B.20C.5D.15【考点】勾股定理.【分析】根据两直角边的比为3:4,这个直角三角形的面积等于96.可设两直角边的长度分别为3a、4a,那么根据以上两个等量关系可以列出一个关于a的方程,求出a的值,再根据勾股定理求出斜边的长.【解答】解:设两直角边的长度分别为3a、4a,则3a•4a÷2=96解得a2=16则这个三角形的斜边为=20.故选B.12.一次函数y=kx+b与y=kbx,它们在同一坐标系内的图象可能为()A.B.C.D.【考点】一次函数的图象.【分析】根据一次函数的图象与系数的关系,有由一次函数y=kx+b图象分析可得k、b的符号,进而可得k•b的符号,从而判断y=kbx的图象是否正确,进而比较可得答案.【解答】解:根据一次函数的图象分析可得:A、由一次函数y=kx+b图象可知k<0,b>0;一次函数y=k的图象可知kb<0,两函数解析式均成立;B、由一次函数y=kx+b图象可知k<0,b>0;即kb<0,与次函数y=k的图象可知kb>0矛盾;C、由一次函数y=kx+b图象可知k>0,b<0;即kb<0,与次函数y=k的图象可知kb>0矛盾;D、由一次函数y=kx+b图象可知k>0,b>0;即kb>0,与次函数y=k的图象可知kb<0矛盾.故选A.二、填空题(每题3分,共3×5=15分)13.的算术平方根是3,﹣=.【考点】算术平方根.【分析】(1)先将原数化简,然后根据算术平方根的性质即可求出答案.(2)根据二次根式的性质进行化简,然后根据二次根式加法法则即可求出答案.【解答】解:∵==9∴9的算术平方根是3原式=2﹣=故答案为:3;14.已知一次函数y=kx﹣1的图象不经过第二象限,则正比例函数y=(k+1)x必定经过第一、三象限.【考点】正比例函数的性质;一次函数的性质.【分析】根据已知条件可知k>0,则正比例函数y=(k+1)x中,k+1必定大于0,所以必经过第一、三象限.【解答】解:∵一次函数y=kx﹣1的图象经过第一、三、四象限∴k>0∴k+1>0∴正比例函数y=(k+1)x必定经过第一、三象限.15.若a<<b,且a,b为连续正整数,则b2﹣a2=7.【考点】估算无理数的大小.【分析】因为32<13<42,所以3<<4,求得a、b的数值,进一步求得问题的答案即可.【解答】解:∵32<13<42∴3<<4即a=3,b=4∴b2﹣a2=7.故答案为:7.16.已知点P在第四象限,且到x轴的距离是5,到y轴的距离是4,则P点坐标为(4,﹣5).【考点】点的坐标.【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,点到x轴的距离是纵坐标的绝对值,点到y轴的距离是横坐标的绝对值,可得答案.【解答】解:由到x轴的距离是5,到y轴的距离是4,得|x|=4,|y|=5.由点位于第四象限,得则P点坐标为(4,﹣5)故答案为:(4,﹣5).17.函数y=3x+m的图象与两坐标轴围成的三角形面积为24,则m=±12.【考点】一次函数图象上点的坐标特征.【分析】根据题意确定与x轴与y轴的交点,利用三角形的面积公式求出m的值.【解答】解:直线y=3x+m与x轴的交点坐标是(﹣,0),与y轴的交点坐标是(0,m)根据三角形的面积是24,得到|﹣|•|m|=24,即=24解得:m=±12.故答案为±12.三、解答题(共69分)18.计算题(1)+(1﹣)0(2)已知:x=,y=,求的值.【考点】二次根式的化简求值;零指数幂.【分析】(1)首先分母有理化,计算0次幂,然后进行加减即可;(2)首先对x和y进行分母有理化,然后把所求的分式约分,然后代入x和y的数值计算即可.【解答】解:(1)原式=+1=5+1=6;(2)x=(+)2=5+2,y=(﹣)2=5﹣2则原式==则当x=5+2,y=5﹣2时,原式===.19.如图,在直角坐标系中,Rt△AOB的两条直角边OA,OB分别在x轴的负半轴,y轴的负半轴上,且OA=2,OB=1.将Rt△AOB绕点O按顺时针方向旋转90°,再把所得的像沿x轴正方向平移1个单位,得△CDO.(1)写出点A,C的坐标;(2)求点A和点C之间的距离.【考点】坐标与图形变化﹣旋转;坐标与图形变化﹣平移.【分析】(1)根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减:可得A、C点的坐标;(2)根据点的坐标,在Rt△ACD中,AD=OA+OD=3,CD=2,借助勾股定理可求得AC的长.【解答】解:(1)点A的坐标是(﹣2,0),点C的坐标是(1,2).(2)连接AC,在Rt△ACD中,AD=OA+OD=3,CD=2∴AC2=CD2+AD2=22+32=13∴AC=.20.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系.(2)请作出△ABC关于y轴对称的△A′B′C′.(3)求△ABC的面积.【考点】作图﹣轴对称变换.【分析】(1)根据C点坐标确定原点位置,然后作出坐标系即可;(2)首先确定A、B、C三点关于y轴对称的点的位置,再连接即可;(3)利用长方形的面积剪去周围多余三角形的面积即可.【解答】解:(1)如图所示:(2)如图所示:(3)△ABC的面积:3×4﹣4×2﹣2×1﹣2×3=12﹣4﹣1﹣3=4.21.阅读材料:小明发现一些含根号的式子可以写成另一个式子的平方如3+2=(1+)2,善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为正整数)则有:a+b=m2+2n2+2mn,所以a=m2+2n2,b=2mn.这样小明就找到了一种把a+b的式子化为平方式的方法.请仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得a=m2+3n2,b=2mn(2)若a+4=(m+n)2(其中a、b、m、n均为正整数),求a的值.【考点】二次根式的混合运算.【分析】(1)利用完全平方公式把(m+n)2展开即可得到a、b的值;(2)利用(1)中结论得到a=m2+3n2,2mn=4,即mn=2,利用有理数的整除性确定m和n的值,然后计算a的值.【解答】解:(1)(m+n)2=m2+3n2+2mn所以a=m2+3n2,b=2mn;故答案为m2+3n2,2mn;(2)由(1)得a=m2+3n2,2mn=4而a、b、m、n均为正整数所以m=2,n=1或m=1,n=2.所以当m=2,n=1时,a=22+3×12=7.当m=1,n=2时,a=12+3×22=13.22.某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费,甲乙两厂所收取的费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示.(1)甲厂的制版费1千元,其证书印刷单价0.5元/张,y甲与x的函数解析式y甲=x+1.(2)请求出印刷数量x≥2时,y乙与x的函数解析式.(3)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?(4)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?【考点】一次函数的应用.【分析】(1)当x=0时,y=1,由此即可得出甲厂的制版费为1千元,设y甲与x间的函数解析式为y甲=kx+b(k≠0),根据函数图象找出点的坐标,再利用待定系数法即可求出函数解析式;根据“单价=总价÷印刷数量”即可求出甲厂的印刷单价;(2)设y乙与x间的函数解析式为y乙=mx+n(m≠0),观察函数图象找出点的坐标,利用待定系数法即可求出函数解析式;(3)代入x=8,分别求出y甲与y乙的值,比较做差即可得出结论;(4)结合(2)的结论,根据“减少的单价=减少费用÷印刷数量”算出结果即可.【解答】解:(1)当x=0时,y甲=1∴甲厂的制版费为1千元.设y甲与x间的函数解析式为y甲=kx+b(k≠0)将点(0,1)、(6,4)代入y甲=kx+b中得:,解得:∴y甲与x间的函数解析式为y甲=x+1.证书印刷单价为:(4﹣1)÷6=0.5(元/张).答:甲厂的制版费为1千元,y甲与x间的函数解析式为y甲=x+1,证书印刷单价为0.5元/张.(2)设y乙与x间的函数解析式为y乙=mx+n(m≠0)当x≥2时,将点(2,3)、(6,4)代入y乙=mx+n中得:,解得:∴y乙=x+.(3)当x=8时,y甲=×8+1=5;当x=8时,y乙=×8+=.∵5>,且5﹣=(千元)=500(元).∴当印制证书8千个时,选择乙厂,节省费用500元.(4)每个证书降低费用为:500÷8000==0.0625(元).答:如果甲厂想把8千个证书的印制费用不大于乙厂,在不降低制版费的前提下,每个证书最少降低0.0625元.23.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)若AO=n2+1,AD=n2﹣1,OD=2n(n为大于1的整数),求α的度数;(3)当α为多少度时,△AOD是等腰三角形?【考点】等边三角形的判定与性质;全等三角形的判定与性质.【分析】(1)根据旋转的性质可得CO=CD,∠OCD=60°,根据有一个角是60°的等腰三角形是等边三角形解答;(2)利用勾股定理逆定理判定△AOD是直角三角形,并且∠ADO=90°,从而求出∠ADC=150°,再根据旋转变换只改变图形的位置不改变图形的形状与大小可得α=∠ADC;(3)根据周角为360°用α表示出∠AOD,再根据旋转的性质表示出∠ADO,然后利用三角形的内角和定理表示出∠DAO,再分∠AOD=∠ADO,∠AOD=∠DAO,∠ADO=∠DAO三种情况讨论求解.【解答】解:(1)△COD是等边三角形.理由如下:∵△BOC绕点C按顺时针方向旋转60°得△ADC∴CO=CD,∠OCD=60°∴△COD是等边三角形;(2)∵AD2+OD2=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2=AO2∴△AOD是直角三角形,且∠ADO=90°∵△COD是等边三角形∴∠CDO=60°∴∠ADC=∠ADO+∠CDO=90°+60°=150°根据旋转的性质,α=∠ADC=150;(3)∵α=∠ADC,∠CDO=60°∴∠ADO=α﹣60°又∵∠AOD=360°﹣110°﹣α﹣60°=190°﹣α∴∠DAO=180°﹣﹣(α﹣60°)=180°﹣190°+α﹣α+60°=50°∵△AOD是等腰三角形∴①∠AOD=∠ADO时,190°﹣α=α﹣60°解得α=125°②∠AOD=∠DAO时,190°﹣α=50°解得α=140°③∠ADO=∠DAO时,α﹣60°=50°解得α=110°综上所述,α为125°或140°或110°时,△AOD是等腰三角形.24.正方形ABCD的边长为4,将此正方形置于平面直角坐标系中,使AB边落在X轴的正半轴上,且A点的坐标是(1,0).(1)直线y=x经过点C,且与x轴交与点E,求四边形AECD的面积;(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F(﹣,0),且与直线y=3x平行,将(2)中直线l沿着y轴向上平移个单位交轴x于点M,交直线l1于点N,求△NMF的面积.【考点】一次函数综合题.【分析】(1)求得C的坐标,以及E的坐标,则求得AE的长,根据直角梯形的面积公式即可求得四边形的面积;(2)经过点E且将正方形ABCD分成面积相等的两部分的直线与CD的交点F到C的距离一定等于AE,则F的坐标可以求得,利用待定系数法即可求得直线EF的解析式;(3)根据直线l1经过点F(﹣,0)且与直线y=3x平行,知k=3,把F的坐标代入即可求出b的值即可得出直线11,同理求出解析式y=2x﹣3,进一步求出M、N的坐标,利用三角形的面积公式即可求出△MNF的面积..【解答】解:(1)在y=x中令y=4,即x=4解得:x=5,则B的坐标是(5,0);令y=0,即x=0解得:x=2,则E的坐标是(2,0).则OB=5,OE=2,BE=OB﹣OA=5﹣2=3∴AE=AB﹣BE=4﹣3=1边形AECD=(AE+CD)•AD=(4+1)×4=10;(2)经过点E且将正方形ABCD分成面积相等的两部分,则直线与CD的交点F,必有CF=AE=1,则F的坐标是(4,4).设直线的解析式是y=kx+b,则解得:.则直线l的解析式是:y=2x﹣4;(3)∵直线l1经过点F(﹣,0)且与直线y=3x平行设直线11的解析式是y1=kx+b则:k=3代入得:0=3×(﹣)+b解得:b=∴y1=3x+已知将(2)中直线l沿着y轴向上平移个单位,则所得的直线的解析式是y=2x﹣4+即:y=2x﹣3当y=0时,x=∴M(,0)解方程组得:即:N(﹣7,﹣19)S△NMF=×[﹣(﹣)]×|﹣19|=.答:△NMF的面积是.第21页共21页。
一、选择题(每题4分,共20分)1. 下列各数中,绝对值最小的是()A. -2B. -1C. 0D. 12. 已知a > 0,b < 0,则下列不等式中正确的是()A. a > bB. a < bC. -a > -bD. -a < -b3. 下列代数式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^24. 若x^2 - 5x + 6 = 0,则x的值为()A. 2B. 3C. 2 或 3D. 无法确定5. 下列函数中,是二次函数的是()A. y = x^2 + 2x + 1B. y = x^2 + 2C. y = 2x^2 - 4x + 3D. y = 2x + 3二、填空题(每题4分,共20分)6. 若a = 3,b = -2,则a^2 + b^2的值为______。
7. 分数2/3的倒数是______。
8. 若x = 4,则2x + 1的值为______。
9. 若a = -3,b = 2,则a^2 - b^2的值为______。
10. 下列方程中,方程x^2 - 5x + 6 = 0的解为______。
三、解答题(每题10分,共30分)11. 简化下列代数式:(1)(a + b)(a - b)(2)(a - b)^2 - (a + b)^2(3)(x - 1)(x + 1) - (x - 2)(x + 2)12. 解下列方程:(1)2x - 5 = 3x + 1(2)x^2 - 6x + 9 = 013. 已知二次函数y = ax^2 + bx + c(a ≠ 0),若a > 0,b < 0,c > 0,则函数的图像是()A. 上升的抛物线B. 下降的抛物线C. 上升的直线D. 下降的直线四、应用题(每题10分,共20分)14. 小明骑自行车从A地到B地,若以每小时10公里的速度行驶,则全程需要3小时;若以每小时15公里的速度行驶,则全程需要2小时。
江苏省无锡市宜兴市2024-2025学年上学期期中考试八年级数学试题一、单选题1.下面是人教版物理教材中部分电路元件的符号,不是轴对称图形的是()A .B .C .D .2.若22x -与38x -是同一个数的两个不相等的平方根,则这个数是()A .2B .2-C .4D .4-3.根据下列已知条件,能画出唯一的ABC V 的是()A .90C ∠= ,6AB =B .4AB =,3BC =,30A ∠= C .60A ∠= ,45B ∠= ,4AB =D .3AB =,4BC =,8CA =4.某镇准备在两两相交的三条公路围成的三角形空地上建一个物流园,使其到三条公路的距离相等,请问物流园所建位置应是()A .三角形三条角平分线的交点B .三角形三边垂直平分线的交点C .三角形三条中线的交点D .三角形三条高的交点5.下图中显示的是从镜子中看到的背后墙上电子钟的读数,由此你可以推断这时的实际时间是()A .10:05B .20:01C .20:10D .10:026.下面命题中,不正确的是()A .在△ABC 中,若三个内角满足∠C =∠A -∠B ,则△ABC 是直角三角形B .在△ABC 中,若三个内角满足::3:4:5A B C ∠∠∠=,则△ABC 是直角三角形C .在△ABC 中,若对应三边满足::3:4:5a b c =,则△ABC 是直角三角形D .在△ABC 中,若对应三边满足()()2a b a b c +-=,则△ABC 是直角三角形7.等腰ABC V 中,AB AC =,一边上的中线BD 将这个三角形的周长分为18和30两个部分,则这个等腰三角形的底边长为()A .8B .24C .8或24D .8或128.如图,ABC V 中,90BCA ∠=︒,5AB =,以直角三角形三边为直径,向外作半圆,其面积分别为S S S ₁,₂,₃,则S S S ++₁₂₃的值为()A .25πB .9πC .254πD .252π9.如图、在四边形ABCD 中,90ABC ADC ∠=∠=︒,E 是对角线AC 的中点,F 是对角线BD 上的动点,连接EF .若10AC =,6BD =,则EF 的最小值为()A .3B .4C .5D 10.如图,ABC V 中,90BCA ∠=︒,6BC =,8AC =,点D 是AB 的中点,将BCD △沿CD 翻折得到ECD ,连接AE ,BE ,则线段AE 的长等于()A .3B .4C .103D .145二、填空题11.2(2)-的平方根为12.已知等腰三角形的一个角是40︒,则它的顶角的度数是.13.如图,B C ∠=∠,若用“SAS ”说明ABE ACD ≌,则还需要加上条件:14.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=.15.∆ABC 中,AB =AC=5,BC =8,则∆ABC 的面积为.16.如图,在ABC V 中,AD 为ABC V 的角平分线,DE AB ⊥于点E ,ABC V 面积是24,5,4AB AC ==,则DE 的长为17.如图,圆柱形容器高9cm ,底面周长10cm ,在杯口点B 处有一滴蜂蜜,此时蚂蚁在杯外壁底部与蜂蜜相对的A 处,若蚂蚁刚出发时发现B 处的蜂蜜正以每秒钟1cm 沿杯内壁下滑,3秒钟后蚂蚁吃到了蜂蜜,求蚂蚁的平均速度至少是cm/s .18.在DEF 中,2D E ∠=∠,3DF =,7DE =,则EF =.(结果保留根号)三、解答题19.已知:如图,,AC DB 相交于点O ,,AB DC A D =∠=∠.求证:(1)ABO DCO △≌△;(2)OBC OCB ∠=∠.20.如图,正方形网格中每个小正方形边长都是1.(1)画出ABC V 关于直线l 对称的图形111A B C △;(2)在网格格点上找一点P ,ABP 与ABC V 全等;(要求标出不同于点C 的格点P 的位置)(3)在(2)的情况下,连接PA PC 、,则四边形PABC 的面积21.如图,,在Rt ABC △中,90C ∠=︒,(1)请在图1中用无刻度的直尺和圆规作图:作BAC ∠的角平分线交BC 于点D ,在AB ,AC 上求作点M ,N ,使A ,D 关于直线MN 对称;(不写作法,保留作图痕迹)(2)在(1)的条件下,连接DM ,DN ,若6AC =,10AB =,则BMD 与CND △的周长和为.(如需画草图,请使用图2)22.如图,在等边ABC V 中,AD BE =,BD CE 、相交于点F .(1)求CFD ∠的度数;(2)过点B 作BG CE ⊥,垂足为G .若1DF =,3FG =,则CE 的长为23.如图,有一个绳索拉直的木马秋干,绳索AB 的长度为5米,若将它往水平方向向前推进3米(即3DE =米),且绳索保持拉直的状态,求此时木马上升的高度.24.如图,在锐角ABC V 中,点E 是A 边上一点,BE CE =,AD BC ⊥于点D ,A 与EC 交于点G .(1)求证:EA EG =;(2)若26BE =,5CD =,G 为C 中点,求AG 的长.25.“赵爽弦图”是三国时期吴国数学家赵爽设计的组合图形,它是由四个完全相同的直角三角形拼成的正方形(1)如图1“赵爽弦图”中,四个完全相同的直角三角形的直角边长为a 、b ,斜边长为c ,请你借助该图、证明勾股定理;(2)一个零件的形状如图2,按规定这个零件中∠A 和∠C 都应是直角.工人师傅测得这个零件各边尺寸(单位:cm )如图2所示,这个零件符合要求吗?请说明理由.26.同学们,我们经常用翻折的方法验证两个图形是否是轴对称,并研究其相关性质,请你用翻折的性质解决下列问题:(1)如图1,将ACB 沿着A 翻折到ADB ,则ADB ∠=,DB =;(2)如图2,将长方形ABCD 对折,使得边A 、边A 重合,折痕与边BC 、边A 交于点E 、点F ,3AB =,10BC =,点P 是边A 上一点,将B ∠沿着EP 折叠得到M ∠,线段PM 、线段EM 分别交边A 于点N 、点Q .①当M 、N 重合时,线段PB 的长是多少?②当点P 与点A 重合时,点H 是边A 上一点,将C ∠沿着线段EH 折叠,使得点C 落在边A 上的点G ,线段GQ 的长是多少?。
一、选择题(每小题3分,共18分) 1. 在2,1,414,311,-3,中,无理数有A. 1个B. 2个C. 3个D. 4个2. 如图,数轴上A 、B 两点表示的数分别为-l 和3,点B 关于点A 的对称点为C ,则点C 所表示的数为A. -2-3B. -1-3C. -2+3D. 1+33. 如图所示,有一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,则这块地的面积为A. 24平方米B. 26平方米C. 28平方米D. 30平方米4. 如图,∠1、∠2、∠3、∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=70°,则∠AED 的度数是A. 110°B. 108°C. 105°D. 100°5.下列各组图形中,既是轴对称图形又是中心对称图形的一组是 A. 正方形、菱形、矩形、平行四边形 B. 正三角形、正方形、菱形、矩形 C. 正方形、矩形、菱形D. 平行四边形、正方形、等腰三角形6. 如图所示,设F 为正方形ABCD 上一点,CE ⊥CF 交AB 的延长线于E ,若正方形ABCD 的面积为64,ΔCEF 的面积为50,则ΔCBE 的面积为A. 20B. 24C. 25D. 26二、填空题(每小题3分,共24分) 7. 若|x+2|+3-y =0,则xy=________。
8. 12-3=________。
9. 如图所示,正方形ABCD 的对角线相交于点O ,点O 是正方形A ′B ′C ′O ′的一个顶点,如果两个正方形的边长都等于1,那么正方形A ′B ′C ′O ′绕顶点O 转动,两个正方形重叠部分的面积是________。
10. 估计215-与0.5的大小关系是215-________0.5. (填“>”“=”或“<”) 11. 如图所示,菱形ABCD 中,对角线AC ,BD 相交于点O ,若再补充一个条件能使菱形ABCD 成为正方形,则这个条件是________(只写一个条件即可)。
人教版八年级上学期期中考试数学试卷(一)一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c4.下列各式中,正确的是()A.B.C. =D.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±26.下列各分式中,最简分式是()A.B.C.D.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣18.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .12.若(x﹣2)0有意义,则x的取值范围是.13.分解因式:x2+x﹣2= .14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 cm.17.若x2+4x+1=0,则x2+= .18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= .三、解答题(本题共54分)19.(5分)请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.20.(2分)尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.21.(6分)分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.22.(7分)计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.23.(5分)先化简,再求值:,其中x=5.24.(5分)解分式方程:.25.(4分)已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.26.(4分)已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.27.(4分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.28.(4分)若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.29.(4分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A 旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.30.(4分)已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.参考答案与试题解析一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°【考点】KA:全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=58°.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c【考点】51:因式分解的意义.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.下列各式中,正确的是()A.B.C. =D.【考点】65:分式的基本性质.【分析】利用分式的基本性质对各式进行化简即可.【解答】解:A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.【点评】本题考查了分式的基本性质,解题的关键是在进行分式的运算时要同时乘除.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±2【考点】63:分式的值为零的条件.【分析】根据分式值为0的条件可得x2﹣4=0且x+2≠0,再解出x的值即可.【解答】解:由题意得:x2﹣4=0且x+2≠0,解得:x=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.6.下列各分式中,最简分式是()A.B.C.D.【考点】68:最简分式.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣1【考点】4E:完全平方式.【分析】这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【解答】解:依题意,得m﹣3=±4,解得m=7或﹣1.故选D.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF【考点】KF:角平分线的性质.【分析】题目的已知条件比较充分,满足了角平分线的性质要求的条件,可直接应用性质得到结论,与各选项进行比对,得出答案.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,∴PE=PF,又有AD=AD∴△APE≌△APF(HL∴AE=AF故选D.【点评】本题主要考查平分线的性质,由已知证明△APE≌△APF是解题的关键.9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定【考点】K6:三角形三边关系;K2:三角形的角平分线、中线和高.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.【解答】解:7﹣3<2x<7+3,即2<x<5.故选A.【点评】本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线.10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16【考点】K3:三角形的面积.【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .【考点】6F:负整数指数幂.【分析】根据负整数指数为正整数指数的倒数计算.【解答】解:3﹣2=.故答案为.【点评】本题主要考查了负指数幂的运算,比较简单.12.若(x﹣2)0有意义,则x的取值范围是x≠2 .【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.13.分解因式:x2+x﹣2= (x﹣1)(x+2).【考点】57:因式分解﹣十字相乘法等.【分析】因为(﹣1)×2=﹣2,2﹣1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(﹣1)×2=﹣2,2﹣1=1,∴x2+x﹣2=(x﹣1)(x+2).故答案为:(x﹣1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是两角和它们的夹边分别相等的两个三角形全等.【考点】KE:全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故答案为:两角和它们的夹边分别相等的两个三角形全等.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO .【考点】KB:全等三角形的判定.【分析】本题要判定△AOB≌△DOC,已知∠A=∠D,∠AOB=∠DOC,则可以添加AO=DO或AB=DC或BO=CO从而利用ASA或AAS判定其全等.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 1.5 cm.【考点】KF:角平分线的性质.【分析】作出图形,过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD解答.【解答】解:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=×4=1.5cm,∵AD是∠BAC的平分线,∴DE=CD=1.5cm.故答案为:1.5.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.若x2+4x+1=0,则x2+= 14 .【考点】4C:完全平方公式.【分析】由x2+4x+1=0可得x≠0,两边除以x可得到x+=﹣4,再两边平方,根据完全平方公式展开即可得到x2+的值.【解答】解:∵x2+4x+1=0,∴x+4+=0,即x+=﹣4,∴(x+)2=(﹣4)2,∴x2+2+=16,∴x2+=14.故答案为14.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式2n+1﹣2n=2n;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= 2 .【考点】37:规律型:数字的变化类.【分析】(1)根据等式的变化找出变化规律“第n个等式为2n+1﹣2n=2n”,此题得解;(2)根据2n=2n+1﹣2n将算式210﹣29﹣28﹣…﹣22﹣2进行拆项,合并同类项即可得出结论.【解答】解:(1)观察,发现规律:22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23,…,∴第n个等式为2n+1﹣2n=2n.故答案为:2n+1﹣2n=2n.(2)∵2n=2n+1﹣2n,∴210﹣29﹣28﹣…﹣22﹣2=210﹣210+29﹣29+28﹣28+27﹣…﹣23+22﹣2=22﹣2=2.故答案为:2.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.三、解答题(本题共54分)19.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.【点评】本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.20.尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.【考点】N4:作图—应用与设计作图;KF:角平分线的性质.【分析】作出角平分线,进而截取PB=400进而得出答案.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.21.分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(3a+1)(3a﹣1);(2)原式=p(p2﹣16p+64)=p(p﹣8)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.【考点】6B:分式的加减法;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)直接利用分式加减运算法则化简求出答案;(2)直接利用负指数幂的性质以及零指数幂的性质以及绝对值的性质分别化简求出答案.【解答】解:(1)原式===;(2)原式=2﹣1+1+3=5.【点评】此题主要考查了分式得加减运算以及实数运算,正确掌握运算法则是解题关键.23.先化简,再求值:,其中x=5.【考点】6D:分式的化简求值.【分析】把原式的第二项被除式分母及除式分母都分解因式,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后,再与第一项通分,利用同分母分式的减法运算计算,可化为最简,最后把x的值代入化简的式子中即可求出值.【解答】解:==﹣=﹣===,(4分)当x=5时,原式==.(5分)【点评】此题考查了分式的化简求值,分式的化简求值时,加减的关键是通分,通分的关键是找出各分母的最简公分母,分式的乘除关键是约分,约分的关键是找出公因式,本题属于化简求值题,解答此类题要先将原式化为最简,再代值,同时注意有时计算后还能约分,比如本题倒数第二步约去公因式x+1.24.解分式方程:.【考点】B3:解分式方程;86:解一元一次方程.【分析】方程的两边都乘以5(x+1),把分式方程转化成整式方程,求出方程的解,再代入方程进行检验即可.【解答】解:方程的两边都乘以5(x+1)、去分母得:5x=2x+5x+5,移项、合并同类项得:2x=﹣5,∴系数化成1得:x=﹣,经检验x=﹣是原方程的解,∴原方程的解是x=﹣.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要检验.25.已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.【考点】KB:全等三角形的判定.【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS)得出即可.【解答】证明:∵∠1=∠2,∴∠EAC=∠BAD,在△DAB和△EAC中,∴△ABD≌△ACE(SAS)【点评】此题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.26.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.【考点】KD:全等三角形的判定与性质.【分析】(1)易证△ABD≌△CDB,根据全等三角形的对应边相等知AB=DC;(2)因为△ABD≌△CDB,所以全等三角形的对应角∠ADB=∠CBD.然后由平行线的判定定理知AD∥BC.【解答】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),∴AB=DC(全等三角形的对应边相等);(2)∵Rt△ABD≌Rt△CDB[由(1)知],∴∠ADB=∠CBD(全等三角形的对应角相等),∴AD∥BC(内错角相等,两直线平行).【点评】本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.以及三角形全等的性质:全等三角形的对应边、对应角相等.27.在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.【考点】KD:全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.【解答】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,又AD=BC,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点评】本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.28.若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】根据x2+y2﹣4x+2y+5=0,可以求得x、y的值,从而可以求得所求式子的值.【解答】解:∵x2+y2﹣4x+2y+5=0,∴x2﹣4x+4+y2+2y+1=0,∴(x﹣2)2+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴()2010+y2010==1+1=2.【点评】本题考查配方法的应用、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.29.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)在MB的延长线上截取BE=DN,连接AE,根据正方形性质得出AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,证△ABE≌△ADN推出AE=AN;∠EAB=∠NAD,求出∠EAM=∠MAN,根据SAS证△AEM≌△ANM,推出ME=MN即可;(2)在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【解答】解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN﹣BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.【点评】本题考查了正方形性质和全等三角形的性质和判定的应用,题目具有一定的代表性,是一道比较好的题目,证明过程类似,培养了学生的猜想能力和分析归纳能力.30.已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.利用CE是角平分线,角平分线的性质定理,得EF=EH,再证明∠ABD=∠EBF,同理可证:EF=EG,根据HL证明Rt△EDH≌Rt△EDG,根据全等三角形的性质和角的和差关系可求∠CED.【解答】解:分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.∵CE是角平分线,∴EF=EH.∠ABC=100°,∠DBC=20°,∴∠ABD=80°,又∵∠EBF=80°,∴∠ABD=∠EBF,∴EF=EG,∴EH=EG,在Rt△EDH与Rt△EDG中,,∴Rt△EDH≌Rt△EDG(HL),∴∠EDH=∠EDG,∴∠CED=∠EDH﹣∠ECD=(∠BDH﹣∠BCA)=×20°=10°.【点评】本题考查了全等三角形的判定与性质,角的平分线的性质定理和逆定理,本题的关键是作出辅助线,以及角的平分线性质定理的应用.人教版八年级上学期期中考试数学试卷(二)一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣212.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE5.在下列图案中,不是轴对称图形的是()A.B.C.D.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD7.下列等式成立的是()A.B.C.D.8.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4 B.5 C.6 D.无法确定9.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()A.B.C.D.二.细心填一填(每小题2分,共20分)11.一种细菌的半径为0.000407m,用科学记数法表示为m.12.当x= 时,分式没有意义;当x= 时,分式的值为0.13.计算(﹣)3÷(﹣)2的结果是.14.计算+的结果是.15.若x2+mx+16是完全平方式,则m= .16.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC 和△DFE全等.添加的条件是(填写一个即可):,理由是.17.如图,把△ABC绕C点顺时针旋转30°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=80°,则∠A=°.18.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.19.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=;(2)若AB=5cm,BC=3cm,则△PBC的周长= .20.探究:观察下列各式,,,…请你根据以上式子的规律填写: = ;= .三.精心解一解:(21,22每小题2分,23,24,25每小题2分,共16分)21.因式分解:2mx2﹣4mx+2m= .22.因式分解:x2y﹣9y= .23.化简:﹣+.24.先化简,再求值:(1﹣)÷,其中x=2.25.解分式方程:四.耐心想一想:(本小题4分)26.四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?五.精确作一作:作图题(本小题4分)27.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)六.耐心看一看(每小题6分)28.如图,△ABC中A(﹣2,3),B(﹣31),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1;并写出△A1B1C1三个顶点坐标:,,.(2)画出△ABC关于y轴对称的△A2B2C2;并写出△A2B2C2三个顶点坐标:,,.七.严密推一推(每小题4分,共20分)29.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.30.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.31.已知:AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)AO=BO.32.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.33.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.八.挑战自我(选做本题4分)34.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD 与CD﹣CB的大小关系,并证明你的结论.解:结论:证明:参考答案与试题解析一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣21【考点】负整数指数幂.【分析】根据负整数指数为正整数指数的倒数进行计算即可.【解答】解:原式=(﹣7)3=﹣343.故选:C.【点评】此题主要考查了负整数指数幂、乘方,关键是掌握负整数指数为正整数指数的倒数.2.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2 C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】分别根据零指数幂,负整数指数幂和平方的运法则进行计算,再比较大小即可.【解答】解:∵=6,(﹣2)0=1,(﹣3)2=9,又∵1<6<9,∴(﹣2)0<<(﹣3)2.故选A.【点评】主要考查了零指数幂,负整数指数幂和平方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于1.3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A正确;B、每把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【考点】全等三角形的判定.【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.5.在下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.。
八年级上学期期中考试数学试题一、选择题(共10题,每题3分)1、下列说法中正确的是( )A 、无理数的相反数也是无理数B 、无理数就是带根号的数C 、平行四边形既是中心对称图形,又是轴对称图形D 、无限小数都是无理数。
2、下列各数为无理数的是( ) A 、7256.0 B 、o π C 、464D 、17 3、已知一个三角形的三边长分别为a 、b 、c ,且它们满足ab c b a 2)(22=-+,则该三角形的形状为( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、无法确定 4、平行四边形ABCD 中,AD CD BC AB :::可以是( ) A 、5:4:3:2 B 、3:3:2:2 C 、3:2:3:2 D 、2:3:3:25、下列各组线段中⑴22n m -、mn 2、22n m +),(n m n m >为正整数,且;⑵15,12,9; ⑶25,24,7;⑷2225,4,3;⑸31、41、51;其中可以构成直角三角形的有( )组。
A 、2 B 、3 C 、4 D 、5 6、下列图案中,是中心对称图形的是( )7、以直角三角形的三边为边长分别向外作正方形,已知其中两个正方形的面积分别为20和16,则第三个正方形的边长为( )A 、52B 、4或6C 、52或4D 、2或6 8、小明用如图所示的胶滚沿从左到右的方向将图案滚涂到墙上。
下列给出的四个图案中,符合图示胶滚涂 出的图案的是( )9、下列说法中正确是A、对角线互相平分的四边形是菱形 B、对角线互相平分且相等的四边形是菱形 C、对角线互相垂直的四边形是菱形 D 、对角线相等垂直且平分的四边形是正方形 10、矩形纸片ABCD 的边长4=AB ,2=AD 。
将矩形纸片沿EF 折叠,使点A 与点C 重合,折 叠后在其一面着色(如图所示),则着色部分的部 分面积为 A 、8 B 、211 C 、25D 、4 二、填空题:(共10题,每题3分)11、8116的算术平方根为 ,平方根为 ; 12、平方根等于本身的数 ;立方根等于本身的数 ; 13、化简:=34;=364 ;=-8 ; 14、在四边形ABCD 中,4:3:3:2:::=∠∠∠∠D C B A ,则=∠D ;15、比较大小:; 16、若一个多边形的外角和比它的内角和少01080,则这个多边形为 边形; 17、在ABC ∆中,10=AB ,17=AC ,BC 边上的高为8,则=BC18、一个四边形的边长依次为a 、b 、c 、d ,且bd ac d c b a 222222+=+++,则这个四边形为 ;19、如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC , AD = 2,AB = 3,BC = 4,则CD 的长是20、在平行四边形ABCD 中, B ∠的平分线将CD 分成cm 4和cm 2两部分, 则平行四边形ABCD 的周长为 。
人教版八年级(上)数学期中试卷一、选择题(共10个小题,每小题3分,共30分)1.(3分)下面所给的图形中,不是轴对称图形的是()A.B.C.D.2.(3分)若一个正多边形的内角和小于外角和,则该正多边形的每个内角度数为()A.30°B.60°C.120°D.150°3.(3分)如图,在△ABC和△DEF中,已知AB=DF,BC=EF,根据(SAS)判定△ABC≌△DEF,还需的条件是()A.∠A=∠D B.∠B=∠EC.∠B=∠F D.以上三个均可以4.(3分)下列计算正确的是()A.(﹣a3)3=﹣a9B.(3x3)3=9x9C.2x3•5x3=10x3D.(2a7)÷(4a3)=2a45.(3分)如图,BC=BE,CD=ED,则△BCD≌△BED,其依据是()A.SAS B.AAS C.SSS D.ASA6.(3分)把分式中的x、y的值都扩大2倍,分式的值有什么变化()A.不变B.扩大2倍C.扩大4倍D.缩小一半7.(3分)下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)2=a2﹣2ab+b28.(3分)下列各式从左到右变形,属于因式分解的是()A.x(x+2)=x2+2x B.x2+3x+1=x(x+3)+1C.(x﹣2)(x+2)=x2﹣4D.4x2+2x=2x(2x+1)9.(3分)如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB =6cm,则△DEB的周长是()A.6cm B.4cm C.10cm D.以上都不对10.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7二、填空题(共8个小题,每题2分,共16分)11.(2分)计算:(﹣3xy2)3=.12.(2分)因式分解:x2﹣4=.13.(2分)当x时,分式的值为正数.14.(2分)如图在△ABC中,∠C=90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD:∠DBA=2:1,则∠A为.15.(2分)如图:DC∥AB,要证△ABD≌△CDB,根据“SAS”可知,需要添加一个条件:.16.(2分)比较大小:2.(填“>”,“<”或“=”)17.(2分)如果等腰三角形的两边长分别是4、8,那么它的周长是.18.(2分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.三、计算:(共5个小题,每题4分,共20分)19.(4分)(﹣1)2018+(﹣)2﹣(3.14﹣π)0.20.(4分)();21.(4分)(﹣4a3+12a3b﹣7a3b2)÷(﹣4a2).22.(4分)(x+2y)2﹣(x﹣2y)2.23.(4分)求x的值:27(8x﹣)3=216.四、解答题(24题5分,25题5分,26题7分,27题7分,28题10分,共34分)24.(5分)先化简,再求值:[(a﹣2b)2+(a﹣2b)(2b+a)﹣2a(2a﹣b)]÷2a.其中a=2,b=.25.(5分)如图:已知AD∥BC,AD⊥DF,BC⊥BE,DF=BE,求证:AE=FC.26.(7分)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路米;(2)求原计划每小时抢修道路多少米?27.(7分)(1)设A=(x2+ax+5)(﹣2x)2﹣4x4,化简A;(2)若A﹣6x3的结果中不含有x3项,求4a2﹣4a+1的值.28.(10分)在Rt△ABC中,BC=AC,∠ACB=90°,点D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CE和CF,连接AE、BF.(1)当点D在线段AB上时(点D不与点A、B重合),如图1①请你将图形补充完整;②线段BF、AD所在直线的位置关系为,线段BF、AD的数量关系为;(2)当点D在线段AB的延长线上时,如图2①请你将图形补充完整;②在(1)中②问的结论是否仍然成立?如果成立请进行证明,如果不成立,请说明理由.人教版八年级(上)数学期中试卷参考答案与试题解析一、选择题1.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.2.【解答】解:设这个正多边形为n边形,根据题意,得:(n﹣2)×180°<360°,解得n<4.所以该正多边形为等边三角形,所以该正多边形的每个内角度数为60°.故选:B.3.【解答】解:∵AB=DF,BC=EF,∴添加条件∠B=∠F,则△ABC≌△DFE(SAS),故选:C.4.【解答】解:A、原式=﹣a9,符合题意;B、原式=27x9,不符合题意;C、原式=10x6,不符合题意;D、原式=a4,不符合题意.故选:A.5.【解答】解:在△BCD和△BED中,,∴△BCD≌△BED(SSS),故选:C.6.【解答】解:分别用2x和2y去代换原分式中的x和y,====×.故选:D.7.【解答】解:A、应为(a﹣b)2=a2﹣2ab+b2,本选项错误;B、(a+b)(a﹣b)=a2﹣b2,本选项正确;C、应为(a+b)2=a2+2ab+b2,本选项错误;D、应为(a+b)2=a2+2ab+b2,本选项错误.故选:B.8.【解答】解:A.从左边到右边的变形不属于因式分解,故本选项不符合题意;B.从左边到右边的变形不属于因式分解,故本选项不符合题意;C.从左边到右边的变形不属于因式分解,故本选项不符合题意;D.从左边到右边的变形属于因式分解,故本选项符合题意;故选:D.9.【解答】解:∵∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.故选:A.10.【解答】解:如图:故选:D.二、填空题11.【解答】解:(﹣3xy2)3=﹣27x3y6;故答案为:﹣27x3y6.12.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).13.【解答】解:分式的值为正数,则分子分母同号即同时为正或同时为负,∵x2>0,∴同时为负不可能,则同时为正即x﹣1>0,x2>0,x>1,故答案为:x>1.14.【解答】解:∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠DBA,∵∠CBD:∠DBA=2:1,∠C=90°,∴在△ABC中,∠A+∠ABC=∠A+∠A+2∠A=90°,解得∠A=22.5°.故答案为:22.5°.15.【解答】解:∵DC∥AB,∴∠ABD=∠CDB,又∵BD=DB,∴要证△ABD≌△CDB(SAS),需要添加一个条件AB=CD,故答案为:AB=CD.16.【解答】解:∵2≈2.33,≈2.45,∴2<;故答案为:<.17.【解答】解:∵等腰三角形有两边分别分别是4和8,∴此题有两种情况:①4为底边,那么8就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20,故答案为:2018.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.三、计算:19.【解答】解:原式=1+﹣1=.20.【解答】解:(1)原式=•=•=•=;21.【解答】解:原式=﹣4a3÷(﹣4a2)+12a3b÷(﹣4a2)﹣7a3b2÷(﹣4a2)=a﹣3ab+ab2.22.【解答】解:原式=(x+2y+x﹣2y)(x+2y﹣x+2y)=2x•4y=8xy.23.【解答】方程整理得:(8x﹣)3=8,开立方得:8x﹣=2,解得:x=.四、解答题24.【解答】解:原式=(a2﹣4ab+4b2+a2﹣4b2﹣4a2+2ab)÷2a=(﹣2a2﹣2ab)÷2a=﹣a﹣b,当a=2,b=时,原式=﹣2﹣=.25.【解答】证明:∵AD∥BC,∴∠A=∠C,∵AD⊥DF,BC⊥BE,∴∠D=∠B=90°,在△ADF和△CBE中,,∴△ADF≌△CBE(AAS),∴AE=FC.26.【解答】解:(1)按原计划完成总任务的时,已抢修道路3600×=1200米,故答案为:1200米;(2)设原计划每小时抢修道路x米,根据题意得:,解得:x=280,经检验:x=280是原方程的解.答:原计划每小时抢修道路280米.27.【解答】解:(1)A=(x2+ax+5)×4x2﹣4x4=4x4+4ax3+20x2﹣4x4=4ax3+20x2;(2)A﹣6x3=4ax3+20x2﹣6x3=(4a﹣6)x3+20x2.∵A﹣6x3的结果中不含有x3项,∴4a﹣6=0.∴a=.当a=时,4a2﹣4a+1=4×﹣4×+1=4.28.【解答】解:(1)①见图1所示.②证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠ACB=∠DCF,∴∠ACD=∠BCF∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.故答案为:垂直、相等.(2)①见图2所示.②成立.理由如下:证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠DCF+∠BCD=∠ACB+∠BCD,即∠ACD=∠BCF,∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.。
苏科版八年级上册数学期中考试试卷一、单选题1.下面的图形中,不是轴对称图形的是()A .B .C .D .2.下列各式中,正确的是()A4=±B .(24=C 5=-D 3=-3.下列关于全等三角形的说法中,正确的是()A .周长相等的两个等边三角形全等B .周长相等的两个等腰三角形全等C .周长相等的两个直角三角形全等D .周长相等的两个钝角三角形全等4.下列条件中,不能判定△ABC 为直角三角形的是()A .222c a b =+B .A B C ∠+∠=∠C .::2:3:5A B C ∠∠∠=D .6a =,12b =,10c =5.已知等腰三角形一腰上的垂直平分线与另一腰所在直线的夹角是40°,则底角的度数是A .65°B .65°或25°C .70°D .70°或20°6.如图,△ABC 中,∠B=90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E ,已知∠C=36°,则∠BAE 的度数为()A .16°B .17°C .18°D .19°7.已知△ABC 的面积为16,BP 平分∠ABC ,且AP ⊥BP 于点P ,则△BPC 的面积是A .12B .8C .6D .48.如图,以Rt △ABC 的三边为直角边分别向外作等腰直角三角形.若影部分的面积为()A .52B .254C .252D .5二、填空题9.4的平方根是.10.直角三角形的两直角边分别为6和8,则斜边是________.11.已知360x y -+-=,则以x ,y 的值为两边长的等腰三角形的周长是_______.12.如图,在△ABC 中,AB 的垂直平分线l 交BC 于点D ,BC =7,AC =4,则△ACD 的周长为________.13.如图,在Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D .若BD :DC=3:2,点D 到AB 的距离为6,则BC 的长是_________.14.如图,将分别含有30°、45︒角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为65︒,则图中角α的度数为_______.15.已知:如图,在△ABC 中,∠A=40°,AB=AC ,BF=CD ,BD=CE ,则∠FDE=____°.16.一架云梯长25米,如图靠在墙上,云梯底端离墙15米,现把云梯顶端向上移4米,那么它的底端离墙________米.17.如图,在△ABC 中,∠BAC =60°,AD 平分∠BAC ,BD ⊥AD ,F 是AD 上一动点,取AB 中点E ,连接EF 、BF ,若BD =1,则△BEF 周长的最小值是________.18.如图,在Rt △ABC 中,∠ABC =90°,5AB =,AC =13,BC =12,BAC ∠与ACB ∠的角平分线相交于点D ,点M 、N 分别在边AB 、BC 上,且∠MDN =45°,连接MN ,则△BMN 的周长为___.三、解答题19.求下列各式中的x .(1)(x +1)2=64;(2)2(x﹣1)3=﹣54.20.如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC (即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)若有一格点P到点A、B的距离相等(PA=PB),则网格中满足条件的点P共有个;(3)在直线l上找一点Q,使QB+QC的值最小.21.小渝和小川是一对好朋友,如图,小渝家住A,小川家住B.两家相距10公里,小渝家A在一条笔直的公路AC边上,小川家到这条公路的距离BC为6公里,两人相约在公路D处见面,且两家到见面地点D的距离相等,求小渝家A到见面地点D的距离.22.如图,∠A=∠B,AE=BE,∠1=∠2,点D在AC边上.(1)求证:△AEC≌△BED.(2)若∠1=40°,求∠BDE的度数.23.如图,△ABC 中,∠ACB =90°,点D 是边BC 上一点,DE ⊥AB 于点E ,点F 是线段AD 的中点,连接EF ,CF .(1)求证:EF =CF ;(2)若∠BAC =30°,AD =6,求C ,E 两点间的距离.24.阅读下列解题过程:12⨯-1⨯=请回答下列问题:(1()2n >:(2)利用上面所提供的解法,请计算(3)不计算近似值,试比较与的大小,并说明理由.25.在一个三角形中,如果一个角是另一个角的2倍,这样的三角形我们称之为“倍角三角形”.如图,△ABC 中,∠ACB =90°,点P 是线段AB 上一点(不与A 、B 重合),连接CP .(1)当∠B =72°时;①若∠CPB =54°,则△ACP“倍角三角形”(填“是”或“否”);②若△BPC 是“倍角三角形”,求∠ACP 的度数;(2)当△ABC 、△BPC 、△ACP 都是“倍角三角形”时,求∠BCP 的度数.26.在长方形ABCD中,AB=CD=10,BC=AD=8.(1)P为BC上一点,将△ABP沿直线AP翻折至△AEP的位置(点B落在点E处).①如图1,当点E落在边CD上时,直接写出此时DE=_______.②如图2,PE与CD相交于点F,AE与CD相交于点G,且FC=FE,求BP的长.(2)如图3,已知点Q为射线BA上的一个动点,将△BCQ沿CQ翻折,点B恰好落在直线DQ上的点B′处,求BQ的长.参考答案1.A【解析】【详解】试题分析:A是中心对称图形,不是轴对称图形,B.C、D都是轴对称图形,故选A.考点:轴对称图形.2.D【分析】根据算术平方根的定义、立方根的定义进行判断即可.【详解】解:A 4=,本选项错误;B 、(222==,本选项错误;C 、5==,本选项错误;D 3=-,本选项正确,故选:D .【点睛】本题考查算术平方根和立方根的定义及性质,熟练掌握定义和性质是解答的关键.3.A 【解析】【分析】根据全等三角形的概念、性质定理和判定定理判断即可.【详解】解:A 、周长相等的两个等边三角形的三边对应相等,则这两个等边三角形全等,故本选项说法正确;B 、周长相等的两个等腰三角形的对应边(对应角)不一定相等,则这两个等腰三角形不一定全等,故本选项说法错误;C 、周长相等的两个直角三角形的对应边(对应角)不一定相等,则这两个等腰三角形不一定全等,故本选项说法错误;D 、周长相等的两个钝角三角形全等的对应边(对应角)不一定相等,则这两个等腰三角形不一定全等,故本选项说法错误;故选:A .【点睛】本题考查的是全等三角形的判定,掌握全等三角形的概念和性质定理是解题的关键.4.D【分析】根据勾股定理的逆定理判断A 和D 即可;根据三角形的内角和定理判断B 和C 即可.【详解】解:A .222c a b =+ ,90C ∴∠=︒,ABC ∆∴是直角三角形,故本选项不符合题意;B .A BC ∠+∠=∠ ,A B C ∠+∠=∠,90C ∴∠=︒,ABC ∆∴是直角三角形,故本选项不符合题意;C .::2:3:5A B C ∠∠∠= ,180A B C ∠+∠+∠=︒,ABC ∆∴是直角三角形,故本选项不符合题意;D .22261012+≠ ,∴以a ,b ,c 为边不能组成直角三角形,故本选项符合题意;故选:D .【点睛】本题考查了勾股定理的逆定理,三角形的内角和定理等知识点,能熟记勾股定理的逆定理的内容和三角形的内角和定理等于180︒是解题的关键.5.B 【解析】【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【详解】解:等腰直角三角形腰的垂直平分线与另一腰平行,不相交,为此分两种情况考虑;①当为锐角等腰三角形时,如图:∵∠ADE=40°,DE⊥AC,∴∠AED=90°,∴∠A+∠ADE=90°,∴∠A=90°-∠ADE=50°,∵AB=AC,∴∠B=∠C=180502︒-︒=65°;②当为钝角等腰三角形时,如图:∵∠ADE=40°,DE⊥AB,∴∠AED=90°,∴∠BAC=∠ADE+∠AED=40°+90°=130°,∵AB=AC,∴∠B=∠C=1801302︒-︒=25°;∴底角的度数为65°或25°.故选:B.【点睛】本题考查了等腰三角形的性质、三角形内角和定理以及三角形外角性质,分类讨论是正确解答本题的关键.6.C【解析】【分析】根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质得到∠EAC=∠C=36°,计算即可.【详解】∵ED是AC的垂直平分线,∴EA=EC,∴∠EAC=∠C=36°,∵∠C=36°,∠B=90°,∴∠BAC=54°,∴∠BAE=∠BAC-∠CAE=18°故选:C.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.7.B【解析】【分析】根据已知条件证得△ABP≌△EBP,根据全等三角形的性质得到AP=PE,得出S△ABP=S△EBP,S△ACP=S△ECP,推出S△PBC=1S△ABC,即可得到答案.2【详解】解:如图:∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,ABP EBP BP BP APB EPB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABP ≌△EBP (ASA ),∴AP=PE ,∴S △ABP =S △EBP ,S △ACP =S △ECP ,∴S △PBC =12S △ABC =12×16=8;故选:B .【点睛】本题考查了等腰三角形的判定与性质,三角形的面积,主要利用了等底等高的三角形的面积相等,作辅助线构造出等腰三角形是解题的关键.8.D【解析】【分析】先用直角三角形的边长表示出阴影部分的面积,再根据勾股定理可得:AB 2=AC 2+BC 2,进而可将阴影部分的面积求出.【详解】解:()22222211112222S AC BC AB AB AC BC =++=++阴影,∵在Rt △ABC 中,AB 2=AC 2+BC 2=25=,∴AB 2+AC 2+BC 2=10,∴S 阴影=12×10=5.故选:D .【点睛】本题考查了勾股定理的知识,能够运用勾股定理证明三个等腰直角三角形的面积之间的关系是解决本题的关键.9.±2【解析】【详解】解:∵2(2)4±=,∴4的平方根是±2.故答案为±2.10.10【解析】【分析】利用勾股定理即可得.【详解】10=,故答案为:10.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题关键.11.15【解析】【分析】先根据非负数的性质求得x 、y 的值,然后再根据等腰三角形的性质以及三角形三边关系进行讨论即可得.【详解】根据题意得:30x -=,60y -=,解得:3x =,6y =,①3是腰长时,三角形的三边分别为3、3、6,336+= ,∴不能组成三角形,②3是底边时,三角形的三边分别为3、6、6,能组成三角形,周长36615=++=,所以,三角形的周长为15,故答案为:15.【点睛】本题了非负数的性质,等腰三角形的性质,三角形三边的关系,涉及了绝对值的非负性,算术平方根的非负性,等腰三角形的性质等,求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.12.11【解析】【分析】根据线段的垂直平分线的性质得到DA=DB,然后利用等线段代换得到△ACD的周长=AC +BC.【详解】解:∵AB的垂直平分线l交BC于点D,∴DA=DB,∴△ACD的周长=AC+CD+AD=AC+CD+DB=AC+BC=4+7=11.故答案为:11.【点睛】本题考查了线段垂直平分线的性质:线段垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等13.15【解析】【分析】作DE⊥AB于E,如图,则DE=6,根据角平分线定理得到DC=DE=6,再由:3:2BD DC=可计算出BD=9,然后利用BC=BD+DC进行计算即可.【详解】解:作DE⊥AB于E,如图,则DE=6,∵AD平分∠BAC,∴DC=DE=6,∵:3:2BD DC=,∴BD=32×6=9,∴BC=BD+DC=9+6=15.故答案为:15.【点睛】本题考查了角平分线的性质定理,掌握定理的内容是解题的关键.14.140︒【解析】【分析】如图,首先标注字母,利用三角形的内角和求解ADC ∠,再利用对顶角的相等,三角形的外角的性质可得答案.【详解】解:如图,标注字母,由题意得:906525,ACB ∠=︒-︒=︒60,A ∠=︒ 180602595,BDE ADC ∴∠=∠=︒-︒-︒=︒45,B ∠=︒ 4595140.B BDE α∴=∠+∠=︒+︒=︒故答案为:140︒【点睛】本题考查的是三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键.15.70【解析】【分析】先由等腰三角形的性质求得B Ð的大小,再证明FBD DEC ≅ ,得到DFB EDC ∠=∠,又由三角形内角和为180BFD B FDB ∠+∠+∠=︒,即180EDC B FDB ∠+∠+∠=︒,可得180EDC FDB B ∠+∠=︒-∠,又因为BDC ∠是平角可得:180()FDE EDC FDB ∠=︒-∠+∠,求解即可得出答案.【详解】AB AC = ,180702A B C -∠∴∠=∠==︒ ,在FBD 和DEC 中,BD CE B C BF CD =⎧⎪∠=∠⎨⎪=⎩,()FBD DEC SAS ≅ ,DFB EDC ∴∠=∠,在FBD 中,180BFD B FDB ∠+∠+∠=︒,180EDC B FDB ∴∠+∠+∠=︒,180110EDC FDB B ∴∠+∠=︒-∠=︒,180FDB FDE EDC ∠+∠+∠=︒ ,180()70FDE EDC FDB ∴∠=︒-∠+∠=︒.故答案为:70.【点睛】本题考查了等腰三角形和全等三角形的知识,特别是角的等量代换成为本题解答的关键.16.7【解析】【分析】分别利用勾股定理求解即可.【详解】解:如图,在Rt △AOB 中,AB=25,OB=15,由勾股定理得:20OA ===,在Rt △COD 中,CD=25,OC=20+4=24,由勾股定理得:7OD===米,故答案为:7.【点睛】本题考查勾股定理的应用,理解题意,会利用勾股定理解决实际问题是解答的关键.17.1【解析】【分析】延长BD、AC交于点G,连接GE、GF,构造△BAD≌△GAD,得到AD垂直平分BG,从而BF=FG,故BF+EF=GF+EF≥GE,接下来求出GE,△BEF周长的最小值即为GE+BE.【详解】解:延长BD、AC交于点G,连接GE、GF,∵AD平分∠BAC,∴∠BAD=∠GAD,∵BD⊥AD,∴∠ADB=∠ADG,在△BAD与△GAD中,BAD GAD AD ADADB ADG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BAD≌△GAD(ASA),∴BD=DG,∴AD垂直平分BG,∴BF=FG,∴BF+EF=GF+EF≥GE,∵S△ABG =12BG•AD=12AB•GE,∴GE =BG DA AB⨯,∵∠BAC =60°,∴BD =12AB =1,∴AB =2,∴AD =∴GE ,∵E 为AB 中点,∴BE =1,∴△BEF 周长的最小值为1故答案为:1【点睛】此题考查了角平分线的定义、全等三角形的判定与性质、垂直平分线的判定与性质、勾股定理、等面积法,解决此题的关键在于构造△BAD ≌△GAD ,将BF +EF 转化为GF +EF .18.4【解析】【分析】过D 点作DE AB ⊥于E ,DF BC ⊥于F ,DH AC ⊥于H ,在FC 上截取FP EM =,根据角平分线的性质得到DE=DH=DF ,再证明四边形BEDF 为正方形得到BE=BF=DE=DF ,接着证明Rt △ADE ≌Rt △ADH 得到AE=AH ,证明Rt △CDF ≌Rt △CDH 得到CP=CH ,勾股定理求得正方形BEDF 的边长,证明△DEM ≌△DFP ,△DMN ≌△DPN 利用等线段代换得到△BMN 的周长=BE+BF .【详解】如图,过D 点作DE AB ⊥于E ,DF BC ⊥于F ,DH AC ⊥于H ,在FC 上截取FP EM =,DA 平分BAC ∠,∴DE DH =,同理可得DF DH =,∴DE DF =,90DEB B DFB ∠=∠=∠=︒,∴四边形BEDF 为正方形,∴BE BF DE DF ===,在Rt ADE △和Rt ADH 中,AD ADDE DH=⎧⎨=⎩∴Rt ADE △≌Rt ADH (HL ),∴AE AH =,同理可得Rt CDF Rt CDH ≌(HL ),CF CH ∴=,设正方形BEDF 的边长为x ,则5AE AH x ==-,12CF CH x ==-,AH CH AC += ,51213x x ∴-+-=,解得2x =,即2BE =,DE DF DEM DFP EM FP =∠=∠=,,,∴DEM DFP ≌(SAS),∴,DM DP EDM FDP =∠=∠,∴90MDP EDF ∠=∠=︒,45MDN ∠=︒,∴45PDN ∠=︒,在△DMN 和△DPN 中,DM DP MDN PDN DN DN =⎧⎪∠=∠⎨⎪=⎩∴DMN DPN ≌(SAS),∴MN NP NF FP NF EM ==+=+.∴BMN △的周长=MN BM BN++EM BM BN NF=+++BE BF=+22=+4=.故答案为4.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等全等三角形的判定与性质,添加适当的辅助线是解题的关键.19.(1)1279x x ==-,;(2)2x =-【解析】【分析】(1)移项,可得平方的形式,根据开平方,可得答案;(2)根据开立方,可得答案.【详解】解(1)(x +1)2=64,X+1=±8,∴x+1=8,x+1=-8∴1279x x ==-,;(2)2(x ﹣1)3=﹣54(x﹣1)3=﹣27x﹣1=-3∴x=-2.【点睛】本题考查了平方根和立方根.解题的关键是能够先化成乘方的形式,再开方,求出答案.20.(1)见解析;(2)4;(3)见解析.【解析】【分析】(1)分别作出A,B,C的对应点A1,B1,C1,再顺次连接即可;(2)在线段AB的垂直平分线性质格点即可;(3)连接BC1交直线l于点Q,连接CQ,此时BQ+CQ的值最小.【详解】解:(1)如图,△A1B1C1即为所求.(2)如图,满足条件的点P有4个,故答案为:4.(3)如图,点Q即为所求.【点睛】本题考查作图-轴对称变换,线段的垂直平分线的性质,轴对称最短问题等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.254公里.【解析】【分析】先利用勾股定理求出AC 的长,设AD BD x ==公里,从而可得CD 的长,再在Rt BCD 中,利用勾股定理即可得.【详解】解:由题意得:10AB =公里,6BC =公里,AD BD =,BC AC ⊥,8AC ∴===(公里),设AD BD x ==公里,则(8)CD AC AD x =-=-公里,在Rt BCD 中,222BC CD BD +=,即2226(8)x x +-=,解得254x =(公里),答:小渝家A 到见面地点D 的距离为254公里.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题关键.22.(1)见解析(2)70︒【分析】(1)要证明AEC BED ∆≅∆,根据题目中的条件,先证明AEC BED ∠=∠即可,由12∠=∠,即可得到AEC BED ∠=∠,然后写出全等的条件,即可证明结论成立;(2)根据全等三角形的性质和等腰三角形的性质,可以求得BDE ∠的度数.(1)解:证明:12∠=∠ ,12AED AED ∴∠+∠=∠+∠,AEC BED ∴∠=∠,在AEC ∆和BED ∆中,A B AE BE AEC BED ∠=∠⎧⎪=⎨⎪∠=∠⎩()AEC BED ASA ∴∆≅∆;(2)解:AEC BED ∆≅∆ ,ED EC ∴=,ACE BDE ∠=∠,ECD EDC ∴∠=∠,140∠=︒ ,70ECD EDC ∴∠=∠=︒,70ECA ∴∠=︒,70BDE ∴∠=︒,即BDE ∠是70︒.23.(1)见解析(2)3【分析】(1)利用直角三角形斜边上的中线的性质可得EF=12AD,CF=12AD,进而求解EF=CF;(2)连接CE,易求EF=AF=CF=3,结合等腰三角形的性质可求解∠CFE=60°,利用等边三角形的性质可求解CE的长.【详解】(1)证明:∵DE⊥AB,∴∠DEA=90°,在Rt△AED和Rt△ACD中,∵点F是斜边AD的中点,∴EF=12AD,CF=12AD,∴EF=CF;(2)解:连接CE,由(1)得EF=AF=CF=12AD=3,∴∠FEA=∠FAE,∠FCA=∠FAC,∴∠EFC=2∠FAE+2∠FAC=2∠BAC=2×30°=60°,∴△CEF是等边三角形∴CE=EF=CF=3∴C,E两点间的距离为3.24.(1(2)9;(3【分析】(1)由解题过程可以看出该解题过程运用的是分母有理化运算,有理化后分母为1,分子(2)中各项按规律化简后相加可以消除互为相反数的项,没有抵消的计算得到结果.(3)利用倒数关系比较大小.【详解】解:(112⨯=-,1⨯=(211=9(32+==,2==∴>.25.(1)①是;②54°或18°;(2)∠BC 的值为30°或40°或45°或50°或60°【分析】(1)①求出△APC 中各个内角的度数,即可判断.②由∠B=72°,△BPC 是“倍角三角形”,推出△BCP 内角的度数分别是72°,72°,36°,由此即可解决问题.(2)首先确定△ABC 是“倍角三角形”时,有两种情形,45°的直角三角形,30°的直角三角形,再分类讨论解决问题即可.【详解】解:(1)①∵∠ACB=90°,∠B=72°,∴∠C=90°-72°=18°,∵∠CPB=54°,∴∠A+∠ACP=54°,∴∠ACP=36°,∴∠ACP=2∠A,∴△ACP是“倍角三角形”,故答案为:是.②∵∠B=72°,△BPC是“倍角三角形”,∴△BCP内角的度数分别是72°,72°,36°,∴∠BCP=36°或72°,∴∠ACP=54°或18°.(2)如图2-1中,当△ABC是等腰直角三角形,CP⊥AB时,满足条件,此时∠BCP=45°.如图2-2中,当∠A=60°,CP⊥AB时,满足条件,此时∠BCP=60°.如图2-3中,当∠A=60°,∠BPC=100°时,满足条件,此时∠BCP=50°.如图2-4中,当∠B=60°,∠APC=100°时,满足条件,此时∠BCP=40°.如图2-5中,当∠B=60°,∠APC=90°时,满足条件,此时∠BCP=30°.综上所述,满足条件的∠BC的值为30°或40°或45°或50°或60°.【点睛】本题考查三角形内角和定理,“倍角三角形”的定义等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.26.(1)6;(2)203;(3)BQ的长为4或16【解析】【分析】(1)①由翻折的性质和勾股定理求出DE=6即可;②由翻折得:BP=EP,AE=AB=10,设BP=EP=x,则PC=8−x,再证△GEF≌△PCF(ASA),得GF=PF,GE=PC=8−x,则GC=EP=x,DG=CD−GC=10−x,AG=AE−GE=x+2,然后在Rt△ADG中,由勾股定理得出方程,解方程即可;(2)分两种情况:①点Q在线段AB上时,证QD=CD=10,再由勾股定理得DB'=6,则BQ=B'Q=QD−DB'=4;②点Q在BA延长线上时,由勾股定理得DB'=6,设BQ=B'Q=x,则DQ=x−6,AQ=x−10,然后在Rt△ADQ中,由勾股定理得出方程,解方程即可.【详解】(1)①如图1由作图得:AE=AB=10,在Rt△ADE中,由勾股定理得:DE226AE AD-=,故答案为:6;②如图2,由翻折的性质得:BP=EP,AE=AB=10,∠E=∠B=90°,∴∠E=∠C,设BP=EP=x,则PC=8﹣x,∵∠EFG=∠CFP,FE=FC,∴△GEF≌△PCF(ASA),∴GF=PF,GE=PC=8﹣x,∴GC=EP=x,∴DG=CD﹣GC=10﹣x,AG=AE﹣GE=10﹣(8﹣x)=x+2,在Rt△ADG中,由勾股定理得:82+(10﹣x)2=(x+2)2,解得:x=20 3,即BP=20 3.(2)分两种情况:①点Q在线段AB上时,如图3所示:由翻折的性质得:∠CQB=∠CQB',B'C=BC=8,BQ=B'Q,∠CB'Q=∠B=90°,∴∠CB'D=90°,∵四边形ABCD是长方形,∴CD∥AB,∴∠DCQ=∠CQB,∴∠DCQ=∠CQD,∴QD=CD=10,∴DB'6,∴BQ=B'Q=QD﹣DB'=10﹣6=4;②点Q在BA延长线上时,如图4所示:由翻折的性质得:BQ=B'Q,B'C=BC=8,∠B'=∠B=90°,∴DB'6,设BQ=B'Q=x,则DQ=x﹣6,AQ=x﹣10,∵∠BAD=90°,∴∠DAQ=90°,在Rt△ADQ中,由勾股定理得:82+(x﹣10)2=(x﹣6)2,解得:x=16,即BQ=16;综上所述,BQ的长为4或16.。
2024年秋季八年级期中质量检测数学试题(考试时间:120分钟 满分:120分)温馨提醒:1.答卷前,请将自己的姓名、班级、考号等信息准确填写在指定位置。
2.请保持卷面的整洁,书写工整、美观。
3.请认真审题,仔细答题,诚信应考,乐观自信,相信你一定会取得满意的成绩!一、选择题(共10小题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题目要求)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .2.一个三角形的两边长分别是12和5,第三边的长恰好是7的整数倍,那么第三边的长是( )A .7B .14C .21D .14或213.若点()1,1A m n +-与点()3,2B 关于y 轴对称,则m n +的值是( )A .5-B .3-C .3D .14.若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为( )A .50°B .80°C .65°或50°D .50°或80°5.如图,在ABC V 和DEF V 中,已知AB DE =,A D Ð=Ð,再添加一个条件,如果仍不能证明ABC DEF ≌△△成立,则添加的条件是( )A .AC DF ∥B .BC EF =C .AC DF =D .ACB F Ð=Ð6.如图,小益将平放在桌面上的正五边形磁力片和正六边形磁力片拼在一起(一边重合),则形成的1Ð的度数是( )A .118°B .122°C .128°D .132°7.如图,ABC V 中,AD 为ABC V 的角平分线,BE 为ABC V 的高,70C Ð=°,48ABC Ð=°,那么3Ð是( )A .59°B .60°C .56°D .22°8.如图,ABC DEC ≌△△,AF CD ^.若65BCE Ð=°,CAF Ð的度数为( )A .30°B .25°C .20°D .15°9.如图,ABC DCB △≌△,若96AC BE ==,,则DE 的长为( )A .3B .6C .2D .410.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,AB 的垂直平分线交BC 于点D ,连接AD ,则△ACD 的周长是( )A .7B .8C .9D .10二、填空题(共5小题,每题3分,共15分)11.已知一个n 边形的内角和是900°,则n = .12.如图,,30,80ABE FDC FCD A Ð=°Ð=°△≌△,则ABE Ð的度数是 °.13.在平面直角坐标系中,点()3,4A ,(),B a b 关于x 轴对称,则()2024a b +的值为 .14.在ABC V 中,50B Ð=°,35C Ð=°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则BAD Ð的度数为 .15.在ABC V 中,150CA CB ACB =Ð=°,,将一块足够大的直角三角尺()9030PMN M MPN Ð=°Ð=°、按如图所示放置,顶点P 在线段AB 上滑动,三角尺的直角边PM 始终经过点C ,并且与CB 的夹角PCB a Ð=,斜边PN 交AC 于点D .在点P 的滑动过程中,若PCD △是等腰三角形,则夹角α的大小是 .三、解答题(共9题,共75分,解答应写出文字说明,证明过程或演算步骤)16.已知一个多边形的边数为n .(1)若8n =,求这个多边形的内角和.(2)若这个多边形的每个内角都比与它相邻外角的3倍还多20°,求n 的值.17.如图,已知90A D Ð=Ð=°,E 、F 在线段BC 上,DE 与AF 交于点O ,且AB DC BE CF ==,.求证:B C Ð=Ð.18.如图,在单位长度为1的方格纸中画有一个ABC V .(1)画出ABC V 关于y 轴对称的A B C ¢¢¢V ;(2)写出点A ¢、B ¢的坐标;(3)求ABC V 的面积.19.如图,DE AB ^于E ,DF AC ^于F ,若BD CD BE CF ==,.(1)求证:AD 平分BAC Ð;(2)已知 10AC =,2BE =,求AB 的长.20.(1)等腰三角形的两边长满足|a -4|+(b -9)2=0,求这个等腰三角形的周长.(2)已知a ,b ,c 是△ABC 的三边,化简:|a +b -c|+|b -a -c|-|c +b -a|.21.如图,在ABC V 中,90B Ð=°,直线CD BC ^于点,C CE 平分ACD Ð交BA 延长线于点,E EF EC ^,交CD 于点F .(1)试判断AB 与CD 的位置关系,并说明理由;(2)若34EFC BAC ÐÐ=,求AEC Ð的度数.22.如图,在ABC V 中,点E 是BC 边上的一点,连接AE ,BD 垂直平分AE ,垂足为F ,交AC 于点D . 连接DE .(1)若ABC V 的周长为19,DEC V 的周长为7,求AB 的长;(2)若30ABC Ð=°,45C Ð=°,求EAC Ð的度数.23.已知,ABC V 中,CA CB =,90ACB Ð=°,一直线过顶点C ,过A ,B 分别作其垂线,垂足分别为E ,F .(1)如图1,求证:EF AE BF =+;(2)如图2,请直接写出EF ,AE ,BF 之间的数量关系 ;(3)在(2)的条件下,若3BF AE =,4EF =,求BFC △的面积.24.如图所示,在平面直角坐标系中,()4,4P ,(1)点A 在x 的正半轴运动,点B 在y 的正半轴上,且PA PB =,①求证:PA PB ^:②求OA OB +的值;(2)点A 在x 的正半轴运动,点B 在y 的负半轴上,且PA PB =,求OA OB -的值.1.A【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A .是轴对称图形,故A 符合题意;B .不是轴对称图形,故B 不符合题意;C .不是轴对称图形,故C 不符合题意;D .不是轴对称图形,故D 不符合题意.故选:A .【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】本题考查三角形的三边关系,根据三角形的三边关系确定第三边的取值范围,再根据第三边的长恰好是7的整数倍,进行判断即可.【详解】解:∵三角形的两边长分别是12和5,设第三边长为x ,∴125125x -<<+,即:717x <<,∵第三边的长恰好是7的整数倍,∴第三边的长是14;故选B .3.A【分析】根据关于y 轴对称的点的坐标特点可得1312m n +=-ìí-=î,解方程即可得到答案.【详解】解:∵点()1,1A m n +-与点()3,2B 关于y 轴对称,∴1312m n +=-ìí-=î,∴41m n =-ìí=-î,∴()415m n +=-+-=-,故选A .【点睛】本题主要考查了坐标与图形变化—轴对称,熟知关于y 轴对称的点横坐标互为相反数,纵坐标相同是解题的关键.4.D【分析】本题主要考查了等腰三角形的性质和三角形内角和定理,根据等腰三角形的性质分类讨论是解答本题的关键.根据等腰三角形的性质,分已知角是顶角和底角两种情况分别即可.【详解】解:∵已知三角形是等腰三角形,∴当50°是底角时,顶角()180505080=°-°+°=°;当50°是顶角时,符合题意;综上所述,等腰三角形的顶角度数为50°或80°.故选D .5.B【分析】利用三角形全等的判定定理逐一推理即可.【详解】解:∵AC DF ∥,∴ACB F Ð=Ð,∴ACB F A D AB DE Ð=ÐìïÐ=Ðíï=î,∴ABC DEF ≌△△,故A ,D 都正确,不符合题意;∵AC DF A D AB DE =ìïÐ=Ðíï=î,∴ABC DEF ≌△△,故C 正确,不符合题意;当添加BC EF =时,不符合任何一个判定定理,无法判定ABC DEF ≌△△,故B 符合题意,故选:B .【点睛】本题考查了添加条件判定全等,熟练掌握三角形全等的判定定理是解题的关键.6.D【分析】本题考查正多边形的内角和问题,根据多边形内角和公式及正多边形的性质求出2,3ÐÐ的度数,再根据123360Ð+Ð+Ð=°即可解答.【详解】解:如图,()()62180521802120,310865-´°-´°Ð==°Ð==°Q ,Q 123360Ð+Ð+Ð=°,1132\Ð=°,故选:D .7.A【分析】本题考查了三角形内角和定理,三角形的高,角平分线,对顶角相等,解题的关键是掌握这些知识点.根据三角形内角和定理得62CAB Ð=°,根据角平分线得112312CAB Ð=Ð=Ð=°,根据高得90AEB Ð=°,可得59EFA Ð=°,根据对顶角相等即可得.【详解】解:∵70C Ð=°,48ABC Ð=°,∴180170486802C A B BC CA Ð-Ð=°-°=°Ð=°-°-,∵AD 为ABC V 的角平分线,∴112312CAB Ð=Ð=Ð=°,∵BE 为ABC V 的高,∴90AEB Ð=°,∴1801180319059EFA AEB Ð=°-Ð-Ð=°-°-°=°∴359EFA Ð=Ð=°,故选:A .8.B【分析】本题考查了全等三角形的判定和性质,垂直的定义,直角三角形的性质,由全等三角形的性质可得ACB DCE Ð=Ð,即可得BCE DCA Ð=Ð,得到65ACF Ð=°,再根据直角三角形的的性质即可求解,掌握全等三角形的性质是解题的关键.【详解】解:∵ABC DEC ≌△△,∴ACB DCE Ð=Ð,∴ACB ACE DCE ACE Ð-Ð=Ð-Ð,即BCE DCA Ð=Ð,∵65BCE Ð=°,∴65DCA Ð=°,即65ACF Ð=°,∵AF CD ^,∴90AFC Ð=°,∴906525CAF Ð=°-°=°,故选:B .9.A【分析】此题考查了全等三角形的性质,熟记“全等三角形的对应边相等”是解题的关键.根据全等三角形的性质及线段的和差求解即可.【详解】解:ABC DCB QV V ≌,9AC =,9BD AC \==,BD BE DE =+Q ,6BE =,3DE \=,故选:A .10.A【分析】先根据线段垂直平分线的性质得出AD=BD ,然后求周长即可.【详解】解:∵AB 的垂直平分线交BC 于D ,∴AD=BD ,∵AC=3,BC=4∴△ACD 的周长为:AC+CD+AD=AC+BC=7.故选A .【点睛】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.11.7【分析】本题考查了多边形的内角和,熟记多边形的内角和公式是解题的关键;根据n 边形的内角和为180(2)n °-列出关于n 的方程,解方程即可求出边数n 的值.【详解】解:根据题意,得180(2)900n °-=°,解得7n =,故答案为:7.12.70【分析】本题考查了全等三角形的性质,掌握这性质是关键.根据三角形全等的性质,得出30E FCD Ð=Ð=°,然后求出18070ABE A E Ð=°-Ð-Ð=°即可.【详解】解:∵ABE FDC V V ≌,∴30E FCD Ð=Ð=°,∵80A Ð=°,∴18070ABE A E Ð=°-Ð-Ð=°.故答案为:70.13.1【解析】略14.60°##60度【分析】本题主要考查基本作图,线段垂直平分线的性质是解题的关键.由线段垂直平分线的性质可得AD DC =,根据等边对等角得到35DAC C Ð=Ð=°,根据内角和定理求得18095BAC B C Ð=°-Ð-Ð=°,最后根据角度的和差关系即可得到答案.【详解】解:由作图可知:MN 为线段AC 的垂线平分线,∴AD DC =,∴35DAC C Ð=Ð=°,在ABC V 中,50B Ð=°,35C Ð=°,∴18095BAC B C Ð=°-Ð-Ð=°,∴60BAD BAC DAC Ð=Ð-Ð=°,故答案为:60°.15.30°或75°或120°【分析】本题考查了等腰三角形的性质,三角形的内角和定理,用分类讨论的思想解决问题是解本题的关键.分三种情况考虑:当PC PD PD CD PC CD ===;;,分别求出夹角a 的大小即可.【详解】解:∵PCD △是等腰三角形,15030PCD CPD a Ð=°-Ð=°,,①当PC PD =时,∴18030752PCD PDC °-°Ð=Ð==°,即15075a °-=°, ∴75a =°; ②当PD CD =时,PCD △是等腰三角形,∴30PCD CPD Ð=Ð=°,即15030a °-=°,∴120a =°;③当PC CD =时,PCD △是等腰三角形,∴30CDP CPD Ð=Ð=°,∴180230120PCD Ð=-´=°°°, 即150120a °-=°,∴30a =°, 此时点P 与点B 重合,点D 和A 重合,综合所述:当PCD △是等腰三角形时,a =30°或75°或120°.故答案为:30°或75°或120°.16.(1)1080°(2)9【分析】本题考查多边形的内角和与外角的综合应用:(1)直接根据内角和公式进行计算即可;(2)设每个外角的度数为a ,根据题意,列出方程求出a ,再根据多边形的外角和为360度,求解即可.【详解】(1)解:()821801080-´°=°;(2)设每个外角的度数为a ,则每个内角的度数为320a +°,∴320180a a ++=°,∴40a =°,∴360940n ==.17.见解析【分析】本题主要考查了全等三角形的性质与判定,由BE CF =,得BF CE =,即可用HL 证明Rt Rt ABF DCE ≌△△,即可证明B C Ð=Ð.【详解】证明:∵BE CF =,∴BE EF CF EF +=+,即BF CE =,在Rt ABF V 和Rt DCE V 中,AB DC BF CE=ìí=î,∴()Rt Rt HL ABF DCE ≌△△,∴B C Ð=Ð.18.(1)见解析(2)点A ¢的坐标为()3,2,点B ¢的坐标为()4,3-(3)132【分析】(1)找到ABC V 中三个顶点的对称点,连接即可;(2)根据点在直角坐标系中得位置,写出坐标即可;(3)利用添补法用长方形面积减去三个三角形面积即可.【详解】(1)解:如图所示,A B C ¢¢¢V 即为所求.(2)解:由图可知点A ¢的坐标为()3,2,点B ¢的坐标为()4,3-;(3)解:ABC V 的面积为11113352315232222´-´´-´´-´´=.【点睛】本题考查了直角坐标系,相关知识带你有:图形的轴对称、割补法求三角形面积等,熟练运用直角坐标系的知识点是解题关键.19.(1)见解析(2)6【分析】(1)求出90E DFC Ð=Ð=°,根据全等三角形的判定定理得出Rt Rt BED CFD ≌△△,推出DE DF =,根据角平分线性质得出即可.(2)根据全等三角形的性质得出AE AF =,由线段的和差关系求出答案.【详解】(1)证明:DE AB ∵⊥,DF AC ^,90E DFC \Ð=Ð=°,在Rt BDE △与Rt CDF △中,BD CD BE CF =ìí=î,()Rt Rt HL BDE CDF \≌V V ,DE DF \=,又DE AB ∵⊥,DF AC ^,AD \平分BAC Ð.(2)解:Rt Rt BDE CDF ≌Q V V ,2BE =,2CF BE \==,10AC =Q ,1028AF AC CF \=-=-=,在Rt ADE V 与Rt ADF V 中,AD AD DE DF=ìí=î,()Rt Rt HL ADE ADF \≌V V ,8AE AF \==,826AB AE BE \=-=-=.【点睛】本题考查了全等三角形的性质和判定、角平分线的判定,熟练掌握全等三角形的判定及性质和角平分线的判定是解题的关键.20.(1)22;(2)22a c -.【分析】(1)根据非负数的性质求出a 、b ,再根据三角形三边关系分情况讨论求解.(2)三角形三边满足的条件是,两边和大于第三边,两边的差小于第三边,根据此来确定绝对值内的式子的正负,从而化简计算即可.【详解】解:(1)∵()240,90a b -³-³,且()2490a b -+-=,∴40,90a b -=-=,解得:4,9a b ==,①4是腰长时,三角形的三边分别是4、4、9,∵449+<,∴不能组成三角形.②4是底边时,三角形的三边分别是4、9、9,能组成三角形,周长99422=++=,综上所述,等腰三角形的周长是22.(2)ABC D Q 的三边长分别是a 、b 、c ,0a b c \+->,()0b a c b a c --=-+<,0c b a +->,原式[()]()a b c b a c c b a =+-+----+-a b c b a c c b a =+--++--+22a c =-.【点睛】此题主要考查了三角形三边关系与绝对值的性质.解此题的关键是根据三角形三边的关系来判定是否能构成三角形或绝对值内式子的正负.21.(1)AB CD ∥,理由见解析(2)36AEC Ð=°【分析】本题主要考查了平行线的性质和判定,角平分线的定义,解题的关键是熟练掌握平行线的判定和性质.(1)根据同旁内角互补两直线平行进行判断即可;(2)设4BAC x Ð=,则3EFC x Ð=,根据平行线的性质得出4ACD BAC x Ð=Ð=,根据角平分线的定义得出2ACE DCE x Ð=Ð=,根据平行线的性质得出2BEC DCE x Ð=Ð=,180CFE BEF Ð+Ð=°,即3290x x +=°,求出18x =°,即可得出答案.【详解】(1)解:AB CD ∥,理由如下:∵CD BC ^,90B Ð=°,∴90BCD B Ð=Ð=°,∴180BCD B Ð+Ð=°,∴AB CD ∥.(2)解:设4BAC x Ð=,则3EFC x Ð=.∵AB CD ∥,∴4ACD BAC x Ð=Ð=,∵CE 平分ACD Ð,∴2ACE DCE x Ð=Ð=,∵AB CD ∥,∴2BEC DCE x Ð=Ð=,180CFE BEF Ð+Ð=°,∵EF EC ^,∴90CEF Ð=°,∴1809090CFE CEB Ð+Ð=°-°=°,∴3290x x +=°,解得:18x =°,∴21836AEC Ð=´°=°.22.(1)6AB =(2)30°【分析】本题考查的是线段的垂直平分线的性质,等边对等角,三角形的内角和定理的应用,三角形的外角的性质,掌握以上基础知识是解本题的关键.(1)先证明AB BE =,AD DE =,结合ABC V 的周长为19,DEC V 的周长为7,可得19712AB BE +=-=,从而可得答案;(2)先求解1803045105BAC Ð=°-°-°=°,然后利用等边对等角和三角形内角和定理得到()1180752BAE BEA ABC Ð=Ð=°-Ð=°,进而求解即可.【详解】(1)解:∵BD 是线段AE 的垂直平分线,∴AB BE =,AD DE =,∵ABC V 的周长为19,DEC V 的周长为7,∴19AB BE CE CD AD ++++=,7CD EC DE CD CE AD ++=++=,∴19712AB BE +=-=,∴6AB BE ==;(2)解:∵30ABC Ð=°,45C Ð=°,∴1803045105BAC Ð=°-°-°=°,∵AB BE=∴()1180752BAE BEA ABC Ð=Ð=°-Ð=°∴30EAC BAC BAE Ð=Ð-Ð=°.23.(1)见解析(2)EF BF AE =-,理由见解析(3)6【分析】本题考查了全等三角形的判定和性质,三角形的面积,余角的性质.熟练掌握全等三角形的判定和性质定理是解题的关键.(1)根据垂直的定义和余角的性质得到FCB EAC Ð=Ð,根据全等三角形的性质得到AE CF =,CE BF =,等量代换得到结论;(2)根据余角的性质得到CAE BCF Ð=Ð根据全等三角形的性质得到CE BF =,AE CF =,等量代换得到结论;(3)由(2)得EF AE BF =+且3BF AE =,求得3CE AE =,得到24EF AE ==,根据三角形的面积公式即可得到结论.【详解】(1)证明:90ACB Ð=°Q ,90ECA FCB \Ð+Ð=°,又AE EF ^Q ,BF EF ^,90AEF BFC \Ð=Ð=°,90ECA EAC \Ð+Ð=°,FCB EAC \Ð=Ð,在ACE △和CBF V 中,AEC BFC EAC FCB AC BC Ð=ÐìïÐ=Ðíï=î,(AAS)ACE CBF \△≌△,AE CF ∴=,CE BF =,EF EC CF =+Q ,EF AE BF \=+;(2)解:EF BF AE =-,理由如下:90AEC CFB Ð=Ð=°Q ,90ACB Ð=°,90ACE CAE ACE BCF \Ð+Ð=Ð+Ð=°,CAE BCF\Ð=Ð又AC BC =Q ,(AAS)CAE BCF \V V ≌,CE BF \=,AE CF =,EF CE CF BF AE \=-=-,即EF BF AE =-;(3)解:由(2)得EF BF AE =-且3BF AE =,3CE AE \=,CF AE =Q ,24EF AE \==,2AE CF \==,6BF =,BFC \△的面积1126622CF BF =×=´´=.24.(1)①见解析;②8OA OB +=(2)8OA OB -=【分析】本题是三角形综合题,考查了全等三角形的判定与性质、坐标与图形性质,本题综合性强,熟练掌握全等三角形的判定与性质,正确作出辅助线,构造全等三角形是解题的关键,属于中考常考题型.(1)①过点P 作PE x ^轴于E ,作PF y ^轴于F ,根据点P 的坐标可得4PE PF ==,然后利用“HL”证明Rt APE V 和Rt BPF V 全等,根据全等三角形对应角相等可得APE BPF Ð=Ð,然后求出90APB EPF Ð=Ð=°,再根据垂直的定义证明;②根据全等三角形对应边相等可得AE BF =,再表示出PE 、PF ,然后列出方程整理即可得解;(2)根据全等三角形对应边相等可得AE BF =,再表示出PE 、PF ,然后列出方程整理即可得解.【详解】(1)①证明:如图,过点P 作PE x ^轴于E ,作PF y ^轴于F ,∴PE PF ^,∵()4,4P ,∴4PE PF ==,在Rt APE V 和Rt BPF V ,PA PB PE PF=ìí=î,∴()Rt Rt HL APE BPF V V ≌,∴APE BPF Ð=Ð,∴90APB APE BPE BPF BPE EPF Ð=Ð+Ð=Ð+Ð=Ð=°,∴PA PB ^;②解:∵()Rt Rt HL APE BPF V V ≌,∴BF AE =,∵,OA OE AE OB OF BF =+=-,∴448OA OB OE AE OF BF OE OF +=++-=+=+=;(2)解:如图,过点P 作PE x ^轴于E ,作PF y ^轴于F ,同理得()Rt Rt HL APE BPF V V ≌,∴AE BF =,∵4,4AE OA OE OA BF OB OF OB =-=-=+=+,∴44OA OB -=+,∴8OA OB -=.。
一、 选择题:(每小题3分,共36分)
1. 16的算术平方根是( )
A .4
B .4±
C .8
D .8±
2. 在直角坐标系中,点M(-3,4)关于x 轴的对称点 M /的坐标为( )
A .(-3,-4) B. (3,4) C. (3,-4) D. (3,0)
3. 如图1,△ABC 中,AB=AC,D 是BC 中点,下列结论中不正确...
的是( ) A. ∠B=∠C B. AD ⊥BC
C. AD 平分∠BAC
D. AB=2BD
4. 和数轴上的所有点一一对应的数是( )
A.无理数 B.有理数 C.整数 D.实数 5.根据下列四组条件:
①A B D E B C E F A C D F ===,,;②A B D E B E B C E F =∠=∠=,,; ③B E B C E F C F ∠=∠=∠=∠,,;④A B D E A C D F B E ==∠=∠,,. 其中,能判定A B C D E F △≌△的条件共有( )
A .1组
B .2组
C .3组
D .4组
6. 已知如下图中的两个三角形全等,则∠α度数是( )
A.72°
B.60°
C.58°
D.50°
7.等腰三角形的对称轴是( )
A .顶角的平分线 B.底边上的高 C.中线 D.底边上的高所在的直线
8. 如图,在ΔABC 中,AB=12,AC=13,∠ABC 和∠ACB 的平分线交于点D ,过
点D 作EF ∥BC ,分别交AB 、AC 于E 、F ,则ΔAEF 的周长是 ( )
A.20
B.18
C.22
D.25
9.下列语句中正确的个数是( )
C
D A B
图1
①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形一定只有一条对称轴; ④两个轴对称图形的对应点一定在对称轴的两侧.
A.1
B.2
C.3
D.4
10.如图,∠C=90°,AD 平分∠BAC 交BC 于D,若BC=8cm,BD=5cm,则点D 到AB 的距离为( )
A.8cm
B.5cm
C.3cm
D.不能确定
11.如图,AB=CD,AC=BD,则图中共有__________对全等三角形
A. 1
B. 2
C. 3
D. 4
12.ΔABC 中,AD 是中线,若AC=5,AD=7,则AB 边的取值范围是( )
A .1<A
B <29 B 。
4<AB <24
C 。
5<AB <19
D 。
9<AB <19
二、 填空题:(每小题3分,共18分)
13.25的算术平方根是____,16的平方根是_____,-125的立方根是_______
14. ΔABC 中。
∠ACB=90°,AB=8cm, ∠B=30°,则AC 的长是_______
15.已知等腰三角形的一个角为42,则它的底角度数_______.
16.如图6,点C 、F 在BE 上,∠1=∠2,BC=EF 。
请补充条件:________(写一个即可),使ΔABC ≌ΔDEF 。
图6B E
F C
17.如图若111ABC A B C △≌△,且AB=3cm ,AC=5cm, B C =8cm 则△ABC 的周
长= .
18.已知∠MON=45°,其内部有一点P ,关于OM 的对称点是A,关于ON 的对称点是B, OP=2cm,则∠AOB=_______,△AOB 的面积是_______
一、 解答题(本大题满分56分)
19.(本题满分8分,每小题4分)
(1)求满足式子 x 2 –81=0 中x 的值 (2)(922 )+22
20.(本题满分8分)如图,已知AC 平分∠BAD ,∠1=∠2,求证:AB=AD
23. (本题满分12分)如图,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE=BF.
求证:(1)AE=CF ;(2)A B ∥CD .
A
B C
C 1 A 1 B 1 A
D E
C B
F。