电力电子技术的发展与应用
- 格式:docx
- 大小:38.71 KB
- 文档页数:4
电力电子技术的发展及应用朱磊1侯振义1张开2(空军工程大学电讯工程学院陕西西安710077)(南京理工大学动力工程学院江苏南京210000)摘要:本文通过介绍电力电子技术的发展及应用,阐述了电力电子技术在国民经济中的重要作用,结合国家政策,描绘出我国电力电子行业的大好前景。
关键词:电力电子技术功率器件逆变能源电力电子技术,又称功率电子技术。
它主要研究各种电力电子器件,以及这些电力电子器件所构成的各种各样高效地完成对电能的变换和控制的电路或装置。
它既是电子学在强电(高电压、大电流)或电工领域的一个分支,又是电工学在弱电(低电压、大电流)或电子领域的一个分支,总之是强弱电相结合的新学科。
1 电力电子技术的发展电力电子技术的发展与功率器件的发展密切相关,1948年普通晶体管的发明引起了电子工业革命,1957年第一只晶闸管的问世,为电力电子技术的诞生奠定了基础。
1.1 电力电子技术的晶闸管时代由于大功率硅整流器能够高效率的把工频交流电转变为直流电,因此在60年代和70年代,大功率硅整流管和晶闸管的开发与应用得到大发展,这一时期称之为电力电子技术的晶闸管时代。
1.2 电力电子技术的逆变时代20世纪70年代,随着自关断器件的出现,电力电子技术进入了逆变时代。
七十年代出现了世界范围的能源危机,交流电机变频调速因节能效果显著而迅速发展。
在70年代到80年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。
这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。
1.3现代电力电子时代80年代末期和90年代初期发展起来的以功率MOSFET和IGBT为代表的集高频、高压和大电流于一身的功率半导体复合器件,使以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学转变创造了条件,表明传统电力电子技术已经进入现代电力电子时代。
电力电子技术的应用研究及发展趋势电力电子技术是一种应用极广的技术,它涉及到包括电力系统、工业、交通、家电等领域的许多方面。
随着社会经济的发展和科技不断进步,电力电子技术的应用越发普遍,其应用领域也在不断扩大。
在这篇文章中,我将从电力电子技术的分类、应用研究和未来发展三个方面来谈谈电力电子技术的应用研究及发展趋势。
一、电力电子技术的分类电力电子技术根据其不同的功率等级、用途和原理等因素,可以分为多种不同的类别。
其中比较常见的主要有以下几种:1、直流-直流变换器直流-直流变换器可以将直流电压转换、升压或降压,常见的应用有开关电源、电动机驱动系统等。
直流-直流变换器具有简单的控制、高效率和稳定性,目前在交通、能源、石化、冶金等领域中得到了广泛的应用。
2、交流-直流变流器交流-直流变流器可以将交流电转换为直流电供电使用,常见的应用有风力发电、光伏发电等。
这种变换器具有高效、可靠和可控的特点,是现代电力系统中最重要的组成部分之一。
3、交流-交流变换器交流-交流变换器可以改变交流电的频率和电压等参数,常见的应用有电动机驱动系统、变频空调、UPS等。
交流-交流变换器在工业、家电等领域中应用广泛,目前已经成为了工业发展的关键技术之一。
二、电力电子技术的应用研究随着电力电子技术的不断发展和进步,其应用领域也在不断拓展。
在应用研究方面,电力电子技术主要有以下几个方向:1、高电压高功率应用随着电力系统的发展和能源消费增长,电力电子技术在高电压高功率领域的应用范围也在不断扩大。
高电压高功率应用主要包括超高压输电、逆变器、脉冲电源、高压直流输电等。
电力电子技术在这些领域中的应用,可以提高电力系统的可靠性、效率和稳定性,同时也可以改善电力系统的质量和环境问题。
2、新能源发电系统新能源发电系统是近年来最热门的电力电子技术应用之一。
新能源发电系统包括太阳能发电、风力发电、潮汐能发电等。
电力电子技术在新能源发电系统中的应用,可以将风、光等无法控制的能源转化为易于控制的电能,提高了整个发电系统的效率。
电力电子技术的发展与应用电力电子技术是电气工程领域中的一个重要分支,它涉及到电力转换、控制和调节等方面的研究与应用。
随着科技的不断进步和社会的不断发展,电力电子技术在能源转换、电力传输和工业自动化等领域的应用日益广泛,对于提高能源利用效率、改善电力质量和保障电力系统的稳定运行起到了关键作用。
一、电力电子技术的发展历程电力电子技术的发展可以追溯到20世纪60年代,当时主要用于直流输电和高压直流变压器的研究。
随着功率半导体器件的发展,如晶闸管、功率MOSFET和IGBT等,电力电子技术得以迅速发展。
在20世纪80年代,随着功率半导体器件的性能不断提高,电力电子技术逐渐应用于交流输电、电力变换和电机控制等领域。
到了21世纪,随着新型功率半导体器件的出现,如SiC和GaN等,电力电子技术迎来了新的发展机遇。
二、电力电子技术的应用领域1. 可再生能源发电系统随着可再生能源的快速发展,如风能、太阳能和潮汐能等,电力电子技术在可再生能源发电系统中的应用越来越重要。
电力电子技术可以实现可再生能源的高效转换和稳定输出,提高发电系统的可靠性和稳定性。
2. 电力传输与配电系统电力电子技术在电力传输与配电系统中的应用主要包括柔性交流输电、高压直流输电和智能配电网等。
柔性交流输电技术可以提高电力系统的稳定性和可靠性,高压直流输电技术可以实现长距离大容量的电力传输,智能配电网可以实现电力系统的自动化和智能化管理。
3. 电机控制与驱动系统电力电子技术在电机控制与驱动系统中的应用主要包括变频调速技术和电力电子变压器技术等。
变频调速技术可以实现电机转速的无级调节和高效能量转换,提高电机的运行效率和控制精度。
电力电子变压器技术可以实现电力系统的电压和频率调节,提高电力系统的稳定性和可靠性。
三、电力电子技术的未来发展趋势1. 高效能量转换技术随着能源短缺和环境保护的要求,电力电子技术将继续朝着高效能量转换的方向发展。
新型功率半导体器件的应用和拓扑结构的优化将进一步提高电力电子系统的能量转换效率。
电力电子技术及其发展趋势近年来,电力电子技术在能源领域发挥着越来越重要的作用。
它是一门研究关于电能的控制、调节以及转换的学科,广泛应用于电力传输、电力变流与变频、能源储存等领域。
本文将介绍电力电子技术的基本原理和常见应用,并展望其未来的发展趋势。
一、电力电子技术的基本原理1.1 电力电子器件电力电子器件是电力电子技术的重要基础,它被用于控制和调节电能流动。
常见的电力电子器件包括二极管、晶体管、场效应管、开关管等。
这些器件通过开关操作,可以实现对电能的高效控制和转换,使得电能能够适应不同的工作状态和负载需求。
1.2 开关电源技术开关电源技术是电力电子技术中的一个重要方向,它能够将交流电能转换为直流电能,并通过开关器件进行高效控制。
开关电源具有体积小、效率高、功率密度大等特点,广泛应用于各个领域,如军事、通信、工业等。
而且,开关电源还可以实现电能的变压、变频和变流等功能,满足各种复杂的电能需求。
1.3 电力电子控制技术电力电子控制技术是电力电子技术的核心内容,它通过对电力电子器件和开关电源的控制,实现对电能的精确调节和控制。
电力电子控制技术可以使电能的传输和转换更加高效、可靠,同时也可以提高电能的质量和稳定性,确保电能系统的安全运行。
二、电力电子技术的应用领域2.1 电力传输电力传输是电力电子技术的主要应用领域之一。
在长距离电力传输中,电力电子技术可以实现输电线路的无功补偿、无功控制、降低线路损耗等功能,提高电力传输效率。
而在直流输电领域,电力电子技术可以实现高功率的直流变换和逆变,实现长距离、大容量的电能传输。
2.2 电力变流与变频电力变流与变频是电力电子技术的另一个重要应用领域。
通过电力电子器件和控制技术,可以实现交流电能向直流电能的转换,或者将一种频率的交流电能转换为另一种频率的交流电能。
这对于电机调速、电力系统的稳定性等方面都具有重要意义。
2.3 能源储存能源储存是近年来电力电子技术的研究热点之一。
电力电子技术在电力系统中的应用及发展首先,电力电子技术在电力系统中的应用非常广泛。
电力电子技术包含了各种电力电子器件和电路,如开关电源、逆变器、整流器、变频器等。
这些技术可以用于各种不同的应用,包括电力调节、变频调速、无停电切换、能量回馈等。
电力电子技术在电力系统中的应用主要有以下几个方面:1.电力调节:电力电子技术可以用来调节电力系统的电压和频率。
例如,电力电子技术可以用于调节输电线路的电压,以保证电力系统的稳定性和可靠性。
同时,它也可以用来调节电力系统的频率,以适应不同的负载条件。
2.变频调速:电力电子技术可以用于变频调速系统中,通过改变电机的供电频率来改变电机的转速。
这可以使电机在不同负载要求下,具备良好的性能特性。
变频调速系统广泛应用于工业、交通等领域。
3.无停电切换:电力电子技术可以实现无停电切换。
例如,在配电系统中,当发生故障时,电力电子技术可以实现对备用电源的无停电切换,以保证供电的连续性和可靠性。
4.能量回馈:电力电子技术可以实现能量的回馈。
例如,通过逆变器将太阳能等可再生能源转换为电能,然后回馈到电力系统中,减少对传统能源的依赖,提高能源利用效率。
除了以上应用,电力电子技术还可以用于电力系统的电力质量改善、电力系统的故障检测和故障定位等方面,为电力系统的稳定运行和安全性提供支持。
其次,电力电子技术在电力系统中的发展也非常迅速。
随着科技的不断进步和应用需求的不断增加,电力电子技术得到了广泛的研究和应用。
目前,电力电子技术正在向下列几个方向发展:1.高效率:提高电力电子设备的工作效率是当前的重要发展方向。
高效率的电力电子设备可以减少能量损失,提高能源利用效率。
2.高功率密度:提高电力电子设备的功率密度,使其在体积相同的情况下可以提供更大的功率输出。
这对于应用于空间有限的场合非常有用。
3.高可靠性:提高电力电子设备的可靠性,使其能够在恶劣的工作环境下稳定运行。
这对于电力系统的稳定性和可靠性非常重要。
电力电子技术电力电子技术是一门研究电能的调节、转换和控制的技术学科,其应用领域广泛,包括电力系统、电力传输、电力转换、电力调节等方面。
本文将介绍电力电子技术的基本概念、发展历程以及应用领域。
电力电子技术是指利用半导体电子器件来实现电能的调节、变换和控制的技术。
它是电力工程学科中的一门重要分支,其发展与应用日益广泛,对现代电力系统的稳定运行和高效能利用起着至关重要的作用。
电力电子技术的发展可以追溯到20世纪60年代。
那时半导体器件的出现,特别是可控硅管的问世,为电力电子技术的发展提供了坚实的基础。
可控硅管具有很好的开关特性和控制能力,能够对电能进行精确的调节。
随着电力电子技术的不断发展,越来越多的半导体器件被成功应用于电力系统中,如双向可控硅管、IGBT、MOS管等。
电力电子技术在电力系统中的应用非常广泛。
其中最主要的应用之一是直流输电技术。
直流输电技术可以有效地解决交流输电中的电流损耗和电压稳定性等问题,提高输电效率和稳定性。
电力电子技术在直流输电中扮演着重要的角色,能够实现输电过程中的功率调节、电流控制、电压稳定等功能。
除了直流输电,电力电子技术还广泛应用于交流输电系统的无功补偿。
无功补偿是为了改善电力系统中的功率因数,提高系统的稳定性和效率。
电力电子技术通过控制无功补偿装置中的电子器件,实现对电力系统中的无功功率的调节和控制。
无功补偿技术不仅能够提高电力系统的稳定性,还能够减少电能损耗,提高电能利用率。
此外,电力电子技术还应用于交流电机的调速控制。
传统的交流电机调速方法主要通过改变电源的频率和电压来实现,但这种方法效果有限且成本较高。
电力电子技术通过控制电机输入端的电压和频率,实现对电机转速的精确控制,提高电机系统的效率和控制精度。
这种调速方法被广泛应用于电动汽车、电梯、机床等领域。
总之,电力电子技术是电力工程中不可或缺的重要技术,在电力系统的稳定运行和高效利用中发挥着重要作用。
随着科技的不断发展,电力电子技术在实际应用中将进一步完善和拓展。
电力电子技术的发展趋势及应用半导体的出现成为20世纪现代物理学的一项最重大的突破,标志着电子技术的诞生。
而由于不同领域的实际需要,促使半导体器件自此分别向两个分支快速发展,其中一个分支即是以集成电路为代表的微电子器件,而另一类就是电力电子器件,特点是功率大、快速化。
自20世纪五十年代末第一只晶闸管问世以来,电力电子技术开始登上现代电气传动技术舞台,以此为基础开发的可控硅整流装置,是电气传动领域的一次革命,使电能的变换和控制从旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子的诞生。
电子电力技术包括电力电子器件、变流电路和控制电路3部分,是以电力为处理对象并集电力、电子、控制三大电气工程技术领域之间的综合性学科。
电力技术涉及发电、输电、配电及电力应用,电子技术涉及电子器件和由各种电子电路所组成的电子设备和系统,控制技术是指利用外加的设备或装置使机器设备或生产过程的某个工作状态或参数按照预定的规律运行。
电力电子器件是电力电子技术的基础,电力电子器件对电能进行控制和转换就是电子电力技术的利用。
在21世纪已经成为一种高新技术,影响着人们生活的各种领域,因此对对电子电力技术的研究具有时代意义。
传统电力电子技术是以低频技术处理的,现代电力电子的发展向着高频技术处理发展。
其发展先后经历了整流器时代、逆变器时代和变频器时代,在不断的发展中促进了现代电力电子技术的广泛应用。
电力电子技术在1947年晶体管诞生开始形成,接着1956的晶闸管的出现标志电力电子技术逐渐形成一门学科开始发展,以功率MOS-FET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件的出现,表明已经进入现代电子电力技术发展时代。
1.整流器时代在60年代到70年代被称为电力电子技术的整流时代。
该期间主要是大功率硅整流管和晶闸管的开发与应用。
1948年的晶体管的出现引发了电子工业革命,半导体器件开始应用与通信领域,1957年,晶闸管的诞生扩展了半导体器件功率控制范围,属于第一代电力电子器件。
电力电子技术的研究进展及应用随着现代科学技术的迅猛发展,电力电子技术作为其中一个重要分支,在国家经济和社会发展中扮演着不可或缺的角色。
本文将从电力电子技术的定义、研究进展以及应用方面进行探讨。
一、电力电子技术的定义电力电子技术是电力系统中电能的处理与控制技术,是研究通过半导体元件实现交、直流的能量转移、传递、匹配以及电能的调节、变换、变频的新型电气工程技术,具有诸多特点,如高效、精确、可靠、无噪音、无污染等。
因此,电力电子技术是目前国家十三五规划中电力转型的核心技术之一,广泛应用于今天的工业制造、信息通讯和公共基础设施等领域。
下面将详细讲述电力电子技术的研究进展。
二、电力电子技术的研究进展随着电力电子技术的不断发展,其研究取得了丰硕的成果。
在电力电子器件、电力电子拓扑与控制、电力电子应用等方向上都有着日益丰富的研究进展。
在电力电子器件方面,功率半导体电子器件得到了长足的发展。
压缩机封装车间生产的功率半导体器件已经进入行业标准化生产,其特点是具有低损耗、高速度、高电压、大电流、高耐受放热量和温度等特点,越来越能够满足各种场合的需求。
在电力电子拓扑与控制方面,电力电子系统的拓扑结构和控制策略得到了日益完善,已经从传统的整流、逆变结构转变为集成于一体的多功能电力电子拓扑结构。
电力电子系统的控制技术不断发展,已经实现了全数字化、高速、高精度的控制。
例如,目前双向DC-DC转换器及其控制技术已经得到了广泛的应用。
新型的电气系统如智能家居、新能源分布式发电等,对于双向变换器的研究和应用成为了热点。
在电力电子应用方面,电力电子技术在新能源、半导体照明和交通运输等领域得到了广泛的应用。
其中,新能源是电力电子技术应用领域的一大亮点,电力电子技术在太阳能、风能、氢能等新能源的开发利用中发挥了巨大的作用,能够有效提高能源的利用效率。
电力电子技术的应用范围之广,使其成为了当今高新技术的代表之一。
接下来,本文将从电力电子技术应用的实际案例进行分析,探讨其在各个领域中的应用。
电力电子技术在电网中的应用及智能电网的发展随着社会的进步和科技的发展,电力电子技术在电网中的应用越来越广泛。
电力电子技术是将电力与电子技术相结合,用电子器件和电力设备来处理和控制电能的技术。
它在电网中的应用带来了许多好处,同时也推动了智能电网的发展。
一、电力电子技术在电网中的应用1. 柔性交流输电技术柔性交流输电技术是指利用电力电子设备来控制电流和电压的频率、幅值和相位等参数,从而实现高压交流输电线路的柔性控制。
通过柔性交流输电技术,可以有效地提高电力系统的稳定性和可靠性,减少能量损耗,并且适应不同负荷需求的变化。
2. 逆变技术逆变技术是指将直流电转换为交流电的技术。
在电网中,逆变技术广泛应用于交流-直流变流器和逆变器中。
交流-直流变流器将电网中的交流电转换为直流电,并可用于直流输电、直流电源以及电动汽车充电等领域。
而逆变器则将直流电转换为交流电,可用于太阳能发电、风能发电以及UPS电源等。
3. 无功补偿技术无功补偿是对电网中的无功功率进行控制和补偿,以提高电能的有效利用率。
电力电子技术可以通过控制电容器、电抗器等无功补偿设备的接入和切除,实现电网中无功功率的调节和平衡,提高电网的功率因数和稳定性。
二、智能电网的发展随着电力电子技术的应用,智能电网正在不断发展。
智能电网是指利用先进的通信、控制和计算技术,对电网中的各个环节进行集成和优化,实现电力系统的智能化管理和运行。
智能电网的发展有以下几个方面:1. 智能感知智能感知是指通过传感器、测量仪表等设备,实时采集和监测电网中的各种数据,包括电压、电流、功率、负荷等信息。
通过智能感知技术,可以实现电网中各个节点的数据互联互通,提高电网的可视化程度,为智能化管理提供数据支持。
2. 智能调度智能调度是指根据电网中各个节点的状态和需求,通过智能算法和优化模型,实现对电网中的电力资源进行合理分配和调度。
智能调度可以提高电网的供电可靠性和经济性,优化电能的分配和利用效率。
电力电子技术的发展与应用电力电子技术是指利用电力电子器件和电力电子系统来转换和控制电能的技术。
随着科技的发展和人们对电力需求的不断增长,电力电子技术在能源转换、电力传输、能效提升等方面起着重要的作用。
本文将详细介绍电力电子技术的发展与应用,并分点列出相关步骤。
一、电力电子技术的发展历程1. 从早期的整流器到现代的逆变器- 20世纪初,电力电子技术主要用于电力系统中的整流器,将交流电转换成直流电;- 随着电力电子器件的发展,逆变器成为新的研究方向,可以将直流电转换成交流电。
2. 电力电子器件的发展- 二极管、晶闸管、可控硅等电力电子器件的问世,为电力电子技术的应用提供了重要基础;- 随着半导体材料和工艺的不断改进,新型电力电子器件的性能得到提升,如功率场效应管(IGBT)、金属氧化物半导体场效应管(MOSFET)等。
3. 电力电子系统的发展- 从单个电力电子器件到集成电路的应用,电力电子系统的规模不断扩大;- 电力电子技术在交通运输、工业生产、能源管理等领域得到广泛应用。
二、电力电子技术的应用1. 新能源发电系统- 光伏发电系统:光伏逆变器将光能转换成电能,并通过电网馈送;- 风力发电系统:风力逆变器将风能转换成电能,实现风电接入电网。
2. 电动交通工具- 电动汽车:电力电子技术用于电动汽车的驱动系统,实现电能转化和控制;- 城市轨道交通:地铁、轻轨等城市轨道交通系统中广泛应用电力电子技术。
3. 变频调速控制- 工业生产中的电机控制:电力电子变频器用于控制电机的转速和运行状态,提高能源利用效率和生产效率;- 家电领域:变频空调、洗衣机等家电产品通过电力电子技术实现节能和控制。
4. 电力传输与配电- 高压直流输电技术:通过高压直流逆变器实现交流与直流电能的互相转换;- 电力系统中的谐波控制:电力电子技术用于控制电网中的谐波,确保电力质量。
三、电力电子技术的应用步骤1. 系统需求分析- 根据电力应用的需求,确定需要进行能量转换和控制的电路系统。
电力电子技术的发展与应用作为电气自动化的学生,我们有必要对专业课程电力电子技术做个全面的了解。
我们先对电力电子的定义做了解,再对电子电力技术的发展做大致介绍,最后综述电力电子技术的应用。
电力电子技术,是使用电力电子器件对电能进行变换和控制的电子技术。
电力电子技术包括电力电子器件、电力电子设备和系统及其控制三个方面,涉及电力电子器件,电力电子设备和系统,电力电子技术在各个行业的应用。
与以信息处理为主的信息电子技术不同,电力电子技术主要用于功率(电力)变换,所变换“电力”功率的范围小到数瓦(W),大到数百兆瓦(MW)甚至吉瓦(GW)。
电力电子技术分为电力电子器件制造技术和变流技术,电力电子技术是建立在电子学、电工原理和自动控制三大学科上的新兴学科。
因它本身是大功率的电技术,又大多是为应用强电的工业服务的,故常将它归属于电工类。
电力电子技术的内容主要包括电力电子器件、电力电子电路和电力电子装置及其系统。
电力电子器件以半导体为基本材料,最常用的材料为单晶硅;它的理论基础为半导体物理学;它的工艺技术为半导体器件工艺。
近代新型电力电子器件中大量应用了
微电子学的技术。
电力电子电路吸收了电子学的理论基础,根据器件的特点和电能转换的要求,又开发出许多电能转换电路。
电力电子技术的发展史:一般认为,电力电子技术的诞生是以1957年美国通用电气公司研制出第一个晶闸管为标志的。
晶闸管出现前的时期可称为电力电子技术的史前期或黎明期。
1904年出现了电子管,它能在真空中对电子流进行控制,并应用于通信和无线电,从而开启了电子技术用于电力领域的先河。
20世纪30年代到50年代,水银整流器广泛用于电化学工业、电气铁道直流变电所以及轧钢用直流电动机的传动,甚至用于直流输电。
1947年美国著名的贝尔实验室发明了晶体管,引发了电子技术的一场革命。
晶闸管时代,晶闸管由于其优越的电气性能和控制性能,使之很快就取代了水银整流器和旋转变流机组,并且其应用范围也迅速扩大。
电力电子技术的概念和基础就是由于晶闸管及晶闸管变流技术的发展而确立的。
晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。
对晶闸管电路的控制方式主要是相位控制方式,简称相控方式。
晶闸管的关断通常依靠电网电压等外部条件来实现。
这就使得晶闸管的应用受到了很大的局限。
全控型器件和电力电子集成电路(PIC),70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管为代表的全控型器件迅速发展。
全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。
采用全控型器件的电路的主要控制方式为脉冲宽度调制(PWM)方式。
相对于相位控制方式,可称之为斩波控制方式,简称斩控方式。
在80年代后期,以绝缘栅极双极型晶体管为代表的复合型器件异军突起。
它是MOSFET和BJT的复合,综合了两者的优点。
与此相对,MOS控制晶闸管和集成门极换流晶闸管复合了MOSFET和GTO。
电力电子技术在电力系统中的应用:1、一般工业电机调速,工业中大量应用各种交、直流电动机。
直流电动机具有良好的调速性能,为其供电的可控整流电源或直流折波电源都是电力电子装置。
近年来,由于电力电子变频技术的迅速发展,使得交流电动机的调速性能可与直流电动机相媲美。
因此,交流调速技术得到了广泛的应用,并且占据主导地位。
2、交通运输,电气化铁道中广泛采用电力电子技术,电气机车中的直流机车采用整流装置供电,交流机车采用变频装置供电。
如直流折波器广泛应用与铁道车辆,磁悬浮列车中电力电子技术更是一项关键的技术。
绿色电动车的电机是以蓄电池为能源,靠电力电子装置进行电力变换和驱动控制,其蓄电池的充电也离不开电力电子技术。
显然,未来电动车将取代燃油汽车。
船舶、飞机需要各种不同要求的电源,因此航海、航空都离不开电力电子技术。
3、电子装置用电源,在各种电子装置中,以前大量采用线性稳压电源供
电,由于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了线性电源。
通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在已改为采用全控型器件的高频开关电源。
因为各种信息技术装置都需要电力电子装置提供电源,所以说信息电子技术离不开电力电子技术。
4环境保护,随着工、农业迅速发展,特别是火力发电和水泥业的发展对自然环境的污染越来越严重,未来净化环境,提高人们的生活质量,在某些行业采用高压静电除尘措施是十分有效的,其关键也是微机和电力电子技术。
现代电力电子技术是以高新技术知识为基础的一种知识密集型技术综合,是强弱电相结合的新学科,一方面它是电子学在高电压、大电流等强电或电工领域的一个分支,另一方面它也是电工学在低电压、大电流等电流弱电或电子领域的一个分支。
当前,电力电子技术与微电子技术的结合已成为当今技术发展的主流电力电子技术的应用,贯穿在电能的获取、传输、变换和利用的几乎每个环节,使用电效率、节能效益、供电质量大大提高。
电力电子技术的应用在电气自动化中发挥越来越重要的作用,为电能的产生和利用搭起了桥梁,为电能的输出、应用提供了更好的方式和平台,从根本提高了电能的应用效率。
电力电子技术正在不断发展,新材料、新结构器件的陆续诞生,计算机技术的进步为现代控制技术的实际应用提供了有力的支持.在各行各业中的应用越来越广泛,从人类对宇宙和大自然的探索.到同民经济的各个领域,再到我们的衣食住行,到处都能感受到电力电子技术的存在和巨大魅力。