DSP串行通信系统设计与实现
- 格式:pdf
- 大小:535.86 KB
- 文档页数:4
基于DSP+FPGA的UART设计与实现摘要:UART作为RS232协议的控制接口得到广泛的应用,将UART功能集成在DSP和FPGA芯片组成的系统中,可使整个系统更为灵活、紧凑,减小电路体积,提高系统的可靠性和稳定性。
本文提出了一种基于DSP和FPGA 系统的UART 实现方法。
关键词:通用异步收发器;DSP;FPGA1 引言通用异步收发器(Universal Asynchronous Receiver/Transmitter,通常称作UART)是一种串行异步收发协议,应用十分广泛。
UART可以和各种标准串行接口,如RS232、RS485等进行全双工异步通信,具有传输距离远、成本低、可靠性高等优点。
一般UART 由专用芯片来实现,但专用芯片引脚较多,内含许多辅助功能,在实际使用时往往只需要用到UART 的基本功能,使用专用芯片会造成资源浪费和成本提高[1]。
在DSP和FPGA组成的系统中,利用DSP芯片完成UART数据收发控制,FPGA完成UART数据具体的收发时序,二者利用EMIF接口配合,即可实现UART通信功能。
这样设计可以大大减少电路体积、简化电路,也提高了系统的灵活性,使整个系统更加紧凑、稳定且可靠。
2 UART原理UART是一种串行数据总线,用于全双工异步通信。
工作原理是将数据的二进制位按位进行传输。
基本的UART 只需要两条信号线(收、发)和一条地线就可以完成数据的互通,接收和发送互不干扰。
在UART通信协议中,信号线上的状态位高电平代表“1”,低电平代表“0”。
图1 UART数据传输格式UART 数据传输格式如图1所示,一个字符由起始位、数据位、校验位和停止位组成(其中校验位可选)。
其中各位的含义如下:起始位:一位逻辑“0”信号,表示字符数据传输的开始;数据位:5~8位可选的逻辑“0”或“1”。
数据位的发送顺序为:先发送数据的最低位,最后发送最高位;校验位:包括奇校验或偶校验两种方式,即数据位加上这一位后,使得“1”的位数应为偶数(偶校验)或奇数(奇校验)。
课程设计报告( 2014 -- 2015年度第二学期)课程名称:DSP课程设计题目:基于DSP实验系统的串口通信院系:电子与通信工程系班级:电子学号:学生姓名:指导教师:设计周数: 2成绩:日期:2015 年7月16日一、课程设计的目的与要求1.设计方案:通过TMS320C5509A的串口与电脑进行通信,利用串口调试助手发送数据,由DSP接收到,DSP读到收到数据进行下一步的让四位LED灯亮,实现数据的通信,并在lcd12864上显示发送的数据,还有显示拨码开关的数值。
2.设计指标:电脑只能发送0~15,因为读出数据的时候比较方便解码,比如发送4就可以直接给LED直接赋值,让第三个灯亮,也就是一般的二进制转换。
二、设计正文1.设计思路(系统组成介绍)串口模块:TL16C550 是一个标准的串口接口芯片,它的控制寄存器基地址为0x400200,寄存器占用TMS320VC5509 的8 个地址单元。
串口中断与TMS320VC5509 的INT0 连接。
用户可以使用TMS320VC5509 的中断0 响应串口中断。
TL16C550 有11 个寄存器,这11 个寄存器是通过TMS320VC5509 的3 个地址线(A3~A1)和线路控制寄存器中的DLAB 位对它们进行寻址的。
板上加上16C550、Max232 和驱动电路。
驱动电路主要完成将输出的0-3.3V 电平转换成异步串口的工作电平,转换电平的工作由MAX232 芯片完成,但由于它是5V 器件,所以它同DSP 间的信号线必须有电平转换,此板采用的是74LVC245。
实验箱上的液晶模块采用的型号是TJDM12864MTJDM12864M 是一款带中文字库的图形点阵模块,由动态驱动方式驱动128×64 点阵显示。
低功耗,供应电电压范围宽。
内含多功能的指令集,操作简易。
采用COB 工艺制作,结构稳固,使用寿命长。
特性:1.提供 8 位,4 位及串行接口可选2.64×16 位字符显示 RAM(DDRAM 最多 16 字符×4 行,LCD 显示范围 16×2 行)3.2M 位中文字型 ROM(CGROM),总共提供 8192 个中文字型(16×16 点阵)4.16K 位半宽字型 ROM(HCGROM),总共提供 126 个西文字型(16×8 点阵)5.64×16 位字符产生 RAM(CGRAM)6.15×16 位总共 240 点的 ICON RAM(ICONRAM)7.自动复位(RESET)功能8.绘图及文字画面混合显示功能9.提供多功能指令:——画面清除(display clear)——游标归位(return home)——显示开/关(display on/off)——游标显示/隐藏(cursor on/off)——字符闪烁(display character blink)——游标移位(cursor shift)——显示移位(display shift)——垂直画面旋转(vertical line scoll)——反白显示(By-line reverse display)——睡眠模式(sleep mode)DSP与LCD的连接:3.软件设计流程:4.在试验箱上模拟实现用随实验箱附带的串口线(两端均为9 孔“D”形插头)连接计算机com1 或com2 插座和ICETEK–VC5509-A 板上标准RS-232 插座,编译、下载、运行。
学院:信息与电气工程学院班级:电信081 姓名:学号:课程:DSP原理及应用实验日期:_____年月日成绩:实验一开发环境建立一、实验目的(1) 学会CCS软件的安装方法。
(2) 熟悉CCS集成开发环境,掌握工程的生成方法。
(3) 熟悉CCS常用菜单的使用。
(4) 掌握CCS集成开发环境的调试方法。
二、实验原理CCS是进行DSP开发的一个集成环境,它是在 WINDOWS系统下工作的一个软件,通过该软件,我们可以进行DSP程序及系统的开发。
CCS提供了配置、建立、调试、跟踪和分析程序的工具,是进行DSP开发的常用工具,它是在WINDOWS系统下工作的一个软件,通过该软件,我们可以进行DSP程序的编辑及系统的开发。
3. 实验仪器和设备(1) 主机1台(2) 仿真器1台(3) 主机1台三、实验内容及步骤3.1 CCS 安装双击Code Composer Studio 图标;按照光标与提示依次执行,最后安装完成后重启计算机。
3.2 SEED-XDS510PLUS 的驱动安装1、将SEED-XDS510PLUS 仿真器的USB 插头插入PC 机的USB 插槽中,启动计算机后识别SEED-XDS510PLUS 硬件,识别后安装其驱动程序。
2.按照提示依次执行,同时默认路径为CCS 的安装路径。
3.安装完毕后打开控制面板查看系统中的设备管理器,出现如下结果,证明硬件连接成功。
学院:信息与电气工程学院班级:电信081 姓名:学号:课程:DSP原理及应用实验日期:_____年月日成绩:4.将仿真器JTAG 插头与实验箱主控板SEED-DEC6713 的JTAG 插头J1 相连,打开实验箱电源开关。
观察SEED-DTK_MBoard 单元的+5V、+3.3V、+15V、-15V 的电源指示灯以及SEED-DEC6713 的D2 与D4 的电源指示灯均亮。
5.双击usb20rest.exe,如下图。
可以对仿真器进行复位:3.3 驱动程序的配置1.双击桌面上的Setup CCS 2(6000)。
DSP在通信系统中的应用与发展摘要:数字信号处理器(DSP)是一种具有特殊结构的微处理器,特别适合于数字信号处理运算。
它是当今发展最为迅速和前景最为可观的技术之一。
自从20世纪80年代第一片DSP芯片诞生至今。
其性能得到了极大的提高。
应用领域取得了不断的拓展。
日前它己经成为通信、计算机、网络、工业控制以及家用电器等电产品不可或缺的基础器件, 尤其在通信领域,数字信号处理器以其实时快速地实现各种数字信号处理算法的优点从而得到了广泛的应用。
随着超大规模集成电路技术(VLSI)的高速发展。
DSP的性价比也在不断提高。
本文是在本学期学习了《数字信号处理与DSP技术》后,对DSP在通信系统中的应用现状及发展趋势作的简单介绍。
一、DSP器件、厂商简要介绍DSP,也称作数字信号处理器(Digital Signal Processor),是一种具有特殊结构的微处理器,主要对数字信号进行实时处理,以得到相应的处理结果。
DSP 芯片的内部采用程序和数据分开的哈佛结构,具有专门的硬件乘法器,广泛采用流水线操作提供特殊的DSP指令,可以用来快速地实现各种数字信号处理算法。
在DSP出现之前,数字信号处理只能依靠MPU(微处理器)来完成。
但由于MPU处理速度较低,无法满足越来越大的信息量的高速实时要求,因此寻求更快更高效的信号处理方式成了日渐迫切的社会需求。
到了60年代,有人提出了DSP的理论和算法基础,数字信号处理的理论得以迅速发展。
1978年AMI 公司宣布的S2811,标志着世界上第一个DSP的诞生,1979年美国Intel公司推出商用可编程器件2920。
这两种芯片内部都没有现代DSP芯片所必须有的单周期乘法器,其应用领域很局限,但是DSP的问世是个里程碑,它标志着DSP应用系统由大型系统向小型化迈进了一大步。
经过20多年的发展,DSP芯片的性能价格比不断提高,开发手段越来越完善。
DSP芯片的应用已扩大到人们的学习、工作和生活的各个方面,已经在通信与电子系统、信号与信息处理、自动控制、雷达、军事、航空航天、医疗、家用电器在等许多领域得到广泛的应用,并逐渐成为电子产品更新换代的决定因素。
摘要:基于嵌入式系统发展的需要,提出TMS320VC5402 DSP与AT89C51单片机通信的三种设计方案。
利用TMS320VC5402的多通道缓冲串口MCBSP分别实现TM S320VC5402与AT89C51的SCI和SPI串行通信,以及通过TMS320VC5402的8位增强主机接口HPI一8实现TMS320VC5402与AT89C5l并行通信。
就硬件接口电路和软件编程进行详细的阐述。
关键词:单片机 DSP MCBSP HPI将DSP和单片机构成双CPU处理器平台,可以充分利用DSP对大容量数据和复杂算法的处理能力,以及单片机接口的控制能力。
而DSP与单片机之间快速正确的通信是构建双CPU处理器的关键问题。
下面就此问题分别设计串行SCI、SPI和并行HPI三种连接方式。
1 串行通信设计与实现1 1 SCI串行通信设计1.1.1 多通道缓冲串行口McBSP原理TMS320VC5402(简称VC5402)提供了2个支持高速、全双工、带缓冲、多种数据格式等优点的多通道缓冲串行口McBSP。
MCESP分为数据通路和控制通路。
①数据通路负责完成数据的收发。
CPU或DMAC能够向数据发送寄存器DXR写入数据,DXR中的数据通过发送移位寄存器XSR输出到DX引脚。
DR引脚接收数据到接收移位寄存器RSR,再复制到接收缓冲寄存器RBR,最后复制到数据接收寄存器DR R。
这两种数据多级缓冲方式使得数据搬移和片外数据通信能够同时进行。
②控制通路负责内部时钟产生,帧同步信号产生,信号控制和多通道选择。
另外.还具有向CPU发送中断信号和向DMAC发送同步事件的功能。
MCBSP时钟和帧同步信号通过CLKR、CLKX、FXR、FSX引脚进行控制,接收器和发送器可以相互独立地选择外部时钟和帧同步信号,也可以选择由内部采样率发生器产生时钟和帧同步信号。
帧同步脉冲有效表示传输的开始。
1.1.2 SC I串行接口设计设置VC5402的McRSP输出时钟和帧同步信号由内部采样率发生器产生,内部数据时钟CLKG和帧同步信号FSG驱动发送时钟CLKX和帧同步FSX(CLKXM=l,FSXM=l,FSGM=1),输入时钟也由内部采样率发生器产生,内部数据时钟CLKG 驱动接收时钟CLKR(CLKRM=1),同时由CPU时钟驱动采样率发生器(CLKSM=1)。