数控加工路线的确定
- 格式:doc
- 大小:649.00 KB
- 文档页数:8
在数控车床上加工零件时,应该遵循如下原则:
(1 )选择适合在数控车床上加工的零件。
(2 )分析被加工零件图样,明确加工内容和技术要求。
(3 )确定工件坐标系原点位置。
原点位置一般选择在工件右端面和主轴回转中心交点P ,也可以设在主轴回转中心与工件左端面交点O 上,如图1所示。
图1 编程原点
(4 )制定加工工艺路径,应该考虑加工起始点位置,起始点一般也作为加工结束的位置,起市点应便于检查和装夹工件;应该考虑粗车、半精车、精车路线,在保证零件加工精度和表面粗糙度的前提下,尽可能以最少的进给路线完成零件的加工,缩短单件的加工时间;应考虑换刀点的位置,换刀点是加工过程中刀架进行自动换刀的位置,换刀点位置的选择应考虑在换刀过程中不发生干涉现象,且换刀路线尽可能短,加工起始点和换刀点可选同一点或者不选同点。
(5 )选择切削参数。
在加工过程中,应根据零件精度要求选择合理的主轴转速、进给速度、和切削深度。
(6 )合理选择刀具。
根据加工的零件形状和表面精度要求,选择合适的刀具进行加工。
(7 )编制加工程序,调试加工程序,完成零件加工。
加工进给路线的确定来源:数控机床网 作者:数控车床 栏目:行业动态 进给路线是刀具在整个加工工序中相对于工件的运动轨迹,它不但包括了工步的内容,而且也反映出工步的顺序。
进给路线也是编程的依据之一。
加工路线的确定首先必须保持被加工零件的尺寸精度和表面质量,其次考虑数值计算简单、走刀路线尽量短、效率较高等。
因精加工的进给路线基本上都是沿其零件轮廓顺序进行的,因此确定进给路线的工作重点是确定粗加工及空行程的进给路线。
下面将具体分析:(1)加工路线与加工余量的关系在数控车床还未达到普及使用的条件下,一般应把毛坯件上过多的余量,特别是含有锻、铸硬皮层的余量安排在普通车床上加工。
如必须用数控车床加工时,则要注意程序的灵活安排。
安排一些子程序对余量过多的部位先作一定的切削加工。
①对大余量毛坯进行阶梯切削时的加工路线图5-5所示为车削大余量工件的两种加工路线,图(a)是错误的阶梯切削路线,图(b)按1→5的顺序切削,每次切削所留余量相等,是正确的阶梯切削路线。
因为在同样背吃刀量的条件下,按图(a)方式加工所剩的余量过多。
根据数控加工的特点,还可以放弃常用的阶梯车削法,改用依次从轴向和径向进刀、顺工件毛坯轮廓走刀的路线(如图5-6所示)②分层切削时刀具的终止位置当某表面的余量较多需分层多次走刀切削时,从第二刀开始就要注意防止走刀到终点时切削深度的猛增。
如图5-7所示,设以900主偏角刀分层车削外圆,合理的安排应是每一刀的切削终点依次提前一小段距离e(例如可取e=0.05㎜)。
如果e=0,则每一刀都终止在同一轴向位置上,主切削刃就可能受到瞬时的重负荷冲击。
当刀具的主偏角大于900,但仍然接近900时,也宜作出层层递退的安排,经验表明,这对延长粗加工刀具的寿命是有利的。
(a) (b)图5-5 车削大余量毛坯的阶梯路线图5-6 双向进刀走刀路线图5-7 分层切削时刀具的终止位置(2)刀具的切入、切出在数控机床上进行加工时,要安排好刀具的切入、切出路线,尽量使刀具沿轮廓的切线方向切入、切出。
(1)加工路线的确定原则在数控加工中,刀具刀位点相对于工件运动的轨迹称为加工路线。
确定加工路线是编写程序前的重要步骤,加工路线的确定应遵循以下原则。
1.加工路线应保证被加工零件的精度和表面粗糙度,且效率较高。
2.使数值计算简单,以减少编程工作量。
3.应使加工路线最短,这样既可以减少程序段,又可以减少空刀时间。
此外,确定加工路线时,还要考虑工件的加工余量和机床、刀具的刚度等情况,确定是一次走刀,还是多次走刀来完成加工,以及在铣削加工中是采用顺铣还是逆铣等。
(2)辅助程序段的设计1.轮廓加工的进退刀路径设计在对零件的轮廓进行加工时,为了保证零件的加工精度和表面粗糙度符合要求,应合理地设计进退刀路径。
如图1所示,当铣削平面零件外轮廓时,一般采用立铣刀侧刃切削。
刀具切入工件时,应避免沿零件外廓的法向切入,而应沿外廓曲线延长线的切向切入,以避免在切入处产生刀具的刻痕而影响表面质量,保证零件外廓曲线平滑过渡。
同理,在切离工件时,也应避免在工件的轮廓处直接退刀,而应该沿零件轮廓延长线的切向逐渐切离工件。
图1 外轮廓加工刀具的切入切出图2 内轮廓加工刀具的切入和切出1铣削封闭的内轮廓表面时,若内轮廓曲线允许外延,则应沿切线方向切入切出。
若内轮廓曲线不允许外延(见图2),刀具只能沿内轮廓曲线的法向切入切出,此时刀具的切入切出点应尽量选在内轮廓曲线两几何元素的交点处。
当内部几何元素相切无交点时(见图3),为防止刀具在轮廓拐角处留下凹口,刀具切入切出点应远离拐角。
图3 内轮廓加工刀具的切入和切出2如图4所示,用圆弧插补方式铣削外整圆时,当整圆加工完毕时,不要在切点处直接退刀,而应让刀具沿切线方向多运动一段距离,以免取消刀补时,刀具与工件表面相碰,造成工件报废。
铣削内圆弧时也要遵循从切向切入的原则。
最好安排从圆弧过渡到圆弧的加工路线(见图5,这样可以提高内孔表面的加工精度和加工质量。
本篇文章来源于数控网|原文链接:2.孔加工时引伸距离的确定孔加工在确定轴向尺寸时,应考虑一些辅助尺寸,包括刀具的引入距离和超越距离。
在选定加工方法、划分工序后,接下来就是合理安排工序的顺序。
零件的加工工序通常包括切削加工工序、热处理工序和辅助工序,合理安排好切削加工、热处理和辅助工序的顺序,并解决好工序间的衔接问题,可以提高零件的加工质量生产效率,降低加工成本。
在数控车床上加工零件,应按工序集中的原则划分工序,安排零件车削加工顺序一般遵循下列原则。
1.数控车床在零件加工中先粗后精按照粗车→半精车→精车的顺序进行,逐步提高零件的加工精度。
粗车将在较短的时间内将工件表面上的大部分加工余量切掉,这样既提高了金属切除率,又满足了精车余量均匀性要求。
若粗车后所留余量的均匀性满足不了精加工的要求,则要安排半精车,以便使精加工的余量小而均匀。
精车时,刀具沿着零件的轮廓一次走刀完成,以保证零件的加工精度。
首先进行粗加工,将虚线包围部分切除,然后进行半精加工和精加工。
2.数控车床在零件加工中先近后远这里所说的远与近,是按加工部位相对于换刀点的距离大小而言的。
通常在粗加工时,离换刀点近的部位先加工,离换刀点远的部位后加工,以便缩短刀具移动距离,减少空行程时间,并且有利于保持坯件或半成品件的刚性,改善其切削条件。
例如,当加工如图2.8所示零件时由于余量较大,粗车时,可按先车端面,再按40mm→35mm→29mm→23mm的顺序加工;精车时,如果按40mm35mm→29mm→23mm的顺序安排车削,不仅会增加刀具返回换刀点所需的空行程时间,而且还可能使台阶的外直角处产生毛刺,应该按23mm→29mm→35m→40mm的顺序加工。
如果余量不大则可以直接按直径由小到大的顺序一次加工完成,符合先近后远的原则,即离刀具近的部位先加工,离刀具远的部位后加工。
3. 数控车床在零件加工中内外交叉对既有内表面(内型、内腔)又有外表面的零件,安排加工顺序时,应先粗加工内、外表面,然后精加工内、外表面。
加工内、外表面时,通常先加工内型和内腔,然后加工外表面。
原因是控制内表面的尺寸和形状较困难,刀具刚性相应较差,刀尖(刃)的耐用度易受切削热的影响而降低,以及在加工中清除切屑较困难等。
数控编程技巧:教你怎么样确定走刀路线和安排加工顺序
数控工序设计的主要任务是进一步把本工序的加工内容、切削用量、工艺装备、定位夹紧方式及刀具运动轨迹确定下来,为编制加工程序作好准备。
走刀路线就是刀具在整个加工工序中的运动轨迹,它不但包括了工步的内容,也反映出工步顺序。
走刀路线是编写程序的依据之一。
确定走刀路线时应注意以下几点:
1.寻求最短加工路线,减少空刀时间以提高加工效率
如加工图1a所示零件上的孔系。
b图的走刀路线为先加工完外圈孔后,再加工内圈孔。
若改用c图的走刀路线,则可节省定位时间近一倍。
a
b
c
图1 最短走刀路线的设计
2.为保证工件轮廓表面加工后的粗糙度要求,最终轮廓应安排在最后一次走刀中连续加工出来
如图2a为用行切方式加工内腔的走刀路线,这种走刀能切除内腔中的全部余量,不留死角,不伤轮廓。
但行切法将在两次走刀的起点和终点间留下残留高度,而达不到要求的表面粗糙度。
所以如采用b图的走刀路线,先用行切法,最后沿周向环切一刀,光整轮廓表面,能获得较好的效果。
图2c也是一种较好的走刀路线方式。
a
b
c
图2 铣切内腔的三种走刀路线
3.考虑刀具的进、退刀(切入、切出)路线
刀具的切出或切入点应在沿零件轮廓的切线上,以保证工件轮廓光滑;应避免在工件轮廓面上垂直上、下刀而划伤工件表面;尽量减少在轮廓加工切削过程中的暂停(切削力突然变化造成弹性变形),以免留下刀痕,如图3所示。
图3刀具切入和切出时的外延
4.选择使工件在加工后变形小的路线
对横截面积小的细长零件或薄板零件应采用分几次走刀加工到最后尺寸或对称去除余量法安排走刀路线。
数控加工中工艺路线设计原则及方法数控加工是一种采用计算机控制的加工方式,具有高效、精度高、重复性好等优点。
在进行数控加工工艺路线设计时,需要考虑以下原则和方法。
1.合理的工艺路线:在设计工艺路线时,应根据被加工零件的形状、材料、尺寸等因素,合理选择加工方法和工艺参数,使加工过程更加高效、稳定、可靠。
2.确定优化的切削参数:切削参数包括切削速度、进给速度、切削深度等,这些参数的选择直接影响加工质量和效率。
在设计工艺路线时,应根据零件的材料、硬度、形状等因素,结合切削理论和经验,确定合适的切削参数。
3.合理的刀具选用:刀具的选用应根据被加工材料的硬度、切削性能要求、切削方式等因素来决定。
同时,刀具的类型、规格、刃磨和调整等也需要进行合理选择和操作,以保证加工质量和效率。
4.完善的夹紧装置:夹紧装置是保证工件在加工过程中稳定性的重要因素之一、在设计工艺路线时,应考虑工件的形状、材料等因素,选择合适的夹紧装置,确保工件在加工过程中能够保持良好的位置和固定。
5.避免振动和共振:在进行数控加工时,振动和共振是常见的问题,会导致加工精度下降,甚至破坏刀具和工件。
在设计工艺路线时,应尽量避免长时间切削和加工深度过大,选择合适的切削参数,保证加工过程的稳定性。
6.充分利用数控机床的功能:数控机床具有多轴加工、自动换刀、自动测量等功能,可以提高加工效率和精度。
在设计工艺路线时,应合理利用这些功能,提高加工效率和自动化程度。
7.进行仿真验证:在进行数控加工工艺路线设计前,可以使用数控仿真软件进行仿真验证。
通过仿真可以模拟加工过程,确定刀具路径、切削参数的合理性,并优化工艺路线,从而避免因设计不合理而导致的加工失败和资源浪费。
总之,在进行数控加工工艺路线设计时,应根据被加工零件的要求和特点,选择合适的加工方法和工艺参数,合理选择刀具和夹紧装置,避免振动和共振问题,充分利用数控机床的功能,并进行仿真验证,以保证加工过程的高效、稳定和可靠。
浅述数控车床加工中走刀路线的合理确定作者:杨艳华来源:《中国新技术新产品》2011年第15期摘要:在数控加工中,刀具刀位点相对于工件运动的轨迹称为进给路线,也称走刀路线。
它不但包括了工步的内容,而且也反映出工步的顺序。
在数控加工中,进给路线是由数控系统控制的。
它对零件的加工质量、加工效率有直接影响,因此,工序设计时必须拟定好刀具合理的进给路线。
关键词:数控车床;走刀路线;原则;确定方法中图分类号:TG659 文献标识码:A1确定走刀路线的原则工步的划分与安排一般可随走刀路线来进行,在确定走刀路线时,主要遵循以下几点原则:1.1加工路线应保证被加工工件的精度和表面粗糙度;1.2应使加工路线最短,以减少空行程时间,提高加工效率;1.3尽量简化数学处理时的数值计算工作量,以简化编程工作;1.4当进给路线重复时,为了简化编程,缩短程序长度,应使用子程序。
此外,确定加工路线时,还要考虑工件的形状与刚度、加工余量的大小,机床与刀具的刚度,合理的切入与切出方向等。
2走刀路线的确定方法走刀路线的确定原则是在保证加工质量的前提下,使加工程序具有最短的走刀路线,这样不仅可以节省整个加工过程的执行时间,还能减少一些不必要的刀具消耗及机床进给滑动部件的磨损等。
2.1粗车走刀路线2.1.1外圆粗车G71适于切削区轴向余量较大的细长轴套类零件的粗车,使用该方式加工可减少径向分层次数,使走刀路线变短2.1.2端面粗车G72用于切削区径向余量较大的轮盘类零件的粗车加工,并使得轴向分层次数少。
2.1.3环状粗车G73适合周边余量较均匀的铸锻坯料的粗车加工,对从棒料开始粗车加工,则会有很多空行程的切削进给路线。
如图1所示。
图1粗车走刀路线若按图2(a)所示,从右往左由小到大逐次车削,由于受背吃刀量不能过大的限制,所剩的余量就必然过多;按图2(b)所示,从大到小依次车削,则在保证同样背吃刀量的条件下,每次切削所留余量就比较均匀,是正确的阶梯切削路线。
数控加工工序的确定原则及加工顺序安排的原则
更新日期:来源:本站整理
数控加工是机械加工的一种,因此与一般的机械加工工序的安排有一些相似之处,数控加工与机械加工顺序的安排一般应遵循以下原则:
1、上道工序的加工不能影响下道工序的定位与夹紧。
2、以相同的安装方式或使用同一把刀具加工的工序,最好连续进行,以减少重新定位或换刀所引起的误差。
3、在同一次安装中,应先进行对工件刚性影响比较小的工序,确保工件在足够刚性条件下逐步加工完毕。
这些原则不仅适用于数控加工,也适用于普通机加工。
除此之外,对于数控加工,表1列出了一些根据数控加工工艺特点而应注意的其它原则,在确定加工工序的时候也要引起重视。
表1 数控加工工序的确定原则。
课例研究2、理论与实践相结合的原则《机械制图》是一门实践性很强的学科,对于中职学生而言,掌握绘图与识图的基本技能对于以后的实际工作是非常重要的,因而实践教学也成为日常教学的重中之重。
知识是能力的基础,掌握了知识不一定有能力,能力只有在实践中才能不断形成。
而实践绘图课堂化,就是有目的有计划地让学生在制图室内对着实物去实际绘制。
通过绘图课不仅可以检查学生所学理论知识,更是学生将知识转化为技能、技艺的应用过程。
学生只有经常不断地画图,在画图中发现问题、提出问题、最后才能解决问题。
这样不仅巩固了所学知识,促进知识的获取,而且还提高了学生的独立思考能力、空间想象能力、分析能力和应用能力,还可以培养学生的创造能力与个性品质,在今后的实际生产中进行技术创新、小发明、小创造等等。
3、创新性与传统性相结合的原则随着科学技术的提高与发展,各种各样的教学设施、教学软件正在逐步地建全与完善,传统教学不再唯一且不足以支撑今天的课堂教学,将传统教学与现在科技完美结合,将创新性教学应用到传统教学中去,完善教学手段,拓展教学思路,扩宽教学方法,有利于培养学生不断创新不断进取的积极性,激发学生的专业兴趣与学习主动性,同时有利于活跃课堂教学气氛,取得很好的教学效果。
传统教学中模型、示教板、挂图在观察主要特征及各种事物之间联系时,由于受客观条件限制,同一内容往往要多次重复演示。
而采用创新性多媒体教学这一辅助手段适时地穿插于教学之中,与模型、示教板相结合,就可收到事半功倍的效果。
它不仅具有较强表现力,可以用来直接完成教学任务,还能调节课堂教学气氛,激起学生学习兴趣,使得视觉、听觉、角觉多种知觉系统协同参与学习,有助于知识获得的精确和完善性,发展学生的抽象思维能力。
三、结论课堂教学是一个多因素多层次的系统教学,要提高课堂教学质量,就是要遵循科学严谨的工作态度,采用丰富有效的教学方式、方法和技巧,充分调动教师和学生的积极性和主动性,培养学生的学习兴趣和专业素养。
数控加工中心加工路线的选择摘要:数控机床是一种高速度、高效率,高精度的自动化设备,要充分发挥数控机床的这一特点,必须熟练掌握其性能、特点、使用操作方法,同时还必须在编程之前确定好加工工艺路线,走刀路线即为数控加工过程中刀具的刀位点相对于工件的运动轨迹,它反映了工序的加工过程。
因此,确定合理的走刀路线是保证数控加工精度和表面质量的重要工艺措施之一,也是编写数控程序的前提,确定合理的走刀路线,也是提高数控加工生产效率重要手段之一。
关键词:工艺路线;数控加工前言:在现代数控加工过程当中,合理的加工路线不仅可以保证加工工件的质量,同时还可以提高加工的效率,提高生产量。
因此数控加工中心在选择加工路线时,必须全面考虑工序的正确划分及合理的顺序安排,设计出零件最合理的最优的加工路线。
1 加工工艺路线的制定原则根据零件的材料、结构和技术要求不同,各种零件的加工工艺是不同的,即使是同类型的零件,由于生产条件和批量大小的不同,其工艺也不同,因此,必须根据具体情况制定合理的工艺路线。
影响加工工艺路线的因素有工艺方法、工件材料及状态、加工精度及表面粗糙度要求,还有工件刚度、加工余量、刀具的刚度、耐用度、机床类型及工件的轮廓形状等。
因此在确定走刀路线时应遵循以下原则。
1.1 加工工艺路线应保证被加工件的精度及表面粗糙度,且效率较高;1.2 数值计算简便,以减少编程工作量;1.3 应使加工工艺路线最短,这样减少程序段,又可以减少空刀时间;1.4 为保证工件轮廓表面加工后的粗糙度要求,最终轮廓一次走刀完成;1.5 选择使工件在加工后变形小的路线。
2 车削加工加工路线的选择车削加工路线的确定原则是保证加工质量的前提下,走刀路线最短。
2.1粗车时走刀路线可以根据切削的位置进行改变,如粗车外圆时,可以采用减少径向分层数的走刀方式,车端面时可以用减少轴向分层次数的方式;2.2精车时,要以保证零件的加工精度,零件的最终加工精度是最后一次加工后的精度,进刀及退刀的位置要考虑清楚,并且最后一次的加工要一次连续加工完成。
(1)加工路线的确定原则
在数控加工中,刀具刀位点相对于工件运动的轨迹称为加工路线。
确定加工路线是编写程序前的重要步骤,加工路线的确定应遵循以下原则。
1.加工路线应保证被加工零件的精度和表面粗糙度,且效率较高。
2.使数值计算简单,以减少编程工作量。
3.应使加工路线最短,这样既可以减少程序段,又可以减少空刀时间。
此外,确定加工路线时,还要考虑工件的加工余量和机床、刀具的刚度等情况,确定是一次走刀,还是多次走刀来完成加工,以及在铣削加工中是采用顺铣还是逆铣等。
(2)辅助程序段的设计
1.轮廓加工的进退刀路径设计在对零件的轮廓进行加工时,为了保证零件的加工精度和表面粗糙度符合要求,应合理地设计进退刀路径。
如图1所示,当铣削平面零件外轮廓时,一般采用立铣刀侧刃切削。
刀具切入工件时,应避免沿零件外廓的法向切入,而应沿外廓曲线延长线的切向切入,以避免在切入处产生刀具的刻痕而影响表面质量,保证零件外廓曲线平滑过渡。
同理,在切离工件时,也应避免在工件的轮廓处直接退刀,而应该沿零件轮廓延长线的切向逐渐切离工件。
图1 外轮廓加工刀具的切入切出
图2 内轮廓加工刀具的切入和切出1
铣削封闭的内轮廓表面时,若内轮廓曲线允许外延,则应沿切线方向切入切出。
若内轮廓曲线不允许外延(见图2),刀具只能沿内轮廓曲线的法向切入切出,此时刀具的切入切出点应尽量选在内轮廓曲线两几何元素的交点处。
当内部几何元素相切无交点时(见图3),为防止刀具在轮廓拐角处留下凹口,刀具切入切出点应远离拐角。
图3 内轮廓加工刀具的切入和切出2
如图4所示,用圆弧插补方式铣削外整圆时,当整圆加工完毕时,不要在切点处直接退刀,而应让刀具沿切线方向多运动一段距离,以免取消刀补时,刀具与工件表面相碰,造成工件报废。
铣削内圆弧时也要遵循从切向切入的原则。
最好安排从圆弧过渡到圆弧的加工路
线(见图5,这样可以提高内孔表面的加工精度和加工质量。
本篇文章来源于数控网| 原文链接:/Prog/Basis/2009-03-25/1134.html
2.孔加工时引伸距离的确定孔加工在确定轴向尺寸时,应考虑一些辅助尺寸,包括刀具的引入距离和超越距离。
数控钻孔的尺寸关系如图6所示,图中各参数的含义如下。
Zd——被加工孔的深度(mm);
ΔZ——具的轴向引入距离(mm),其经验数据为已加工面钻、镗、铰孔ΔZ=1-3mm;毛面上钻ΔZ=5-8mm;铣削前攻螺纹时ΔZ=5-10mm;
图4 外圆铣削
图5 内圆铣削
图6 数控钻孔的尺寸关系
Zp——钻孔深度(mm)。
Zp=Deot++/2=0.3d
Zf——刀具轴向位移量,即程序中的坐标尺寸(mm),
Zp=Zd+ΔZ+Zp
钻孔时刀具超越距离为1 / / 3mm。
3.螺纹加工的引伸距离的确定在数控车床上车螺纹时,沿螺距方向的Z向进给应和车床主轴的旋转保持严格的速度比例关系,因此应避免在进给机构加速或减速的过程中切削。
为此要有引入距离ε1和超越距离ε2。
如图7所示,ε1和ε2的数值与车床拖动系统的动态特性、螺纹的螺距和精度有关。
一般ε1为2-5mm,对大螺距和高精度的螺纹取大值;ε2一般取ε1的1 / 4 左右。
若螺纹收尾处没有退刀槽时,收尾处的形状与数控系统有关,一般按45°退刀收尾。
图7 切削螺纹时的引入与超越距离
(3)孔加工路线的确定
孔加工时的加工路线确定,应根据技术条件按加工路线最短或加工精度最高的原则,同时,还应考虑孔加工时的引伸距离。
对于点位控制的数控机床,只要求定位精度较高,定位过程尽可能地快,而刀具相对于工件的运动路径无关紧要,因此这类机床应按路径最短来安排走刀路线。
对于位置要求较高的孔系加工,特别要注意孔的加工顺序的安排。
在精镗孔系时,镗孔路线一定要注意各孔的定位方向一致,即采用单向趋近定位点的方法,以避免传动系统反向间隙误差对定位精度的影响。
例如,加工图8(a)所示的孔系,在该零件上镗6个尺寸相同的孔,当按加工路线最短原则确定的走刀路线如图8(b)所示。
由于5、6孔与1-4孔定位方向相反,Y方向反向间隙会使定位误差增加,而影响5、6孔与其他孔的位置精度。
如按定位精度最高的原则确定孔加工路线,如图8(c)所示,按此加工路线,加工完4孔后往Y正方向多移动一段距离到P点,然后再折回来加工5、6孔,这样各孔的定位方向一致,可以避免反向间隙的引入,提高了5、6孔的位置精度。
本篇文章来源于数控网| 原文链接:/Prog/Basis/2009-03-25/1134_2.html
4)内型腔加工路线设计
铣削内型腔轮廓表面时,切入和切出无法外延,这时铣刀可沿零件轮廓的法线方向切入和切出,并将其切入、切点选在零件轮廓两几何元素的交点处。
图9所示为加工凹槽的3种加工路线。
其中图(a)和(b)分别为用行切法加工和环切法加工凹槽的走刀路线;图(c)为先用行切法,最后环切一刀光整轮廓表面。
三种方案中,(a)图方案最差,(c)图方案最好。
轮廓加工中应避免进给停顿。
因为加工过程中的切削力会使工艺系统产生弹性变形并处于相对平衡状态,进给停顿时,切削力突然减小,会改变系统的平衡状态,刀具会在进给停顿处的零件轮廓上留下刻痕。
为提高工件表面的精度和减小粗糙度,可以采用多次走刀的方法,精加工余量一般以0.2-0.5为宜。
而且精铣时宜采用顺铣,以减小零件被加工表面粗糙度的值。
图8 孔加工路线的确定
图9 凹槽加工走刀路线
图10 曲面加工的走刀路线
(5)曲面加工路线的确定
铣削曲面时,常用球头刀采用行切法进行加工。
所谓行切法是指刀具与零件轮廓的切点轨迹是一行一行的,而行间的距离是按零件加工精度的要求确定的。
对于边界敞开的曲面加工,可采用两种走刀路线。
图10所示为发动机大叶片,采用图10(a)所示的加工方案时,每次沿直线加工,刀位点计算简单,程序少,加工过程符合直纹面的形成,可以准确保证母线的直线度。
当采用图10(b)所示的加工方案时,符合这类零件数据给出情况,便于加工后检验,叶形的准确度较高,但程序较多。
由于曲面零件的边界是敞开的,没有其他表面限制,所以边界曲面可以延伸,球头刀应由边界外开始加工。
【整理】
本篇文章来源于数控网| 原文链接:/Prog/Basis/2009-03-25/1134_3.html。