数控加工走刀路线图
- 格式:doc
- 大小:209.00 KB
- 文档页数:10
数控铣削加工的刀路线反映了工序的加工过程,走刀路线合理与否,关系到工件的加工质量与生产效率。
尤其在数控铣削曲面零件过程中,应认真分析零件的加工要求及其结构特点,找出走刀路线中影响加工效率的因素,在保证零件加工精度和表面粗糙度要求的前提下,应尽量缩短加工路线,从而提高数控机床的加工效率,降低加工成本。
数控加工过程中刀具相对于工件的运动轨迹称为走刀路线。
走刀路线反映了工序的加工过程,确定合理的走刀路线是保证铣削加工精度和表面质量的重要工艺措施之一,也是确定数控编程的前提。
数控铣削加工中走刀路线对工件的加工精度和表面质量有直接的影响,走刀路线合理与否,还关系到加工的生产效率,因此每道工序走刀路线的确定都是非常重要的。
一、走刀路线的确定原则影响走刀路线的因素很多,有工艺方法、工件材料及状态、加工精度及表面粗糙度要求、工件刚度、加工余量、刀具的刚度及耐用度、机床类型和工件的轮廓形状等。
在确定走刀路线时,主要应遵循以下原则:(1)保证产品质量,应将保证工件的加工精度和表面粗糙度要求放在首位。
(2)在保证工件加工质量的前提下,应力求走刀路线最短,并尽量减少空行程时间,提高加工效率。
(3)在满足工件加工质量、生产效率等条件下,尽量简化数学处理的数值计算工作量,以简化编程工作。
此外,在确定走刀路线时,还要综合考虑工件、机床与刀具等多方面因素,确定一次走刀还是多次走刀,以及设计刀具的切入点与切出点,切入方向与切出方向。
在铣削加工中,还要确定是采用顺铣还是逆铣等。
二、铣削方式的选择铣削有顺铣和逆铣两种方式。
铣削加工中是采用顺铣还是逆铣,对工件表面粗糙度有较大的影响。
确定铣削方式应根据工件的加工要求,材料的性质、状态、使用机床及刀具等条件综合考虑。
由于采用顺铣方式,工件加工表面质量较好,刀齿磨损小,因此,一般情况下,尽可能采用顺铣,尤其是精铣内外轮廓、精铣铝镁合金、钛合金或耐热合金时,应尽量按顺铣方式安排走刀路线。
三、铣削曲面类零件走刀路线的确定铣削曲面类零件的走刀路线加工面为空间曲面的零件称为曲面类零件。
(1)加工路线的确定原则在数控加工中,刀具刀位点相对于工件运动的轨迹称为加工路线。
确定加工路线是编写程序前的重要步骤,加工路线的确定应遵循以下原则。
1.加工路线应保证被加工零件的精度和表面粗糙度,且效率较高。
2.使数值计算简单,以减少编程工作量。
3.应使加工路线最短,这样既可以减少程序段,又可以减少空刀时间。
此外,确定加工路线时,还要考虑工件的加工余量和机床、刀具的刚度等情况,确定是一次走刀,还是多次走刀来完成加工,以及在铣削加工中是采用顺铣还是逆铣等。
(2)辅助程序段的设计1.轮廓加工的进退刀路径设计在对零件的轮廓进行加工时,为了保证零件的加工精度和表面粗糙度符合要求,应合理地设计进退刀路径。
如图1所示,当铣削平面零件外轮廓时,一般采用立铣刀侧刃切削。
刀具切入工件时,应避免沿零件外廓的法向切入,而应沿外廓曲线延长线的切向切入,以避免在切入处产生刀具的刻痕而影响表面质量,保证零件外廓曲线平滑过渡。
同理,在切离工件时,也应避免在工件的轮廓处直接退刀,而应该沿零件轮廓延长线的切向逐渐切离工件。
图1 外轮廓加工刀具的切入切出图2 内轮廓加工刀具的切入和切出1铣削封闭的内轮廓表面时,若内轮廓曲线允许外延,则应沿切线方向切入切出。
若内轮廓曲线不允许外延(见图2),刀具只能沿内轮廓曲线的法向切入切出,此时刀具的切入切出点应尽量选在内轮廓曲线两几何元素的交点处。
当内部几何元素相切无交点时(见图3),为防止刀具在轮廓拐角处留下凹口,刀具切入切出点应远离拐角。
图3 内轮廓加工刀具的切入和切出2如图4所示,用圆弧插补方式铣削外整圆时,当整圆加工完毕时,不要在切点处直接退刀,而应让刀具沿切线方向多运动一段距离,以免取消刀补时,刀具与工件表面相碰,造成工件报废。
铣削内圆弧时也要遵循从切向切入的原则。
最好安排从圆弧过渡到圆弧的加工路线(见图5,这样可以提高内孔表面的加工精度和加工质量。
本篇文章来源于数控网|原文链接:2.孔加工时引伸距离的确定孔加工在确定轴向尺寸时,应考虑一些辅助尺寸,包括刀具的引入距离和超越距离。
课题7.6外圆、内孔切槽循环(G75)教学目的和要求:1、掌握G75指令编程方法2、能够利用G75指令编写加工程序教学重点难点:1、掌握G75指令编程方法2、能够利用G75指令编写加工程序教学方式:课堂理论教学教学时数:3学时教学内容:G75是外径切槽循环指令,G75指令与G74指令动作类似,只是切削方向旋转90°,这种循环可用于端面断续切削,如果将Z(W)和K、D省略,则X轴的动作可用于外径沟槽的断续切削。
1、格式:G75 R(e)G75 X(U)Z(W)P(i)Q(k)R(d)F(f)式中e:每次沿X方向切削的退刀量。
X:加工槽底X轴方向的绝对坐标。
U:切槽始点相对槽底X轴方向的增量坐标。
Z:加工槽底Z轴方向的绝对坐标。
W:切槽始点相对槽底W轴方向的增量坐标。
i:X轴方向每次的循环移动量。
k:Z轴方向每次的循环移动量。
d:Z轴的退刀量。
f:进给速度。
2、走刀路线走刀路线如如7-8所示图7-8 G75走刀路线3、编程实例编程实例:图7-9是用G75外径切槽循环指令加工槽的实例,刀具宽度为4mm,X方向分四次加工,Z方向分两次加工.图7-9其程序为:O0006N10 G50 X90.0 Z125.0:建立工件坐系N20 G00 X41.0 Z41.0 S600;刀具快速趋近N30 G75 X20.0 Z25.0 I2.5 K10 F2.5;用G75指令切槽N40 X90.0 Z125.0;刀具快速退至参考点【小结】:本课题主要是介绍G75的格式及应用,要注意G75指令的使用方法及注意事项,能够用G75编制中等复杂轴类零件的外圆、内圆切槽数控加工程序。
【课外作业】:用G75指令完成P227页图(51)、(52)的深孔加工。
14.4 数控加工走刀路线图
数控加工走刀路线图零件图号工序号 2 工步号 2 程序号O0002 机床型号KV650 程序段号加工内容铣心型轮廓共 6 页第 2 页
编程
校对
审批
符号
含义抬刀下刀编程原点起刀点
走刀
方向
走刀线
相交
爬斜坡铰孔行切数控加工走刀路线图零件图号工序号 3 工步号 3 程序号O0003 机床型号KV650 程序段号加工内容挖槽共 6 页第 3 页
编程
校对
审批符号
含义抬刀下刀编程原点起刀点走刀
方向
走刀线
相交
爬斜坡铰孔行切
数控加工走刀路线图零件图号工序号 5 工步号5-8 程序号O0005
钻孔
编程
校对
审批符号
含义抬刀下刀编程原点起刀点走刀
方向
走刀线
相交
爬斜坡铰孔行切
数控加工走刀路线图零件图号工序号 6 工步号13 程序号O0006 机床型号KV650 程序段号加工内容加工内球面共 6 页第 6 页
编程
校对
审批。
数控加工的工艺路线设计必须全面考虑,注意工序的正确划分、顺序的合理安排和数控加工工序与普通工序的衔接。
1、工序的划分数控机床与普通机床加工相比较,加工工序更加集中,根据数控机床的加工特点,加工工序的划分有以下几种方式:1)根据装夹定位划分工序这种方法一般适应于加工内容不多的工件,主要是将加工部位分为几个部分,每道工序加工其中一部分。
如加工外形时,以内腔夹紧;加工内腔时,以外形夹紧。
2)按所用刀具划分工序为了减少换刀次数和空程时间,可以采用刀具集中的原则划分工序,在一次装夹中用一把刀完成可以加工的全部加工部位,然后再换第二把刀,加工其他部位。
在专用数控机床或加工中心上大多采用这种方法。
3)以粗、精加工划分工序对易产生加工变形的零件,考虑到工件的加工精度,变形等因素,可按粗、精加工分开的原则来划分工序,即先粗后精。
在工序的划分中,要根据工件的结构要求、工件的安装方式、工件的加工工艺性、数控机床的性能以及工厂生产组织与管理等因素灵活掌握,力求合理。
2、加工顺序的安排加工顺序的安排应根据工件的结构和毛坯状况,选择工件定位和安装方式,重点保证工件的刚度不被破坏,尽量减少变形,因此加工顺序的安排应遵循以下原则:1)上道工序的加工不能影响下道工序的定位与夹紧2)先加工工件的内腔后加工工件的外轮廓3)尽量减少重复定位与换刀次数4)在一次安装加工多道工序中,先安排对工件刚性破坏较小的工序。
3、数控加工工序与普通工序的衔接由于数控加工工序穿插在工件加工的整个工艺过程之中,各道工序需要相互建立状态要求,如加工余量的预留,定位面与孔的精度和形位公差要求,矫形工序的技术要求,毛坯的热处理等要求,各道工序必须前后兼顾综合考虑。
4、数控机床加工工序和加工路线的设计数控机床加工工序设计的主要任务:确定工序的具体加工内容、切削用量、工艺装备、定位安装方式及刀具运动轨迹,为编制程序作好准备。
其中加工路线的设定是很重要的环节,加工路线是刀具在切削加工过程中刀位点相对于工件的运动轨迹,它不仅包括加工工序的内容,也反映加工顺序的安排,因而加工路线是编写加工程序的重要依据。
【任务引入】阶梯轴是车床加工中最常见的零件。
形状简单,便于编程和加工,我们就从阶梯轴开始学习编程加工。
【任务描述】按照给定的程序和要求完成图4-1工件的加工。
图4-1【任务准备】1.编程知识(1)数控车床的编程特点1)数控车床上工件的毛坯大多为圆棒料,加工余量较大,一个表面往往需要进行多次反复的加工。
如果对每个加工循环都编写若干个程序段,就会增加编程的工作量。
为了简化加工程序,一般情况下,数控车床的数控系统中都有车外圆、车端面和车螺纹等不同形式的循环功能。
2)数控车床的数控系统中都有刀具补偿功能。
在加工过程中,对于刀具位置的变化、刀具几何形状的变化及刀尖的圆弧半径的变化,都无需更改加工程序,只要将变化的尺寸或圆弧半径输入到存储器中,刀具便能自动进行补偿。
3)数控车床的编程有直径、半径两种方法。
所谓直径编程是指X轴上的有关尺寸为直径值,半径编程是指X轴上的有关尺寸为半径值。
FANUC 0i数控车床是采用直径编程。
(2)快速点定位指令 G00功能:使刀具以点位控制方式,从刀具所在点快速移动到目标点。
格式:G00 X(U)__ Z(W)__说明:①X、Z:绝对坐标方式时的目标点坐标;U、W:增量坐标方式时的目标点坐标。
②一般在刀具非加工状态的快速移动时使用G00。
③指令只是快速定位,无运动轨迹要求。
在执行G00指令时,由于各轴以各自的速度移动,不能保证各轴同时到达终点,因此联动直线轴的合成轨迹不一定是直线,操作者必须格外小心,以免刀具与工件发生碰撞。
举例:图4-2 G00走刀路线G00 X20.0 Z5.0; (绝对坐标)G00 X-10.0 Z-45.0;(增量坐标)(3)直线插补指令G01功能:使刀具以给定的进给速度,从所在点出发,直线移动到目标点。
格式:G01 X(U)__ Z(W)__ F__说明:①X、Z:绝对坐标方式时的目标点坐标,U、W:增量坐标方式时的目标点坐标。
②F是进给速度。
F指令也是模态指令,如在G01程序段前的程序段没有F 指令,而现在的G01程序段中也没有F指令,则认为F0,机床不运动。
数控铣削加工编程图例练习题1零件图如图所示,完成下面工作任务:•选择加工用刀具;用表格说明刀具所用于的加工部位;•在图中画出刀具走刀路线;•编写加工程序。
练习题2零件图如图所示,编写加工程序。
•粗加工用φ 30平底铳刀,刀具长度130mm,留Imm精加工余量; •精加工用φ 10平底铳刀,刀具长度110mm技术要求未注尺寸公差按照ITl2加工和检验匚练习题3如图所示,完成下面任务:•对零件加工进行工艺设计•编写零件加工程序⅛⅛ I 80x i 50∣45mJ W列45*i练习题4如图所示,完成下面任务: •对零件加工进行工艺设计 •编写零件加工程序13*±L ¢5「LS占十Wl练习题5如图所示,完成下面任务:•对零件加工进行工艺设计•编写零件加工程序20⅛a 140x100x46mm练习题6如图所示,完成下面任务:•对零件加工进行工艺设计•编写零件加工程序如图所示,完成下面任务:•对零件加工进行工艺设计•编写零件加工程序如图所示,完成下面任务:•对零件加工进行工艺设计•编写零件加工程序A-A编写零件加工程序«0+0.03 2×^10H8其余穿80 -0()s -≡^ 0.03」册一25 _ IKa材料:45钢92h9 IOOP l ( -30 902 P 0) P l { -y. 549. -29. 379) 巴(25,3 K. 153)P t (25 J 8. 153) P S ( -9.549,29,379)技术姿求未注尺寸公劳按照n ∣2加丄和检验编写零件加工程序月F16q s=0_。
数控车零件工艺设计及程序编制————————————————————————————————作者:————————————————————————————————日期:个人收集整理勿做商业用途题目: 数控车零件工艺设计及程序编制姓名: 李胜胜学院: 工学院专业:机电一体化班级:09机电一体化学号:指导教徐秀英职称: 讲师师:20 年月日成人教育学院制个人收集整理勿做商业用途摘要:本次设计主要是对数控加工工艺进行分析与具体零件图的加工,首先对数控加工技术进行了简单的介绍,然后根据零件图进行数控加工分析。
第一,根据本零件材料的加工工序、切削用量以及其他相关因素选用刀具及刀柄和零件的轮廓特点确定需要7把刀具分别为外圆粗车刀、外圆精车刀、外切槽刀、外螺纹刀、内镗孔刀、内切槽刀.第二,针对零件图图形进行编制程序,此零件为轴类零件,外轮廓由直线、圆弧和螺纹组成,零件的里面要镗出一个锥孔,在加工过程中,工件需要调头钻孔再镗孔,第三,早钻孔对刀时要先回参考点,要以孔中心作为对刀点,刀具的位置要以此来找正,使刀位点与换刀点重合.关键字:刀具的确定、走刀路线的选择、刀具的对刀点、工件的定位。
Abstract: The design of the CNC machining process analysis and processing of specific parts diagram, a brief introduction, the first CNC machining technology and CNC machining parts diagram analysis. First, according to the parts and materials processing operations,the cutting parameters and other relevant factors, selection of tools and tool holders and parts of the outline of the characteristics of seven tools to determine the need for cylindrical rough turning tool,Finish Turning Tool, external grooving knife external thread cutter,within boring knife, cut inside slot knife。
目录第一章前言 (1)第二章数控加工工艺设计主要内容 (2)2.1数控加工工艺内容的选择 (2)2.1.1数控加工的内容 (2)2.1.2适于数控加工的内容 (2)2.2 数控加工工艺性分析 (3)2.2.1标注应符合数控加工的特点 (3)2.2.2几何要素的条件应完整、准确 (3)2.2.3定位基准可靠 (3)2.2.4统一几何类型及尺寸 (3)2.3数控加工工艺路线的设计 (3)2.3.1工序的划分 (4)2.3.2顺序的安排 (4)2.3.3数控加工工艺与普通工序的衔接 (4)第三章数控加工工艺设计方法 (5)3.1确定走刀路线和安排加工顺序 (5)3.2确定定位和夹紧方案 (6)3.3确定刀具与工件的相对位置 (7)3.3.1对刀点的选择原则 (7)3.4 确定切削用量 (9)3.4.1填写数控加工技术文件 (10)3.4.2数控编程任务书 (10)3.4.3数控加工工件安装和原点设定卡片(简称装夹图和零件设定卡)113.4.4数控加工工序卡片 (12)3.4.5数控加工走刀路线图 (13)3.5数控刀具卡片 (14)第四章数控铣床加工的基本特点 (15)第五章数控铣床刀具的选择 (16)5.1数控铣床对刀具的要求及铣刀的种类 (16)5.1.1对刀具的要求 (16)5.1.2常用铣刀种类 (17)5.2孔加工刀具的选用 (17)5.3铣削加工刀具选用 (18)结论 (18)结束语 (18)参考文献 ........................................... 错误!未定义书签。
数控铣床加工工艺设计摘要目的数控机床作为一种高效率的设备,欲充分发挥其高性能、高精度和高自动化的特点,除了必须掌握机床的性能、特点及操作方法外,还应在编程前进行详细的工艺分析和确定合理的加工工艺,以得到最优的加工方案。
方法本文通过理论上的论述和实例的说明,得到数控铣床加工工艺的基本过程为:零件图分析,加工工艺路线的设计,夹具和刀具的选择,切削用量的选择和划分工序及拟定加工顺序等步骤。