耐火材料的六大使用性能
- 格式:docx
- 大小:15.66 KB
- 文档页数:4
耐⽕材料各性质耐⽕材料的⼒学性质耐⽕材料的⼒学性质是指材料在不同温度下的强度、弹性、和塑性性质。
耐⽕材料在常温或⾼温的使⽤条件下,都要受到各种应⼒的作⽤⽽变形或损坏,各应⼒有压应⼒、拉应⼒、弯曲应⼒、剪应⼒、摩擦⼒、和撞击⼒等。
此外,耐⽕材料的⼒学性质,可间接反映其它的性质情况。
检验耐⽕材料的⼒学性质,研究其损毁机理和提⾼⼒学性能的途径,是耐⽕材料⽣产和使⽤中的⼀项重要⼯作内容。
4.1 常温⼒学性质4.1.1 常温耐压强度σ压定义;是指常温下耐⽕材料在单位⾯积上所能承受的最⼤压⼒,也即材料在压应⼒作⽤下被破坏的压⼒。
常温耐压强度σ压=P/A ,(pa)式中;P—试验受压破坏时的极限压⼒,(N);A—试样的受压⾯积,(m2)。
⼀般情况下,国家标准对耐⽕材料制品性能指标的要求,视品种⽽定。
其中,对常温耐压强度σ压的数值要求为50Mpa左右(相当于500kg/cm2);⽽耐⽕材料的体积密度⼀般为2.5g/cm3左右。
据此计算,因受上⽅砌筑体的重⼒作⽤,导致耐⽕材料砌筑体底部受重压破坏的砌筑⾼度,应⾼达2000m以上。
可见,对耐⽕材料常温耐压强度的要求,并不是针对其使⽤中的受压损坏。
⽽是通过该性质指标的⼤⼩,在⼀定程度上反映材料中的粒度级配、成型致密度、制品烧结程度、矿物组成和显微结构,以及其它性能指标的优劣。
体现材料性能质量优劣的性能指标的⼤⼩,不仅反映出来源于各种⽣产⼯艺因素与过程控制,⽽且反映过程产物⽓、固两相的组成和相结构状态以及相关性质指标间的⼀致性。
⼀般⽽⾔,这是⼀条普遍规律。
4.1.2 抗拉、抗折、和扭转强度与耐压强度类似,抗拉、抗折、和扭转强度是材料在拉应⼒、弯曲应⼒、剪应⼒的作⽤下,材料被破坏时单位⾯积所承受的最⼤外⼒。
与耐压强度不同,抗拉、抗折、和扭转强度,既反映了材料的制备⼯艺情况和相关性质指标间的⼀致性,也体现了材料在使⽤条件下的必须具备的强度性能。
抗折强度σ折按下式计算。
抗折强度σ折=3PL/2bh2,(pa)式中:P—试样断裂时的作⽤⼒,(N);L—试样两⽀点的距离,(m);b、h—分别为试样的宽度、厚度,(m)。
耐火材料分类及性能
能承受高温下物理、化学作用而不易损坏或不损坏的确材料,称为耐火材料,是各种工业炉的基础材料之一。
一、耐火材料的分类
按材料高低,通常分为普通耐火材料和特种耐火材料;按材料密度,分为重质耐火材料和轻质耐火材料;按耐火的主要化学成分,分为粘土砖、高铝砖、硅砖、氯化铝砖、石墨和碳制品以及碳化硅制品等。
二、普通耐火材料
普通耐火材料是用量最多,应用而最广的耐火材料。
主要材料见表1.3.1。
表1.3.1 普通耐火材料表
三、特种耐火材料
特种耐火材料,通常具有纯度高、耐高温、抗磨损、抗金属液体或熔渣浸蚀性能优良,常用的材料有工业纯氯化铝机压制品,烧结电熔刚玉制品,烧结电熔刚玉莫来石制品,碳化硅制品,镁砖及镁铝砖,镁铬砖。
四、耐火砖
耐火砖是用耐火材料制成,因而具有耐火材料的特性。
常用的有粘土砖、高铝砖、硅藻砖等。
五、耐火水泥和耐火混凝土
低钙铝酸盐耐火水泥是用优质铝钒土和石灰石按一定比例配合经烧结磨细制成。
低钙铝酸盐水泥同耐火砖细块(如高铝砖、轻质耐火砖细块以及石棉等)掺合可制成耐火混凝土。
六、耐火泥
耐火泥是由胶质材料、掺合材料、骨料按一定比例配合而成。
一般属水硬性耐火混凝土材料。
常用耐火泥有粘土质耐火泥、高铝质耐火泥、硅质耐火泥、镁质耐火泥等。
耐火材料用途耐火材料是一种能够在高温环境下保持其结构和性能的材料,具有优异的耐热性、耐磨性和耐腐蚀性。
它在工业生产中具有广泛的用途,下面我们将详细介绍耐火材料的用途。
首先,耐火材料在冶金行业中有着重要的应用。
在冶炼过程中,高温和腐蚀性气体对炉子和炉衬造成严重的侵蚀,而耐火材料能够有效地抵御这些侵蚀,保护冶炼设备的正常运行。
在炼钢和炼铁过程中,耐火材料被广泛用于炉墙、炉顶、炉底等部位,以确保冶炼过程的顺利进行。
其次,耐火材料在建筑材料行业中也扮演着重要的角色。
它常常被用于建造高温窑炉、热处理炉、玻璃窑等工业设备,以及烟囱、炉壁等高温工作环境的构建。
同时,耐火材料也被广泛应用于建筑材料的生产中,例如高温砖、耐火水泥等产品,这些产品在建筑材料市场上有着巨大的需求。
此外,耐火材料还在化工行业中发挥着重要的作用。
在化工生产过程中,许多反应需要在高温环境下进行,这就对反应设备的耐热性提出了较高的要求。
耐火材料被广泛用于化工设备的内衬、隔热层等部位,以确保设备在高温和腐蚀性介质中能够安全、稳定地运行。
除此之外,耐火材料还在电力、玻璃、陶瓷等行业中得到了广泛的应用。
在电力行业,耐火材料常被用于电力设备的内衬、隔热层等部位,以确保设备在高温环境下的安全运行。
在玻璃和陶瓷行业,耐火材料则被用于窑炉、炉墙等部位的构建,以满足高温加工的需求。
总的来说,耐火材料在工业生产中具有着不可替代的作用。
它保护了工业设备的正常运行,确保了生产过程的安全稳定。
随着工业的不断发展,对耐火材料的需求也将不断增加,相信在未来,耐火材料将会有着更加广阔的应用前景。
耐火材料选用原则一、引言耐火材料是一种特殊的材料,具有极高的耐高温、耐腐蚀性能,广泛应用于冶金、化工、建筑等行业。
在选用耐火材料时,需要根据不同的使用条件和要求进行选择。
本文将介绍耐火材料的选用原则。
二、使用条件与要求1. 使用温度:不同的耐火材料适用于不同的使用温度范围。
2. 腐蚀性:如果使用环境中存在酸碱等腐蚀性物质,需要选择具有较强抗腐蚀性能的耐火材料。
3. 热震稳定性:在温度快速变化或受到机械冲击时,需要选择具有较好热震稳定性的耐火材料。
4. 抗氧化性:在氧化环境中,需要选择具有良好抗氧化性能的耐火材料。
5. 密实度:密实度越高,抗磨损和抗渗透能力越强。
三、常见耐火材料及其特点1. 硅酸盐类耐火材料:主要成分为硅酸盐,具有较好的耐火性能和抗腐蚀性能,适用于中低温环境。
2. 氧化铝类耐火材料:主要成分为氧化铝,具有较好的耐高温性能和抗氧化性能,适用于高温环境。
3. 碳化硅类耐火材料:主要成分为碳化硅,具有极高的耐高温性能和抗磨损性能,适用于极高温环境。
4. 氮化硅类耐火材料:主要成分为氮化硅,具有较好的热震稳定性和抗氧化性能,适用于高温、强酸、强碱等恶劣环境。
四、选用原则1. 根据使用条件选择合适的耐火材料。
例如,在高温、强酸、强碱等恶劣环境中需要选择具有良好抗腐蚀性能的耐火材料。
2. 根据使用要求选择合适的密实度。
例如,在需要抵御磨损和渗透的场合需要选择密实度较高的耐火材料。
3. 根据预算选择合适的价格。
不同种类的耐火材料价格不同,需要根据预算选择合适的耐火材料。
4. 根据生产工艺选择合适的形状和尺寸。
例如,在需要制作复杂形状的零件时,需要选择易于加工成复杂形状的耐火材料。
五、结论在选用耐火材料时,需要根据使用条件和要求进行综合考虑,选择合适的耐火材料。
同时,还需要注意价格和加工难度等因素,以便更好地满足生产需求。
耐火材料分类及性能能承受高温下物理、化学作用而不易损坏或不损坏的确材料,称为耐火材料,是各种工业炉的基础材料之一。
一、耐火材料的分类按材料高低,通常分为普通耐火材料和特种耐火材料;按材料密度,分为重质耐火材料和轻质耐火材料;按耐火的主要化学成分,分为粘土砖、高铝砖、硅砖、氯化铝砖、石墨和碳制品以及碳化硅制品等。
二、普通耐火材料普通耐火材料是用量最多,应用而最广的耐火材料。
主要材料见表1.3.1。
表1.3.1普通耐火材料表名称主要化学主要特点常用温度成分粘土Al2 O330~4 热震稳定性好,<1350℃砖8% 弱酸性高铝Al2 O348~7 抗渣性,热震稳定1400~1650砖5% 性好,中性℃半硅SiO2>65% 高温体积稳定抗<1250℃原创内容侵权必究砖15%<Al2O3酸性渣的侵蚀性<30% 好硅砖SiO2≥93% 荷重软化温度高,<1500℃绝热性较差,酸性MgO≥镁砖87%MgO>80% 镁铝Al2O3砖5%~10% 镁铬MgO>60% 砖Cr2O3~40%MgO35~55 镁橄%榄石SiO2砖30~40% 镁硅MgO>82% 砖SiO25~11%高温MgO35~55烧成%耐火度高,抗碱性渣强,绝热性抗水化性,热震稳定性差,碱性与镁砖相似,热震稳定性较好与镁砖相似,热震稳定性较好荷重软化温度稍高,抗渣性比镁砖原创内容侵权必究差荷重软化温度比镁砖高,热震稳定性差荷重软化温度高,抗渣性好,但抗水1600℃以上1600℃以上1600℃以上1500℃以上1600℃以上1600℃以上原创内容侵权必究白云CrO化性差砖50~60%SiO2+Al2O3+Fe2O3≤4%三、特种耐火材料特种耐火材料,通常具有纯度高、耐高温、抗磨损、抗金属液体或熔渣浸蚀性能优良,常用的材料有工业纯氯化铝机压制品,烧结电熔刚玉制品,烧结电熔刚玉莫来石制品,碳化硅制品,镁砖及镁铝砖,镁铬砖。
耐火材料标准
1、物理性能:包括抗压强度、抗折强度、导热系数、热膨胀系数等。
这些性能是评价耐火材料质量的重要指标。
2、化学性能:包括常温耐酸性、常温耐碱性、高温耐酸性、高温耐碱性等。
这些性能是评价耐火材料在不同温度下的稳定性和化学反应能力的重要指标。
3、力学性能:包括抗压强度、抗折强度、断裂韧性等。
这些性能是评价耐火材料在不同荷载下的强度和变形能力的重要指标。
4、尺寸稳定性:是指其在高温环境下长期使用后仍能保持其原有的尺寸和形状。
常用的尺寸稳定性检测方法包括热稳定性试验、荷重烧结试验等。
耐火材料作用耐火材料是一种具有耐高温、耐热震、耐化学侵蚀等特性的材料,广泛应用于冶金、建材、化工、电力等行业。
它的主要作用是在高温环境下保护设备和构件不受热、热震和化学侵蚀的影响,延长设备的使用寿命,提高生产效率。
本文将就耐火材料的作用进行详细介绍。
首先,耐火材料在冶金行业中起到了至关重要的作用。
在冶金生产过程中,高温熔炼和煅烧是不可避免的环节,而耐火材料能够有效地抵抗高温和热震,保护冶炼炉、热风炉、转炉等设备不受热量和热震的侵蚀。
同时,耐火材料还能抵抗金属熔体和渣浆的侵蚀,延长设备的使用寿命,保证冶炼生产的正常进行。
其次,耐火材料在建材行业中也发挥着重要作用。
在水泥窑、玻璃窑等建材生产设备中,耐火材料被广泛应用于内衬和隔热层,能够有效地抵抗高温和化学侵蚀,保护设备不受侵蚀和破坏。
同时,耐火材料的使用还能提高设备的热效率,降低能耗,减少生产成本,对建材生产起到了积极的推动作用。
此外,耐火材料在化工行业中也具有重要意义。
在化工生产过程中,许多反应都需要在高温环境下进行,而耐火材料的应用能够有效地保护反应釜、管道等设备不受高温和化学侵蚀的影响,延长设备的使用寿命,保证化工生产的安全和稳定进行。
最后,耐火材料在电力行业中也发挥着重要作用。
在火电厂、钢铁厂等设备中,耐火材料被广泛应用于锅炉、炉膛、烟囱等部位,能够有效地抵抗高温和热震,保护设备不受热量和热震的侵蚀,延长设备的使用寿命,提高发电效率,保证电力生产的正常进行。
总的来说,耐火材料在各个行业中都具有重要的作用,它能够有效地保护设备不受高温、热震和化学侵蚀的影响,延长设备的使用寿命,提高生产效率,对于推动工业生产的发展起到了至关重要的作用。
希望本文的介绍能够让大家对耐火材料的作用有一个更加全面和深入的了解。
耐火材料的六大使用性能
耐火材料的使用性能是指耐火材料在高温下使用时所具有的性能。
包括耐火度、荷重软化温度、重烧线变化、抗热震性、抗酸性、抗碱性、抗氧化性、抗水化性和抗CO侵蚀性等。
(一般)耐火度
耐火度是指耐火材料在无荷重时抵抗高温作用而不熔化的性质,用于表征耐火材料抵抗高温作用的性能。
耐火度与熔点不同,熔点是结晶体的液相与固相处于平衡时的温度。
绝大多数耐火材料都是多相非均质材料,无一定熔点,其开始出现液相到完全熔化是一个渐变过程。
在相当宽的高温范围内,固液相并存,固如欲表征某种材料在高温下的软化和熔融的特征,只能以耐火度来度量。
因此,耐火度是多相体达到某一特定软化程度的温度。
耐火度是指耐火材料在无荷重时抵抗高温作用而不熔化的性质,用于表征耐火材料抵抗高温作用的性能。
耐火度是判定材料能否作为耐火材料使用的依据。
国际标准化组织规定耐火度达到1500℃以上的无机非金属材料即为耐火材料。
耐火度的意义与熔点不同,不能把耐火度作为耐火材料的使用温度。
(二)荷重软化温度
荷重软化温度是耐火材料在一定的重负荷和热负荷共同作用下达到某一特定压缩变形时的温度,是耐火材料的高温力学性质的一项重要指标,它表征耐火材料抵抗重负荷和高温热负荷共同作用下保持稳定的能力。
荷重软化温度是耐火材料在一定的重负荷和热负荷共同作用下达到某一特定压缩变形时的温度,是耐火材料的高温力学性质的一项重要指标,它表征耐火材料抵抗重负荷和高温热负荷共同作用下保持稳定的能力。
耐火材料高温荷重变形温度是其重要的质量指标,因为它在一定程度上表明制品在与其使用情况相仿条件下的结构强度。
决定荷重软化温度的主要因素是制品的化学矿物组成,同时也与制品的生产工艺直接相关
(三)重烧线变化(高温体积稳定性)
首先应当了解耐火材料的高温体积稳定性是指其在高温下长期使用时,制品外形体积或线度保持稳定而不发生永久变形的性能。
对烧结制品,一般以制品在无重负荷作用下的重烧体积变化率或重烧线变化率来衡量。
重烧体积变化也称残余体积变形,重烧线变化也称残余线变形。
耐火制品的重烧变形量对判别制品的高温体积稳定性,保证砌体的稳定性,减少砌体的缝隙,提高其密封性和耐侵蚀性,避免砌体整体结构的破坏,都具有重要意义。
耐火材料的高温体积稳定性是指其在高温下长期使用时,制品外形体积或线度保持稳定而不发生永久变形的性能。
对烧结制品,一般以制品在无重负荷作用下的重烧体积变化率或重烧线变化率来衡量。
重烧体积变化也称残余体积变形,重烧线变化也称残余线变形。
耐火制品的重烧变形量对判别制品的高温体积稳定性,保证砌体的稳定性,减少砌体的缝隙,提高其密封性和耐侵蚀性,避免砌体整体结构的破坏,都具有重要意义。
(四)抗热震性
抗热震形也称耐急冷急热性,它表征耐火制品抵抗温度急剧变化而不破坏的能力。
在实际工作中,耐火材料经常会遭受到温度急剧变化的情况,在很短的时间内工作温度变化很大,这种温度的急剧变化即称为热震作用。
热震作用会导致耐火材料的开裂、剥落和崩塌。
因此,当耐火材料在使用中工作温度有急剧变化时,必须考查其抗热震性。
耐火材料因热震而破坏的过程大致可分为裂纹的形成和裂纹的扩展两个阶段。
在裂纹形成过程中,导致材料产生裂纹的根本原因是材料内的热应力达到了气强度极限,于是便产生裂纹。
在加热时,常在耐火材料内部产生裂纹,而在冷却时,常在耐火材料表面产生裂纹。
要提高材料的抗热震性,避免材料产生裂纹,必须提高材料的强度,特别是抗拉强度、剪切强度,以提高抵抗裂纹形成的能力,同时应降低材料的弹性模量及泊松比,从而降低可能产生的热应力。
抗热震形也称耐急冷急热性,它表征耐火制品抵抗温度急剧变化而不破坏的能力。
在实际工作中,耐火材料经常会遭受到温度急剧变化的情况,在很短的时间内工作温度变化很大,这种温度的急剧变化即称为热震作用。
热震作用会导致耐火材料的开裂、剥落和崩塌。
因此,当耐火材料在使用中工作温度有急剧变化时,必须考查其抗热震性。
要提高材料的抗热震性,避免材料产生裂纹,必须
提高材料的强度,特别是抗拉强度、剪切强度,以提高抵抗裂纹形成的能力,同时应降低材料的弹性模量及泊松比,从而降低可能产生的热应力。
(五)抗渣性
抗渣性是指耐火材料在高温下抵抗炉渣的侵蚀和冲刷作用的能力。
这里炉渣的概念从广义上来说是指高温下与耐火材料相接处的治金炉渣、燃料灰分、飞尘、各种材料和气态物质等。
抗渣性是指耐火材料在高温下抵抗炉渣的侵蚀和冲刷作用的能力。
这里炉渣的概念从广义上来说是指高温下与耐火材料相接处的治金炉渣、燃料灰分、飞尘、各种材料和气态物质等
(六)耐真空性
通常耐火材料在常温下的蒸汽压都很低,可以认为是极为稳定不挥发的。
但在高温减压下工作时,其挥发性将成为不可忽视的问题,会因其挥发减量而造成损耗,加速其损坏。
在这种条件下与在高温常温大气压下使用不同,买真空性成为耐火材料必须具备的重要特征之一。
通常耐火材料在常温下的蒸汽压都很低,可以认为是极为稳定不挥发的。
但在高温减压下工作时,其挥发性将成为不可忽视的问题,会因其挥发减量而造成损耗,加速其损坏。
在这种条件下与在高温常温大气压下使用不同,耐真空性成为耐火材料必须具备的重要特征之一。