AO工艺设计计算参考.docx
- 格式:docx
- 大小:22.66 KB
- 文档页数:11
AO工艺设计计算参考一、计算设计过程在AO工艺设计中,计算设计是整个设计过程中的重要环节,它主要包括以下几个步骤:1.数据采集:通过实验、实测等手段获取原材料和加工过程中的相关数据。
这些数据包括材料的物理性质、原材料的成分、加工过程中的温度、速度、压力等。
2.数据处理:对采集到的数据进行处理和整理,以便后续的计算分析。
数据处理可以使用统计学方法,如平均值、方差等,也可以使用图表分析、数据拟合等方法。
3.参数计算:根据采集到的数据和相关的工艺参数,计算得出最佳的工艺参数。
这些参数包括加工温度、速度、压力、时间等。
4.结果评估:评估计算得到的结果是否满足产品质量要求和生产效率的要求。
如果不满足,需要重新调整工艺参数进行计算。
二、计算方法在AO工艺设计中,常用的计算方法包括数值计算、实验计算和经验计算等。
1.数值计算:利用计算机模拟工具进行工艺参数的计算。
数值计算可以通过建立数学模型来描述工艺过程,并利用计算机软件进行求解。
数值计算具有高精度和较强的预测能力,但需要大量的计算资源和较长的计算时间。
2.实验计算:通过实验室试验和工厂实验来进行工艺参数的计算。
实验计算可以直接测量和观察工艺过程中的各种参数,并以此为基础进行参数计算。
实验计算可以得到实际的工艺参数,但受到实验条件和设备的限制。
3.经验计算:根据过去的经验和类似工艺的实际情况,进行工艺参数的估算和预测。
经验计算可以通过适当的调整和修正,得到比较准确的工艺参数。
经验计算具有操作简便、计算快速的特点,但其准确度和可靠性有待提高。
三、计算技术的应用在AO工艺设计中,计算技术的应用可以提高工艺参数的计算精度、预测能力和效率。
1.模拟仿真技术:利用计算机模拟软件对工艺过程进行仿真和模拟。
模拟仿真技术可以在计算机上重现实际的工艺过程,从而进行工艺参数的计算和优化。
模拟仿真技术可以减少实验试验的次数和成本,提高计算精度和效率。
2.神经网络技术:利用神经网络模型对工艺过程进行学习和训练。
AO工艺设计计算公式
A/O 工艺设计参数
①水力停留时间:硝化不小于5〜6h;反硝化不大于2h, A段:0段=1:3
②污泥回流比:50〜100%
③混合液回流比:300〜400%
④反硝化段碳/氮比:BOD/TN>4,理论BOD肖耗量为
1.72gBOD/gNOx--N
⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS d
⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBODgMLSS d
⑦混合液浓度x=3000〜4000mg/L (MLSS)
⑧溶解氧:A段DOv0.A 0.5mg/L
O 段DO>〜4mg/L
⑨pH值:A段pH =6.5 〜7.5
O 段pH =7.0 〜8.0
⑩水温:硝化20〜30 r
反硝化20〜30 r
(11)碱度:硝化反应氧化1gNH+-N需氧4.57g,消耗碱度7.1g (以CaCO 计)。
反硝化反应还原1gNO3--N 将放出 2.6g 氧, 生成3.75g碱度(以CaCO计)
(12)需氧量Ro单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO2/h)。
微生物分解有机物需肖耗溶解氧,而微生物自身代谢也需肖耗溶解氧,所以Ro应包括这三部分。
Ro=a'QSr+b'VX+4.6Nr
a'—平均转化
1Kg 的BOM需氧量KgQ/KgBOD
上一页下一页。
A/O工艺(1)A池(缺氧池)容积,可按以下公式计算:V n={0.001Q(N k-N te)-0.12△X v}/(K de×X)(△X v=y×Y t×Q(S0-S e)/1000)式中:V n-缺氧池容积Q-生物反映池的设计流量(m3 /d)Q=80X-混合液悬浮固体平均浓度(gMLSS/L)X=12 N k-进水总凯氏氮浓度(mg/L)N k=1000N te- 出水总氮浓度(mg/L)N te=30△X v-排出生物反应池出水微生物量(kgMLVSS/d) K de-脱氮速率,取0.03kgNO3-N/(kgMLSS×d)Y t-污泥总产率系数(kgMLSS/kgBOD5) Y t=0.5y-MLSS中MLVSS所占比例y=0.6S0-进水BOD5 S0=6000S e-出水BOD5 S e=300将上面数值代入公式可得V n=170 m3有效水深取4 m,则面积A=170/4=42.5 m2(2)碳氧化池容积,可按下式计算:V= Q(S0-S e)/(1000×N S×X)式中:V-碳氧化池容积Q-进水流量N S-污泥有机负荷(kgBOD5/kgMLSS d),取N S=0.1X-悬浮固体浓度(gMLSS/L)代入上式有:V=380 m3有效水深度取4 m,则面积A=380/4=95 m2(3)强化消化池面积V=Q(S0(NH3-N)-S e(NH3-N))/(1000×N S(NH3-N)×X)Q-进水流量(m3 /d)S0(NH3-N)-NH3-N进水浓度S e(NH3-N)- NH3-N出水浓度N S(NH3-N)-污泥氨氮负荷(kgNH3-N/kgMLSS d),(取0.05)X-悬浮固体浓度(gMLSS/L),(取12)代入上式有:V=130 m3有效水深度取4.0 m,则该池面积A=130/4=32.5 m2(4)碳氧化-消化反应的需气量按下列公式计算:O2= 0.001aQ(S0-S e)-c△X v+b[0.001Q(N k-N ke)-0.12△X v]-0.626[0.001Q(N t-N ke-N oe)-0.12△X v]式中: Q-进水流量(m3 /d)O2-废水需氧量(m3 /d)N K-进水总凯氏氮浓度(mg/L)N ke-出水总凯氏氮浓度(mg/L)N oe-出水硝态氮浓度(mg/L)a-碳的氧当量,取1.47b- 氨氮的氧当量,取4.57c- 常数,细菌细胞的氧当量,取1.42代入上式有: O 2=813.97kg O 2/d查表可知:水中的溶解氧饱和度为:C S(20)=9.17(mg/L ); C S(30)=7.63(mg/L ).本项目采用微孔曝气头曝气,淹没水深为4m,计算温度定为30℃, 曝气头出口处的绝对压力(P b )为: P b =1.013×105+9.8×103×4=1.405×105 P a 空气离开曝气池池面时,氧的百分比为:O t =21(1-E A )×60%/[79+21(1-E A )]=17.54% (氧转化效率E A 20%) 最不利温度条件下(取30℃) 曝气池混合液中平均饱和度: C sb(30)=C s(30)( P b /202600+O t /42)=8.474 mg/L换算为20℃条件下,脱氧清水的充氧量:R 0= RC s(20)/{C βρα[sb(T)-]C 1.024T-20}取,0.1,0.2,9.0,8.0====ρβαC 代入得R 0=1309.7kgO 2/d曝气池的平均供气量为:G S =R 0×100/(0.3×E A )=21828.3 m 3空气 /d=909.5 m 3空气/h =15.16 m 3空气/min若微孔曝气头单盘气量2 m 3 /h ,面积0.25 m 2/个,氧转移效率E A 为20%,则所需曝气头的个数为909.5/2=455个。
4.2 设计计算本工艺是采用池体单建的方式,各个池子根据厌氧—好氧-缺氧活性污泥法污水处理工程技术规范[20]进行设计计算。
4.2。
1 厌氧池设计计算(1)池体设计计算 a 。
反应池总容积(4—1)式中:t p —— 厌氧池水力停留时间,h ; Q -— 污水设计水量,m 3/d ; V p —— 厌氧池容积,m 3;3150024200008.1m V p =⨯=b.反应池总面积h VA =(4-2)式中:A --——--反应池总面积,2m ; h —---——反应池有效水深,m ;取4m 237541500m A ==c 。
单组反应池有效面积NAA =1 (4—3) 式中:1A -—--—-每座厌氧池面积,2m ;N —----—厌氧池个数,个;21m 5.1872375==A d.反应池总深设超高为h 1=1。
0m ,则反应池总深为:mH 0.50.10.4h h 1=+=+=e 。
反应池尺寸 mm m H L B 57.1115⨯⨯=⨯⨯(2)进、出水管设计24Q t V p p ⨯=s m Q Q /204.02408.023max 1===sm Q Q /408.034.02.12.13max max '=⨯==()11Q R R Q i ++=321)2(gmb Q H =a 。
进水设计进水管设计流量s m Q /34.03max =,安全系数为1。
2 故分两条管道,则每条管道流量为: 管道流速v = 1。
4m/s ,则进水管理论管径为:mm m Q 429429.04.1204.044d 1==⨯⨯==ππν(4—4)取进水管管径DN=450mm 。
反应池采用潜孔进水,孔口面积21v Q F =(4—5) 式中:F ———--—每座反应池所需孔口面积,2m ;2v —-——-—孔口流速(m/s),一般采用0。
2—1.5s m /,本设计取2v =0。
2s m /202.12.0204.0m F ==设每个孔口尺寸为0.5×0.5m,则孔口数为(4—6)式中:n --—---每座曝气池所需孔口数,个; f —————-每个孔口的面积,2m ;个个,取508.45.05.002.1==⨯=n nb 。
A1/O生物脱氮工艺一、设计资料设计处理能力为日处理废水量为30000m3废水水质如下:PH值7.0~7.5 水温14~25℃BOD5=160mg/L VSS=126mg/L(VSS/TSS=0.7) TN=40mg/L NH3-N=30mg/L根据要求:出水水质如下:BOD5=20mg/L TSS=20mg/L TN 15mg/L NH3-N 8mg/L根据环保部门要求,废水处理站投产运行后排废水应达到国家标准《污水综合排放标准》GB8978-1996中规定的“二级现有”标准,即COD 120mg/l BOD 30 mg/l NH -N<20 mg/l PH=6-9 SS<30 mg/l二、污水处理工艺方案的确定城市污水用沉淀法处理一般只能去除约25~30℅的BOD5,污水中的胶体和溶解性有机物不能利用沉淀方法去除,化学方法由于药剂费用很高而且化学混凝去除溶解性有机物的效果不好而不宜采用。
采用生物处理法是去除废水中有机物的最经济最有效的选择。
废水中的氮一般以有机氮、氨氮、亚硝酸盐氮和硝酸盐氮等四种形态存在。
生活污水中氮的主要存在形态是有机氮和氨氮。
其中有机氮占生活污水含氮量的40%~60%,氨氮占50%~60%,亚硝酸盐氮和硝酸盐氮仅占0%~5%。
废水生物脱氮的基本原理是在传统二级生物处理中,将有机氮转化为氨氮的基础上,通过硝化和反硝化菌的作用,将氨氮通过硝化转化为亚硝态氮、硝态氮,再通过反硝化作用将硝态氮转化为氮气,而达到从废水中脱氮的目的。
废水的生物脱氮处理过程,实际上是将氮在自然界中循环的基本原理应用与废水生物处理,并借助于不同微生物的共同协调作用以及合理的认为运用控制,并将生物去碳过程中转化而产生及原废水中存在的氨氮转化为氮气而从废水中脱除的过程。
在废水的生物脱氮处理过程中,首先在好氧(oxic)条件下,通过好氧硝化的作用,将废水中的氨氮氧化为亚硝酸盐氮;然后在缺氧(Anoxic)条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气(N2)而从废水中逸出。
AO工艺设计计算公式A/O工艺设计参数在A/O工艺的设计中,需要考虑以下参数:1.水力停留时间:硝化不少于5-6小时,反硝化不超过2小时,A段:O段=1:3.2.污泥回流比:50-100%。
3.混合液回流比:300-400%。
4.反硝化段碳/氮比:BOD5/TN>4,理论BOD消耗量为1.72gBOD/gNOx--N。
5.硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS·d。
6.硝化段污泥负荷率:BOD5/MLSS<0.18KgBOD5/KgMLSS·d。
7.混合液浓度x=3000-4000mg/L(MLSS)。
8.溶解氧:A段DO2-4mg/L。
9.pH值:A段pH=6.5-7.5,O段pH=7.0-8.0.10.水温:硝化20-30℃,反硝化20-30℃。
11.碱度:硝化反应氧化1gNH4+-N需氧4.57g,消耗碱度7.1g(以CaCO3计)。
反硝化反应还原1gNO3--N将放出2.6g 氧,生成3.75g碱度(以CaCO3计)。
12.需氧量Ro:单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO2/h)。
微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。
Ro=a’QSr+b’VX+4.6Nr。
其中,a’为平均转化1Kg的BOD的需氧量KgO2/KgBOD,b’为微生物(以VSS计)自身氧化(代谢)所需氧量KgO2/KgVSS·d。
13.Nr为被硝化的氨量,kd/d4.6为1kgNH3-N转化成NO3-所需的氧量(KgO2)。
对于不同类型的污水,其a’和b’值也有所不同。
最后,还需要考虑供氧量的问题。
由于充氧与水温、气压、水深等因素有关,因此氧转移系数应作修正。
ρ表示所在地区实际压力(Pa)与标准大气压下Cs值的比值。
公式为ρ=实际Cs值/(Pa)=所在地区实际压力(Pa)/(Pa)。
A1/0生物脱氮工艺一、设计资料设计处理能力为日处理废水量为30000m3废水水质如下:PH 值7.0~7.5 水温14~25 °C BOD5=160mg/L VSS=126mg/L(VSS/TSS=0.7) TN=40mg/L NH3-N=30mg/L根据要求:出水水质如下:BOD5=20mg/L TSS=20mg/L TN 15mg/L NH3-N 8mg/L根据环保部门要求,废水处理站投产运行后排废水应达到国家标准《污水综合排放标准》GB8978-1996中规定的二级现有”标准,即COD120mg/l BOD 30 mg/l NH -N<20 mg/l PH=6-9 SS<30 mg/l二、污水处理工艺方案的确定城市污水用沉淀法处理一般只能去除约25~30%的BOD5,污水中的胶体和溶解性有机物不能利用沉淀方法去除,化学方法由于药剂费用很高而且化学混凝去除溶解性有机物的效果不好而不宜采用。
采用生物处理法是去除废水中有机物的最经济最有效的选择。
废水中的氮一般以有机氮、氨氮、亚硝酸盐氮和硝酸盐氮等四种形态存在。
生活污水中氮的主要存在形态是有机氮和氨氮。
其中有机氮占生活污水含氮量的40%~60%氨氮占50%~60%亚硝酸盐氮和硝酸盐氮仅占0%~5%。
废水生物脱氮的基本原理是在传统二级生物处理中,将有机氮转化为氨氮的基础上,通过硝化和反硝化菌的作用,将氨氮通过硝化转化为亚硝态氮、硝态氮,再通过反硝化作用将硝态氮转化为氮气,而达到从废水中脱氮的目的。
废水的生物脱氮处理过程,实际上是将氮在自然界中循环的基本原理应用与废水生物处理,并借助于不同微生物的共同协调作用以及合理的认为运用控制,并将生物去碳过程中转化而产生及原废水中存在的氨氮转化为氮气而从废水中脱除的过程。
在废水的生物脱氮处理过程中,首先在好氧(oxic)条件下,通过好氧硝化的作用,将废水中的氨氮氧化为亚硝酸盐氮;然后在缺氧(Anoxic)条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气(N2)而从废水中逸出。
A/O 工艺设计参数①水力停留时间:硝化不小于 5〜6h;反硝化不大于2h, A段:0段=1:3②污泥回流比:50〜100%③混合液回流比: 300〜400%④反硝化段碳/氮比:BOD/TN>4,理论BOD肖耗量为1.72gBOD/gNOx--N⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS d⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBODgMLSS d⑦混合液浓度 x=3000〜4000mg/L (MLSS)⑧溶解氧:A段DOv0.A 0.5mg/LO 段 DO>2〜4mg/L⑨pH值:A段 pH =6.5 〜7.5O 段 pH =7.0 〜8.0⑩水温:硝化20〜30 r反硝化20〜30 r(11)碱度:硝化反应氧化1gNH+-N需氧4.57g,消耗碱度7.1g (以CaCO计)。
反硝化反应还原 1gNO3--N 将放出 2.6g 氧, 生成3.75g碱度(以CaCO计)(12)需氧量Ro单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO2/h)。
微生物分解有机物需肖耗溶解氧,而微生物自身代谢也需肖耗溶解氧,所以Ro应包括这三部分。
Ro=a QSr+b' VX+4.6Nr a'—平均转化 1Kg的BOD勺需氧量KgO/KgBODb'—微生物(以VSS 计)自身氧化(代谢)所需氧量 KgO/KgVSS・d。
上式也可变换为:Ro/VX=a • QSr/VX+b 或 Ro/QSr=a' +b'・ VX/QSrSr—所去除BOD的量(Kg)Ro/VX-氧的比耗速度,即每公斤活性污泥(VSS平均每天的耗氧量 KgO/KgVSS・dRo/QSr-比需氧量,即去除IKgBOD 的需氧量KgO/KgBOD由此可用以上两方程运用图解法求得 a' b 'Nr—被硝化的氨量kd/d 4.6 — IkgNH— N转化成NO-所需的氧量(KgO)几种类型污水的a' b '值(13)供氧量一单位时间内供给曝气池的氧量,因为充氧与水温、气压、水深等因素有关,所以氧转移系数应作修正。
A/O工艺设计参数①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3②污泥回流比:50~100%③混合液回流比:300~400%④反硝化段碳/氮比:BOD5/TN>4,理论BOD消耗量为1.72gBOD/gNOx--N⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS·d⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBOD5/KgMLSS·d⑦混合液浓度x=3000~4000mg/L(MLSS)⑧溶解氧:A段DO<0.2~0.5mg/LO段DO>2~4mg/L⑨pH值:A段pH =6.5~7.5O段pH =7.0~8.0⑩水温:硝化20~30℃反硝化20~30℃⑾ 碱度:硝化反应氧化1gNH4+-N需氧4.57g,消耗碱度7.1g(以CaCO3计)。
反硝化反应还原1gNO3--N将放出2.6g氧,生成3.75g碱度(以CaCO3计)⑿需氧量Ro——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO2/h)。
微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。
Ro=a’QSr+b’VX+4.6Nra’─平均转化1Kg的BOD的需氧量KgO2/KgBODb’─微生物(以VSS计)自身氧化(代谢)所需氧量KgO2/Kg VSS·d。
上式也可变换为:Ro/VX=a’·QSr/VX+b’ 或Ro/QSr=a’+b’·VX/QSrSr─所去除BOD的量(Kg)Ro/VX─氧的比耗速度,即每公斤活性污泥(VSS)平均每天的耗氧量KgO2/KgVSS·dRo/QSr─比需氧量,即去除1KgBOD的需氧量KgO2/KgBOD由此可用以上两方程运用图解法求得a’ b’Nr—被硝化的氨量kd/d 4.6—1kgNH3-N转化成NO3-所需的氧量(KgO2)几种类型污水的a’ b’值⒀供氧量─单位时间内供给曝气池的氧量,因为充氧与水温、气压、水深等因素有关,所以氧转移系数应作修正。
目录第1章设计概述 (1)1.1设计题目 (1)1.2设计依据 (1)1.3处理要求 (1)第2章城市污水管网的设计计算 (2)2.1城市污水管网的设计计算 (2)2.1.1设计参数 (2)2.1.2 确定城市污水的比流量 (3)2.1.3 污水变化系数的确定 (3)2.1.4 街区面积 (3)2.1.5污水干管流量计算 (3)2.1.6污水干管水力计算 (3)2.2城市雨水管网设计计算 (4)2.2.1设计参数 (4)2.2.2 设计计算 (4)第3章设计水质水量及出水指标 (6)3.1污水水质水量计算 (6)3.1.1 污水设计流量 (6)3.1.2 污水中污染物含量和处理程度计算 (6)3.4城市污水处理流程 (7)第4章污水处理构筑物设计计算 (9)4.1中格栅设计计算 (9)4.1.1 设计参数: (9)4.1.2设计计算: (9)4.2污水提升泵房设计计算 (11)4.2.1设计原始资料 (11)4.3细格栅设计计算 (13)4.3.1设计参数: (13)4.3.2 设计计算 (13)4.4曝气沉砂池设计计算 (15)4.4.1设计参数 (15)4.4.2设计计算 (16)4.4.3进水渠道 (17)4.4.4 出水管道 (18)4.5平流式初沉池 (19)4.5.1 初沉池主体设计 (19)4.5.2 进出水设计 (21)4.6曝气池(A/O)设计计算 (23)4.6.1 池体设计 (23)4.6.2 进出水设计 (28)4.7二沉池设计计算 (28)4.7.1工艺设计参数 (28)4.7.2设计计算 (29)4.8消毒接触池设计计算 (31)4.9计量设备 (33)4.9.1 尺寸设计 (34)4.9.2 水头损失计算 (34)第5章污泥处理构筑物的设计计算 (36)5.1回流污泥泵站 (36)5.2污泥浓缩 (36)5.2.1剩余污泥量的计算 (36)5.2.2污泥浓度Xr (37)5.2.3浓缩池尺寸的计算 (37)5.2.4浓缩后污泥体积 (37)5.2.5分离出的污水流量 (38)5.3贮泥池 (38)5.3.1贮泥量的计算 (38)5.3.2贮泥池的尺寸计算 (38)5.4污泥脱水 (39)5.4.1污泥脱水设备的选择 (39)5.4.2脱水机的选择 (39)第6章污水厂平面及高程的布置 (40)6.1污水厂平面及高程布置 (40)6.2污水厂高程布置 (40)6.2.1 概述 (40)6.2.2 构筑物之间管渠的连续及水头损失的计算 (41)6.2.3 构筑物之间管渠的连续及污泥损失的计算 (43)第7章工程概算 (46)7.1工程概算编制说明 (46)7.1.1基础资料 (46)7.1.2 工程造价分析 (46)7.2工程概算 (47)7.2.1 基本建设投资估算 (47)7.2.2 生产成本分析 (48)致谢 (52)参考文献 (53)附表1 (55)附表2 (55)附表3 (57)附表4 (58)附表5 (59)第1章设计概述1.1设计题目辉南县城市污水处理厂工艺设计1.2设计依据辉南县城市发展与改革委员会计字【2005】第1号文件:“辉南县排水治理工程计划任务书的批复”,同意该城市采用完全分流制排水系统,设计内容包括全城规划区内的污水管道、雨水管道和污水处理厂。
A/O工艺设计参数①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3②污泥回流比:50~100%③混合液回流比:300~400%④反硝化段碳/氮比:BOD5/TN>4,理论BOD消耗量为1.72gBOD/gNOx--N⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS·d⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBOD5/KgMLSS·d⑦混合液浓度x=3000~4000mg/L(MLSS)⑧溶解氧:A段DO<0.2~0.5mg/LO段DO>2~4mg/L⑨pH值:A段pH =6.5~7.5O段pH =7.0~8.0⑩水温:硝化20~30℃反硝化20~30℃⑾碱度:硝化反应氧化1gNH4+-N需氧4.57g,消耗碱度7.1g(以CaCO3计)。
反硝化反应还原1gNO3--N将放出2.6g氧,生成3.75g碱度(以CaCO3计)⑿需氧量Ro——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO2/h)。
微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。
Ro=a’QSr+b’VX+4.6Nra’─平均转化1Kg的BOD的需氧量KgO2/KgBODb’─微生物(以VSS计)自身氧化(代谢)所需氧量KgO2/KgVSS·d。
上式也可变换为:Ro/VX=a’·QSr/VX+b’或Ro/QSr=a’+b’·VX/QSrSr─所去除BOD的量(Kg)Ro/VX─氧的比耗速度,即每公斤活性污泥(VSS)平均每天的耗氧量KgO2/KgVSS·dRo/QSr─比需氧量,即去除1KgBOD的需氧量KgO2/KgBOD由此可用以上两方程运用图解法求得a’ b’Nr—被硝化的氨量kd/d 4.6—1kgNH3-N转化成NO3-所需的氧量(KgO2)几种类型污水的a’ b’值⒀供氧量─单位时间内供给曝气池的氧量,因为充氧与水温、气压、水深等因素有关,所以氧转移系数应作修正。
A1/O 生物脱氮工艺一、设计资料设计处理能力为日处理废水量为30000m3废水水质如下:PH 值7.0~7.5 水温14~25 °C BOD5=160mg/L VSS=126mg/L(VSS/TSS=0.7) TN=40mg/L NH3-N=30mg/L 根据要求:出水水质如下:BOD5=20mg/L TSS=20mg/L TN 15mg/L NH3-N 8mg/L根据环保部门要求,废水处理站投产运行后排废水应达到国家标准《污水综合排放标准》GB8978-1996 中规定的“二级现有”标准,即COD 120mg/l BOD 30 mg/l NH -N<20 mg/l PH=6-9 SS<30 mg/l二、污水处理工艺方案的确定城市污水用沉淀法处理一般只能去除约25~30%的BOD5,污水中的胶体和溶解性有机物不能利用沉淀方法去除,化学方法由于药剂费用很高而且化学混凝去除溶解性有机物的效果不好而不宜采用。
采用生物处理法是去除废水中有机物的最经济最有效的选择。
废水中的氮一般以有机氮、氨氮、亚硝酸盐氮和硝酸盐氮等四种形态存在。
生活污水中氮的主要存在形态是有机氮和氨氮。
其中有机氮占生活污水含氮量的40%~60%,氨氮占50%~60%,亚硝酸盐氮和硝酸盐氮仅占0%~5%。
废水生物脱氮的基本原理是在传统二级生物处理中,将有机氮转化为氨氮的基础上,通过硝化和反硝化菌的作用,将氨氮通过硝化转化为亚硝态氮、硝态氮,再通过反硝化作用将硝态氮转化为氮气,而达到从废水中脱氮的目的。
废水的生物脱氮处理过程,实际上是将氮在自然界中循环的基本原理应用与废水生物处理,并借助于不同微生物的共同协调作用以及合理的认为运用控制,并将生物去碳过程中转化而产生及原废水中存在的氨氮转化为氮气而从废水中脱除的过程。
在废水的生物脱氮处理过程中,首先在好氧(oxic)条件下,通过好氧硝化的作用,将废水中的氨氮氧化为亚硝酸盐氮;然后在缺氧(Ano xic)条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气(N2)而从废水中逸出。
A平方O工艺设计计算书精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-2.4 A/A/O 工艺设计2.4.1 设计参数2.4.2 好氧池设计计算(1)反应器内MLSS 浓度取MLSS 浓度X=3000mg/L ,回流污泥浓度X R =9000mg/L故污泥回流比 R=5.0300090003000=-=-=X X X R R (2)求硝化的比生长速率式中:μn,m ——硝化菌的最大比生长率,g 新细胞/(g 细胞·d);N ——出水氨氮的浓度,mg/l 。
此处为8mg/L ;K N ——半速率常数,在最大比基质利用率一半时的基质浓度,此处为1mg/L 。
先求10℃时的μn,m故 1256.0818288.0-=⎪⎭⎫⎝⎛+⨯=d n μ (3)求设计SRT d (污泥龄)理论SRT :设计SRT d :为保证安全设计的SRT d 未理论SRT 的三倍,故(4)好氧池停留时间式中 Y t —— 污泥总产率系数,取0.8kgMLSS/kgBOD ;S o —— 进水BOD 5浓度mg/L ,此处为180mg/L ;S e —— 出水溶解性BOD 5浓度,mg/L ;K d —— 自身氧化系数,()2020,-=T t d K K θ在20℃时,K 20取0.04-0.075,此处取0.075。
θ为温度修正系数,可取1.02-1.06,此处取1.02。
故 ()062.002.1075.0201010,≈⨯=-d KS e =S o ’-S neS ne =7.1b ×aC e式中 C e —— 处理出水中SS 浓度,此处为20mg/L ;b —— 微生物自身氧化率,此处为0.075;X a —— 在处理水的悬浮固体中,有活性的微生物所占比例,此处为0.4 S o ’ —— 出水BOD 5浓度,此处为20mg/L故 L mg S e /74.15204.0075.01.720≈⨯⨯⨯-=故()()d T297.0300073.11062.0174.151808.073.11≈⨯⨯+-⨯⨯=(5)好氧池面积故好氧池停留时间HRT为:(6)生物固体产量式中 Q ——该污水厂最大的处理量,6000m3/d故()()dkgVSSPbiox/47.456100073.11062.0174.151808.06000,≈⨯⨯+-⨯⨯=(7)比较求由氮氧化成的硝酸盐数量每产生1g的VSS就要消耗掉0.12g的N,故因生物固化作用除去的TNx,bio 故因硝化/反硝化作用除去的TN为式中 TNin——进水总氮量,45mg/L;TNout——出水总氮量,20mg/L故()dkg TNc/22.9578.54100020456000=--⨯=故产生的硝酸盐数量及浓度为:故硝酸盐浓度为2.4.3 缺氧池设计计算(1)内回流比IR式中 ()out N NO C -3—— 排除的硝酸盐量,12mg/L 故 %13211287.27=-=IR (2)缺氧池面积式中 K de ——反硝化速率,kgNO 3-N/(kgMLSS ·d);式中 K de20 —— 20℃时的反硝化速率,取0.06kgNO 3-N/kgMLSSθt ——温度修正系数,取1.08故 ()028.008.106.02010≈⨯=-de K故 357.11333000028.0100022.95m V n ≈⨯⨯= 其水力停留时间HRT 为2.4.4 厌氧池设计计算(1)厌氧池容积式中 t p —— 厌氧池停留时间,取2h故厌氧池体积2.4.5 曝气系统设计计算(本设计采用鼓风曝气系统)(1)设计最大需氧量AORAOR=除去BOD 需氧量—剩余污泥当量+消化需氧量—反硝化产氧量硝化需氧量反硝化产氧量故 d kgO AOR /61.128733.27221.76973.7902=-+=(2)供气量的计算采用STEDOC300型橡胶膜微孔曝气器,敷设于距池底0.2m 处,淹没水深4.8m ,氧 转移效率30%,计算温度定为30℃。
A1/O生物脱氮工艺设计计算1.已知条件(1)设计流量Q=40000m3/d(2)设计进水水质BOD5浓度S0=130mg/L; TSS浓度X0=180mg/L;TN0=40mg/L; NH3-N=25 mg/L; TP=3.5 mg/L; COD cr=220 mg/L(3)设计出水水质BOD5浓度S e<=20mg/L; TSS浓度X e<=20mg/L;TN e<=20mg/L; NH3-N<=8 mg/L; TP<=1mg/L; COD cr<=60 mg/L PH=6.0~7.02.设计计算(按BOD5负荷计算)(1)设计参数计算根据手册知道:(1)设计参数计算①假设BOD5污泥负荷: N S=0.13kg BOD5/(kgMLSS·d)②污泥指数: SVI=150③回流污泥浓度X R=106*r/SVIr——考虑污泥在沉淀池中停留时间,池深,污泥厚度等因素的系数取r=1.2则X R=106*1.2/150=8000(mg/L)④根据手册回流污泥比R=50%~100% 取R=100%⑤曝气池混合液污泥浓度{X}kg/m3=R*X R/(R+1)=1*8000/2=4000mg/L=4⑥TN去除率{ηN}%=( TN0- TN e)/ TN0=(40-20)/40=50⑦内回流比{R内}%=η/(1-η)=0.5/(1-0.5)=100(2) A1/O池主要尺寸计算①曝气池总有效容积{V}m3=Q设L0/ N S X=40000×130/(0.13×4000)=10000m3又生化反应池中好氧段容积与缺氧段容积之比V1/V2=3~4 取V1/V2=4则V1=8000 m3V2=2000 m3②有效水深h=5.0m③好氧反应池的尺寸总容积V1=8000m3, 设反应池两组。
单组池容V1单= V1/2=4000 m3单组有效面积S1单=V1单/h=4000/5.0=800m2采用5廊道式, 廊道宽b1=5.0m反应池长度L1=S1单/5 b1=800/(5×5.0)=32m校核b/h=5.0/5.0=1 (满足b/h=1~2)L/b=32/5.0=6.4(满足L/b=5~10)超高取1.0,则反应池总高H=5.0+1.0=6 m④缺氧反应池的尺寸总容积V2=2000 m3, 设反应池两组。
A 2/O 工艺生化池设计一、 设计最大流量Q max=73500m 3/d=3062.5 m 3/h=0.850 m 3/s二、 进出水水质要求表1 进出水水质指标及处理程度三、 设计参数计算①. BOD 5污泥负荷N=0.14kgBOD 5/(kgMLSS ·d)②. 回流污泥浓度X R =10 000mg/L③. 污泥回流比R=50%④. 混合液悬浮固体浓度(污泥浓度) ⑤. TN 去除率 ⑥. 内回流倍数 四、 A 2/O 曝气池计算 ①. 反应池容积 ②. 反应水力总停留时间 ③. 各段水力停留时间和容积 厌氧:缺氧:好氧=1:1:4厌氧池停留时间h t 33.21461=⨯= ,池容37.70874252661m V=⨯=; 缺氧池停留时间h t 33.21461=⨯= ,池容37.70874252661m V=⨯=;好氧池停留时间h t 34.91464=⨯= ,池容36.283504252664m V =⨯=。
④. 校核氮磷负荷好氧段TN 负荷为:()d kgMLSS kgTN N ⋅=⨯⨯=∙∙/024.06.8350233339.3073500V X T Q 30厌氧段TP 负荷为:()d kgMLSS kgTN P ⋅=⨯⨯=∙∙/017.07.708733334.573500V X T Q 10① 剩余污泥量:X ∆,(kg/d) 式中:取污泥增值系数Y=0.5,污泥自身氧化率05.0=d K ,代入公式得: =5395kg/d 则:湿污泥量:设污泥含水率P=99.2% 则剩余污泥量为: ⑤. 反应池主要尺寸反应池总容积:V=425263m设反应池2组,单组池容积:V =3212632m V= 有效水深5m ,则:S=V/5=4252.62m取超高为1.0m ,则反应池总高m H 0.60.10.5=+= 生化池廊道设置:设厌氧池1廊道,缺氧池1廊道,好氧池4廊道,共6条廊道。
A O工艺设计计算TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-A2/O 工艺生化池设计一、 设计最大流量Q max=73500m 3/d= m 3/h= m 3/s二、 进出水水质要求表1 进出水水质指标及处理程度三、 设计参数计算①.BOD 5污泥负荷N=(kgMLSS ·d)②.回流污泥浓度X R =10 000mg/L③.污泥回流比R=50%④. 混合液悬浮固体浓度(污泥浓度) ⑤. TN 去除率 ⑥.内回流倍数四、 A 2/O 曝气池计算 ①. 反应池容积②. 反应水力总停留时间 ③.各段水力停留时间和容积厌氧:缺氧:好氧=1:1:4厌氧池停留时间h t 33.21461=⨯= ,池容37.70874252661m V=⨯=; 缺氧池停留时间h t 33.21461=⨯= ,池容37.70874252661m V=⨯=; 好氧池停留时间h t 34.91464=⨯= ,池容36.283504252664m V=⨯=。
④.校核氮磷负荷好氧段TN 负荷为:()d kgMLSS kgTN N ⋅=⨯⨯=••/024.06.8350233339.3073500V X T Q 30厌氧段TP 负荷为:()d kgMLSS kgTN P ⋅=⨯⨯=••/017.07.708733334.573500V X T Q 10① 剩余污泥量:X ∆,(kg/d) 式中:取污泥增值系数Y=,污泥自身氧化率05.0=d K ,代入公式得: =5395kg/d 则:湿污泥量:设污泥含水率P=% 则剩余污泥量为: ⑤.反应池主要尺寸反应池总容积:V=425263m 设反应池2组,单组池容积:V =3212632m V= 有效水深5m ,则: S=V/5=2m取超高为,则反应池总高m H 0.60.10.5=+= 生化池廊道设置:设厌氧池1廊道,缺氧池1廊道,好氧池4廊道,共6条廊道。
A1/O生物脱氮工艺一、设计资料设计处理能力为日处理废水量为30000m3废水水质如下:PH值~ 水温14~25℃BOD5=160mg/L VSS=126mg/LVSS/TSS= TN=40mg/L NH3-N=30mg/L根据要求:出水水质如下:BOD5=20mg/L TSS=20mg/L TN 15mg/L NH3-N 8mg/L根据环保部门要求,废水处理站投产运行后排废水应达到国家标准污水综合排放标准GB8978-1996中规定的“二级现有”标准,即COD 120mg/l BOD 30 mg/l NH -N<20 mg/l PH=6-9 SS<30 mg/l二、污水处理工艺方案的确定城市污水用沉淀法处理一般只能去除约25~30℅的BOD5,污水中的胶体和溶解性有机物不能利用沉淀方法去除,化学方法由于药剂费用很高而且化学混凝去除溶解性有机物的效果不好而不宜采用;采用生物处理法是去除废水中有机物的最经济最有效的选择;废水中的氮一般以有机氮、氨氮、亚硝酸盐氮和硝酸盐氮等四种形态存在;生活污水中氮的主要存在形态是有机氮和氨氮;其中有机氮占生活污水含氮量的40%~60%,氨氮占50%~60%,亚硝酸盐氮和硝酸盐氮仅占0%~5%;废水生物脱氮的基本原理是在传统二级生物处理中,将有机氮转化为氨氮的基础上,通过硝化和反硝化菌的作用,将氨氮通过硝化转化为亚硝态氮、硝态氮,再通过反硝化作用将硝态氮转化为氮气,而达到从废水中脱氮的目的;废水的生物脱氮处理过程,实际上是将氮在自然界中循环的基本原理应用与废水生物处理,并借助于不同微生物的共同协调作用以及合理的认为运用控制,并将生物去碳过程中转化而产生及原废水中存在的氨氮转化为氮气而从废水中脱除的过程;在废水的生物脱氮处理过程中,首先在好氧oxic条件下,通过好氧硝化的作用,将废水中的氨氮氧化为亚硝酸盐氮;然后在缺氧Anoxic条件下,利用反硝化菌脱氮菌将亚硝酸盐和硝酸盐还原为氮气N2而从废水中逸出;因而,废水的生物脱氮通常包括氨氮的硝化和亚硝酸盐氮及硝酸盐氮的反硝化两个阶段,只有当废水中的氨以亚硝酸盐氮和硝酸盐的形态存在时,仅需反硝化脱氮一个阶段.◆与传统的生物脱氮工艺相比,A/O脱氮工艺则有流程简短、工程造价低的优点;该工艺与传统生物脱氮工艺相比的主要特点如下:①流程简单,构筑物少,大大节省了基建费用;②在原污水C/N较高大于4时,不需外加碳源,以原污水中的有机物为碳源,保证了充分的反硝化,降低了运行费用;③好养池设在缺养之后,可使反硝化残留的有机物得到进一步去除,提高出水水质;④缺养池在好养池之前,一方面由于反硝化消耗了一部分碳源有机物,可减轻好养池的有机负荷,另一方面,也可以起到生物选择器的作用,有利于控制污泥膨胀;同时,反硝化过程产生的碱度也可以补偿部分硝化过程对碱度的消耗;⑤该工艺在低污泥负荷、长泥龄条件下运行,因此系统剩余污泥量少,有一定稳定性;⑥便于在常规活性污泥法基础上改造A1/O脱氮工艺;⑦混合液回流比的大小,直接影响系统的脱氮率,一般混合液回流比取200%~500%,太高则动力消耗太大;因此A1/O工艺脱氮率一般为70%~80%,难于进一步提高;三、污水处理工艺设计计算一、污水处理系统1、格栅设计流量:平均日流量Qd=3000m3/d=s则K2=最大日流量 Qmax=K2Qd=s设计参数:格栅倾角 =60 栅条间隙b= 栅条水深h= 过栅流速v=s1栅槽宽度①栅条的间隙数n 格栅设两组,按两组同时工作设计,一格停用,一格工作校核;则n= = =31个②栅槽宽度B栅槽宽度一般比格栅宽~,取设栅条宽度 S=10mm则栅槽宽度 B=Sn-1+bn+= 31-1+ 31+=2通过格栅的水头损失h1①进水渠道渐宽部分的L1;设进水渠宽B1=其渐宽部分展开角 1=20进水渠道内的流速为sL1= = =②栅槽与出水渠道连接出的渐窄部分长宽L2,mL2= = =③通过格栅的水头损失h1,mh1=h0kk一般采用3h0= sin , =h1= sin k= sin60 3= 设 =3栅后槽总高度H,m设栅前渠道超高h2=H1= h+h1+h2=++=≈4栅槽总长度L1,m式中H1=h+h25每日栅渣量W,m/3dw= 式中,w1为栅渣量 m3/10 m 污水 , 格栅间隙为16~25mm时w1=~ /10 m3 污水;格栅间隙为30~50mm时, w1=~103m3污水本工程格栅间隙为21mm,取W1=10m3污水W= =m3/d m3/d采用机械清渣2、提升泵站采用A1/O生物脱氮工艺方案,污水处理系统简单,污水只考虑一次提升;污水经提升后入平流式沉砂池,然后自流通过缺养池、好养池、二沉池等;设计流量Qmax=1800m3/h,采用3台螺旋泵,单台提升流量为900m3/h;其中两台正常工作,一台备用;3.平流式沉池砂1 沉沙池长度L,mL=vt 取v=s,t=30s则L= 30=2 水流端面面积A,m2A= = =2m23 池总宽度B,mB=nb 取n=2, b=则B=2 =4 有效水深h2, mh2= = =5 沉砂池容积v, m3V= 取x=30m3/106m3污水,T=2d k2=则V= =6 每个沉斗砂容积V0,m3设每个分格有2个沉沙斗,共4个沉砂斗则V0= =7 沉砂斗尺寸①沉砂斗上口宽a,ma= +a1 式中h/3为斗高取h/3=, a1为斗底宽取,a1=, 斗壁与水平面的倾角55则a= +=②沉砂斗容积V0,m3V0=h/32a2+2aa1+2a12= 2 12 2 1 +2 2 =8 沉砂室高度h3 ,m采用重力排沙,设池底坡度为,坡向砂斗,沉砂室有两部分组成:一部分为沉砂斗,另一部分为沉砂池坡向沉砂斗的过滤部分,沉砂室的宽度为 2L2+a + L2= = =h3=h/3+ L2=+ =9 沉砂池总高度H,m取超高h1=H=h1+h2+h3=++=10验算最小流速Vmin m/s在最小流速时,只用一格工作n1=1Vmin= Qmin= = =s则Vmin= = =s﹥s11 砂水分离器的选择沉砂池的沉砂经排砂装置排除的同时,往往是砂水混合体,为进一步分离出砂和水,需配套砂水分离器清除沉砂的间隔时间为2d,根据该工程的排砂量,选用一台某公司生产的螺旋水分离器;该设备的主要技术性能参数为:进水砂水分离器的流量为1~3L/S ,容积为,进水管直径为100mm, 出水管直径为100mm,配套功率为4、A1/O生物脱氮工艺设计计算1好氧区容积V1V1= 取Y=;Kd=①出水溶解性BOD5;为使出水所含BOD5降到20mg/L,出水溶解性BOD5浓度S 应为:S=20-× ×TSS1-e-kt=20-××20×1-e-×5=mg/L②设计污泥龄;首先确定硝化速率取设计pH=,计算公式:-15 1--Ph-15 ×=××=d-1硝化反应所需的最小污泥龄= = =4;05d选用安全系数K=3;设计污泥龄=K =3×=d③好氧区容积V1,m3V1= =m3⑵好氧区容积V2V2=①需还原的硝酸盐氮量;微生物同化作用去除的总氮NW:NW= =× =mg/L被氧化的NH3-N=进水总氮量-出水氨氮量-用与合成的总氮量=40-8-=mg/L所需脱硝量=进水总氮量-出水总氮量-用与合成的总氮量=40-15-=mg/L 需还原的硝酸盐氮NT=30000×× =534kg/d②反硝化速率=qdn,20 qdn20取 -N/kgMLVSS·d; 取;=×-20=kgNO -N/kgMLVSS③缺氧区容积V2= =m3缺氧区水力停留时间t2= = =d=h⑶曝气池总容积V总,m3V总=V1+V2=+=系统总设计泥龄=好氧池泥龄+缺氧池泥龄=+× =⑷污泥回流比及混合液回流比①污泥回流比R;设SVI=150,回流污泥浓度计算公式:XR= ×r r取XR= ×=8000mg/L混合液悬浮固体浓度XMLSS=4000mg/L污泥回流比R= ×100﹪= ×100﹪=100﹪一般取50﹪~100﹪②混合液回流比R内;混合液回流比R内取决与所要求的脱氮率;脱氮率可用下式粗略估算: = = =﹪r= = =167﹪≈200﹪⑸剩余污泥量生物污泥产量:PX= = =d对存在的惰性物质和沉淀池的固体流失量可采用下式计算:PS=QX1-Xe Q取30000m3/dPs=QX1-Xe=30000×--=1020kg/d剩余污泥量△X=PX+PS=+1020=d去除每1kgBOD5产生的干泥量= = =kgBOD5⑹反应池主要尺寸①好氧反应池;总容积V1=7482;38m3,设反应池2组;单组池容V1单= = =有效水深h=,单组有效面积S1单= = =采用3廊道式,廊道宽b=6m,反应池长度L1= = =52m超高取,则反应池总高H=+=②缺氧反应池尺寸总容积V2=设缺氧池2组,单组池容V2单= =有效水深h=,单组有效面积S2单= = =长度与好氧池宽度相同,为L=18m,池宽= = =17m⑺反应池进,出水计算①进水管;两组反应池合建,进水与流污泥进入进水竖井,经混合后经配渠,进水潜孔进入缺氧池;单组反应池进水管设计流量 Q1=Q= =s管道流速采用v=s;管道过水断面A= = =管径d= = =取进水管管径DN 700mm;校核管道流速v= = =s②回流污泥渠道;单组反应池回流污泥渠道设计流量QR QR=R×Q=1× =s渠道流速v=s;则渠道断面积A= = =则渠道断面b×h=×校核流速v= =s渠道超高取;渠道总高为+=③进水竖井;反应池进水孔尺寸:进水孔过流量Q2=1+R× =1+1× = =s孔口流速v=s孔口过水面积A= = =孔口尺寸取×;进水竖井平面尺寸×;④出水堰及出水竖井;按矩形堰流量公式:Q3= bH =×b×HQ3=1+R =1+1 =Q=sb取H= = =出水孔过流量Q4=Q3=s孔口流速v=s;孔口过水断面积A= = =孔口尺寸取×;出水竖井平面尺寸×;⑤出水管;单组反应池出水管设计流量Q5=Q3=s管道流速v=s;管道过水断面A= = =s⑻曝气系统设计计算①设计需氧量AOR;需氧量包括碳化需氧量和硝化需氧量,并应扣除剩余活性污泥排放所减少BOD5及NH3-N的氧当量此部分用于细胞合成,并未耗氧,同时还应考虑反硝化产生的氧量;AOR=碳化需氧量+硝化需氧量-反硝化脱氮产氧量=去除BOD5需氧量-剩余污泥中BOD5需氧量+NH3-N硝化需氧量-剩余污泥中NH3-N的氧当量-反硝化脱氮产氧量a 碳化需氧量D1D1= -k取,t取5dD1= -×=db 硝化需氧量D2D2=N0-Ne -×﹪×Px=×30000×--×﹪×=dc 反硝化脱氮产生的氧量D3D3=式中,NT为反硝化脱除的硝态氮量,取NT=534kg/dD3=×534=d故总需氧量AOR=D1+D2-D3=+-=h=h最大需氧量与平均需氧量之比为,则:AORmax==×=d=h去除每1kgBOD5的需氧量= = =kgBOD5⑵标准需氧量;采用鼓风曝气,微孔曝气器敷设于池底,距池底,淹没深度,氧转移效率EA=20﹪,将实际需氧量AOR换算成标准状态下的需氧量SORSOR= T取25℃,CL取2mg/L, 取, 取查表得水中溶解氧饱和度:CS20=L,CS25=L空气扩散器出口处绝对压力:Pb=p+×103H p=×105Pa,Pb=×105+×103×=×105Pa空气离开好氧反应池时氧的百分比Ot:Ot= ×100﹪式中,EA为空气扩散装置的氧的转移效率,取EA=20﹪Ot= =﹪好氧反应池中平均溶解氧饱和度:Csm25=Cs25 + =× + =L标准需氧量为:SOR= =d=h相应最大时标准需氧量为:SORmax==×=d=h好氧池反应池平均时供气量为:GS= ×100= ×100=h最大时供气量为:Gsmax==h③所需空气压力p相对压力p=h1+h2+h3+h4+△hh4取,△h取取h1+h2=p=+++==49kPa可根据总供气量,所需风压,污水量及负荷变化等因素选定风机台数,进行风机与机房设计;③曝气器数量计算以单组反应池计算;a 按供氧能力计算曝气器数量; h1=采用微孔曝气器,参照有关手册,工作水深,在供风量q=1~3m3h·个时,曝气器氧利用率EA=20%,服务面积~,2,充氧能力qc=h·个,则:h1= =2049个b 以微孔曝气器服务面积进行校核f= = =<④供风管道计算;供风管道指风机出口至曝气器的管道;a 干管;供风干管采用环状布置;流量QS=×Gsmax=×=h流速v=10m/s管径d= = =取干管管径为DN400mm;b 支管;单侧供气向单侧廊道供气支管布气横管:QS单= × = ×=h流速v=10m/s;管径d= = =取支管管径为DN250mm;双侧供气:QS双= = ×=h流速v=10m/s;管径d= = =取支管管径为DN400mm;⑽缺氧池设备选择缺氧池分成三格串联,每格内设一台机械搅拌器;缺氧池内设3台潜水搅拌机,所需功率按5W/m3污水计算;厌氧池有效容积V单=17×18×=混合全池污水所需功率N单=×5=6273W⑾污泥回流设备选择污泥回流比R=100%污泥回流量QR=RQ=30000m3/d=1250m3/h设回流污泥泵房1座,内设3台潜污泵2用1备;单泵流量QR单==×1250=625m3/h水泵扬程根据竖向流程确定;⑿混合液回流泵混合液回流比R内=200%混合液回流量QR=R内Q=2×30000=60000m3/d=2500m3/h每池设混合液回流泵2台,单泵流量QR单= =625m3/h混合液回流泵采用潜污泵;5、向心辐流式二次沉淀池1沉淀池部分水面面积F最大设计流量Qmax=s=1800m3/h采用两座向心辐流式二次沉淀池,表面负荷取m2·h 则F= = =1125m22池子直径DD= = =取D=38m3校核堰口负荷q′q′= = =<〔L/s·m〕4校核固体负荷GG= = =〔kg/m2·d〕符合要求5澄清区高度h2′设沉淀池沉淀时间t=h2′= =qt= =2m6污泥区高度h2′′h2′′= = =⑺池边水深h2h2= h2′+h2′′+=2++=8污泥斗高h4 设污泥斗底直径D2=,上口直径D1=,斗壁与水平夹角60°则h4= tan60°= tan60°=9池总高H 二次沉淀池拟采用单管吸泥机排泥,池底坡度取,排泥设备中心立柱的直径为;池中心与池边落差 h3= =018m超高h1= 故池总高H=h1+h2+h3+h4=+++=10流入槽设计采用环行平底糟,等距设布水孔,孔径50mm,并加100mm长短管①流入槽设流入槽宽B=槽中流速取s槽中水深h=②布水孔数n 取t=650s,Gm20s-1,水温20℃时v= m2/s布水孔平均流速vn= = =s布水孔数n= 个③孔距④校核Gmv1=v2=Gm= = 在10~30之间合格二、污泥处理系统1、浓缩池1浓缩池面积A剩余污泥量 =d 污泥固体通量选用30kg/m2·dA= m2⑵浓缩池直径D设计采用n=1个圆形辐流池浓缩池直径D= 取D=11m⑶浓缩池深度H浓缩池工作部分的有效水深h2= 式中取T=15hQW= 取C0=6kg/m3=则h2=超高h1= 缓冲层高度h3= 浓缩池设机械刮泥坡底坡度 i=1/20 污泥斗下底直径D1= 上底直径D2=池底坡度造成的深度h4= =污泥斗高度h5=浓缩池深度H=h1+h2+h3+h4+h5=++++=2、污泥泵共设污泥泵两台,一用一备单泵流量Q =424m3/d=h3、污泥脱水间进泥量 =424m3/d=h出泥饼GW=68t/d泥饼干重W=18t/d选用DY—3000带式脱水机,带宽3m,处理能力为600kg干/h,选用三台;。
A1/O生物脱氮工艺一、设计资料设计处理能力为日处理废水量为30000m3废水水质如下:PH值7.0~7.5 水温14~25℃BOD5=160mg/L VSS=126mg/L(VSS/TSS=0.7) TN=40mg/L NH3-N=30mg/L根据要求:出水水质如下:BOD5=20mg/L TSS=20mg/L TN 15mg/L NH3-N 8mg/L根据环保部门要求,废水处理站投产运行后排废水应达到国家标准《污水综合排放标准》GB8978-1996中规定的“二级现有”标准,即COD 120mg/l BOD 30 mg/l NH -N<20 mg/l PH=6-9 SS<30 mg/l二、污水处理工艺方案的确定城市污水用沉淀法处理一般只能去除约25~30℅的BOD5,污水中的胶体和溶解性有机物不能利用沉淀方法去除,化学方法由于药剂费用很高而且化学混凝去除溶解性有机物的效果不好而不宜采用。
采用生物处理法是去除废水中有机物的最经济最有效的选择。
废水中的氮一般以有机氮、氨氮、亚硝酸盐氮和硝酸盐氮等四种形态存在。
生活污水中氮的主要存在形态是有机氮和氨氮。
其中有机氮占生活污水含氮量的40%~60%,氨氮占50%~60%,亚硝酸盐氮和硝酸盐氮仅占0%~5%。
废水生物脱氮的基本原理是在传统二级生物处理中,将有机氮转化为氨氮的基础上,通过硝化和反硝化菌的作用,将氨氮通过硝化转化为亚硝态氮、硝态氮,再通过反硝化作用将硝态氮转化为氮气,而达到从废水中脱氮的目的。
废水的生物脱氮处理过程,实际上是将氮在自然界中循环的基本原理应用与废水生物处理,并借助于不同微生物的配合协调作用以及合理的认为运用控制,并将生物去碳过程中转化而产生及原废水中存在的氨氮转化为氮气而从废水中脱除的过程。
在废水的生物脱氮处理过程中,首先在好氧(oxic)条件下,通过好氧硝化的作用,将废水中的氨氮氧化为亚硝酸盐氮;然后在缺氧(Anoxic)条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气(N2)而从废水中逸出。
因而,废水的生物脱氮通常包括氨氮的硝化和亚硝酸盐氮及硝酸盐氮的反硝化两个阶段,只有当废水中的氨以亚硝酸盐氮和硝酸盐的形态存在时,仅需反硝化(脱氮)一个阶段.◆与传统的生物脱氮工艺相比,A/O脱氮工艺则有流程简短、工程造价低的优点。
该工艺与传统生物脱氮工艺相比的主要特点如下:①流程简单,构筑物少,大大节省了基建费用;②在原污水C/N较高(大于4)时,不需外加碳源,以原污水中的有机物为碳源,保证了充分的反硝化,降低了运行费用;③好养池设在缺养之后,可使反硝化残留的有机物得到进一步去除,提高出水水质;④缺养池在好养池之前,一方面由于反硝化消耗了一部分碳源有机物,可减轻好养池的有机负荷,另一方面,也可以起到生物选择器的作用,有利于控制污泥膨胀;同时,反硝化过程产生的碱度也可以补偿部分硝化过程对碱度的消耗;⑤该工艺在低污泥负荷、长泥龄条件下运行,因此系统剩余污泥量少,有一定稳定性;⑥便于在常规活性污泥法基础上改造A1/O脱氮工艺;⑦混合液回流比的大小,直接影响系统的脱氮率,一般混合液回流比取200%~500%,太高则动力消耗太大。
因此A1/O工艺脱氮率一般为70%~80%,难于进一步提高。
三、污水处理工艺设计计算(一)、污水处理系统1、格栅设计流量:平均日流量Qd=3000m3/d=0.35m3/s则K2=1.42最大日流量Qmax=K2Qd=0.50m3/s设计参数:格栅倾角=60 栅条间隙b=0.021m 栅条水深h=0.4m 过栅流速v=0.9m/s (1)栅槽宽度①栅条的间隙数n 格栅设两组,按两组同时工作设计,一格停用,一格工作校核。
则n= = =31个②栅槽宽度B栅槽宽度一般比格栅宽0.2~0.3m,取0.2m设栅条宽度S=10mm(0.01m)则栅槽宽度B=S(n-1)+bn+0.2=0.01 (31-1)+0.021 31+0.2=1.15m(2)通过格栅的水头损失h1①进水渠道渐宽部分的L1。
设进水渠宽B1=0.85m其渐宽部分展开角1=20进水渠道内的流速为0.77m/sL1= = =0.41m②栅槽与出水渠道连接出的渐窄部分长宽L2,mL2= = =0.21m③通过格栅的水头损失h1,mh1=h0k(k一般采用3)h0= sin , =h1= sin k=2.42 sin60 3=0.097m (设=2.42)(3)栅后槽总高度H,m设栅前渠道超高h2=0.3mH1= h+h1+h2=0.4+0.097+0.3=0.797≈0.8m(4)栅槽总长度L1,mL=L1+L2+1.0+0.5+ =0.41+0.21.1.0+0.5+ =2.52m (式中H1=h+h2)(5)每日栅渣量W,m/3dw= 式中,w1为栅渣量m3/10 m 污水, 格栅间隙为16~25mm时w1=0.10~0.05m /10 m3 污水;格栅间隙为30~50mm时, w1=0.03~0.1m3/103m3污水本工程格栅间隙为21mm,取W1=0.07m3/10m3污水W= =2.18(m3/d)0.2(m3/d)采用机械清渣2、提升泵站采用A1/O生物脱氮工艺方案,污水处理系统简单,污水只考虑一次提升。
污水经提升后入平流式沉砂池,然后自流通过缺养池、好养池、二沉池等。
设计流量Qmax=1800m3/h,采用3台螺旋泵,单台提升流量为900m3/h。
其中两台正常工作,一台备用。
3.平流式沉池砂(1) 沉沙池长度L,mL=vt (取v=0.25m/s,t=30s)则L=0.25 30=7.5m(2) 水流端面面积A,m2A= = =2m2(3) 池总宽度B,mB=nb (取n=2, b=0.6m)则B=2 0.6=1.2m(4) 有效水深h2, mh2= = =1.7m(5) 沉砂池容积v, m3V= (取x=30m3/106m3污水,T=2d k2=1.42)则V= =1.83m3(6) 每个沉斗砂容积V0,m3设每个分格有2个沉沙斗,共4个沉砂斗则V0= =0.46m3(7) 沉砂斗尺寸①沉砂斗上口宽a,ma= +a1 (式中h/3为斗高取h/3=0.35m, a1为斗底宽取,a1=0.5m, 斗壁与水平面的倾角55 )则a= +0.5=1.0m②沉砂斗容积V0,m3V0=h/3(2a2+2aa1+2a12)= (2 12 2 1 0.5 +2 0.5)2 =0.2m3(8) 沉砂室高度h3 ,m采用重力排沙,设池底坡度为0.06,坡向砂斗,沉砂室有两部分组成:一部分为沉砂斗,另一部分为沉砂池坡向沉砂斗的过滤部分,沉砂室的宽度为2(L2+a)+0.2L2= = =2.65mh3=h/3+0.06 L2=0.35+0.06 2.65=0.51m(9) 沉砂池总高度H,m取超高h1=0.3mH=h1+h2+h3=0.3+1.7+0.51=2.51m(10)验算最小流速Vmin m/s在最小流速时,只用一格工作(n1=1)Vmin= Qmin= = =0.25m3/s则Vmin= = =0.25m/s﹥0.15m/s(11) 砂水分离器的选择沉砂池的沉砂经排砂装置排除的同时,往往是砂水混合体,为进一步分离出砂和水,需配套砂水分离器清除沉砂的间隔时间为2d,根据该工程的排砂量,选用一台某公司生产的螺旋水分离器。
该设备的主要技术性能参数为:进水砂水分离器的流量为1~3L/S ,容积为0.6m3,进水管直径为100mm, 出水管直径为100mm,配套功率为0.25KW 4、A1/O生物脱氮工艺设计计算(1)好氧区容积V1V1= (取Y=0.6;Kd=0.05)①出水溶解性BOD5。
为使出水所含BOD5降到20mg/L,出水溶解性BOD5浓度S应为:S=20-1.42× ×TSS(1-e-kt)=20-1.42×0.7×20×(1-e-0.23×5)=6.41(mg/L)②设计污泥龄。
首先确定硝化速率(取设计pH=7.2),计算公式:=[0.47e0.098(T-15)][ ][ ][1-0.0833(7.2-Ph)]=0.47e0.098(14-15) ×=0.462×0.958×0.606=0.247(d-1)硝化反应所需的最小污泥龄= = =4。
05(d)选用安全系数K=3;设计污泥龄=K =3×4.05=12.2(d)③好氧区容积V1,m3V1= =7482.38(m3)⑵好氧区容积V2V2=①需还原的硝酸盐氮量。
微生物同化作用去除的总氮NW:NW=0.124 =0.124× =7.2(mg/L)被氧化的NH3-N=进水总氮量-出水氨氮量-用与合成的总氮量=40-8-7.2=24.8(mg/L)所需脱硝量=进水总氮量-出水总氮量-用与合成的总氮量=40-15-7.2=17.8(mg/L) 需还原的硝酸盐氮NT=30000×17.8× =534(kg/d)②反硝化速率qdn.T=qdn,20 ( qdn20取0.12kgNO -N/(kgMLVSS·d); 取1.08。
)qdn.T=0.12×1.0814-20=0.076(kgNO -N/(kgMLVSS)③缺氧区容积V2= =2509.4(m3)缺氧区水力停留时间t2= = =0.084(d)=2.0(h)⑶曝气池总容积V总,m3V总=V1+V2=7482.32+2509.4=9991.78m3系统总设计泥龄=好氧池泥龄+缺氧池泥龄=12.2+12.2× =16.29d⑷污泥回流比及混合液回流比①污泥回流比R。
设SVI=150,回流污泥浓度计算公式:XR= ×r (r取1.2)XR= ×1.2=8000mg/L混合液悬浮固体浓度X(MLSS)=4000mg/L污泥回流比R= ×100﹪= ×100﹪=100﹪(一般取50﹪~100﹪)②混合液回流比R内。
混合液回流比R内取决与所要求的脱氮率。
脱氮率可用下式粗略估算:= = =62.5﹪r= = =167﹪≈200﹪⑸剩余污泥量生物污泥产量:PX= = =1523.73kg/d对存在的惰性物质和沉淀池的固体流失量可采用下式计算:PS=Q(X1-Xe)(Q取30000m3/d)Ps=Q(X1-Xe)=30000×(0.18-0.126-0.02)=1020kg/d剩余污泥量△X=PX+PS=1523.73+1020=2543.73kg/d去除每1kgBOD5产生的干泥量= = =0.61kgDs/kgBOD5⑹反应池主要尺寸①好氧反应池。