四年级奥数——行程问题
- 格式:pptx
- 大小:1.62 MB
- 文档页数:21
(完整版)奥数四年级行程问题第三部分行程问题【专题知识点概述】行程问题是一类常见的重要应用题,在历次数学竞赛中经常出现。
行程问题包括:相遇问题、追及问题、火车过桥问题、流水行船问题、环形行程问题等等。
行程问题思维灵活性大,辐射面广,但根本在于距离、速度和时间三个基本量之间的关系,即:距离=速度?时间,时间=距离÷速度,速度=距离÷时间。
在这三个量中,已知两个量,即可求出第三个量。
掌握这三个数量关系式,是解决行程问题的关键。
在解答行程问题时,经常采取画图分析的方法,根据题意画出线段图,来帮助我们分析、理解题意,从而解决问题。
一、行程基本量我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.我们已经接触过一些简单的行程应用题,行程问题主要涉及时间(t)、速度(v)和路程(s)这三个基本量,它们之间的关系如下:(1)速度×时间=路程可简记为:s = vt(2)路程÷速度=时间可简记为:t = s÷v(3)路程÷时间=速度可简记为:v = s÷t显然,知道其中的两个量就可以求出第三个量.二、平均速度平均速度的基本关系式为:平均速度=总路程÷总时间;总时间=总路程÷平均速度;总路程=平均速度?总时间。
【重点难点解析】1.行程三要素之间的关系2.平均速度的概念3.注意观察运动过程中的不变量【竞赛考点挖掘】1.注意观察运动过程中的不变量【习题精讲】【例1】(难度等级※)邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【分析与解】法一:先求出去的时间,再求出返回的时间,最后转化为时刻。
①邮递员到达对面山里需时间:12÷4+8÷5=4.6(小时);②邮递员返回到邮局共用时间:8÷4+12÷5+1+4.6 =2+2.4+1+4.6 = l0(小时)③邮递员回到邮局时的时刻是:7+10-12=5(时).邮递员是下午5时回到邮局的。
小学四年级奥数题及答案:行程问题
小学四年级奥数题及答案:行程问题
1.行程问题
甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙;若甲让乙先跑2秒钟,则甲跑4秒钟就能追上乙.问:甲、乙二人的速度各是多少?
解答:分析若甲让乙先跑10米,则10米就是甲、乙二人的路程差,5秒就是追及时间,据此可求出他们的速度差为10÷5=2(米/秒);若甲让乙先跑2秒,则甲跑4秒可追上乙,在这个过程中,追及时间为4秒,因此路程差就等于2×4=8(米),也即乙在2秒内跑了8米,所以可求出乙的速度,也可求出甲的速度.综合列式计算如下:解:乙的速度为:10÷5×4÷2=4(米/秒)
甲的速度为:10÷5+4=6(米/秒)
答:甲的速度为6米/秒,乙的速度为4米/秒.
2.行程问题
上午8点零8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的`地方追上了他.然后爸爸立刻回家,到家后又立刻回头去追小明、再追上他的时候,离家恰好是8千米,问这时是几点几分?
解答:从爸爸第一次追上小明到第二次追上这一段时间内,小明走的路程是8-4=4(千米),而爸爸行了4+8=12(千米),因此,摩托车与自行车的速度比是12∶4=3∶1.小明全程骑车行8千米,爸爸来回总共行4+12=16(千米),还因晚出发而少用8分钟,从上面算出的速度比得知,小明骑车行8千米,爸爸如同时出发应该骑24千米.现在少用8分钟,少骑24-16=8(千米),因此推算出摩托车的速度是每分钟1千米.爸爸总共骑了16千米,需16分钟,8+16=24(分钟),这时是8点32分.。
奥数四年级行程问题《专题知识点概述》行程问题是一类常见的重要应用题;在历次数学竞赛中经常出现。
行程问题包括:相遇问题、追及问题、火车过桥问题、流水行船问题、环形行程问题等等。
行程问题思维灵活性大;辐射面广;但根本在于距离、速度和时间三个基本量之间的关系;即:距离=速度⨯时间;时间=距离÷速度;速度=距离÷时间。
在这三个量中;已知两个量;即可求出第三个量。
掌握这三个数量关系式;是解决行程问题的关键。
在解答行程问题时;经常采取画图分析的方法;根据题意画出线段图;来帮助我们分析、理解题意;从而解决问题。
一、行程基本量我们把研究路程、速度、时间以及这三者之间关系的一类问题;总称为行程问题;我们已经接触过一些简单的行程应用题;行程问题主要涉及时间《t》、速度《v》和路程《s》这三个基本量;它们之间的关系如下:《1》速度×时间=路程可简记为:s = vt《2》路程÷速度=时间可简记为:t = s÷v《3》路程÷时间=速度可简记为:v = s÷t显然;知道其中的两个量就可以求出第三个量;二、平均速度平均速度的基本关系式为:平均速度=总路程÷总时间;总时间=总路程÷平均速度;总路程=平均速度⨯总时间。
《重点难点解析》1;行程三要素之间的关系2.平均速度的概念3.注意观察运动过程中的不变量《竞赛考点挖掘》1;注意观察运动过程中的不变量《习题精讲》《例1》《难度等级※》邮递员早晨7时出发送一份邮件到对面山里;从邮局开始要走12千米上坡路;8千米下坡路。
他上坡时每小时走4千米;下坡时每小时走5千米;到达目的地停留1小时以后;又从原路返回;邮递员什么时候可以回到邮局?《分析与解》法一:先求出去的时间;再求出返回的时间;最后转化为时刻。
①邮递员到达对面山里需时间:12÷4+8÷5=4;6(小时);②邮递员返回到邮局共用时间:8÷4+12÷5+1+4;6 =2+2;4+1+4;6 = l0(小时)③邮递员回到邮局时的时刻是:7+10-12=5(时);邮递员是下午5时回到邮局的。
第五讲行程问题行程问题是小学奥数中变化最多的一个专题,不论在奥数竞赛中还是在“小升初”的升学考试中,都拥有非常重要的地位。
行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程,等等。
每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1. 简单行程:路程 = 速度×时间2. 相遇问题:路程和 = 速度和×时间3. 追击问题:路程差 = 速度差×时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。
①追击及遇问题一、例题与方法指导例1. 有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。
甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。
在途中,甲和乙相遇后3分钟和丙相遇。
问:这个花圃的周长是多少米?例2. 东西两地间有一条公路长217.5千米,甲车以每小时25千米的速度从东到西地,1.5小时后,乙车从西地出发,再经过3小时两车还相距15千米。
乙车每小时行多少千米?例3. 兄妹二人同时从家里出发到学校去,家与学校相距1400米。
哥哥骑自行车每分钟行200米,妹妹每分钟走80米。
哥哥刚到学校就立即返回来在途中与妹妹相遇。
从出发到相遇,妹妹走了几分钟?相遇处离学校有多少米?二、巩固训练1. 两城市相距328千米,甲、乙两人骑自行车同时从两城出发,相向而行。
甲每小时行28千米,乙每小时行22千米,乙在中途修车耽误1小时,然后继续行驶,与甲相遇,求出发到相遇经过多少时间?2.快车和慢车同时从甲乙两地相对开出,已知快车每小时行40千米,经过3小时快车已过中点12千米与慢车相遇,慢车每小时行多少千米?3.小华和小明同时从甲、乙两城相向而行,在离甲城85千米处相遇,到达对方城市后立即以原速沿原路返回,又在离甲城35千米处相遇,两城相距多少千米?三、拓展提升1.客车和货车同时从甲、乙两地相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度继续前进,客车到达乙站后立即返回,货车到达甲站后也立即返回,两车再次相遇时,客车比货车多行216千米。
行程问题(一)1.甲、乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。
两地间的水路长多少千米?2.甲、乙两车分别从相距480千米的A、B两城同时出发相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。
两车出发后多少小时相遇?3.东、西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米.两人的速度各是多少?4.甲、乙两队学生从相隔18千米的两地同时出发相向而行。
一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。
甲队每小时行5千米,乙队每小时行4千米。
两队相遇时,骑自行车的同学共行多少千米?5.A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。
一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去。
这样一直飞下去,燕子飞了多少千米后,两车才能相遇?6.甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米。
一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?7.小冬和小刚两人在环形跑道上以各自不同的不变速度跑步,如果两人同时从同一地点相背而行,小刚跑6分钟后两人第一次相遇,小冬跑一周要8分钟,小刚跑一周要几分钟?8.甲、乙两车同时从A,B两地相对开出,6小时后相遇,甲车从A地到B地要9小时,乙车从A地到B地要几小时?9.小明骑摩托车、小军骑自行车分别从甲、乙两地同时出发相向而行,5小时后相遇。
小军从甲地到乙地要15小时,小明从乙地到甲地要几小时?10.两港相距267千米,客船以每小时45千米的速度、货船以每小时33千米的速度先后从两港开出,相向而行,相遇时客船行了135千米。
货船比客船提前几小时开出?11.小丽和小勇同时从相距2160米的两地相向而行,小丽勇每分钟走100米,小丽每分钟走80米,相遇时小丽走了960米。
【导语】海阔凭你跃,天⾼任你飞。
愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣第⼏篇。
学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。
以下是为⼤家整理的《四年级奥数⾏程问题及答案【三篇】》供您查阅。
【第⼀篇】甲、⼄两个港⼝之间的⽔路长300千⽶,⼀只船从甲港到⼄港,顺⽔5⼩时到达,从⼄港返回甲港,逆⽔6⼩时到达。
求船在静⽔中的速度和⽔流速度? 解答:由题意可知,船在顺⽔中的速度是300÷5=60千⽶/⼩时,在逆⽔中的速度是300÷6=50千⽶/⼩时,所以静⽔速度是(60+50)÷2=55千⽶/⼩时,⽔流速度是(60-50)÷2=5千⽶/⼩时。
【第⼆篇】某船在静⽔中的速度是每⼩时15千⽶,它从上游甲地开往下游⼄地共花去了8⼩时,⽔速每⼩时3千⽶,问从⼄地返回甲地需要多少时间? 【分析】顺⽔速度是15+3=18千⽶/⼩时,从甲地到⼄地的路程是18×8=144千⽶,从⼄地返回甲地时是逆⽔,逆⽔速度是15-3=12千⽶/⼩时,⾏驶时间为144÷12=12⼩时。
【第三篇】A、B两港相距360千⽶,甲轮船往返两港需35⼩时,逆流航⾏⽐顺流航⾏多花了5⼩时。
⼄轮船在静⽔中的速度是每⼩时12千⽶,⼄轮船往返两港要多少⼩时? 解答:⾸先要求出⽔流速度,由题意可知,甲轮船逆流航⾏需要(35+5)÷2=20⼩时,顺流航⾏需要 20-5=15⼩时,由此可以求出⽔流速度为每⼩时[360÷15-360÷20]÷2=3千⽶,从⽽进⼀步可以求出⼄船的顺流速度是每⼩时 12+3=15千⽶,逆⽔速度为每⼩时12-3=9千⽶,最后求出⼄轮船往返两港需要的时间是360÷15+360÷9=64⼩时。
知识框架(一)行程问题基本公式:路程=速度⨯时间;总路程=平均速度⨯总时间速度=路程÷时间;时间=路程÷速度(二)相遇问题(相向而行):速度和⨯相遇时间=相遇距离(三)追及问题(同向而行):速度差⨯追及时间=追及距离(四)列车进入隧道是指从车头进入隧道开始算起到车尾离开隧道为止;因此,这个过程中列车所走的路程等于隧道的长度加上车的长度。
(五)两车相遇,错车而过是指从两列列车的车头相遇开始算起到两列列车的车尾分开为止;这个过程实际上是以两列列车相遇点为起点的相背运动问题,这两列列车在这段时间所走的路程之和等于这两个列车的车长之和。
(六)错车时间=两列列车车长之和÷两车的速度之和。
典型例题一、相遇问题1、一列客车通过250米长的隧道用25秒,通过210米长的隧道用23秒。
已知在客车的前方有一列行驶方向与它相同的货车,车身长为320米,速度每秒17米。
求列车与货车从相遇到离开所用的时间。
2、有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米。
现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇后6分钟后,甲又与丙相遇。
那么,东、西两村之间的距离是多少米?二、立即返回问题3、甲、乙两地之间的距离是420千米,两辆汽车同时从甲地开往乙地,第一辆汽车每小时行42千米,第二辆汽车每小时行38千米,第一辆汽车到达乙地立即返回,两辆车从开出到相遇共用了多少小时?4、某解放车队伍长450米,以每秒1.5米的速度行进。
一战士以每秒3米的速度从排尾到排头并立即返回排尾,那么这需要多少时间?三、提前出发问题5、学生甲和乙同事从家里出发,相向而行,学生甲每分钟走52米,学生乙每分钟走70米,两人在途中A处相遇,若甲提前4分钟出发,且速度不变,学生乙改为每分钟走90米,两人仍在A处相遇,问学生甲乙两家相距多远?四、二次相遇问题6、东、西两城相距75千米。
小明从东向西走,每小时走6.5千米;小强从西向东走,每小时走6千米;小辉骑自行车从东向西,每小时骑行15千米。
行程问题专题分析:行程问题是专门讲物体运动的速度、时间和路程的应用题。
行程问题的主要数量关系是:路程=速度×时间、路程和÷速度和=相遇时间、路程差÷速度差=相遇时间。
练习一:1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇。
东西两地相距多少千米?思路:两车在距中点32千米处相遇,意思是:两车行的路程相差64千米。
有了路程差和速度差就可以求出相遇时间了为8小时。
其他计算就容易了。
2、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?3、一辆汽车和一辆摩托车同时从甲乙两地相对开出,汽车每小时行40千克,摩托车每小时行65千米。
当摩托车行到两地中点处,与汽车相距75千米。
甲乙两地相距多少千米?4、小轿车每小时行60千米,比客车每小时多行5千米,两车同时从甲乙两地相向而行,在距中点20千米处相遇,求甲乙两地之间的路程。
练习二:1、快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,。
慢车每小时行多少千米?思路:先计算快车3小时行120千米,再减去25千米就是路程的一半,这时快车与慢车还相距7千米,则慢车行了63千米。
因此慢车的速度为21千米/小时。
2、兄弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米?3、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?4、学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。
如果这批树苗平均分给五(1)班的同学去植,平均每人植多少棵?练习三:1、甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
小学奥数四年级行程问题1、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。
小明上学走两条路所用的时间一样多。
已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?【解析】设路程为180,则上坡和下坡均是90。
设走平路的速度是2,则下坡速度是3。
走下坡用时间90/3=30,走平路一共用时间180/2=90,所以走上坡时间是90-30=60 走与上坡同样距离的平路时用时间90/2=45 因为速度与时间成反比,所以上坡速度是下坡速度的45/60=0.75倍。
2、3、两名游泳运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度是每秒游0.6米,他们同时分别从游泳池的两端出发,来回共游了5分钟。
如果不计转向的时间,那么在这段时间内两人共相遇多少次?有甲、乙第n次相遇时,甲、乙共游了30×(2n-1)米的路程;于是,有30×(2n-1)<5×60×(1+0.6)=480,(2n -1)<16,n可取1,2,3,4,5,6,7,8;有30×(2m-1)<5×60×(1-0.6)=120,(2m-1)<4,m可取1,2;于是,甲、乙共相遇8+2=10次。
4、兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。
哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。
问他们家离学校有多远?要求距离,速度已知,所以关键是求出相遇时间。
从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,那么,二人从家出走到相遇所用时间为180×2÷(90-60)=12(分钟)家离学校的距离为90×12-180=900(米)5、有一个人去徒步旅行,去时每走40分钟就休息5分钟,到达目的地时共花去3小时11分。
行程问题(一)我们把研究路程、速度、时间这三者之间关系的问题,称为行程问题。
行程问题主要包括相遇问题、相背问题的追及问题。
例1.甲、乙两人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?例2.南北两村相距90千米,甲、乙两人分别从两村同时出发相向而行,甲比乙每小时多行2千米,5小时后两人相遇。
两人的速度各是什么?例3.两地相距900千米,甲、乙两列火车同时从两地出发相向而行。
甲车每小时行驶60千米,乙车每小时行驶90千米,两车在途中相遇后继续前进。
从两车相遇算起,它们开到对方的出发点各需要多长时间?例4.甲每小时行8千米,乙每小时行6千米,两人于相隔32千米的两地同时相背而行,几小时后二人相隔144千米?例5.下午放学时,弟弟以每分40米的速度步行加家,5分后,哥哥以每分60米的速度也从学校步行回家。
哥哥出发后,经过几分可以追上弟弟?(假定从学校到家和路程足够远,哥哥追上弟弟时仍没有到家。
)例6.幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒跑6米,晶晶每秒跑4米。
问:冬冬第一次追上晶晶时两人各跑了多少米?第二次追上晶晶时两人各跑了多少圈?练习与思考1. 甲、乙两艘轮船分别从两港同时出发相向而行,甲船每小时行驶19千米,乙船每小时行驶13千米,经过8小时两艘轮船在途中相遇。
两港间的水路长多少千米?2. 甲、乙两车分别从相距240千米的A、B两地同时出发,相向而行,已知甲车到达B城需3小时,乙车到达A城需6小时,两车出发后多少时间相遇?3. 东、西两镇相距45千米,甲、乙两人分别从两镇同时出发相向而行,甲每小时行的路程是乙的2倍,5小时后两人相遇。
甲乙两人的速度各是多少?4. 两地相距6600千米,甲、乙两列火车同时从两地出发,相向而行。
甲车每小时行驶100千米,乙车每小时行驶120千米,两车在途中相遇后继续前进。
从相遇时算起,两车开到对方的出发点各需多少小时?5. 甲每小时行9千米,乙每小时比甲少行3千米,两人于相隔20千米的两地同时相背而行,几小时后两人相隔80千米?6. 甲每小时行12千米,乙每小时行8千米,甲自南庄向南行,同时乙自北庄向北行,经过5小时后,两人相隔103千米 。