福建省厦门市2020-2021学年高一上学期期末考试数学试题 含答案
- 格式:pdf
- 大小:34.25 KB
- 文档页数:1
福建省厦门市高一化学上学期期末考试题(含答案)一、单选题(本大题共15小题)1. 下列《科学》杂志评选的2021年十大科学突破中,属于化学研究范畴的是。
A .“洞察”号揭示火星内部结构 B .实现历史性核聚变C .合成抗新冠强效药莫奈拉韦()D .体外胚胎培养取得突破 2. 下列物质不属于分散系的是 A .水 B .碘酒C .空气D .有色玻璃3. 标准状况下,下列物质所占体积最大的是A .236g H OB .21.5mol HC .348g OD .233.0110⨯个2N 4. 管道疏通剂的下列成分中,不属于电解质的是。
A .碳酸钠B .次氯酸钠C .氢氧化钠D .铝粉 5. 下列铜及其化合物的性质实验中,涉及到的反应不属于氧化还原反应的是 A .铜丝在空气中加热 B .用氢气还原氧化铜C .将铁丝插入4CuSO 溶液中D .向4CuSO 溶液中滴加NaOH 溶液6. 积极参加项目学习,提升化学素养。
下列说法不正确的是 A .碳酸钠加入的量过多会使蒸出的馒头发黄 B .发面时可使用酵头作为膨松剂C .84消毒液不能与洁厕剂等酸性产品同时使用D .“汽车限行”从环境、经济、社会视角分析都利大于弊7. 第24届冬季奥林匹克运动会将在北京举行,其金牌如下图所示。
下列说法不正确的是。
A .金牌的主要成分属于无机物B .金牌挂带由桑蚕丝制成,桑蚕丝属于有机物C .金牌上有祥云花纹,自然界云、雾不属于胶体D .金牌上有冰、雪图案,冰和雪的主要成分相同8. 配制1100mL 0.50mol L NaOH -⋅溶液的操作如下图所示。
下列说法不正确的是A .操作1前需称取2.0g NaOHB .操作1固体溶解后立即进行操作2C .操作3和操作4分别为洗涤和定容D .操作5后将配制好的溶液倒入试剂瓶9. 离子反应在生产生活中有许多应用。
下列离子方程式正确的是。
A .和面时用小苏打和食醋能使馒头蓬松:-+322HCO +H =H O+CO ↑B .用氨水吸收少量二氧化硫尾气:+2-3224322NH H O+SO =2NH +SO +H O ⋅C .用石灰浆制漂白粉:22Cl 2OH H O Cl ClO ---+=++D .用氯化铁溶液做腐蚀剂印刷电路板:322Fe Cu Fe Cu ++++=+10. 铁及其化合物的“价—类”二维图如图。
福清市高中联合体2020—12021学年第一学期高一年期末考试数学试卷(完卷时间:120分钟;满分:150分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.3.考试结束,考生必须将试题卷和答题卡一并交回.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}1,0,1,2,3A =-,{}31B x x =-<,则A B =( )A. {}3B. {}1,0,1-C.1,0,1,2D. {}1,0,1,2,3-2. 命题“0x ∀≥,sin x x ≤”的否定是( ) A. 0x ∀≥,sin x x > B. 00x ∃<,00sin x x > C. 00x ∃≥,00sin x x >D. 00x ∃≥,00sin x x ≤3. 函数()f x x =是( ) A. 奇函数,且在R 上单调递减 B. 奇函数,且在R 上单调递增 C. 偶函数,且在R 上单调递减D. 偶函数,且在R 上单调递增4. 若角α的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,终边经过点(1,-,则sin 2α=( )A. B. 12-C.12D.25. 函数()38ln f x x x =-+的零点所在区间应是( )A. ()1,2B. ()2,3C. ()3,4D. ()4,56. 要得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin 24y x π⎛⎫=-⎪⎝⎭图象上所有点的横坐标( ) A. 向左平移12π个单位长度B. 向右平移12π个单位长度C. 向左平移24π个单位长度D. 向右平移24π个单位长度7. 已知51log 4a =,1514b ⎛⎫= ⎪⎝⎭,41log 5c =,则a ,b ,c 的大小关系为( )A. a b c >>B. b c a >>C. b a c >>D. c b a >>8. 月均温全称月平均气温,气象学术语,指一月所有日气温的平均气温.某城市一年中12个月的月均温y (单位:C )与月份x (单位:月)的关系可近似地用函数()sin 36y A x a π⎡⎤=-+⎢⎥⎣⎦(1,2,3,,12x =)来表示,已知6月份的月均温为29C ,12月份的月均温为17C ,则10月份的月均温为( ) A. 20CB. 20.5CC. 21CD. 21.5C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9. 下列函数中,最小值是2的有( )A. 1y xx=+B. y =C. 223y x x =++D. e e x x y -=+10. 命题“x R ∀∈,210x ax -+≥”为真命题的一个必要不充分条件可以是( ) A. 22a -≤≤B. 2a ≥-C. 2a ≤D. 22a -<<11. 关于函数()sin cos f x x x =+有下述四个结论,其中正确的是:( ) A. ()f x 的图象关于原点对称 B. ()f x 在区间,4ππ⎛⎫⎪⎝⎭单调递减 C. ()f x 在[],ππ-有2个零点D. ()f x 的最大值为212. 已知定义在R 上的函数()f x 满足()()4f x f x +=,若()1y f x =-的图象关于直线1x =对称,且对任意的[]12,0,2x x ∈,且12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦,则下列结论正确的是( ) A. ()f x 是偶函数B. ()f x 在()2018,2020上单调递增C. 4是函数()f x 的周期D. ()f x 在()2018,2020上单调递减第Ⅱ卷注意事项: 用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13. 已知函数()1,12,1x f x x x <⎧=⎨≥⎩则()()0f f =________.14. 已知22tan 31tan αα=--,且α为锐角,则α=________.15. 如图,Rt ABC 的三个顶点A ,B ,C 恰好分别落在函数()21xy x =>,y x =,12log y x =的图象上,且B ,C 两点关于x 轴对称,则点A 的横坐标为________.16. 已知定义在R 上的偶函数()f x ,当0x ≥时,函数()cos ,01,,1,x x f x x x π≤<⎧=⎨-≥⎩则满足()()12f x f x +<的x 的取值范围是________.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 求下列各式的值: (1)(0312932224-⎛⎫--⨯ ⎪⎝⎭;(2)55251log 3log log 25log 215++⨯. 18. 已知全集U =R ,集合{}20A x x a =+>,()(){}140B x x x =+-≤. (1)当2a =时,求()UA B ;(2)若B A ⊆,求实数a 的取值范围.19. 在①1k =-,②1k =这两个条件中任选一个,补充在下面问题中. 已知函数()kf x kx x=-,且_______, (1)求()f x 的定义域,并判断()f x 的奇偶性;(2)判断()f x 的单调性,并用定义给予证明.20. 已知,2παπ⎛⎫∈ ⎪⎝⎭,且2sin cos 222αα-= (1)求cos α的值; (2)若()4sin 5αβ-=,,2πβπ⎛⎫∈ ⎪⎝⎭,求cos β的值. 21. 某儿童活动中心,为儿童修建一个面积为100平方米的矩形游泳池,为保障儿童生命安全,在其四周都留有宽2米的路面,问所选场地的长和宽各为多少时,才能使占用场地的面积S 最小,并求出该最小值? 22. 已知函数()2sin 36f x x ππ⎛⎫=+⎪⎝⎭.(1)用“五点作图法”在给定的坐标系中,画出函数()f x 在[]0,6上的图象; (2)求()f x 图象的对称轴与单调递增区间; (3)当[]0,x m ∈时,()12f x ≤≤,求实数m 取值范围.福清市高中联合体2020—12021学年第一学期高一年期末考试数学试卷(解析版)(完卷时间:120分钟;满分:150分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.3.考试结束,考生必须将试题卷和答题卡一并交回.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}1,0,1,2,3A =-,{}31B x x =-<,则A B =( )A. {}3B. {}1,0,1-C.1,0,1,2D. {}1,0,1,2,3-【答案】A 【解析】 【分析】先求得集合B ,再根据交集定义直接得结果.【详解】因为{}()312B x x =-<=+∞,,又{}1,0,1,2,3A =-,所以{}3A B ⋂=, 故选:A.2. 命题“0x ∀≥,sin x x ≤”的否定是( ) A. 0x ∀≥,sin x x > B. 00x ∃<,00sin x x > C. 00x ∃≥,00sin x x > D. 00x ∃≥,00sin x x ≤【答案】C 【解析】 【分析】由全称命题的否定变换形式即可得出结果. 【详解】命题“0x ∀≥,sin x x ≤” 的否定是00x ∃≥,00sin x x >.故选:C3. 函数()f x x =是( ) A. 奇函数,且在R 上单调递减 B. 奇函数,且在R 上单调递增 C. 偶函数,且在R 上单调递减 D. 偶函数,且在R 上单调递增【答案】B 【解析】 【分析】利用函数的奇偶性定义判断奇偶性,根据函数的解析式判断单调性. 【详解】函数的定义域为R ,关于原点对称,又()(()f x x x f x -=-+=-+=-,所以()f x是奇函数,又,y x y ==R 上的增函数,所以()f x 是R 上的增函数, 故选:B4. 若角α的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,终边经过点(1,-,则sin 2α=( )A. B. 12-C.12D.【答案】D 【解析】 【分析】根据任意角的三角函数的定义,求出sin α和cos α,再由二倍角的正弦公式,即可求出结果.【详解】因为角α的顶点与直角坐标系的原点重合,始边与x轴的非负半轴重合,终边经过点(1,-,所以sin 2α==-,1cos 2α==-,因此1sin 22sin cos 22ααα⎛⎛⎫==⨯⨯-= ⎪ ⎝⎭⎝⎭.故选:D.5. 函数()38ln f x x x =-+的零点所在区间应是( )A. ()1,2B. ()2,3C. ()3,4D. ()4,5【答案】B 【解析】 【分析】利用函数的零点存在定理求解.【详解】由函数()38ln f x x x =-+, 因为()()2ln 220,3ln310f f =-<=+>, 所以函数的零点所在区间应是()2,3 故选:B6. 要得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin 24y x π⎛⎫=-⎪⎝⎭图象上所有点的横坐标( ) A. 向左平移12π个单位长度B. 向右平移12π个单位长度C. 向左平移24π个单位长度 D. 向右平移24π个单位长度【答案】D 【解析】 【分析】根据sin 2sin 23244y x x πππ⎡⎤⎛⎫⎛⎫=-=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,利用平移变换求解. 【详解】因为sin 2sin 23244y x x πππ⎡⎤⎛⎫⎛⎫=-=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 所以要得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象,只需由sin 24y x π⎛⎫=- ⎪⎝⎭图象上所有点横坐标向右平移24π个单位长度,故选:D 7. 已知51log 4a =,1514b ⎛⎫= ⎪⎝⎭,41log 5c =,则a ,b ,c 的大小关系为( )A. a b c >>B. b c a >>C. b a c >>D. c b a >>【答案】C 【解析】 【分析】利用指数函数和对数函数的单调性判断.【详解】因为55510log log 4log 514a >==->-=-,15110144b ⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭, 4441log log 5log 415c ==-<-=-,所以b a c >> 故选:C8. 月均温全称月平均气温,气象学术语,指一月所有日气温的平均气温.某城市一年中12个月的月均温y (单位:C )与月份x (单位:月)的关系可近似地用函数()sin 36y A x a π⎡⎤=-+⎢⎥⎣⎦(1,2,3,,12x =)来表示,已知6月份的月均温为29C ,12月份的月均温为17C ,则10月份的月均温为( ) A. 20C B. 20.5CC. 21CD. 21.5C【答案】A 【解析】 【分析】由题意得出关于A 、a 的方程组,可得出函数解析式,在函数解析式中令10x =可得结果.【详解】由题意可得sin 2923sin 172A a A a A a a A ππ⎧+=+=⎪⎪⎨⎪+=-=⎪⎩,解得623A a =⎧⎨=⎩,所以,函数解析式为()6sin 3236y x π⎡⎤=-+⎢⎥⎣⎦, 在函数解析式中,令10x =,可得716sin236232062y π⎛⎫=+=⨯-+= ⎪⎝⎭. 因此,10月份的月均温为20C . 故选:A.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9. 下列函数中,最小值是2的有( )A. 1y xx=+B. y =C. 223y x x =++D. e e x x y -=+【答案】BCD 【解析】 【分析】根据基本不等式逐一判断即可.【详解】对于A ,1y x x =+,当0x >时,12y x x =+≥=,当且仅当1x =时取等号;当0x <时,12y x x ⎛⎫=--+≤-=- ⎪-⎝⎭, 当且仅当1x =-时取等号,故A 不正确;对于B ,2y=≥=,当且仅当1x =时取等号. 对于C ,()2223122y x x x =++=++≥,当1x =-时,取最小值;对于D ,e e 2x x y -=+≥=,当且仅当0x =时取等号; 故选:BCD【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方10. 命题“x R ∀∈,210x ax -+≥”为真命题的一个必要不充分条件可以是( ) A. 22a -≤≤ B. 2a ≥- C. 2a ≤ D. 22a -<<【答案】BC 【解析】 【分析】根据题意,命题为真可得()240a ∆=--≤,求出a 的取值范围,再根据必要不充分条件即可求解. 【详解】由命题“x R ∀∈,210x ax -+≥”为真命题,可得()240a ∆=--≤,解得22a -≤≤, 对于A ,22a -≤≤是命题为真的充要条件; 对于B ,由2a ≥-不能推出22a -≤≤,反之成立, 所以2a ≥-是命题为真的一个必要不充分条件; 对于C ,2a ≤不能推出22a -≤≤,反之成立, 所以2a ≤也是命题为真的一个必要不充分条件; 对于D ,22a -<<能推出22a -≤≤,反之不成立, 22a -<<是命题为真的一个充分不必要条件.故选:BC11. 关于函数()sin cos f x x x =+有下述四个结论,其中正确的是:( ) A. ()f x 的图象关于原点对称 B. ()f x 在区间,4ππ⎛⎫⎪⎝⎭单调递减C. ()f x在[],ππ-有2个零点 D. ()f x 的最大值为2【答案】BC 【解析】 【分析】分sin 0x ≥,sin 0x <,将函数转化(),224sin cos ,2224x k x k f x x x x k x k πππππππππ⎛⎫+≤≤+ ⎪⎝⎭=+=⎛⎫++<<+ ⎪⎝⎭,再逐项求解判断.【详解】当sin 0x ≥,即22k x k πππ≤≤+时,()sin cos 4f x x x x π⎛⎫=+=+ ⎪⎝⎭,当sin 0x <,即222ππππ+<<+k x k 时,()sin cos 4f x x x x π⎛⎫=-+=+ ⎪⎝⎭,所以(),224sin cos ,2224x k x k f x x x x k x k πππππππππ⎛⎫+≤≤+ ⎪⎝⎭=+=⎛⎫++<<+ ⎪⎝⎭,A.因为函数定义域为R ,关于原点对称,又()()()()sin cos sin cos f x x x x x f x -=-+-=+=,所以()f x 是偶函数,其图象关于y 轴对称,故错误;B.当,4x ππ⎛⎫∈⎪⎝⎭时, 53,,42422x πππππ⎛⎫⎛⎫+∈⊆ ⎪ ⎪⎝⎭⎝⎭,因为sin y x =在3,22ππ⎡⎤⎢⎥⎣⎦上单调递减,所以()f x 在区间,4ππ⎛⎫⎪⎝⎭单调递减,故正确; C. 令()04f x x π⎛⎫=+= ⎪⎝⎭,则4x k ππ+=,因为[]0,x π∈,解得34x π=,又因为()f x 是偶函数,所以函数()f x 在[],ππ-有2个零点,故正确; D. ()f x,故错误; 故选:BC【点睛】关键点点睛:将函数变形为(),224,2224x k x k f x x k x k πππππππππ⎛⎫+≤≤+ ⎪⎝⎭=⎛⎫++<<+ ⎪⎝⎭是本题求解的关键.12. 已知定义在R 上的函数()f x 满足()()4f x f x +=,若()1y f x =-的图象关于直线1x =对称,且对任意的[]12,0,2x x ∈,且12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦,则下列结论正确的是( ) A. ()f x 是偶函数 B. ()f x 在()2018,2020上单调递增 C. 4是函数()f x 的周期 D. ()f x 在()2018,2020上单调递减【答案】ACD 【解析】 【分析】A. 由()1y f x =-的图象与()y f x =的图象关系判断;C.由()f x 满足()()4f x f x +=判断;BD.由对任意的[]12,0,2x x ∈,且12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦,得到()f x 在[]0,2上递增,再结合函数的周期性判断.【详解】因为()1y f x =-的图象关于直线1x =对称,所以()y f x =的图象关于直线0x =对称,所以()f x 是偶函数,故A 正确;()f x 满足()()4f x f x +=,所以4是函数()f x 的周期,故C 正确;因为对任意的[]12,0,2x x ∈,且12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦,所以()f x 在[]0,2上递增,又()()()()20182,20200f f f f == ,所以()f x 在()2018,2020上单调递减,故D 正确B 错误; 故选:ACD第Ⅱ卷注意事项:用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效. 三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13. 已知函数()1,12,1x f x x x <⎧=⎨≥⎩则()()0f f =________.【答案】2 【解析】 【分析】根据分段函数每段的定义域求解.【详解】因为函数()1,12,1x f x x x <⎧=⎨≥⎩所以()01f =, 所以()()()012ff f ==,故答案为:214. 已知22tan 1tan αα=-α为锐角,则α=________. 【答案】3π 【解析】 【分析】根据二倍角的正切公式,求出tan2α,再由α为锐角,即可求出α.【详解】因为22tan tan 21tan ααα==-α为锐角,所以02απ<<, 因此223πα=, 所以3πα=.故答案为:3π.15. 如图,Rt ABC 的三个顶点A ,B ,C 恰好分别落在函数()21xy x =>,y x =,12log y x =的图象上,且B ,C 两点关于x 轴对称,则点A 的横坐标为________.【答案】2 【解析】 【分析】设出点(),2tA t ,根据题意可知//AB x 轴,从而可得出点B ,进而可得点C ,代入对数函数的解析式即可求解.【详解】设出点(),2tA t ,ABC 是直角三角形,且B ,C 两点关于x 轴对称,∴//AB x 轴,A 和B 纵坐标相同,2t x ∴=4t x ∴=,()4,2t t B ∴,则()4,2t t C -,C 在12log y x =的图象上,则12log 42t t=-,整理可得22t t -=-,()1t >,解得2t =. 故答案为:216. 已知定义在R 上的偶函数()f x ,当0x ≥时,函数()cos ,01,,1,x x f x x x π≤<⎧=⎨-≥⎩则满足()()12f x f x +<的x 的取值范围是________. 【答案】113-<<x【解析】 【分析】根据cos y x =和y x =-的单调性,又 cos 1π=-,得到()f x 在 [0,)+∞上递减,再根据()f x 是偶函数,将不等式()()12f x f x +<转化为()()12fx f x +<求解.【详解】当0x ≥时,函数()cos ,01,,1,x x f x x x π≤<⎧=⎨-≥⎩当01x ≤<时, 0x ππ≤<,因为 cos y x =在 []0,π上递减,所以 ()f x 在 [0,1)上递减,当1≥x 时,y x =-递减,又 cos 1π=-,所以()f x 在 [0,)+∞上递减, 又因为()f x 是定义在R 上的偶函数, 则不等式()()12f x f x +<可化为:()()12f x f x +<,所以12x x +>, 解得113-<<x , 故答案为:113-<<x四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 求下列各式的值: (1)(03129324-⎛⎫--⨯ ⎪⎝⎭;(2)55251log 3log log 25log 215++⨯. 【答案】(1)3;(2)1. 【解析】 【分析】(1)根据指数的运算性质即可求解. (2)利用对数的运算性质即可求解. 【详解】(1)原式=33=+=(2)原式51lg 25lg 2log (3)15lg 2lg5=⨯+⨯ 152lg5lg 2log 5lg 2lg5-=+⨯ 12=-+ 1=.18. 已知全集U =R ,集合{}20A x x a =+>,()(){}140B x x x =+-≤. (1)当2a =时,求()UA B ;(2)若B A ⊆,求实数a 的取值范围. 【答案】(1){}|4x x ;(2)()2,+∞. 【解析】 【分析】(1)由2a =得到{}|1A x x =>-,再利用集合的补集和并集运算求解. (2)化简|2a A x x ⎧⎫=>-⎨⎬⎩⎭,{}|14B x x=-,再由B A ⊆求解.【详解】(1)当2a =时,集合{}|1A x x =>-,{}|1UxA x -=,因为()(){}|140B x x x =+-,所以{}|14B x x=-, 所以{}()|4U A B x x=.(2)因为{}|20A x x a =+>, 所以|2a A x x ⎧⎫=>-⎨⎬⎩⎭, 由(1)知,{}|14B x x=-,又因为B A ⊆,所以12a-<-, 解得2a >,所以实数a 的取值范围()2,+∞.19. 在①1k =-,②1k =这两个条件中任选一个,补充在下面问题中. 已知函数()kf x kx x=-,且_______,(1)求()f x 的定义域,并判断()f x 的奇偶性; (2)判断()f x 的单调性,并用定义给予证明. 【答案】(1)答案见解析;(2)答案见解析. 【解析】 【分析】选择①1k =-,可得1()f x x x =-,选择②1k =,可得1()f x x x=-. (1)使函数()f x 有意义,只需0x ≠;再求出()f x -与()f x 的关系即可求解. (2)根据证明函数单调性的步骤:取值、作差、变形、定号即可证明. 【详解】选择①1k =-,因为()kf x kx x =-,所以1()f x x x=-. (1)要使函数()f x 有意义,只需0x ≠, 所以函数()f x 的定义域为(,0)(0,)-∞+∞.因为11()()()f x x x f x x x-=--=--=--, 所以()f x 为奇函数.⑵ 函数()f x 在区间(,0)-∞和(0,)+∞均为增函数. 证明如下: 12,(0,)x x ∀∈+∞,且12x x <, 则12121211()()()f x f x x x x x -=--- 121212()x x x x x x -=-+12121()1)x x x x =-+( ()121212()1x x x x x x -+=,因为120x x <<,所以120x x -<,120x x >,1210x x +>, 所以12())0(f x f x -<,即12()()f x f x <, 故函数()f x 在区间(0,)+∞为增函数; 同理可证,函数()f x 在区间(,0)-∞为增函数;所以函数()f x 在区间(,0)-∞和(0,)+∞均为增函数. 选择②1k =,因为()kf x kx x =-,所以1()f x x x=-. (1)要使函数()f x 有意义,只需0x ≠, 所以函数()f x 的定义域为(,0)(0,)-∞+∞.因为11()()()()f x x x f x x x-=--=--=--, 所以()f x 奇函数.⑵ 函数()f x 在区间(,0)-∞和(0,)+∞均为减函数. 证明如下:12,(0,)x x ∀∈+∞,且12x x <, 则12121211()()()f x f x x x x x -=--- 212112()x x x x x x -=+- 21121()1x x x x ⎛⎫=-+ ⎪⎝⎭()211212()1x x x x x x -+=,因为120x x <<,所以210x x ->,120x x >,1210x x +>, 所以12())0(f x f x ->,即12()()f x f x >, 故函数()f x 在区间(0,)+∞为减函数; 同理可证,函数()f x 在区间(,0)-∞为减函数; 所以函数()f x 在区间(,0)-∞和(0,)+∞均为减函数.20. 已知,2παπ⎛⎫∈ ⎪⎝⎭,且sin cos 222αα-=. (1)求cos α的值; (2)若()4sin 5αβ-=,,2πβπ⎛⎫∈ ⎪⎝⎭,求cos β的值. 【答案】(1);(2. 【解析】 【分析】(1)将已知条件两边平方,求得sin α的值,进而求得cos α的值.(2)先求得()cos αβ-的值,然后利用cos cos[()]βααβ=--,结合两角差的余弦公式,求得cos β的值.【详解】(1)将sincos222αα-=两边同时平方,得11sin 2α-=,则1sin 2α=,又2παπ∈(,),所以cos 2α==-.(2)由(1)知,1sin ,cos 2αα==, 因为2παπ∈(,),2βπ∈π(,),所以22ππαβ-<-<.又因为4sin()5αβ-=,所以3cos()5αβ-,所以cos cos[)]βααβ=--( cos cos()sin sin()ααβααβ=-+-314525=+⨯, 【点睛】关键点点睛:对于三角函数给值求值的问题,关键在于运用已知角的和,差,二倍的运算表示待求的角,再选择相关公式得以求值.21. 某儿童活动中心,为儿童修建一个面积为100平方米的矩形游泳池,为保障儿童生命安全,在其四周都留有宽2米的路面,问所选场地的长和宽各为多少时,才能使占用场地的面积S 最小,并求出该最小值? 【答案】长为14米,宽为14米;196平方米. 【解析】 【分析】先设泳池的长为x 米,宽为y 米,列出式子,再利用基本不等式即可求解.【详解】解:设游泳池的长为x 米,宽为y 米,则场地长为(4)x +米,宽为(4)y +米,()1000,0xy x y =>>,(4)(4)S x y =++ 4()16xy x y =+++ 100164()x y =+++ 1164()x y =++1168xy ≥+11680=+196=,当且仅当“10x y ==”时取等号.∴当10x y ==时,S 取得最小值为196平方米,此时场地长为14米,宽为14米.22. 已知函数()2sin 36f x x ππ⎛⎫=+⎪⎝⎭.(1)用“五点作图法”在给定的坐标系中,画出函数()f x 在[]0,6上的图象; (2)求()f x 图象的对称轴与单调递增区间;(3)当[]0,x m ∈时,()12f x ≤≤,求实数m 的取值范围.【答案】(1)答案见解析;(2)对称轴方程为()31x k k Z =+∈,递增区间为[]()62,61k k k -+∈Z ;(3)[1,2].【解析】 【分析】(1)由[]0,6x ∈,计算出36x ππ+的取值范围,通过列表、描点、连线,可作出函数()f x 在[]0,6上的图象; (2)解方程()362x k k Z ππππ+=+∈可得出函数()f x 的对称轴方程,解不等式()222362k x k k Z ππππππ-≤+≤+∈可得函数()f x 的单调递增区间;(3)利用(1)中的图象结合()12f x ≤≤可得出实数m 的取值范围. 【详解】(1)因为()2sin 36f x x ππ⎛⎫=+ ⎪⎝⎭,当[]0,6x ∈时,13,3666x ππππ⎡⎤+∈⎢⎥⎣⎦, 列表如下:x0 1 524112636xππ+6π2ππ32π2π136πy 1 2 0 2-0 1作图如下:(2)因为()2sin36f x xππ⎛⎫=+⎪⎝⎭,令()362x k k Zππππ+=+∈,解得()31x k k Z=+∈,令()222362k x k k Zππππππ-≤+≤+∈,解得()6261k x k k Z-≤≤+∈,所以()f x的对称轴方程为()31x k k Z=+∈,递增区间为[]()62,61k k k-+∈Z;(3)[]0,x m∈,,36636mxπππππ⎡⎤∴+∈+⎢⎥⎣⎦,又()12f x≤≤,由(1)的图象可知,12m≤≤,m∴的取值范围是[]1,2.【点睛】方法点睛:函数()()sin0y A x Aωϕω=+>>0,的图象的两种作法是五点作图法和图象变换法:(1)五点法:用“五点法”作()()sin0y A x Aωϕω=+>>0,的简图,主要是通过变量代换,设z xωϕ=+,由z取0、2π、π、32π、2π来求出相应的x,通过列表,计算得出五点坐标,描点后得出图象;(2)三角函数图象进行平移变换时注意提取x的系数,进行周期变换时,需要将x的系数变为原来的ω倍,要特别注意相位变换、周期变换的顺序,顺序不同,其变换量也不同.。
2022-2023学年福建省厦门市湖滨中学高一(下)期中数学试卷一、单选题(本题共8个小题,每小题5分) 1.已知复数z =(2+i )2,则z 的虚部为( ) A .3B .3iC .4D .4i2.如图所示,观察四个几何体,其中判断正确的是( )A .①是棱台B .②是圆台C .③是棱锥D .④不是棱柱3.已知平面向量a →=(−2,6)与b →=(−4,λ)垂直,则λ的值是( ) A .43B .−43C .12D .﹣124.若O ,M ,N 在△ABC 所在平面内,满足|OA →|=|OB →|=|OC →|,MA →⋅MB →=MB →⋅MC →=MC →•MA →,且NA →+NB →+NC →=0→,则点O ,M ,N 依次为△ABC 的( ) A .重心,外心,垂心 B .重心,外心,内心C .外心,重心,垂心D .外心,垂心,重心5.在△ABC 中,若A =60°,b =1,△ABC 的面积S =√3,则a sinA=( ) A .2√393B .2√293C .26√33D .3√36.如图1,一个正三棱柱容器,底面边长为1,高为2,内装水若干,将容器放倒,把一个侧面作为底面,如图2,这是水面恰好是中截面,则图1中容器水面的高度是( )A .54B .53C .43D .327.圆O 为锐角△ABC 的外接圆,AC =2AB =2,点P 在圆O 上,则BP →⋅AO →的取值范围为( )A .[−12,4)B .[0,2)C .[−12,2)D .[0,4)8.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若3AC →⋅AB →−BA →⋅BC →=2CA →⋅CB →,2b =b cos C +c cos B ,则cos C 的值为( ) A .13B .−13C .18D .−18二、多选题(共4个小题,每小题5分,全部选对的得5分,选对但不全的得2分,有选错的得0分.) 9.如果平面向量a →=(2,0),b →=(1,1),那么下列结论中正确的是( ) A .|a →|=√2|b →|B .a →⋅b →=2√2C .(a →−b →)⊥b →D .a →∥b →10.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =√7,b =2,A =π3,则( ) A .c =3B .sinB =√217C .sinC =√217D .△ABC 外接圆的面积为7π311.在复平面内,下列说法正确的是( ) A .若复数z 满足z ⋅z =0,则z =0B .若复数z 1,z 2 满足|z 1+z 2|=|z 1﹣z 2|,则z 1z 2=0C .若复数z 1,z 2 满足|z |=|z 2|,则z 12=z 22D .若|z |=1,则|z +1+i |的最大值为√2+112.如图,在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,M ,N ,P 分别是AA 1,CC 1,C 1D 1的中点,Q 是线段D 1A 1上的动点,则( )A .存在点Q ,使B ,N ,P ,Q 四点共面 B .存在点Q ,使PQ ∥平面MBNC .经过C ,M ,B ,N 四点的球的表面积为9π2D .过Q ,M ,N 三点的平面截正方体ABCD ﹣A 1B 1C 1D 1所得截面图形不可能是五边形 三、填空题(共4小题,每小题5分,共20分.在答题卡上的相应题目的答题区域内作答) 13.已知复数(m 2﹣3m ﹣1)+(m 2﹣5m ﹣6)i =3(其中i 为虚数单位),则实数m = . 14.一艘船从河岸边出发向河对岸航行.已知船的速度v 1→的大小为|v 1→|=10km/ℎ,水流速度v 2→的大小为|v 2→|=3km/ℎ,那么当航程最短时船实际航行的速度大小为 km /h .15.祖暅(公元前5~6世纪),字景烁,是我国南北朝时期的数学家.他提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.该原理在西方直到十七世纪才由意大利数学家卡瓦列利发现,比祖暅晚一千一百多年.如图将某几何体(左侧图)与已被挖去了圆锥体的圆柱体(右侧图)放置于同一平面β上.以平行于平面β的平面于距平面β任意高d 处可横截得到S 圆及S 环两截面,若S 圆=S 环总成立,且图中圆柱体(右侧图)的底面半径为2,高为3,则该几何体(左侧图)的体积是 .16.在锐角△ABC 中,内角A ,B ,C 所对应的边分别是a ,b ,c ,且2c sin (B ﹣A )=2a sin A cos B +b sin2A ,则ca 的取值范围是 .四、解答题(本题共6个小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤) 17.(10分)已知向量a →=(3,2),b →=(x ,−1). (1)已知x =5,求向量a →与b →的夹角θ; (2)若(a →+2b →)⊥(2a →−b →),求实数x 的值.18.(12分)已知复数z =5(1−i)1+2i +(2+i)2,i 为虚数单位. (1)求|z |和z ;(2)若复数z 是关于x 的方程x 2+mx +n =0的一个根,求实数m ,n 的值.19.(12分)如图,某组合体是由正方体ABCD ﹣A 1B 1C 1D 1与正四棱锥P ﹣A 1B 1C 1D 1组成,且PA 1=√32AB . (1)若该组合体的表面积为36(5+√2),求其体积; (2)证明:A 1B ∥平面D 1AC .20.(12分)如图,在平行四边形ABCD 中,AB =1,AD =2,∠BAD =60°,BD ,AC 相交于点O ,M 为BO 中点.设向量AB →=a →,AD →=b →. (1)求|a →−b →|的值; (2)用a →,b →表示BD →和AM →; (3)证明:AB →⊥BD →.21.(12分)在△ABC 中,a =6,sin A =32sin B . (Ⅰ)求b ;(Ⅱ)在下列三个条件中选择一个作为已知,使△ABC 存在且唯一确定,并求△ABC 的面积. 条件①:∠B =2π3; 条件②:BC 边上中线的长为√17; 条件③:sin B =sin2A .注:如果选择多个符合要求的条件分别解答,按第一个解答计分.22.(12分)随着生活水平的不断提高,人们更加关注健康,重视锻炼.通过“小步道”,走出“大健康”,健康步道成为引领健康生活的一道亮丽风景线.如图,A ﹣B ﹣C ﹣A 为某区的一条健康步道,AB 、AC 为线段,BC ̂是以BC 为直径的半圆,AB =2√3km ,AC =4km ,∠BAC =π6. (1)求BĈ的长度; (2)为满足市民健康生活需要,提升城市品位,改善人居环境,现计划新建健康步道A ﹣D ﹣C (B ,D 在AC 两侧),其中AD ,CD 为线段.若∠ADC =π3,求新建的健康步道A ﹣D ﹣C 的路程最多可比原有健康步道A﹣B﹣C的路程增加多少长度?(精确到0.01km)2022-2023学年福建省厦门市湖滨中学高一(下)期中数学试卷参考答案与试题解析一、单选题(本题共8个小题,每小题5分) 1.已知复数z =(2+i )2,则z 的虚部为( ) A .3B .3iC .4D .4i解:∵z =(2+i )2=4+4i +i 2=3+4i ,∴z 的虚部为4. 故选:C .2.如图所示,观察四个几何体,其中判断正确的是( )A .①是棱台B .②是圆台C .③是棱锥D .④不是棱柱解:对于选项A ,不是由棱锥截来的,所以A 不是棱台,故A 错误; 对于选项B ,上、下两个面不平行,所以不是圆台; 对于选项C ,是棱锥.对于选项D ,前、后两个面平行,其他面是平行四边形,且每相邻两个四边形的公共边平行,所以D 是棱柱. 故选:C .3.已知平面向量a →=(−2,6)与b →=(−4,λ)垂直,则λ的值是( ) A .43B .−43C .12D .﹣12解:由题知a →⊥b →,即a →⋅b →=(−2,6)⋅(−4,λ)=8+6λ=0,解得λ=−43. 故选:B .4.若O ,M ,N 在△ABC 所在平面内,满足|OA →|=|OB →|=|OC →|,MA →⋅MB →=MB →⋅MC →=MC →•MA →,且NA →+NB →+NC →=0→,则点O ,M ,N 依次为△ABC 的( ) A .重心,外心,垂心 B .重心,外心,内心C .外心,重心,垂心D .外心,垂心,重心解:因为|OA →|=|OB →|=|OC →|,所以|OA |=|OB |=|OC |, 所以O 为△ABC 的外心;因为MA →⋅MB →=MB →⋅MC →=MC →•MA →, 所以MB →•(MA →−MC →)=0, 即MB →•CA →=0,所以MB ⊥AC , 同理可得:MA ⊥BC ,MC ⊥AB , 所以M 为△ABC 的垂心; 因为NA →+NB →+NC →=0→, 所以NA →+NB →=−NC →,设AB 的中点D ,则NA →+NB →=2ND →, 所以−NC →=2ND →,所以C ,N ,D 三点共线,即N 为△ABC 的中线CD 上的点,且NC =2ND , 所以N 为△ABC 的重心. 故选:D .5.在△ABC 中,若A =60°,b =1,△ABC 的面积S =√3,则a sinA=( ) A .2√393B .2√293C .26√33D .3√3解:因为A =60°,b =1,△ABC 的面积S =√3=12bc sin A =12×1×c ×√32,解得:c =4, 由余弦定理可得a =√b 2+c 2−2bccosA =√1+16−2×1×4×12=√13, 所以a sinA=√13√32=2√393. 故选:A .6.如图1,一个正三棱柱容器,底面边长为1,高为2,内装水若干,将容器放倒,把一个侧面作为底面,如图2,这是水面恰好是中截面,则图1中容器水面的高度是( )A .54B .53C .43D .32解:在图2中,水中部分是四棱柱, 四棱柱底面积为S =12×12×sin60°−12×(12)2×sin60°=3√316,高为2, ∴四棱柱的体积为V =2×3√316=3√38, 设图1中容器内水面高度为h ,则V =12×12×sin60°×ℎ=3√38,解得h =32. ∴图1中容器内水面的高度是32.故选:D .7.圆O 为锐角△ABC 的外接圆,AC =2AB =2,点P 在圆O 上,则BP →⋅AO →的取值范围为( ) A .[−12,4)B .[0,2)C .[−12,2)D .[0,4)解:由△ABC 为锐角三角形,则外接圆圆心在三角形内部,如下图示,又BP →⋅AO →=(BO →+OP →)⋅AO →=BO →⋅AO →+OP →⋅AO →,而AC =2AB =2,若外接圆半径为r , 因为AB sin∠ACB =2r ,∴1sin 12∠AOB=2r ,∴2r ⋅sin 12∠AOB =1, 两边平方得,4r 2⋅1−cos∠AOB2=1,∴2r 2(1﹣cos ∠AOB )=1,则2r 2(1﹣cos ∠AOB )=2r 2(1﹣cos2C )=1, 故cos2C =1−12r 2,且2r >2,即r >1, 由BO →⋅AO →=|BO →||AO →|cos∠AOB =r 2cos2C =r 2−12,对于OP →⋅AO →且P 在圆O 上,当AP 为直径时OP →⋅AO →=r 2,当A ,P 重合时OP →⋅AO →=−r 2, ∴OP →⋅AO →∈[−r 2,r 2],综上,BP →⋅AO →∈[−12,2r 2−12],锐角三角形中∠BAC <90°,则BC <√AC 2+AB 2=√5,即BC =2rsin ∠BAC <√5恒成立, ∴1<r <√52,则2r 2−12<2恒成立,综上所述,BP →⋅AO →的取值范围为[−12,2). 故选:C .8.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若3AC →⋅AB →−BA →⋅BC →=2CA →⋅CB →,2b =b cos C +c cos B ,则cos C 的值为( ) A .13B .−13C .18D .−18解:由若3AC →⋅AB →−BA →⋅BC →=2CA →⋅CB →可得,3bc cos A ﹣ac cos B =2ab cos C , 由余弦定理得3(b 2+c 2﹣a 2)﹣(a 2+c 2﹣b 2)=2(a 2+b 2﹣c 2),即b 2+2c 2=3a 2,①由正弦定理结合2b =b cos C +c cos B 可得,2sin B =sin B cos C +sin C cos B =sin (B +C )=sin A ,∴2b =a ② 由①②得,11b 2=2c 2,cosC =a 2+b 2−c 22ab =5b 2−c 24b2=1011c 2−c 2811c 2=−18, 故选:D .二、多选题(共4个小题,每小题5分,全部选对的得5分,选对但不全的得2分,有选错的得0分.) 9.如果平面向量a →=(2,0),b →=(1,1),那么下列结论中正确的是( ) A .|a →|=√2|b →|B .a →⋅b →=2√2C .(a →−b →)⊥b →D .a →∥b →解:∵a →=(2,0),b →=(1,1), ∴|a →|=2,|b →|=√2, ∴|a →|=√2|b →|,∴A 正确;a →⋅b →=2,∴B 错误;(a →−b →)⋅b →=(1,−1)⋅(1,1)=1−1=0,∴(a →−b →)⊥b →,∴C 正确; ∵2×1﹣0×1≠0,∴a →∥b →错误,∴D 错误. 故选:AC .10.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =√7,b =2,A =π3,则( ) A .c =3B .sinB =√217C .sinC =√217D .△ABC 外接圆的面积为7π3解:因为a =√7,b =2,A =π3, 由余弦定理得,a 2=7=4+c 2﹣2×2c ×12, 所以c =3,A 正确, 由正弦定理得asinA=b sinB=c sinC=2R ,所以sin B =2×√327=√217,sin C =3√2114,R =√213, 所以△ABC 外接圆的面积S =πR 2=7π3,B 正确,C 错误,D 正确. 故选:ABD .11.在复平面内,下列说法正确的是( ) A .若复数z 满足z ⋅z =0,则z =0B .若复数z 1,z 2 满足|z 1+z 2|=|z 1﹣z 2|,则z 1z 2=0C .若复数z 1,z 2 满足|z |=|z 2|,则z 12=z 22D .若|z |=1,则|z +1+i |的最大值为√2+1解:若复数z 满足z ⋅z =0,则|z |2=0,得z =0,故A 正确;若复数z 1,z 2 满足|z 1+z 2|=|z 1﹣z 2|,不一定有z 1z 2=0,如z 1=1,z 2=i ,故B 错误;若复数z 1,z 2 满足|z 1|=|z 2|,不一定有z 12=z 22,如z 1=1,z 2=i ,故C 错误;若|z |=1,如图:|z +1+i |的几何意义为圆上的动点到定点(﹣1,﹣1)的距离,则|z +1+i |的最大值为√2+1,故D 正确.故选:AD .12.如图,在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,M ,N ,P 分别是AA 1,CC 1,C 1D 1的中点,Q 是线段D 1A 1上的动点,则( )A .存在点Q ,使B ,N ,P ,Q 四点共面B .存在点Q ,使PQ ∥平面MBNC .经过C ,M ,B ,N 四点的球的表面积为9π2D .过Q ,M ,N 三点的平面截正方体ABCD ﹣A 1B 1C 1D 1所得截面图形不可能是五边形解:对于A :连接A 1B ,A 1P ,CD 1,如图所示:在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,CD 1∥A 1B ,∵P ,N 分别是C 1D 1,C 1C 中点,∴PN ∥CD 1,∴PN ∥A 1B ,故A 1,P ,N ,B 四点共面,当Q 与A 1重合时满足B ,N ,P ,Q 四点共面,故A 正确;对于B :取A 1D 1中点为Q ,连接PQ ,QM ,A 1C 1,如图所示:∵M ,N 分别AA 1,CC 1中点,则A 1M 与C 1N 平行且相等,∴四边形A 1C 1NM 是平行四边形,∴MN ∥A 1C 1,又P 是C 1D 1中点,∴PQ ∥A 1C 1,∴PQ ∥MN ,又MN ⊂平面BMN ,PQ ⊄平面BMN ,故PQ ∥平面BMN ,故B 正确;对C :由图形的对称性易知,经过C ,M ,B ,N 四点的球的球心为矩形AMNC 的中心,∴矩形AMNC 的对角线即为球的直径2R ,又易得矩形AMNC 的对角线长为√1+(2√2)2=3,∴R =32,∴经过C ,M ,B ,N 四点的球的表面积为4πR 2=9π,∴C 错误;对D ,由运动变化思想可得,当Q 与D 1重合时,过Q ,M ,N 三点的平面截正方体的截面为菱形BMD 1N ,当Q 在A 1D 1之间时,由对称性易得:过Q ,M ,N 三点的平面截正方体的截面为六边形,当当Q 与A 1重合时,过Q ,M ,N 三点的平面截正方体的截面为矩形ACC 1A 1,∴D 正确.故选:ABD .三、填空题(共4小题,每小题5分,共20分.在答题卡上的相应题目的答题区域内作答)13.已知复数(m 2﹣3m ﹣1)+(m 2﹣5m ﹣6)i =3(其中i 为虚数单位),则实数m = ﹣1 .解:复数(m 2﹣3m ﹣1)+(m 2﹣5m ﹣6)i =3,则{m 2−3m −1=3m 2−5m −6=0,解得m =﹣1. 故答案为:﹣1.14.一艘船从河岸边出发向河对岸航行.已知船的速度v 1→的大小为|v 1→|=10km/ℎ,水流速度v 2→的大小为|v 2→|=3km/ℎ,那么当航程最短时船实际航行的速度大小为 √91 km /h .解:要使航程最短,则船实际航行应正对着河对岸航行,所以船实际航行的速度大小为√|v 1→|2−|v 2→|2=√91km /h .故答案为:√91.15.祖暅(公元前5~6世纪),字景烁,是我国南北朝时期的数学家.他提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.该原理在西方直到十七世纪才由意大利数学家卡瓦列利发现,比祖暅晚一千一百多年.如图将某几何体(左侧图)与已被挖去了圆锥体的圆柱体(右侧图)放置于同一平面β上.以平行于平面β的平面于距平面β任意高d 处可横截得到S 圆及S 环两截面,若S 圆=S 环总成立,且图中圆柱体(右侧图)的底面半径为2,高为3,则该几何体(左侧图)的体积是 8π .解:因为总有S 圆=S 环,圆柱的高为3,底面圆的半径为2,所以该几何体的体积为V 柱−V 锥=22×3π−13π×22×3=8π,故答案为:8π.16.在锐角△ABC 中,内角A ,B ,C 所对应的边分别是a ,b ,c ,且2c sin (B ﹣A )=2a sin A cos B +b sin2A ,则c a 的取值范围是 (1,2) . 解:由正弦定理和正弦二倍角公式可得2sin C sin (B ﹣A )=2sin A sin A cos B +sin B sin2A =2sin A sin A cos B +2sin B sin A cos A =2sin A (sin A cos B +sin B cos A )=2sin A sin (A +B ),因为0<C <π2,π−C =A +B ,所以sin (π﹣C )=sin (A +B )=sin C ≠0,可得sin (B ﹣A )=sin A ,因为0<A <π2,0<B <π2,所以−π2<B −A <π2,所以B =2A ,C =π﹣3A ,由0<B =2A <π2,0<C =π−3A <π2可得π6<A <π4, 所以√22<cosA <√32,12<cos 2A <34, 由正弦定理得c a =sinC sinA =sin3A sinA =sin(2A+A)sinA =sin2AcosA+cos2AsinA sinA = 2cos 2A +cos2A =4cos 2A ﹣1∈(1,2).故答案为:(1,2).四、解答题(本题共6个小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知向量a →=(3,2),b →=(x ,−1).(1)已知x =5,求向量a →与b →的夹角θ;(2)若(a →+2b →)⊥(2a →−b →),求实数x 的值.解:(1)根据题意,向量a →=(3,2),b →=(x ,−1).因为x =5,所以b →=(5,−1),故cosθ=a →⋅b→|a →|⋅|b →|=9+4×25+1=√22, 因为θ∈[0,π],所以向量a →与b →的夹角θ=π4;(2)a →+2b →=(3,2)+(2x ,−2)=(3+2x ,0),2a →−b →=(6,4)−(x ,−1)=(6−x ,5), 由于(a →+2b →)⊥(2a →−b →),所以(a →+2b →)⋅(2a →−b →)=(3+2x ,0)⋅(6−x ,5)=(3+2x)(6−x)=0,解得:x =−32或6,从而x =−32或6.18.(12分)已知复数z =5(1−i)1+2i +(2+i)2,i 为虚数单位.(1)求|z |和z ;(2)若复数z 是关于x 的方程x 2+mx +n =0的一个根,求实数m ,n 的值.解:(1)∵z =5(1−i)1+2i +(2+i)2=5(1−i)(1−2i)(1+2i)(1−2i)+4+4i −1=5(−1−3i)5+3+4i =2+i , ∴|z|=√22+12=√5,z =2−i ;(2)∵复数z 是关于x 的方程x 2+mx +n =0的一个根,∴(2+i )2+m (2+i )+n =0,∴3+4i +2m +mi +n =0,∴(3+2m +n )+(m +4)i =0,∴{3+2m +n =0m +4=0,解得m =﹣4,n =5; 综上,|z|=√5,z =2−i ,m =−4,n =5.19.(12分)如图,某组合体是由正方体ABCD ﹣A 1B 1C 1D 1与正四棱锥P ﹣A 1B 1C 1D 1组成,且PA 1=√32AB .(1)若该组合体的表面积为36(5+√2),求其体积;(2)证明:A 1B ∥平面D 1AC .解:(1)连接A 1C 1、B 1D 1交于点O ,连接PO ,由正棱锥的性质可知PO ⊥平面A 1B 1C 1D 1,设AB =2a ,则PA 1=√3a ,A 1O =12A 1C 1=√2a ,∴PO =√PA 12−A 1O 2=a ,取B 1C 1的中点E ,连接PE ,则PE ⊥B 1C 1,且PE =√PB 12−B 1E 2=√2a , 所以几何体的表面积为5×4a 2+4×12×2a ×√2a =(20+4√2)a 2=36(5+√2),可得a =3, 所以该几何体的体积为(2a)3+13×4a 2×a =8×27+43×33=252;(2)证明:因为BC ∥A 1D 1,且BC =A 1D 1,所以四边形A 1BCD 1是平行四边形,则A 1B ∥D 1C ,A 1B ⊄平面D 1AC ,D 1C ⊂平面D 1AC ,所以A 1B ∥平面D 1AC .20.(12分)如图,在平行四边形ABCD 中,AB =1,AD =2,∠BAD =60°,BD ,AC 相交于点O ,M 为BO 中点.设向量AB →=a →,AD →=b →.(1)求|a →−b →|的值;(2)用a →,b →表示BD →和AM →;(3)证明:AB →⊥BD →.解:(1)在平行四边形ABCD 中,AB =1,AD =2,∠BAD =60°,BD ,AC 相交于点O ,M 为BO 中点.又向量AB →=a →,AD →=b →,则|a →−b →|=√(a →−b →)2=√a →2−2a →⋅b →+b →2=√|a →|2−2|a →|⋅|b →|cos∠BAD +|b →|2=√1−2×1×2×12+4=√3; (2)由题意可得BD →=AD →−AB →=b →−a →,又∵M 为BO 中点,∴BM →=14BD →=14(b →−a →),∴AM →=AB →+BM →=a →+14(b →−a →)=34a →+14b →; (3)证明:∵AB →⋅BD →=a →⋅(b →−a →)=a →⋅b →−a →2,又∵AB =1,AD =2,∠BAD =60°,∴a →⋅b →=1×2×12=1,∴AB →⋅BD →=a →⋅b →−a →2=1−1=0,所以AB →⊥BD →.21.(12分)在△ABC 中,a =6,sin A =32sin B .(Ⅰ)求b ;(Ⅱ)在下列三个条件中选择一个作为已知,使△ABC 存在且唯一确定,并求△ABC 的面积. 条件①:∠B =2π3;条件②:BC 边上中线的长为√17;条件③:sin B =sin2A .注:如果选择多个符合要求的条件分别解答,按第一个解答计分.解:(I )因为sinA =32sinB ,在△ABC 中,由正弦定理a sinA =b sinB , 可得:a =32b ,又因为a =6,所以b =4;(Ⅱ)选择条件①,因为cos B =a 2+c 2−b 22ac, 所以−12=36+c 2−1612c , 则c 2+6c +20=0,无解;选择条件②,设BC 边上的中线为AD ,则AD =√17,CD =3,在△ACD 中,由余弦定理得:cosC =AC 2+CD 2−AD 22⋅AC⋅CD =42+32−(√17)22×4×3=13, 因为cosC =13,C ∈(0,π),所以sinC =√1−cos 2C =2√23, 所以△ABC 的面积为S =12absinC =12×6×4×2√23=8√2;选择条件③,由题设,因为sin2A =2sin A cos A ,所以sin B =2sin A cos A ,因为sinA =32sinB ,所以sin B =3sin B cos A , 因为B ∈(0,π),所以sin B ≠0,所以cosA =13,由余弦定理a 2=b 2+c 2﹣2bc cos A 可得:36=16+c 2−2×4×c ×13,整理得3c 2﹣8c ﹣60=0,解得c =6或−103(舍),因为cosA =13,A ∈(0,π),所以sinA =√1−cos 2A =2√23,所以△ABC 的面积为S =12bcsinA =12×4×6×2√23=8√2.22.(12分)随着生活水平的不断提高,人们更加关注健康,重视锻炼.通过“小步道”,走出“大健康”,健康步道成为引领健康生活的一道亮丽风景线.如图,A ﹣B ﹣C ﹣A 为某区的一条健康步道,AB 、AC为线段,BC ̂是以BC 为直径的半圆,AB =2√3km ,AC =4km ,∠BAC =π6.(1)求BĈ的长度; (2)为满足市民健康生活需要,提升城市品位,改善人居环境,现计划新建健康步道A ﹣D ﹣C (B ,D 在AC 两侧),其中AD ,CD 为线段.若∠ADC =π3,求新建的健康步道A ﹣D ﹣C 的路程最多可比原有健康步道A ﹣B ﹣C 的路程增加多少长度?(精确到0.01km )解:(1)连接BC ,△ABC 中,由余弦定理得BC =√AC 2+AB 2−2AC ⋅ABcos∠BAC =√16+12−2×4×2√3×√32=2, BC ̂=12×2×π×1=π,即π(km ); (2)设AD =a ,CD =b ,△ACD 中,由余弦定理得16=a 2+b 2﹣ab ,所以(a +b )2=16+3ab ≤16+3×(a+b2)2,解得a +b ≤8,当且仅当a =b =4时取得等号,新建健康步道A ﹣D ﹣C 的最长路程8km ,8−π−2√3≈1.39(km ),故新建健康步道A ﹣D ﹣C 的路程最多可比原来有健康步道A ﹣B ﹣C 的路程增加1.39(km ).。
福建省漳州市2020-2021学年学年高一数学上学期期末考试试题(含解析)本试卷共5页,22题.全卷满分150分.考试用时120分钟.注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束,考生必须将试题卷和答题卡一并交回.一.单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{|4}A x x =>,{|2}B x x ,则A B =( )A. (2,)+∞B. (4,)+∞C. (2,4)D. (,4)-∞【答案】B 【解析】 【分析】由交集的定义求解即可. 【详解】{|{|2}4}{|4}x A B x x x x x =>>=>故选:B【点睛】本题主要考查了集合间的交集运算,属于基础题. 2.sin(600)-︒的值是( )A.12B. 12-C.2D. 【答案】C 【解析】 【分析】原式中的角度变形后,利用诱导公式及特殊角的三角函数值计算即可得到结果.【详解】解:()()()sin 600sin 720120sin120sin 18060sin60-︒=-︒+︒=︒=︒-︒=︒= 故选C .【点睛】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键. 3.下列各函数的值域与函数y x =的值域相同的是( ) A. 2yxB. 2xy =C. sin y x =D.2log y x =【答案】D 【解析】 【分析】分别求出下列函数的值域,即可判断. 【详解】函数y x =的值域为R20y x =≥,20x y =>则A ,B 错误;函数sin y x =的值域为[]1,1-,则C 错误; 函数2log y x =的值域为R ,则D 正确; 故选:D【点睛】本题主要考查了求具体函数的值域,属于基础题.4.已知函数42,0,()log ,0,x x f x x x ⎧=⎨>⎩则((1))f f -=( )A. 2-B. 12-C.12D. 2【答案】B 【解析】 【分析】分别计算(1)f -,12f ⎛⎫ ⎪⎝⎭即可得出答案.【详解】121(1)2f --==,241211log log 12222f -⎛⎫===- ⎪⎝⎭所以1((1))2f f -=- 故选:B【点睛】本题主要考查了已知自变量求分段函数的函数值,属于基础题. 5.函数log ||()(1)||a x x f x a x =>图象的大致形状是( )A. B.C. D.【答案】A 【解析】 【分析】判断函数函数()f x 为奇函数,排除BD 选项,取特殊值排除C ,即可得出答案. 【详解】log ||log ||()()||||a a x x x x f x f x x x ---==-=--所以函数()f x 为奇函数,故排除BD.log ||()10||a a a f a a ==>,排除C故选:A【点睛】本题主要考查了函数图像的识别,属于基础题.6.已知0.22log 0.2,2,sin 2a b c ===,则( )A. a b c <<B. a c b <<C. c a b <<D.b c a <<【答案】B【解析】 【分析】分别求出a ,b ,c 的大概范围,比较即可.【详解】因为22log 0.2log 10<=,0sin 21<<,0.20221>= 所以a c b <<. 故选:B【点睛】本题主要考查了指数,对数,三角函数的大小关系,找到他们大概的范围再比较是解决本题的关键,属于简单题.7.已知以原点O 为圆心的单位圆上有一质点P ,它从初始位置01(,22P 开始,按逆时针方向以角速度1/rad s 做圆周运动.则点P 的纵坐标y 关于时间t 的函数关系为 A. sin(),03y t t π=+≥ B. sin(),06y t t π=+≥ C. cos(),03y t t π=+≥D. cos(),06y t t π=+≥【答案】A 【解析】当时间为t 时,点P 所在角的终边对应的角等于3t π+, 所以点P 的纵坐标y 关于时间t 的函数关系为sin(),03y t t π=+≥.8.已知函数()f x 为定义在(0,)+∞的增函数,且满足()()()1f x f y f xy +=+.若关于x 的不等式(1sin )(1)(cos )(1sin )f x f f a x f x --<+-+恒成立,则实数a 的取值范围为( ) A. 1a >- B. 14a >-C. 1a >D. 2a >【答案】D 【解析】 【分析】将题设不等式转化为2(cos )(cos )f x f a x <+,根据函数()f x 的单调性解不等式得出2cos cos x a x <+,通过换元法,构造函数2()g x t t =-,[]1,1t ∈-求出最大值,即可得到实数a 的取值范围.【详解】(1sin )(1)(cos )(1sin )f x f f a x f x --<+-+(1sin )(1sin )(cos )(1)f x f x f a x f ∴-++<++因为()()()2(1sin )(1sin )1sin 1sin 1(cos)1f x f x fx x f x -++=-++=+,(cos )(1)(cos )1f a x f f a x ++=++所以2(cos )(cos )f x f a x <+在(0,)x ∈+∞恒成立故2cos cos x a x <+在(0,)x ∈+∞恒成立,即2cos cos x x a -<在(0,)x ∈+∞恒成立 令[]cos ,1,1x t t =∈-,则22()cos cos g x x x t t =-=-所以函数2()g x t t =-在11,2⎡⎤-⎢⎥⎣⎦上单调递减,在1,12⎛⎤ ⎥⎝⎦上单调递增,(1)2(1)0g g -=>= 所以2a > 故选:D【点睛】利用函数的单调性解抽象不等式以及不等式的恒成立问题,属于中档题.二.多项选择题:本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分.9.设11,,1,32α⎧⎫∈-⎨⎬⎩⎭,则使函数y x α=的定义域是R ,且为奇函数的α值可以是( )A. 1-B.12C. 1D. 3【答案】CD 【解析】 【分析】求出对应α值函数y x α=的定义域,利用奇偶性的定义判断即可.【详解】当α的值为11,2-时,函数y x α=的定义域分别为()(),00,-∞+∞,[)0,+∞当1α=时,函数y x =的定义域为R ,令()f x x =,()()f x x f x -=-=-,则函数y x =为R 上的奇函数当3α=时,函数3y x =的定义域为R ,令3()f x x =,3()()f x x f x -=-=-,则函数3y x=为R 上的奇函数故选:CD【点睛】本题主要考查了判断函数的奇偶性,属于基础题. 10.要得到sin 25y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数sin y x =的图象上所有的点( ) A. 向右平行移动5π个单位长度,再把所得各点的横坐标缩短到原来的12倍B. 向右平行移动10π个单位长度,再把所得各点的横坐标缩短到原来的12倍C. 横坐标缩短到原来的12倍,再把所得各点向右平行移动5π个单位长度D. 横坐标缩短到原来的12倍,再把所得各点向右平行移动10π个单位长度【答案】AD 【解析】 【分析】由正弦函数的伸缩变换以及平移变换一一判断选项即可. 【详解】将函数sin y x =的图象上所有的点向右平行移动5π个单位长度,得到函数n 5si y x π⎛⎫=- ⎪⎝⎭的图象,再把所得各点的横坐标缩短到原来的12倍,得到sin 25y x π⎛⎫=- ⎪⎝⎭的图象,故A 正确;将函数sin y x =的图象上所有的点向右平行移动10π个单位长度,得到函数sin 10y x π⎛⎫=- ⎪⎝⎭的图象,再把所得各点的横坐标缩短到原来的12倍,得到sin 210y x π⎛⎫=- ⎪⎝⎭的图象,故B 错误;将函数sin y x =的图象上所有的点横坐标缩短到原来的12倍,得到sin 2y x =的图象,再把所得各点向右平行移动5π个单位长度,得到25sin 2y x π⎛⎫=-⎪⎝⎭的图象,故C 错误; 将函数sin y x =的图象上所有的点横坐标缩短到原来的12倍,得到sin 2y x =的图象,再把所得各点向右平行移动10π个单位长度,得到sin 25y x π⎛⎫=- ⎪⎝⎭的图象,故D 正确;故选:AD【点睛】本题主要考查了正弦函数的伸缩变换以及平移变换,属于基础题.11.对于函数()sin(cos )f x x =,下列结论正确的是( ) A. ()f x 为偶函数B. ()f x 的一个周期为2πC. ()f x 的值域为[sin1,sin1]-D. ()f x 在[]0,π单调递增【答案】ABC 【解析】 【分析】利用奇偶性的定义以及周期的定义判断A ,B 选项;利用换元法以及正弦函数的单调性判断C 选项;利用复合函数的单调性判断方法判断D 选项. 【详解】函数()f x 的定义域为R ,关于原点对称()()()()sin cos sin cos ()f x x x f x -=-==,则函数()f x 偶函数,故A 正确;()()()sin co 22s sin cos ()f x x x f x ππ+=+==⎡⎤⎣⎦,则函数()f x 的一个周期为2π,故B正确;令[]cos ,1,1t x t =∈-,则()sin f x t =,由于函数sin y t=[]1,1-上单调递增,则()sin 1()sin1sin1()sin1f x f x -≤≤⇒-≤≤,故C 正确;当[]0,x π∈时,函数cos t x =为减函数,由于[]cos 0,1t x =∈,则函数sin y t =在0,1上为增函数,所以函数()f x 在[]0,π单调递减,故D 错误; 故选:ABC【点睛】本题主要考查了判断函数的奇偶性,周期性,求函数值域,复合函数的单调性,属于中档题.12.已知()f x 为R 上的奇函数,且当0x >时,()lg f x x =.记()sin ()cos g x x f x x =+⋅,下列结论正确的是( ) A. ()g x 为奇函数B. 若()g x 的一个零点为0x ,且00x <,则()00lg tan 0x x --=C. ()g x 在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为3个 D. 若()g x 大于1的零点从小到大依次为12,,x x ,则1223x x ππ<+<【答案】ABD 【解析】 【分析】根据奇偶性的定义判断A 选项;将()0g x =等价变形为tan ()x f x =-,结合()f x 的奇偶性判断B 选项,再将零点问题转化为两个函数的交点问题,结合函数()g x 的奇偶性判断C 选项,结合图象,得出12,x x 的范围,由不等式的性质得出12x x +的范围. 【详解】由题意可知()g x 的定义域为R ,关于原点对称因为()()()sin ()cos sin ()cos ()g x x f x x x f x x g x -=-+-⋅-=--⋅=-,所以函数()g x 为奇函数,故A 正确; 假设cos 0x =,即,2x k k Z ππ=+∈时,sin ()co cos s sin 02x k x f x k πππ⎛⎫++⋅==≠ ⎪⎝⎭所以当,2x k k Z ππ=+∈时,()0g x ≠当,2x k k Z ππ≠+∈时,sin ()cos 0tan ()x f x x x f x +⋅=⇔=-当00x <,00x ->,则()000()()lg f x f x x =--=--由于()g x 的一个零点为0x , 则()()00000tan ()lg t lg an 0x x f x x x =-=⇒--=-,故B 正确;当0x >时,令12tan ,lg y x y x ==-,则()g x 大于0的零点为12tan ,lg y x y x ==-的交点,由图可知,函数()g x 在区间()0,π的零点有2个,由于函数()g x 为奇函数,则函数()g x 在区间,02π⎛⎫-⎪⎝⎭的零点有1个,并且(0)sin 0(0)cos00g f =+⋅= 所以函数在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为4个,故C 错误;由图可知,()g x 大于1的零点123,222x x ππππ<<<< 所以1223x x ππ<+< 故选:ABD【点睛】本题主要考查了判断函数的奇偶性以及判断函数的零点个数,属于较难题. 三、填空题:本大题共4题,每小题5分,共20分.13.函数()1xf x a =+(0a >且1a ≠)的图象恒过点__________【答案】()0,2 【解析】分析:根据指数函数xy a =过()0,1可得结果.详解:由指数函数的性质可得xy a =过()0,1,所以1xy a =+过()0,2,故答案为()0,2.点睛:本题主要考查指数函数的简单性质,属于简单题. 14.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【答案】6π 【解析】 【分析】由扇形面积公式求出扇形半径,根据扇形弧长公式即可求解.【详解】设扇形的半径为r 由扇形的面积公式得:216212r ππ=⨯,解得2r该扇形的弧长为2126ππ⨯=故答案为:6π 【点睛】本题主要考查了扇形面积公式以及弧长公式,属于基础题. 15.函数()2sin 23f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的值域为______;【答案】[2] 【解析】 【分析】由x 的范围,确定23x π-的范围,利用换元法以及正弦函数的单调性,即可得出答案.【详解】0,2x π⎡⎤∈⎢⎥⎣⎦,22,333x πππ⎡⎤∴-∈-⎢⎥⎣⎦令22,333t x πππ⎡⎤=-∈-⎢⎥⎣⎦,函数()2sin g t t =在,32ππ⎡⎤-⎢⎥⎣⎦上单调递增,在2,23ππ⎡⎤⎢⎥⎣⎦上单调递减2si ()(n 33)g ππ--==2si 2()2n 2g ππ==, 222sin (3)3g ππ==所以函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的值域为[2]故答案为:[2]【点睛】本题主要考查了正弦型函数的值域,属于中档题. 16.已知函数1()f x x=,()2sin g x x =,则函数()f x 图象的对称中心为_____,函数()y f x =的图象与函数()y g x =的图象所有交点的横坐标与纵坐标之和为____. 【答案】 (1). (0,0) (2). 0 【解析】 【分析】判断函数()f x ,()g x 为奇函数,即可得出函数()f x ,()g x 图象的对称中心都为原点; 根据对称性即可得出所有交点的横坐标与纵坐标之和. 【详解】1()()f x f x x-=-=-,则函数()f x 为奇函数,即函数()f x 图象的对称中心为(0,0) ()()2sin 2sin ()g x x x g x -=-=-=-,则函数()g x 为奇函数,即函数()g x 的对称中心为(0,0)所以函数()y f x =的图象与函数()y g x =的图象所有交点都关于原点对称 即所有交点的横坐标之和为0,纵坐标之和也为0则函数()y f x =的图象与函数()y g x =的图象所有交点的横坐标与纵坐标之和为0 故答案为:(0,0);0【点睛】本题主要考查了函数奇偶性的应用以及对称性的应用,属于中档题.四、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.已知α为锐角,且3cos 5α=. (1)求tan 4πα⎛⎫+ ⎪⎝⎭的值;(2)求cos sin(2)2παπα⎛⎫-+-⎪⎝⎭的值. 【答案】(1)-7(2)4425【解析】 【分析】(1)利用平方关系以及商数关系得出tan α,再利用两角和的正切公式求解即可; (2)利用诱导公式以及二倍角的正弦公式求解即可. 【详解】解:(1)因为α为锐角,且3cos 5α=. 所以24sin 1cos 5αα, 所以sin 4tan cos 3ααα==, 所以41tan tan34tan 7441tan tan 1143παπαπα++⎛⎫+===- ⎪⎝⎭--⨯. (2)因为cos sin 2παα⎛⎫-=⎪⎝⎭, sin(2)sin 2παα-=,所以cos sin(2)sin sin 22παπααα⎛⎫-+-=+ ⎪⎝⎭sin 2sin cos ααα=+4432555=+⨯⨯ 4425= 【点睛】本题主要考查了两角和的正切公式,诱导公式,二倍角的正弦公式,属于中档题. 18.已知集合{}|2216xA x =<<,{|sin 0,(0,2)}B x x x π=>∈. (1)求AB ;(2)集合{|1}C x x a =<<()a ∈R ,若AC C =,求a 的取值范围.【答案】(1){|04}A B x x ⋃=<<(2)4a 【解析】 【分析】(1)利用指数函数以及正弦函数的性质化简集合,A B ,再求并集即可;(2)由题设条件得出C A ⊆,分别讨论集合C =∅和C ≠∅的情况,即可得出答案.【详解】解:(1)依题意{|14}A x x =<<,{|0}B x x π=<<,所以{|04}A B x x ⋃=<<. (2)因为AC C =,所以C A ⊆.①当C =∅时,1a ,满足题意;②当C ≠∅时,1a >,因为C A ⊆,得4a ≤,所以14a <; 综上,4a .【点睛】本题主要考查了集合的并集运算以及根据集合间的包含关系求参数范围,属于中档题.19.已知函数()2sin (sin cos )f x x x x =⋅+. (1)求()f x 的最小正周期; (2)求()f x 的单调区间.【答案】(1)最小正周期为π.(2)单调递增区间为3,()88k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z ,()f x 的单调递减区间为37,()88k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z .【解析】 【分析】利用倍角公式以及辅助角公式化简函数()f x ,根据周期公式得出第一问;根据正弦函数的单调增区间和减区间求()f x 的单调区间,即可得出第二问. 【详解】解:因为2()2sin 2sin cos f x x x x =+⋅22sin sin 2x x =+1cos2sin2x x =-+ sin2cos21x x =-+214x π⎛⎫=-+ ⎪⎝⎭(1)所以函数()f x 的最小正周期为22T ππ==.(2)由222,242k x k k πππππ-+-+∈Z ,得3222,44k x k k ππππ-++∈Z , 即3,88k xk k ππππ-++∈Z , 所以()f x 的单调递增区间为3,()88k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z ,同理可得,()f x 的单调递减区间为37,()88k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z .【点睛】本题主要考查了求正弦型函数的最小正周期以及单调区间,属于中档题. 20.已知2()1x af x x bx +=++是定义在[1,1]-上的奇函数. (1)求a 与b 的值;(2)判断()f x 的单调性,并用单调性定义加以证明; (3)若[0,2)απ∈时,试比较(sin )f α与(cos )f α的大小.【答案】(1)0a =. 0b =.(2)()f x 在[1,1]-单调递增.见解析 (3)见解析 【解析】 【分析】(1)根据奇函数的性质得出(0)0f =,(1)(1)f f -=-,求解方程,即可得出a 与b 的值; (2)利用函数单调性的定义证明即可;(3)分别讨论α的取值使得sin cos αα=,sin cos αα<,sin cos αα>,结合函数()f x 的单调性,即可得出(sin )f α与(cos )f α的大小.【详解】解:(1)因为()f x 是定义在[1,1]-上的奇函数,所以(0)0f =,得0a =.又由(1)(1)f f -=-,得到1122b b -=--+,解得0b =. (2)由(1)可知2()1xf x x =+,()f x 在[1,1]-上为增函数.证明如下:任取12,[1,1]x x ∈-且设12x x <, 所以()()1212221211x x f x f x x x -=-++()()22121212221211x x x x x x x x +--=++ ()()()()122112221211x x x x x x x x -+-=++()()()()21122212111x x x x xx --=++由于12x x <且12,[1,1]x x ∈-,所以210x x ->,且2110x x -<,又2110x +>,2210x +>,所以()()()()211222121011x x x x xx --<++,所以()()12f x f x <,从而()f x 在[1,1]-单调递增. (3)当4πα=或54πα=时,sin cos αα=,所以(sin )(cos )f f αα=;当04πα<或524παπ<<时,sin cos αα<, 又因为sin [1,1]α∈-,cos [1,1]α∈-,且()f x 在[1,1]-上为增函数,所以(sin )(cos )f f αα<当544ππα<<时,sin cos αα>,同理可得(sin )(cos )f f αα>; 综上,当4πα=或54πα=时,(sin )(cos )f f αα=;当50,,244ππαπ⎡⎫⎛⎫∈⋃⎪ ⎪⎢⎣⎭⎝⎭时,(sin )(cos )f f αα<;当5,44ππα⎛⎫∈ ⎪⎝⎭时,(sin )(cos )f f αα>.【点睛】本题主要考查由函数的奇偶性求参数,判断函数的单调性以及利用单调性比较函数值大小,属于中档题.21.海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表: .(1)设港口在x 时刻的水深为y 米,现给出两个函数模型:sin()(0,0,)y A x h A ωϕωπϕπ=++>>-<<和2(0)y ax bx c a =++≠.请你从两个模型中选择更为合适的函数模型来建立这个港口的水深与时间的函数关系式(直接选择模型,无需说明理由);并求出7x =时,港口的水深.(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),问该船何时能进入港口,何时应离开港口?一天内货船可以在港口呆多长时间?【答案】(1)选择函数模型Asin()y x h ωϕ=++更适合. 水深为3米 (2)货船可以在1时进入港口,在5时出港;或者在13时进港,17时出港.一天内货船可以在港口呆的时间为8小时. 【解析】 【分析】(1)观察表格中水深的变化具有周期性,则选择函数模型Asin()y x h ωϕ=++更适合,由表格数据得出,,,A h ωϕ的值,将7x =代入解析式求解即可; (2)由题意 5.5y 时,船可以进港,解不等式2.5sin4.255.56x π+,得出x 的范围,由x的范围即可确定进港,出港,一天内在港口呆的时间. 【详解】解:(1)选择函数模型Asin()y x h ωϕ=++更适合因为港口在0:00时刻的水深为4.25米,结合数据和图象可知 4.25h =6.75 1.752.52A -==因为12T =,所以22126T πππω===, 所以 2.5sin 4.256y x πϕ⎛⎫=++⎪⎝⎭, 因为0x =时, 4.25y =,代入上式得sin 0ϕ=,因为πϕπ-<<,所以0ϕ=, 所以 2.5sin4.256y x π=+.当7x =时,712.5sin4.25 2.5 4.25362y π⎛⎫=+=⨯-+= ⎪⎝⎭, 所以在7x =时,港口的水深为3米(2)因为货船需要的安全水深是4 1.5 5.5+=米, 所以 5.5y 时,船可以进港, 令2.5sin4.255.56x π+,则1sin62xπ, 因为024x <,解得15x 或1317x ,所以货船可以在1时进入港口,在5时出港;或者在13时进港,17时出港. 因为(51)(173)8-+-=,一天内货船可以在港口呆的时间为8小时. 【点睛】本题主要考查了三角函数在生活中的应用,属于中档题. 22.已知函数3(1)log (1)f x a x +=+,且(2)1f =. (1)求()f x 的解析式;(2)已知()f x 的定义域为[2,)+∞. (ⅰ)求()41xf +的定义域;(ⅱ)若方程()()412xxf f k k x +-⋅+=有唯一实根,求实数k 取值范围.【答案】(1)2()log f x x =(2)(ⅰ)[0,)+∞.(ⅱ)1k = 【解析】 【分析】(1)利用换元法以及(2)1f =,即可求解()f x 的解析式;(2)(ⅰ)解不等式412x +≥,即可得出()41xf +的定义域;(ⅱ)根据()41xf +,()2x f k k ⋅+的定义域得出1k ,结合函数()f x 的解析式将方程化为()2(1)2210x x k k -⋅+⋅-=,利用换元法得出2()(1)1,[1,)g t k t k t t =-+⋅-∈+∞,讨论k的值,结合二次函数的性质即可得出实数k 的取值范围.【详解】解:(1)令1(0)t x t =+>,则3()log f t a t =,所以3()log f x a x =, 因为3(2)log 21f a ==,所以231log 3log 2a ==, 所以3232()log log 3log log f x a x x x ==⨯= (2)(ⅰ)因为()f x 的定义域为[2,)+∞, 所以412x +≥,解得0x , 所以()41xf +的定义域为[0,)+∞.(ⅱ)因为0,22,x x k k ⎧⎨⋅+⎩,所以221xk +在[0,)+∞恒成立, 因为221x y =+在[0,)+∞单调递减,所以221x y =+最大值为1,所以1k .又因为()()412xxf f k k x +-⋅+=,所以()()22log 41log 2xxk k x +-⋅+=, 化简得()2(1)2210xx k k -⋅+⋅-=,令2(1)xt t =,则2(1)10k t k t -⋅+⋅-=在[1,)+∞有唯一实数根, 令2()(1)1,[1,)g t k t k t t =-+⋅-∈+∞,当1k =时,令()0g t =,则1t =,所以21x =,得0x =符合题意,所以1k =; 当1k >时,2440k k ∆=+->,所以只需(1)220g k =-,解得1k ,因为1k >,所以此时无解; 综上,1k =.【点睛】本题主要考查了利用换元法求函数解析式以及根据函数的零点确定参数的范围,属于较难题.。
2020-2021学年高一数学第一册单元提优卷(人教A 版(2019))期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .42.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x∃>≥-,D .10ln 1x x x∃><-,.3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2B .[)(]0,11,4C .[)0,1D .(]1,45.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .27.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<012.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,)(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.15.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫⎪⎝⎭的值是____________.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(284f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是____________.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.18.(本题满分12分)已知集合,2|2162xA x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈-⎪⎝⎭,求sin 2α的值.20.(本题满分12分)已知函数()0.52log 2axf x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.21(本题满分12分)【江苏省盐城市第一中学2020届高三下学期6月调研考试数学试题某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元).(Ⅰ)求()f x 的函数关系式;(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?22.(本题满分12分)已知函数2()2sin cos 0)f x x x x ωωωω=+->的最小正周期为π.(1)求函数()f x 的单调增区间;(2)将函数()f x 的图象向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图象,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值.2020-2021学年高一数学第一册单元提优卷期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .4【答案】B求解二次不等式240x -≤可得{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得|2a B x x ⎧⎫=≤-⎨⎩⎭.由于{}|21A B x x ⋂=-≤≤,故12a-=,解得2a =-.故选B .2.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x ∃>≥-,D .10ln 1x x x∃><-,【答案】D【解析】因为全称命题的否定是特称命题,所以命题“0x ∀>,1ln 1x x ≥-”的否定为“0x ∃>,1ln 1x x<-”.故选D .3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦【答案】D【解析】若0a =,则()3f x x =-,()f x 在区间[)1,-+∞上是增函数,符合.若0a ≠,因为()f x 在区间[)1,-+∞上是增函数,故0112a a a>⎧⎪-⎨≤-⎪⎩,解得103a <≤.综上,103a ≤≤.故选:D .4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2 B .[)(]0,11,4 C .[)0,1D .(]1,4【答案】C【解析】函数()f x 的定义域是[0,2],要使函数()()21f xg x x =-有意义,需使()2f x 有意义且10x -≠.所以10022x x -≠⎧⎨≤≤⎩,解得01x ≤<.故答案为C .5.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位【答案】B【解析】cos 2sin(2)sin 2()24y x x x ππ==+=+,因此把函数cos 2y x =的图象向右平移4π个单位,再向上平移1个单位可得sin 21y x =+的图象,故选B6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .2【答案】B【解析】因为(1)2()f x f x +=,且(5)3(3)4f f =+,故()()324442f f =+,解得()48f =.故选:B7.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-【答案】D 【解析】∵3sin(3)cos()0πθπθ-++-=,∴3sin cos 0θθ--=,即cos 3sin θθ=-,∴sin cos cos 2θθθ2222sin cos sin (3sin )3cos sin (3sin )sin 8θθθθθθθθ⋅-===----.故选:D .8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .【答案】C【解析】由函数sin (0)y ax b a =+>的图象可得201,23b a πππ<<<<,213a ∴<<,故函数log ()a y xb =-是定义域内的减函数,且过定点(1,0)b +.结合所给的图像可知只有C 选项符合题意.故选:C .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天【答案】B【解析】因为0 3.28R =,6T =,01R rT =+,所以 3.2810.386r -==,所以()0.38rt t I t e e ==,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为1t 天,则10.38()0.382t t t e e +=,所以10.382t e =,所以10.38ln 2t =,所以1ln 20.691.80.380.38t =≈≈天.故选:B .10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞【解析】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞.故选:D .11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<0【答案】A【解析】由2233x y x y ---<-得:2323x x y y ---<-,令()23ttf t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.12.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 【答案】D【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根即可,令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩,当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意;当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2y x =相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =k >.综上,k 的取值范围为(,0))-∞+∞ .故选:D .二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.【答案】(0,)+∞【解析】由题意得010x x >⎧⎨+≠⎩,0x ∴>故答案为:(0,)+∞14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.【答案】13【解析】22221sin ()(cos sin )(1sin 2)4222παααα+=+=+Q 121(1sin 2)sin 2233αα∴+=∴=故答案为:1315.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫ ⎪⎝⎭的值是____________.【答案】2【解析】由2x ≥时,()28f x x =-+是减函数可知,当2a ≥,则()()2f a f a ≠+,所以02a <<,由()(+2)f a f a =得22(2)8a a a +=-++,解得1a =,则21(1)112f f a ⎛⎫==+= ⎪⎝⎭.故答案为:2.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(2)84f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是_____.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数【答案】④【解析】函数()1cos 2sin 21244f x x x x ππ⎛⎫⎛⎫=++++=+ ⎪ ⎪⎝⎭⎝⎭,当(0,3π)∈x 时,当6x π=时,23x π=不能使函数取得最值,所以不是函数的对称轴,①错;当5,24x π⎡⎤∈π⎢⎥⎣⎦时,52,2x ⎡⎤∈ππ⎢⎥⎣⎦,函数先增后减,②不正确;若()1f x =-,那么cos 2x =不成立,所以③错;当3 2a =π时,()12f x a x +=函数是偶函数,④正确,三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.【答案】(1)证明见解析;(2)1.【解析】证明:(1)∵()()222223220a b b a b a ab b a b +-+=-+=-≥,∴()2232a b b a b +≥+.(2)∵0a >,0b >,∴2ab a b =+≥2ab ≥1≥,∴1≥ab .当且仅当1a b ==时取等号,此时ab 取最小值1.18.(本题满分12分)已知集合,|2162x A x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.【答案】(1)1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭;(2)3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.【解析】(1)1|42A x x ⎧⎫=-<<⎨⎬⎩⎭,0a =时,{|21}B x x =-<<,∴1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭(2)∵A B φ⋂=,∴当B φ=时,3221a a -≥+,即3a ≥,符合题意;当B φ≠时,31213242a a a <⎧⎪⎨+≤--≥⎪⎩或,解得34a ≤-或23a ≤<,综上,a 的取值范围为3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈- ⎪⎝⎭,求sin 2α的值.【答案】(1)()f x 的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)4sin 26α=.【解析】(1)因为()()211cos 2111sin sin cos sin 2sin 2cos 222222x f x x x x x x x -=+-=+-=-22sin 2cos cos 2sin sin 224424x x x πππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,当()2242x k k Z πππ-=+∈,即()38x k k Z ππ=+∈时,函数()y f x =取最大值2,所以函数()y f x =的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)因为()26f α=,则sin 2246πα⎛⎫-= ⎪⎝⎭,即1sin 243πα⎛⎫-= ⎪⎝⎭,因为3,88ππα⎛⎫∈- ⎪⎝⎭,所以2,422πππα⎛⎫-∈- ⎪⎝⎭,则cos 243πα⎛⎫-= ⎪⎝⎭,所以sin 2sin 2sin 2cos cos 2sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1432326+=+⋅=.20.(本题满分12分)已知函数()0.52log 2ax f x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.【答案】(1)1a =-;(2)(),1-∞【解析】(1)因为函数()0.52log 2ax f x x -=-为奇函数,所以()()220.50.50.52224log log log 0224ax ax a x f x f x x x x-+-+-=+==----,所以222414a x x-=-,即21a =,1a =或1-,当1a =时,函数()0.50.52log log 12x f x x -==--,无意义,舍去,当1a =-时,函数()0.52log 2x f x x +=-定义域(-∞,-2)∪(2,+∞),满足题意,综上所述,1a =-。
厦门市2021-2021学年度第一学期高一年级质量检测
数学试题
一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合,集合,则()
A. B. C. D.
【答案】A
【解析】
【分析】
根据交集的定义即可求出A∩B.
【详解】∵集合A={-2,-1,0,1,2},集合B={x|-1≤x≤1},∴A∩B={-1,0,1}.
故选A.
【点睛】本题考查交集的求法,是基础题.
2.函数的定义域为()
A. B. C. D.
【答案】B
【解析】
【分析】
使函数有意义的x满足解不等式组即得解.
【详解】使函数有意义的x满足解得即函数的定义域为.
故选B.
【点睛】本题考查了具体函数定义域,属于基础题.
3.已知角的终边经过点,则的值为()
A. B. C. D.
【答案】A
【解析】
【分析】。
2020-2021学年高一上学期期末考试数学卷及答案1.集合A和B分别表示y=x+1和y=2两个函数的图像上所有的点,求A和B的交集。
答案:A={(-∞,1]}。
B={2}。
A∩B=A={(-∞,1]}2.已知函数y=(1-x)/(2x^2-3x-2),求函数的定义域。
答案:分母2x^2-3x-2=(2x+1)(x-2),所以函数的定义域为x∈(-∞,-1/2]∪(2,∞)。
3.如果直线mx+y-1=0与直线x-2y+3=0平行,求m的值。
答案:两条直线平行,说明它们的斜率相等,即m=2.4.如果直线ax+by+c=0经过第一、第二,第四象限,求a、b、c应满足的条件。
答案:第一象限中x>0.y>0,所以ax+by+c>0;第二象限中x0,所以ax+by+c0.y<0,所以ax+by+c<0.综上所述,应满足ab<0.bc<0.5.已知两条不同的直线m和n,两个不同的平面α和β,判断下列命题中正确的是哪个。
答案:选项A是正确的。
因为如果m与α垂直,n与β平行,那么m和n的夹角就是α和β的夹角,所以m和n垂直。
6.已知圆锥的表面积为6π,且它的侧面展开图是一个半圆,求这个圆锥的底面半径。
答案:设底面半径为r,侧面的母线长为l,则圆锥的侧面积为πrl。
根据题意,πrl=6π,所以l=6/r。
而侧面展开图是一个半圆,所以底面周长为2πr,即底面直径为2r,所以侧面母线长l=πr。
将上述两个式子代入公式S=πr^2+πrl中,得到r=2.7.已知两条平行线答案:两条平行线的距离等于它们的任意一点到另一条直线的距离。
我们可以先求出l2上的一点,比如(0,7/8),然后带入l1的方程,得到距离为3/5.8.已知函数y=ax-1/(3x^2+5),如果它的图像经过定点P,求点P的坐标。
答案:点P的坐标为(1,2)。
因为当x=1时,y=a-1/8,所以a=17/8.又因为当x=2时,y=1/13,所以17/8×2-1/13=2,解得a=17/8,所以y=17x/8-1/(3x^2+5),当x=1时,y=2.9.已知a=3/5,b=1/3,c=4/3,求a、b、c的大小关系。