自动控制原理答案第3章
- 格式:doc
- 大小:2.17 MB
- 文档页数:6
3-1(1) )(2)(2.0t r t c= (2) )()()(24.0)(04.0t r t c t c t c=++ 试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。
已知全部初始条件为零。
解:(1) 因为)(2)(2.0s R s sC =闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ 单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。
若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。
视温度计为单位反馈系统,则开环传递函数为Ts s s s G 1)(1)()(=Φ-Φ= ⎩⎨⎧==11v T K用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。
解法二 依题意,系统误差定义为 )()()(t c t r t e -=,应有 1111)()(1)()()(+=+-=-==ΦTs TsTs s R s C s R s E s e C T s Ts Ts ss R s s e s e s ss ︒==⋅+=Φ=→→5.210101lim )()(lim 23-3 已知二阶系统的单位阶跃响应为)1.536.1sin(5.1210)(2.1o tt et c +-=-试求系统的超调量σ%、峰值时间tp 和调节时间ts 。
3-1 解 该线圈的微分方程为 u =+diiR L dt对上式两边取拉氏变换,并令初始条件为零,可得传递函数为()1=()(+)+1I s RU s L R 时间常数+0.005T L R s ==,过渡时间=30.015s t T s =。
3-2 解 如图2-3-2所示系统的闭环传递函数为010()=(s)0.2+1+10+1H K C s KR S K Ts =其中0101+10H K K K =,0.21+10HT K =原系统的时间常数为0.2s ,放大系数为10,为了满足题目的要求,令0.02T s =和10K =,有0.9H K =和010K =。
3-3 解 设为温度计的输入,表示实际水温,设为温度计的输出,表示温度计的指示值,若实际水温为R (常值),则输入为幅值为R 的阶跃函数,输出为(t)=R(1-e )T c τ根据所给条件,有则时间常数。
3-4 解:所给传递函数的闭环极点为21,2=-1-n n s j ζωωζ±根据上式表达式,可以确定图2-3-3中的阴影部分为闭环极点可能位于的区域(考虑到对称性,只绘出s 平面的上半平面)。
图2-3-3 闭环极点可能位于的区域3-5解:典型二阶系统的传递函数为由如图2-3-4所示的响应曲线,可知峰值时间,超调量,根据二阶系统的性能指标计算公式和可以确定和,根据如图2-3-4所示曲线的终值,可以确定。
3-6 解:如图2-3-5所示系统的传递函数为是一个典型的二阶系统,其自然振荡频率为,令阻尼比可以确定,性能指标及分别为3-7 解:系统为典型二阶系统,自然振荡频率,阻尼比。
单位阶跃响应的表达式为(t>0)单位斜坡响应的表达式为3-8 解:当时,系统的闭环传递函数为其中,无阻尼自然振荡频率,阻尼比,单位阶跃响应的超调量峰值时间和过度过程时间分别为16.3%、0,36s和0.7s当,时系统的闭环传递函数为其中,无阻尼自然振荡频率,阻尼比,单位阶跃响应的超调量、峰值时间和过渡过程时间分别为30.9%、0.24s和0.7s。
第三章例3-1 系统的结构图如图3-1所示。
已知传递函数 )12.0/(10)(+=s s G 。
今欲采用加负反馈的办法,将过渡过程时间t s减小为原来的0.1倍,并保证总放大系数不变。
试确定参数K h 和K 0的数值。
解 首先求出系统的传递函数φ(s ),并整理为标准式,然后与指标、参数的条件对照。
一阶系统的过渡过程时间t s 与其时间常数成正比。
根据要求,总传递函数应为)110/2.0(10)(+=s s φ即HH K s K s G K s G K s R s C 1012.010)(1)()()(00++=+= )()11012.0(101100s s K K K HHφ=+++=比较系数得⎪⎩⎪⎨⎧=+=+1010110101100H HK K K 解之得9.0=H K 、100=K解毕。
例3-10 某系统在输入信号r (t )=(1+t )1(t )作用下,测得输出响应为:t e t t c 109.0)9.0()(--+= (t ≥0)已知初始条件为零,试求系统的传递函数)(s φ。
解 因为22111)(ss s s s R +=+=)10()1(10109.09.01)]([)(22++=+-+==s s s s s s t c L s C 故系统传递函数为11.01)()()(+==s s R s C s φ 解毕。
例3-3 设控制系统如图3-2所示。
试分析参数b 的取值对系统阶跃响应动态性能的影响。
解 由图得闭环传递函数为1)()(++=s bK T Ks φ系统是一阶的。
动态性能指标为)(3)(2.2)(69.0bK T t bK T t bK T t s r d +=+=+= 因此,b 的取值大将会使阶跃响应的延迟时间、上升时间和调节时间都加长。
解毕。
例 3-12 设二阶控制系统的单位阶跃响应曲线如图3-34所示。
试确定系统的传递函数。
解 首先明显看出,在单位阶跃作用下响应的稳态值为3,故此系统的增益不是1,而是3。
School of Electronic Engineering, Dongguan University of Technology
【习题3-1】:
已知某控制系统结构图,其中T m =0.2,K =5,求系统的单位阶跃响应性能。
1
)对比二阶系统开环传递函数的一般表达式:
2)解得:3)进而解得:4)超调量:5)调节时间:6)峰值时间:7)上升时间:
School of Electronic Engineering, Dongguan University of Technology
【习题3-2】:
已知某控制系统结构图,系统的单位阶跃响应曲线,试确定系统参数K 1、的值。
)闭环传递函数:2)从曲线中可以直接获得:3))计算系统的参数:
)比较二阶系统闭环传递函数的一般式:
阶跃响应的输出通常用h(t)表示,代替c(t)
()()()
lim lim t s c c t sC s →∞
→∞==
School of Electronic Engineering, Dongguan University of Technology
【习题3-3】:
已知某控制系统结构图,要求系统的阻尼比ζ=0.6,试确定K t 的值,并计算动态性能指标:t p 、t s 和σp 的值。
1)闭环传递函数:
2)比较二阶系统闭环传递函数的一般式:3)解得:
4
)计算系统的动态性能:
School of Electronic Engineering, Dongguan University of Technology
【习题3-4】:
已知某控制系统结构图,要求系统的超调量σp =16.3%,峰值时间t p =1 秒,求K 与τ。
1)根据超调量和峰值时间的定义,有:
2)计算系统的特征参数:3)闭环传递函数:
4)比较二阶系统的闭环传递函数的一般形式:5)解得:
【习题3-5】:系统的特征方程为:20=0
School of Electronic Engineering, Dongguan University of Technology
【习题3-7】:特征方程为:结论:=0
全为零构造辅助特征方程
School of Electronic Engineering, Dongguan University of Technology
【习题3-9】:已知单位反馈系统的开环传递函数为:
试确定系统稳定时K 的范围:解:闭环特征方程为:
劳斯表:
结论:0<K
<1.708
School of Electronic Engineering, Dongguan University of Technology
【习题3-10】:已知控制系统结构图,要求闭环系统特征根全部位于垂线s =-0.2 之左。
试确定参数k 的取值范围。
解:闭环特征方程为:
将z=s-0.2 代入特征方程得:根据三阶系统稳定性充要条件:结论:0.15<K <2.84
【习题3-11】:已知单位反馈系统的开环传递函数,试求输入分别为)=2t、【习题3-13】:已知控制系统结构图,如果
时系统在扰动作用下的稳态输出及稳态误差。
()
()
()()()
()
2
12
1
d
G s
s D s
G s G s H s
=
+
()
()()
()()()
()
2
d
H s G s
s D s =-
【习题3-14】:已知控制系统结构图,其中r(t)=t ,d(t)=0.5,计算该系统的稳态110.5
e ===20+=。