nanxbny
nxa(
n i1
xi2
)b
n i1
xi
yi
其中
x1 n
ni1
xi,y1nin1
yi,
返回
n nx
D
nx
xi2 n(
n
xi2nx2)n (xi x)2 0
i1
所以方程组有解,解得
aˆ
bˆ
y
bˆ x l xy
l xx
其中
n
回归直线经过散点几何中心
lxx (xi x)2 i1
总体方差 2 的一个无偏估计量是:
n
n
S2n 12 (yi ˆyi )2n 12 ei2
i1
i1
用S2代替2,得到 aˆ , bˆ 方差的无偏估计量分别是:
Sa ˆ2S2(n 1lxx2x),Sb ˆ2lS x2x
它们的算术平方根分别称为a,b的估计标准误差。
4. a和b的区间估计
置信水平为1 的区间估计是:
可得到: yi ~N(abix ,2)
如果给出a和b的估计量分别为aˆ ,bˆ ,则经验回归方程为:
ˆyi aˆ bˆxi
一般地,
ei yi ˆyi 称为残差,
残差 e i 可视为扰动 i 的“估计量”。
返回
第2节 回归系数的最小二乘估计
设对y及x做n次观测得数据(xi ,yi) (i=1,2,…,n ).
pt
2.5 2.0 1.5 1.0 0.5 0
qt
1 3 5 7 9 11
这是一个确定性关系: qt 114pt
返回
若x、y之间的关系是随机的,例如
pt
qt
概率
0