石灰石石膏法脱硫工艺设备图
- 格式:pptx
- 大小:18.04 MB
- 文档页数:97
一、石灰石/石灰-石膏法脱硫工艺一)、工作原理石灰石/石灰-石膏法烟气脱硫采用石灰石或石灰作为脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌成吸收浆液,当采用石灰为吸收剂时,石灰粉经消化处理后加水制成吸收剂浆液。
在吸收塔内,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应从而被脱除,最终反应产物为石膏。
二)、反应过程1、吸收SO2+ H2O—>H2SO3SO3+ H2O—>H2SO42、中和CaCO3+ H2SO3—>CaSO3+CO2+ H2OCaCO3+ H2SO4—>CaSO4+CO2+ H2OCaCO3+2HCl—>CaCl2+CO2+ H2OCaCO3+2HF—>CaF2+CO2+ H2O3、氧化2CaSO3+O2—>2 CaSO44、结晶CaSO4+ 2H2O—>CaSO4·2H2O三)、系统组成脱硫系统主要由烟气系统、吸收氧化系统、石灰石/石灰浆液制备系统、副产品处理系统、废水处理系统、公用系统(工艺水、压缩空气、事故浆液罐系统等)、电气控制系统等几部分组成。
四)、工艺流程锅炉/窑炉—>除尘器—>引风机—>吸收塔—>烟囱来自于锅炉或窑炉的烟气经过除尘后在引风机作用下进入吸收塔,吸收塔为逆流喷淋空塔结构,集吸收、氧化功能于一体,上部为吸收区,下部为氧化区,经过除尘后的烟气与吸收塔内的循环浆液逆向接触。
系统一般装3-5台浆液循环泵,每台循环泵对应一层雾化喷淋层。
当只有一台机组运行时或负荷较小时,可以停运1-2层喷淋层,此时系统仍保持较高的液气比,从而可达到所需的脱硫效果。
吸收区上部装二级除雾器,除雾器出口烟气中的游离水份不超过75mg/Nm3。
吸收SO2后的浆液进入循环氧化区,在循环氧化区中,亚硫酸钙被鼓入的空气氧化成石膏晶体。
同时,由吸收剂制备系统向吸收氧化系统供给新鲜的石灰石浆液,用于补充被消耗掉的石灰石,使吸收浆液保持一定的pH值。
石灰石-石膏湿法烟气脱硫工艺石灰石(石灰)-石膏湿法脱硫工艺是湿法脱硫的一种,是目前世界上应用范围最广、工艺技术最成熟的标准脱硫工艺技术。
是当前国际上通行的大机组火电厂烟气脱硫的基本工艺。
它采用价廉易得的石灰石或石灰作脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌成吸收浆液,当采用石灰为吸收剂时,石灰粉经消化处理后加水制成吸收剂浆液。
在吸收塔内,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应被脱除,最终反应产物为石膏。
脱硫后的烟气经除雾器除去带出的细小液滴,经换热器加热升温后排入烟囱。
脱硫石膏浆经脱水装置脱水后回收。
由于吸收浆液循环利用,脱硫吸收剂的利用率很高。
最初这一技术是为发电容量在100MW以上、要求脱硫效率较高的矿物燃料发电设备配套的,但近几年来,这一脱硫工艺也在工业锅炉和垃圾电站上得到了应用.根据美国EPRI统计,目前已经开发的脱硫工艺大约有近百种,但真正实现工业应用的仅10多种。
已经投运或正在计划建设的脱硫系统中,湿法烟气脱硫技术占80%左右。
在湿法烟气脱硫技术中,石灰石/石灰—石膏湿法烟气脱流技术是最主要的技术,其优点是:1、技术成熟,脱硫效率高,可达95%以上。
2、原料来源广泛、易取得、价格优惠3、大型化技术成熟,容量可大可小,应用范围广4、系统运行稳定,变负荷运行特性优良5、副产品可充分利用,是良好的建筑材料6、只有少量的废物排放,并且可实现无废物排放7、技术进步快。
石灰石/石灰—石膏湿法烟气脱硫工艺,一般布置在锅炉除尘器后尾部烟道,主要有:工艺系统、DCS控制系统、电气系统三个分统。
基本工艺过程在石灰石一石膏湿法烟气脱硫工艺中,俘获二氧化硫(SO2)的基本工艺过程:烟气进入吸收塔后,与吸收剂浆液接触、进行物理、化学反应,最后产生固化二氧化硫的石膏副产品。
基本工艺过程为:(1)气态SO2与吸收浆液混合、溶解(2)SO2进行反应生成亚硫根(3)亚硫根氧化生成硫酸根(4)硫酸根与吸收剂反应生成硫酸盐(5)硫酸盐从吸收剂中分离用石灰石作吸收剂时,SO2在吸收塔中转化,其反应简式式如下:CaCO3+2 SO2+H2O ←→Ca(HSO3)2+CO2在此,含CaCO3的浆液被称为洗涤悬浮液,它从吸收塔的上部喷入到烟气中。
石灰石——石膏湿法烟气脱硫技术石灰石——石膏湿法烟气脱硫技术石灰石——石膏湿法烟气脱硫技术是已经开发和推广的烟气脱硫技术中的主流技术,占国内外安装烟气脱硫装置总容量的85%以上。
特点是商业应用时间长,工艺技术成熟,配套设备完善,工作稳定,操作简单,脱硫效率可达到95%以上,可靠性高达95%以上。
吸收剂为石灰石粉,资源丰富,价格低廉,使用安全;副产品为脱硫石膏,可用作水泥添加剂、农业土壤调节剂,或进一步清洗、均化、除杂后,生产建筑用石膏板等。
石灰石——石膏湿法烟气脱硫技术广泛应用于火电厂、冶金、各种工业锅炉、窑炉、水泥工业、玻璃工业、化工工业、有色冶炼等行业大型燃烧设备烟气中SO2的排放控制。
一、工艺流程石灰石——石膏湿法烟气脱硫装置主要由烟气系统、石灰石浆液制备系统、烟气吸收及氧化系统、石膏脱水系统、烟气排放连续监测系统(CEMS)以及自动控制系统和公用工程系统等组成。
工艺流程如图示。
一定浓度的石灰石浆液连续从吸收塔顶部喷入,与经过增加风机增压后进入吸收塔的烟气发生接触。
在烟气被冷却洗涤的过程中,烟气中的SO2被浆液中的碳酸钙吸收生成亚硫酸钙而成为净化烟气,净化后的烟气经除雾器除去烟气中的小雾滴,从吸收塔上部排出,进入大气。
向吸收塔底部的溶液中鼓入空气,溶液中的亚硫酸钙被氧化成为硫酸钙结晶物——石膏。
吸收塔底部的溶液是石灰石、石膏组成的浆状混合物,其部分被强制在塔内循环,部分作为产物排出而成为脱水石膏。
二、工艺原理石灰石——石膏湿法烟气脱硫系统中主要的化学反应包括:1. SO2的吸收2.与石灰石的反应3.氧化反应4.CaSO4晶体生成总的反应方程式为:SO2(g)+ CaCO3(s)+2H2O(l)+1/2O2(g)→CaSO4·2H2O(s)+CO2(g)三、脱硫系统的主要设备1.烟气系统烟气系统由进口烟气挡板门、旁路烟气挡板门、钢制烟道、脱硫增压风机等组成。
原烟气经烟道、烟气进口挡板门进入增压风机,经增压风机升压后进入吸收塔。
石灰石-石膏湿法脱硫技术的工艺流程如下图的石灰石-石膏湿法烟气脱硫技术的工艺流程图。
图一常见的脱硫系统工艺流程图二无增压风机的脱硫系统如上图所示引风机将除尘后的锅炉烟气送至脱硫系统,烟气经增压风机增压后(有的系统在增压风机后设有GGH换热器,我们一、二期均取消了增压风机,和旁路挡板,图二),进入脱硫塔,浆液循环泵将吸收塔的浆液通过喷淋层的喷嘴喷出,与从底部上升的烟气发生接触,烟气中SO2的与浆液中的石灰石发生反应,生成CaSO3,从而除去烟气中的SO2。
经过净化后的烟气在流经除雾器后被除去烟气中携带的液滴,最后从烟囱排出。
反应生成物CaSO3进入吸收塔底部的浆液池,被氧化风机送入的空气强制氧化生成CaSO4,结晶生成石膏。
石灰石浆液泵为系统补充反应消耗掉的石灰石,同时石膏浆液输送泵将吸收塔产生的石膏外排至石膏脱水系统将石膏脱水或直接抛弃。
同时为了防止吸收塔内浆液沉淀在底部设有浆液搅拌系统,一期采用扰动泵,二期采用搅拌器。
石灰石-石膏湿法脱硫反应原理在烟气脱硫过程中,物理反应和化学反应的过程相对复杂,吸收塔由吸收区、氧化区和结晶区三部分组成,在吸收塔浆池(氧化区和结晶区组成)和吸收区,不同的层存在不同的边界条件,现将最重要的物理和化学过程原理描述如下:(1)SO2溶于液体在吸收区,烟气和液体强烈接触,传质在接触面发生,烟气中的SO2溶解并转化成亚硫酸。
SO2+H2O<===>H2SO3除了SO2外烟气中的其他酸性成份,如HCL和HF也被喷入烟气中的浆液脱除。
装置脱硫效率受如下因素影响,烟气与液体接触程度,液气比、雾滴大小、SO2含量、PH值、在吸收区的相对速度和接触时间。
(2)酸的离解当SO2溶解时,产生亚硫酸,同时根据PH值离解:H2SO3<===>H++HSO3-对低pH值HSO3-<===>H++SO32-对高pH值从烟气中洗涤下来的HCL和HF,也同时离解:HCl<===>H++Cl-F<===>H++F-根据上面反应,在离解过程中,H+离子成为游离态,导致PH值降低。
石灰石-石膏法湿法烟气脱硫工艺内烟气向上流动且被向下流动的循环浆液以逆流方式洗涤。
循环浆液则通过喷浆层内设置的喷嘴喷射到吸收塔中,以便脱除S02 S03 HCL和HF,与此同时在“强制氧化工艺”的处理下反应的副产物被导入的空气氧化为石膏(CaSO4?2H2O ,并消耗作为吸收剂的石灰石。
循环浆液通过浆液循环泵向上输送到喷淋层中,通过喷嘴进行雾化,可使气体和液体得以充分接触。
每个泵通常与其各自的喷淋层相连接,即通常采用单元制。
在吸收塔中,石灰石与二氧化硫反应生成石膏,这部分石膏浆液通过石膏浆液泵排出,进入石膏脱水系统。
脱水系统主要包括石膏水力旋流器(作为一级脱水设备)、浆液分配器和真空皮带脱水机。
经过净化处理的烟气流经两级除雾器除雾,在此处将清洁烟气中所携带的浆液雾滴去除。
同时按特定程序不时地用工艺水对除雾器进行冲洗。
进行除雾器冲洗有两个目的,一是防止除雾器堵塞,二是冲洗水同时作为补充水,稳定吸收塔液位。
在吸收塔出口,烟气一般被冷却到46—55 C左右,且为水蒸气所饱和。
通过GGH将烟气加热到80C以上,以提高烟气的抬升高度和扩散能力。
最后,洁净的烟气通过烟道进入烟囱排向大气。
石灰石-石膏湿法烟气脱硫工艺的化学原理如下:①烟气中的二氧化硫溶解水,生成亚硫酸并离解成氢离子和HS0-3离子;②烟气中的氧和氧化风机送入的空气中的氧将溶液中H S0-3氧化成SO2-4:③吸收剂中的碳酸钙在一定条件下于溶液中离解出Ca2+;④在吸收塔内,溶液中的SO2-4、Ca2+及水反应生成石膏(CaS04- 2H20。
化学反应式分别如下:①S02 + H23 H2S0S H++ HS0-3②H+ + HS0-3+ 1/202 T 2H++ SO2-4③CaC03 + 2H++ H23 Ca2++ 2H2O^ C02f④Ca2+ + SO2-4+ 2H2S CaS04- 2H2O由于吸收剂循环量大和氧化空气的送入,吸收塔下部浆池中的HS0-3或亚硫酸盐几乎全部被氧化为硫酸根或硫酸盐,最后在CaS04达到一定过饱和度后,结晶形成石膏-CaS04 - 2H20石膏可根据需要进行综合利用或作抛弃处理。
目录1、前言 (2)2、设计原则 (2)3、设计步骤 (5)4、设计计算书 (5)4.1理论空气量的计算 (5)4.1.1碳与氧的作用 (5)4.1.2氢与氧的作用 (6)4.1.3硫与氧的作用 (6)4.2空气过剩系数 (6)4.3水蒸气量的计算 (7)4.4烟气体积计算 (7)4.4.1 理论烟气体积 (7)4.4.2、实际烟气体积V (8)wfg4.4.3、烟气体积和密度的校正 (8)4.4.4 过剩空气较正 (8)5、物料平衡核算 (9)5.1吸收塔的物料平衡 (9)5.2石膏处理系统的物料平衡 (10)5.3烟气系统及石灰石湿磨系统的物料平衡 (11)5.4水平衡 (11)5.5热量平衡的计算 (12)6、设计计算书 (16)7、总结 (23)7.1对本设计的评述或有关问题的分析讨论...................... 错误!未定义书签。
8、参考文献 (24)2×300MW石灰石/石膏湿法脱硫工艺参数设计(有GGH)1、前言我国的能源构成以煤炭为主,其消费量占一次能源总消费量的70%左右,这种局面在今后相当长的时间内不会改变。
火电厂以煤作为主要燃料进行发电,煤直接燃烧开释出大量SO2,造成大气环境污染,且随着装机容量的递增,SO2的排放量也在不断增加,加大火电厂SO2的控制力度就显得非常紧迫和必要。
SO2的控制途径有三个:燃烧前脱硫、燃烧中脱硫、燃烧后脱硫即烟气脱硫(FGD),目前烟气脱硫被以为是控制SO2最行之有效的途径。
目前国内外的烟气脱硫方法种类繁多,主要分为干法(或半干法)和湿法两大类。
湿法脱硫工艺绝大多数采用碱性浆液或溶液作为吸收剂,技术比较成熟,是目前使用最广泛的脱硫技术,根据吸收剂种类的不同又可分为石灰石/石膏法(钙法)、氨法、海水法等。
其中钙法因其成熟的工艺技术,在世界脱硫市场上占有的份额超过80%。
截至2011年底,我国脱硫装机超过6亿千瓦,其中85%以上为湿法烟气脱硫,多存系统稳定性差,脱硫效率波动较大等问题。
烟尘治理石灰石-石膏法烟气脱硫系统设计惠远峰(吉林化工学院环境与生物工程学院 吉林吉林132022) 摘 要 针对2×125MW 机组的烟气量和烟气中含硫量,结合我国烟气脱硫的技术现状设计出1套较完备的烟气脱硫系统。
设计的主要内容:吸收塔的类型,流程,确定了工艺中选用各子系统的处理流程、装置和设备。
对所设计的烟气脱硫工艺进行了技术经济分析,最后得出总的结论,并提出了工艺中存在的主要问题和几点建议。
关键词 湿式石灰石-石膏法 烟气脱硫 吸收塔 技术经济分析Design of F lue G as Desulpherization System in Limestone -gypsum Wet MethedHUI Y uan -feng(Environmental and Biological Engineering Institute ,Jilin Institute o f Chemical Technology Jilin ,Jilin 132022)Abstract According to the am ount of the flue gas and the desurfurization request of 2×125MW unit ,a set of adequate FG D systems is de 2signed ,combined with the existed FG D technical status in our nation.The design mainly includes the type and flow of the abs orber and it als o introduces the main equipment of the desurfurization ,and the type and the diagram flow of all systems.M eanwhile the econom ic and technical analysis of the FG D system is conducted.Finally it is concluded and the main problems existed and s ome suggestions are raised.K eyw ords limestone -gypsum wet method flue gas desulpherization abs orber technical and econom ic analysis 随着我国经济的快速发展,煤炭消耗量不断增加,S O 2的排放量也日趋增多,造成S O 2污染和酸雨的严重危害。
石灰石-石膏法烟气脱硫湿法系统设计2008年12月目录1.概述 (1)2.典型的系统构成 (1)3反应原理 (2)4 系统描述 (5)5.FGD系统设计条件的确认 (14)6.物料平衡计算、热平衡计算 (19)1.概述石灰石-石膏法烟气脱硫技术已经有几十年的发展历史,技术成熟可靠,适用范围广泛,据有关资料介绍,该工艺市场占有率已经达到85%以上。
由于反应原理大同小异,本设计总结了一些通用的规律和设计准则,基本适用于目前市场上常用的各种石灰石-石膏法烟气脱硫技术,包括喷淋塔、鼓泡塔、液柱塔等。
2.典型的系统构成典型的石灰石/石灰-石膏湿法烟气脱硫工艺流程如图2-1所示,实际运用的脱硫装置的范围根据工程具体情况有所差异。
图2-13反应原理3.1 吸收原理吸收液通过喷嘴雾化喷入吸收塔,分散成细小的液滴并覆盖吸收塔的整个断面。
这些液滴与塔内烟气逆流接触,发生传质与吸收反应,烟气中的SO2、SO3及HCl 、HF被吸收。
SO2吸收产物的氧化和中和反应在吸收塔底部的氧化区完成并最终形成石膏。
为了维持吸收液恒定的pH值并减少石灰石耗量,石灰石被连续加入吸收塔,同时吸收塔内的吸收剂浆液被搅拌机、氧化空气和吸收塔循环泵不停地搅动,以加快石灰石在浆液中的均布和溶解。
3.2 化学过程强制氧化系统的化学过程描述如下:(1)吸收反应烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分SO2,反应如下:SO2+H2O→H2SO3(溶解)H 2SO3⇋H++HSO3-(电离)吸收反应的机理:吸收反应是传质和吸收的的过程,水吸收SO2属于中等溶解度的气体组份的吸收,根据双膜理论,传质速率受气相传质阻力和液相传质阻力的控制,吸收速率=吸收推动力/吸收系数(传质阻力为吸收系数的倒数)强化吸收反应的措施:a)提高SO2在气相中的分压力(浓度),提高气相传质动力。
b)采用逆流传质,增加吸收区平均传质动力。
c)增加气相与液相的流速,高的Re数改变了气膜和液膜的界面,从而引起强烈的传质。
常见的十七种脱硫工艺原理及工艺图石灰石/石灰-石膏法烟气脱硫01工作原理石灰石/石灰-石膏法烟气脱硫采用石灰石或石灰作为脱硫吸收剂,石灰石经破碎磨细成粉状与水混合搅拌成吸收浆液,当采用石灰为吸收剂时,石灰粉经消化处理后加水制成吸收剂浆液。
在吸收塔内,吸收浆液与烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的氧化空气进行化学反应从而被脱除,最终反应产物为石膏。
02反应过程(1)吸收SO2 + H2O—> H2SO3SO3 + H2O—> H2SO4(2)中和CaCO3 + H2SO3 —> CaSO3+CO2 + H2OCaCO3 + H2SO4 —> CaSO4+CO2 + H2OCaCO3 +2HCl—> CaCl2+CO2 + H2OCaCO3 +2HF —>CaF2+CO2 + H2O(3)氧化2CaSO3+O2—>2CaSO4(4)结晶CaSO4+ 2H2O —>CaSO4 ·2H2O03系统组成脱硫系统主要由烟气系统、吸收氧化系统、石灰石/石灰浆液制备系统、副产品处理系统、废水处理系统、公用系统(工艺水、压缩空气、事故浆液罐系统等)、电气控制系统等几部分组成。
04工艺流程锅炉/窑炉—>除尘器—>引风机—>吸收塔—>烟囱来自于锅炉或窑炉的烟气经过除尘后在引风机作用下进入吸收塔,吸收塔为逆流喷淋空塔结构,集吸收、氧化功能于一体,上部为吸收区,下部为氧化区,经过除尘后的烟气与吸收塔内的循环浆液逆向接触。
系统一般装3-5台浆液循环泵,每台循环泵对应一层雾化喷淋层。
当只有一台机组运行时或负荷较小时,可以停运1-2层喷淋层,此时系统仍保持较高的液气比,从而可达到所需的脱硫效果。
吸收区上部装二级除雾器,除雾器出口烟气中的游离水份不超过75mg/N m3。
吸收SO2后的浆液进入循环氧化区,在循环氧化区中,亚硫酸钙被鼓入的空气氧化成石膏晶体。
石灰石-石膏湿法脱硫工艺概述烟气脱硫采用技术为石灰石-石膏湿法烟气脱硫工艺。
脱硫剂采用石灰石粉(CaCO3), 石灰石由于其良好的化学活性及低廉的价格因素而成为目前世界上湿法脱硫广泛采用的脱硫剂制备原料。
SO2与石灰石浆液反应后生成的亚硫酸钙, 就地强制氧化为石膏,石膏经二级脱水处理可作为副产品外售。
本设计方案采用传统的单回路喷淋塔工艺,将含有氧化空气管道的浆池直接布置在吸收塔底部, 塔内上部设置三层喷淋层和二级除雾器。
从锅炉来的原烟气中所含的SO2与塔顶喷淋下来的石灰石浆液进行充分的逆流接触反应,从而将烟气中所含的SO2去除,生成亚硫酸钙悬浮。
在浆液池中通过鼓入氧化空气,并在搅拌器的不断搅动下,将亚硫酸钙强制氧化生成石膏颗粒。
脱硫效率按照不小于90%设计。
其他同样有害的物质如飞灰,SO3,HCI 和HF也大部分得到去除。
该脱硫工艺技术经广泛应用证明是十分成熟可靠的。
工艺布置采用一炉一塔方案,石灰石制浆、石膏脱水、工艺水、事故浆液系统等两塔公用。
#1锅炉来的原烟气由烟道引出,经升压风机(两台静叶可调轴流风机) 增压后, 送至吸收塔,进行脱硫。
脱硫后的净烟气经塔顶除雾器除雾后通过烟囱排放至大气。
#2炉的烟道系统流程与#1炉相同,布置上与#1炉为对称布置。
脱硫剂采用外购石灰石粉,用滤液水制成30%的浆液后在石灰石浆液箱中贮存,通过石灰石浆液泵不断地补充到吸收塔内。
脱硫副产品石膏通过石膏排出泵,从吸收塔浆液池抽出,输送至石膏旋流站(一级脱水系统),经过一级脱水后的底流石膏浆液其含水率约为50%左右,直接送至真空皮带过滤机进行二级过滤脱水。
石膏被脱水后含水量降到10%以下。
石膏产品的产量为20.42t/h(#1、#2炉设计煤种,石膏含≤10%的水分)。
脱硫装置产生的废水经脱硫岛设置的废水处理装置处理后达标排放或回收利用。
脱硝工艺系统描述3.1 脱硝工艺的原理和流程本工程采用选择性催化还原法(SCR)脱硝技术。