八年级数学实数与数轴
- 格式:doc
- 大小:97.00 KB
- 文档页数:9
实数与数轴知识点总结实数是数学中的一个重要概念,对于数学的学习有着非常重要的作用。
实数包括有理数和无理数两部分,是数学中最基本的数学概念之一。
数轴是表示实数的一种图形工具,用于在数学中对实数进行可视化表示,方便我们对实数进行研究和运算。
本文将对实数与数轴的相关知识点进行总结,希望能对大家有所帮助。
一、实数的定义实数是数学中的一种基本的数学概念,它包括有理数和无理数两部分。
有理数是可以表示为两个整数的商的数,而无理数则是不能表示为有理数的数。
实数可以用小数表示,例如,有理数可以表示为有限小数或者循环小数,而无理数则是不循环、无限不循环的小数。
二、有理数有理数是可以表示为两个整数的商的数,包括整数和分数两种形式。
整数是不带小数部分的有理数,分数是带有分母和分子的有理数。
1. 整数整数包括正整数、负整数和零三种类型。
正整数是大于零的整数,负整数是小于零的整数,而零则是一个特殊的整数。
2. 分数分数是有理数的一种形式,它可以表示为一个整数与一个非零整数的比值。
分数可以化简为最简分数,也可以表示为带分数或者混合数。
三、无理数无理数是不能表示为有理数的数,它是无限不循环小数的形式。
无理数包括开方数和圆周率等,例如,√2、π等都是无理数。
四、数轴数轴是一种用于表示实数的有向直线,它是实数的图形表示方式。
数轴将实数表示为一维空间上的点,方便我们对实数进行可视化表示和研究。
数轴一般用于进行实数的比较、运算和研究。
1. 数轴的建立数轴的建立需要选择一个原点作为参照点,并沿着直线的一个方向标出正数,另一个方向标出负数。
数轴上的每个点表示一个实数,它与原点的距离表示这个实数的大小。
2. 数轴上的实数数轴上的实数按照大小顺序排列,较大的实数在数轴上的位置较靠右,较小的实数在数轴上的位置较靠左。
数轴上相邻的两个整数之间的距离为1,而相邻的两个分数之间的距离根据它们在数轴上的位置来确定。
3. 数轴上的点数轴上的每个点表示一个实数,它与原点的距离表示这个实数的大小。
实数与数轴题一:如图,半径为12的圆周上有一点A 落在数轴上2点处,现将圆在数轴上向右滚动一周后点A 所处的位置在连续整数a 、b 之间,则a +b = .题二:比较大小:(1)3与33-;(2)284+与114; (3)87与78.题三:点A 在数轴上和原点相距7个单位,点B 在数轴上和原点相距3个单位,且点B 在点A 的左边,则A ,B 两点之间的距离为__ __.题四:已知数轴上A ,B 两点对应数分别为2和4,P 为数轴上一动点,对应数为x .(1)若P 为线段AB 的三等分点,求P 点对应的数;(2)数轴上是否存在点P ,使P 点到A 点、B 点距离之和为10?若存在,求出x 的值;若不存在,请说明理由;(3)若点A 、点B 和点P (点P 在原点)同时向左运动,它们的速度分别为1个单位长度/分、2个单位长度/分和1个单位长度/分,则经过多长时间点P 为AB 的中点?题五:设a 是小于1的正数,且b a ,则a 与b 的大小关系是( )A .a >bB .a =bC .a <bD .a ≥b题六:比较下列各组数的大小. (1)4427+与107;(2)267+与514+.题七:已知有理数m 、n 满足等式1+2m =3n +23m ,求m +3n 的值.实数与数轴课后练习参考答案题一: 3. 详解:∵圆的半径为12,∴圆的周长为π, ∵3<π<4,∴32<π2<42,即1<π2<2, ∴向右滚动一周后点A 所处的位置在1与2之间,即a =1,b =2,∴a +b =1+2=3.题二: (1)333>-;(2)281144+>;(3)8778>. 详解:(1)∵3(33)2331290--=-=->,∴333>-;(2)∵283<<,3114<<,∴4285<+<,∴1128<+,∴281144+>; (3)∵2(87)448=,2(78)392=,448392>,∴8778>.题三: 37±.详解:∵点A 在数轴上与原点相距7个单位,∴点A 的坐标为±7,∵点B 在数轴上和原点相距3个单位,且点B 在A 的左边,∴B 点坐标为3,∴A ,B 两点之间的距离为3+7或37.题四: 见详解. 详解:(1)因数轴上A 、B 两点对应的数分别是2和4,所以AB =6,又因P 为线段AB 的三等分点,所以 AP =6÷3=2或AP =6÷3×2=4,所以P 点对应的数为0或2;(2)若P 在A 点左侧,则2x +4x =10,解得x = 4,若P 在A 点、B 中间,因AB =6,所以不存在这样的点P ,若P 在B 点右侧,则x 4+x +2=10,解得x =6;(3)设第x 分钟时,P 为AB 的中点,则42x (2x )=2×[x (2x )],解得x =2,所以,第2分钟时,P 为AB 的中点.题五: B . 详解:∵0<a <1,∴a 可为12,13,14等, 当a =12时,b =12=22,则b a =212->0,即b >a , 依此类推,∴b >a .故答案为B .题六: (1)4421077+<;(2)267514+<+. 详解:(1)∵6447<<,∴84429<+<,∴44210+<,∴4421077+<; (2)∵8679<<,7518<<,∴26711+<,11514<+,∴267514+<+. 题七: 7.详解:∵1+2m =3n +23m ,∴2(m 3)+(m +13n )=0,又∵m 、n 为有理数,∴2(m 3),m +13n 为有理数, ∴m 3=0,m +13n =0,解得m =3,n =43, ∴m +3n =43373=+⨯.考点综合专题:一元二次方程与其他知识的综合◆类型一 一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x 2-4x +3=0的根,则该三角形的周长可以是( )A .5B .7C .5或7D .102.(广安中考)一个等腰三角形的两条边长分别是方程x2-7x+10=0的根,则该等腰三角形的周长是()A.12 B.9C.13 D.12或93.(罗田县期中)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x+12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x+15=0的根,则△ABC的周长是.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x+k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m+1)x+m-1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限10.(葫芦岛中考)已知k、b是一元二次方程(2x+1)(3x-1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y=(5-m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是.12.(甘孜州中考)若函数y=-kx+2k+2与y=kx(k≠0)的图象有两个不同的交点,则k的取值范围是..◆类型三一元二次方程与二次根式的综合13.(达州中考)方程(m -2)x 2-3-mx +14=0有两个实数根,则m 的取值范围为( )A .m >52B .m ≤52且m ≠2 C .m ≥3 D .m ≤3且m ≠214.(包头中考)已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k 的取值范围是 .考点综合专题:一元二次方程与其他知识的综合1.B 2.A 3.A 4.B 5.86.16 解析:设矩形的长和宽分别为x 、y ,根据题意得x +y =8,所以矩形的周长为2(x +y)=16.7.解:∵一元二次方程x 2+(2k -1)x +k 2+3=0有两个不相等的实数根,∴Δ>0,∴(2k -1)2-4(k 2+3)>0,即-4k -11>0,∴k<-114,令其两根分别为x 1,x 2,则有x 1+x 2=1-2k ,x 1·x 2=k 2+3,∵此方程的两个根分别是一直角三角形的两条直角边,且此直角三角形的斜边长为5,∴x 21+x 22=52,∴(x 1+x 2)2-2x 1·x 2=25,∴(1-2k)2-2(k 2+3)=25,∴k 2-2k -15=0,∴k 1=5,k 2=-3,∵k<-114,∴k =-3, ∴把k =-3代入原方程得到x 2-7x +12=0,解得x 1=3,x 2=4,∴直角三角形的两直角边分别为3和4.8.B9.D 解析:∵一元二次方程x 2-2x -m =0无实数根,∴Δ<0,∴Δ=4-4×1×(-m)=4+4m <0,∴m <-1,∴m +1<1-1,即m +1<0,m -1<-1-1,即m -1<-2,∴一次函数y=(m+1)x+m-1的图象不经过第一象限.故选D.10.B 11.-2 12.k>-12且k≠013.B 14.k≥1。
实数与数轴题一:如图,在数轴上,A,B 两点之间表示整数的点有 __ 个.题二:比较大小: (1) 3 2 与 ;2 (2) 11 与 3 ;84 (3) 4 3 与 5 2 .题三:点 A 在数轴上距原点的距离为 5 个单位,点 B 在数轴上和原点相距 3 个单位,则 A、 B 两点之间的距离为__ __.题四: 如图,数轴上与 1, 2 对应的 点分别为 A,B,点 B 关于点 A 的对称点为 C,设点 C表示的 数为 x,则 x 2 2 =.x题五:设 A、B 均为实数,且 A x 4 , B 3 4 x ,则 A、B 的大小关系是( ) A.A>B B.A=B C.A<B D. A≥B题六:比较下列各组数的大小.(1) 33 1 与 11 ;66(2) 19 4 与 7 57 .题七:若有理数 m、n 满足 3m 2 2n 15 0 ,求 2m+n 的值.3题一: 4.实数 与数轴 课后练习参考答案详解:∵ 2< 3 < 1,2< 5 <3,∴在数轴上,A,B 两点之间表示整数的点有 1,0,1,2 一共 4 个.题二: (1) 2 3 ;(2) 11 3 ;(3) 4 3 5 2 .284详解:(1)∵1 3 2 ,1 2 2 ,1 2 ,∴ 2 3 2 , ∴ 2 3 ;22(2)∵ 3 2 3 12 ,∴ 11 12 ,∴ 11 3 ;48 88884(3)∵ 4 3 48 , 5 2 50 , 48 50 ,∴ 4 3 5 2 .题三: 3 5 .详解:根据题意,点 A 在数轴上距原 点的距离为 5 个单位,则 A 表示的实数为± 5 ; 点 B 在数轴上和原点相距 3 个单位,B 表示的实数为±3,则 A、B 两点之间的距离有 3 5 ,3 ( 5 ), 5 ( 3), 5 ( 3)四种情况;∴可得 A、B 两点之间的距离为 3 5 或 3+ 5 .题四: 3 2 .详解:由题意得:x= 1 ( 2 1) 2 2 ,∴原式= 2 2 2 2 2 2 2 2 2 2 2 2(2 2)2 22 2(2 2)(2 2)= 2 2 2 2(2 2) 2 2 2 2(2 2) 2 2 2 2 2 3 2 .22 ( 2)22题五: D. 详解:根据二次根式有意义的条件可得 x 4 0 ,所以 x 4 , A 0 ; 由 x 4 可得 4 x 0 ,则 B 0 ,根据正 数大于一切负数得 A≥B. 故选 D.题六: (1) 33 1 11 ;(2) 19 4 7 57 .66详解:(1)∵ 5 33 6 ,3 11 4 ,∴ 4 33 1 5 ,∴ 33 1 11 ,∴ 33 1 11 ;66(2)∵ 4 19 5 , 7 57 8 ,∴ 0 19 4 , 7 57 0 ,∴ 19 4 7 57 .题七:.详解:∵ 3m 2 2n 15 0 ,∴ 2 2n (3m 15) 0 ,又∵m、n 为有理数,∴ 2 2n ,3m 15 为有理数,∴ 2 2n =0,3m 15=0,解得 m =5,n=0, ∴2m+n= 25 + 0 10 .3【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
八年级下册数学重点知识归纳摘要:一、引言二、数轴与实数1.数轴的定义与性质2.实数的分类与性质三、代数式与代数表达式1.代数式的基本概念2.代数表达式的运算规则四、方程与不等式1.一元一次方程的解法2.一元二次方程的解法3.不等式的基本概念与解法五、函数1.函数的基本概念2.函数的图像与性质3.函数的解析式与应用六、几何知识1.点、线、面的基本概念2.直线与角的关系3.三角形的基本性质与证明4.四边形的分类与性质七、数据的收集与分析1.数据的收集方法2.数据的整理与展示3.数据的分析与推断八、概率与统计1.概率的基本概念2.事件的概率3.统计的基本概念与方法九、综合应用1.实际问题与数学建模2.数学在生活中的应用十、总结与展望正文:【引言】数学是科学的基础,也是工具。
在八年级下册的数学课程中,我们将学习一系列重要的数学知识,为以后的学习打下坚实的基础。
本篇文章将对这些重点知识进行归纳总结,帮助大家更好地掌握数学知识。
【数轴与实数】数轴是数学中的一个基本概念,它是一个直线,规定了原点、正方向和单位长度。
实数是数学中的基本对象,可以分为有理数和无理数。
有理数又可分为整数、分数和小数。
无理数是不能表示为有理数的实数,如圆周率π。
【代数式与代数表达式】代数式是由数、字母和运算符号组成的式子,如3x+2y。
代数表达式是在代数式的基础上,应用运算律和运算方法得到的式子,如(3x+2y)^2。
【方程与不等式】方程是一个含有未知数的等式,如x+3=5。
解方程就是求出方程中未知数的值。
不等式是表示大小关系的式子,如x>3。
解不等式就是找出满足不等式的所有x 的值。
【函数】函数是一种特殊的关系,它将一个或多个变量映射到另一个变量。
例如,y=2x+1 是一个一次函数,它将x 映射到y。
函数的解析式是表示函数关系的式子。
【几何知识】几何是数学的一个重要分支,主要研究点、线、面的性质和它们之间的关系。
在八年级下册,我们将学习直线与角的关系,三角形的性质和证明,以及四边形的分类和性质。
八年级上册数轴的知识点数轴是数学中常用的工具,很多重要的概念都可以在数轴上进行表示和比较。
本文将介绍八年级数学上册中关于数轴的知识点,包括基本概念、简单计算和实际应用等方面。
一、数轴的基本概念数轴是一条直线,上面标有一些数,称为数轴上的点。
通常将数轴分为左侧和右侧,以0为界限。
数轴的中心点为0,向左侧为负数,右侧为正数。
数轴上每个点都可以表示一个实数,实数的大小与其在数轴上的位置有关系。
二、数轴的简单计算1. 求两个数的差:计算相减的结果,并从数轴上对应位置的点开始,向左或向右移动结果的绝对值。
例如:-3 - (-7) = 4,表示从-3点向右移动4个单位得到-7点。
2. 求两个数的和:计算相加的结果,并从数轴上对应位置的点开始,向左或向右移动结果的绝对值。
例如:-3 + 5 = 2,表示从-3点向右移动2个单位得到5点。
3. 求绝对值:对于一个实数在数轴上的位置,其绝对值等于其到0点的距离。
例如:|2| = 2,表示2点和0点的距离为2个单位。
4. 求相反数:一个数的相反数在数轴上对称于0点的位置,距离0点相等,但方向相反。
例如:-(-3) = 3,表示-3点和3点关于0点对称。
三、数轴的实际应用1. 比较大小:在数轴上,两个实数的大小可以通过其在数轴上的位置比较。
例如:-1 < 3,表示-1点在3点的左侧,-1比3小。
2. 表示温度:常用的温度计上有一个数轴,在数轴上可以表示温度的大小。
0度表示水的冰点,100度表示水的沸点,负数表示低于冰点的温度。
3. 表示距离:数轴也可以表示两个点之间的距离,如一个人从0点出发走了5个单位,到了5点的位置,表示这个人走了5个单位的距离。
总之,数轴是数学中不可或缺的工具之一,能够帮助我们更好地理解实数之间的关系和大小,进而实现在实际问题中的应用。
实数与数轴的学习要点随着社会的发展和实际生活的需要,人们引进了实数.由于实数的初来乍到,同学们不免感觉有点陌生,因此,建议同学们在学习实数时应注意掌握以下几个要点:一、能正确理解实数的有关概念我们已经知道整数和分数统称为有理数.并规定无限不循环小数是无理数,这样我们把有理数和无理数统称为实数,即实数这个大家庭里包括有理数和无理数两大成员.学习时应注意分清有理数和无理数是两类完全不同的数,就是说如果一个数是有理数,那么它一定不是无理数,反之,如果一个数是无理数,那么它一定不是有理数.二、正确理解实数的分类实数的分类可从两个角度去思考:(1)按定义来分类;(2)按正、负数来分类.具体地见下表:实数0⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎨⎩⎭⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正有理数有理数有限小数或无限循环小数负有理数正无理数无理数无限不循环小数 负无理数或实数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负无理数负有理数负实数正无理数 正有理数正实数0 由此可见,0在实数里也扮演着重要角色.我们通常把正实数和0合称为非负数,把负实数和0合称为非正数.三、正确理解实数与数轴的关系实数与数轴上的点是一一对应的,就是说所有的实数都可以用数轴上的点来表示;反之,数轴上的每一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数. 在数轴上,表示相反数的两个点在原点的两旁,并且到原点的距离相等.实数a 的绝对值就是在数轴上这个数点到原点的距离.利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总大于左边.四、熟悉掌握实数的有关性质实数和有理数一样也有许多的重要性质.具体地讲可从以下几方面去思考:1.相反数: 实数a 的相反数是-a ,0的相反数是0,具体地,若a 与b 互为相反数,则a +b =0;反之,若a +b =0,则a 与b 互为相反数.2.绝对值: 一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0.实数a 的绝对值可表示为()()0,0.a a a a a ⎧⎪=⎨-<⎪⎩≥ 就是说实数a 的绝对值一定是一个非负数,即.0≥a 并且有若()0,x a a x a ==±≥.3.倒数: 乘积为1的两个实数互为倒数,即若a 与b 互为倒数,则ab =1;反之,若ab =1,则a 与b 互为倒数.这里应特别注意的是0没有倒数.4.实数大小的比较: 任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.5.实数的运算: 实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数和0可以开平方.在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.。
第六章实数知识点总结摘要:一、实数的定义与分类1.实数的定义2.实数的分类二、实数的性质与运算1.实数的性质2.实数的运算三、实数与数轴1.数轴的概念2.实数与数轴的关系四、实数的比较与大小1.实数的大小比较2.实数的大小关系五、实数的应用1.实数在数学中的应用2.实数在其他学科中的应用正文:实数是数学中的一个重要概念,它包括有理数和无理数。
实数的定义是指数轴上的点,可以表示为有序对(a,b),其中a 表示点的横坐标,b 表示点的纵坐标。
根据横坐标a 的值,实数可以分为负数、零和正数。
实数的性质包括:1.实数具有连续性,即任意两个实数之间总存在一个实数;2.实数具有完备性,即每个实数都可以用无限接近的有理数表示;3.实数具有可数性,即实数集中的每个元素都可以与自然数集建立一一对应关系。
实数的运算包括加法、减法、乘法、除法、乘方和开方。
这些运算遵循交换律、结合律和分配律等基本运算法则。
实数的运算不仅限于实数,还可以扩展到复数。
实数与数轴有密切的关系。
数轴是一个直线,规定了原点、正方向和单位长度。
实数可以表示为数轴上的点,根据横坐标a 的值,实数可以分为负数、零和正数。
数轴上的点与实数之间的对应关系是一一映射。
实数的大小比较和大小关系是数学中常见的问题。
实数的大小比较遵循“大于一切小于它的数,小于一切大于它的数”的原则。
实数的大小关系可以通过数轴来直观表示。
实数在数学中有广泛的应用,如微积分、实分析等。
实数在其他学科中也有应用,如物理、化学、生物等。
实数的概念、性质和运算等基础知识是解决实际问题的关键。
总之,实数是数学中的一个基本概念,它具有重要的理论意义和实际应用价值。
八年级上册数学《第4章实数》4.3实数◆1、实数的概念:有理数和无理数统称为实数.◆2、实数的分类:(1)按定义分类.(2)按性质分类.◆1、实数与数轴上的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.◆2、与规定有理数的大小一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.◆3、实数的大小比较①正实数大于零,负实数小于零,正实数大于负实数;②两个正实数,绝对值大的数较大;③两个负实数,绝对值大的数反而小.在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.◆1、数a的相反数是-a,这里a表示任意一个实数.◆2、一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即设a表示任意一个实数,则|a|=o>0)0(=0)−o<0)◆1、当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.◆2、实数的混合运算顺序与有理数的混合运算的顺序一样,实数运算过程中的运算顺序为:先算乘方、开方、再算乘法、除法,最后算加法、减法,同级运算按照自左向右的顺序进行,有括号先算括号里的.◆3、实数的运算律.①加法交换律:a+b=b+a;②加法结合律:(a+b)+c=a+(b+c)③乘法交换律:ab=ba;④乘法结合律:(ab)c=a(bc)⑤分配律:a(b+c)=ab+ac.①被开方数一定是非负数,即a≥0.②一个非负数的算术平方根也是非负数,即a≥0.【例题1】(2022秋•丽水期中)把下列各数的序号填在相应的横线上:①﹣3.14,②2π,③−13,④0.618,⑤−16,⑥0,⑦﹣1,⑧+3,⑨227,⑩﹣0.030030003……(每相邻两个3之间0的个数逐渐多1).整数集合:{……};分数集合:{……};无理数集合:{……}.【分析】利用整数、分数、无理数的定义分类填空.【解答】解:整数有:⑤−16=−4,⑥0,⑦﹣1,⑧+3;分数有:①﹣3.14,③−13,④0.618,⑨227;无理数有:②2π,⑩﹣0.030030003……(每相邻两个3之间0的个数逐渐多1),故答案为:⑤⑥⑦⑧;①③④⑨;②2⑩.【点评】本题考查了实数的定义,解题的关键是掌握整数、分数、无理数的定义.【变式1-1】(2022秋•社旗县期末)实数−13,−6,0,﹣1中,为负整数的是()A.﹣1B.−6C.0D.−13【分析】根据实数的分类进行解答即可.【解答】解:这一组数中的负整数是﹣1.故选:A.【点评】本题考查的是实数,熟知实数的分类是解题的关键.【变式1-2】(2022秋•宁波期中)下列实数:2,39,1,2,−73,0.3⋅,分数有()A.2个B.3个C.4个D.5个【分析】根据实数的分类及分数的定义进行解答即可.−73,0.3⋅共3个.故选:B.【点评】本题考查的是实数,熟知所有的分数都是有理数是解题的关键.【变式1-3】(2022春•宜秀区校级月考)下列说法正确的是()A.实数包括有理数、无理数和零B.有理数包括正有理数和负有理数C.无限不循环小数和无限循环小数都是无理数D.无论是有理数还是无理数都是实数【分析】灵活掌握实数分类以及有理数和无理数概念,注意容易混淆的知识点.【解答】解:有理数和无理数统称为实数,0属于有理数,故A错误,有理数包括正有理数、负无理数和0,0既不是正数也不是负数,故B错误,无限不循环的小数是无理数,故C错误,实数分为有理数和无理数,故D正确.故选:D.【点评】考查了实数的概念,以及有理数和无理数概念及分类.【变式1-4】下列判断:①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③2的算术平方根是2;④无理数是带根号的数.正确的有()A.1个B.2个C.3个D.4个【答案】B;【分析】直接利用有关实数的性质分别分析得出答案.【解答】解:①一个数的平方根等于它本身,这个数是0,故原题说法错误;②实数包括无理数和有理数,故原题说法正确;③2的算术平方根是2,故原题说法正确;④无理数是无限不循环小数,故原题说法错误,例如4=2是有理数.故选:B.【变式1-5】(2022春•夏津县期末)下列说法中错误的是()A.3−27是整数B.−1713是有理数C.33是分数D.9的立方根是无理数【分析】根据立方根,算术平方根,有理数,无理数的意义,即可解答.【解答】解:A、∵3−27=−3,∴3−27是整数,故A不符合题意;B、−1713是有理数,故B不符合题意;C、33是无理数,不是分数,故C符合题意;D、∵9=3,3的立方根是33,33是无理数,∴9的立方根是无理数,故D不符合题意;故选:C.【点评】本题考查了实数,熟练掌握有理数,无理数的意义是解题的关键.【变式1-6】(2022秋•黑山县期中)把下列各数分别填入相应的集合内:33,−4,−34,0,﹣0.2121121112…(相邻两个2之间的1的个数逐次加1)【分析】根据无理数以及正实数的定义,在给定实数中分别挑出无理数以及正实数,此题得解.【解答】解:如图所示:【点评】本题考查了有理数的分类,熟练掌握有理数的分类是解题的关键.【变式2-7】(2023秋•滨湖区期中)将下列各数的序号填入相应的括号内:①﹣2.5;②313;③0;④2;⑤﹣8;⑥10%;⑦−27;⑧﹣1.12121112…;⑨2;⑩−0.345⋅⋅.整数集合:{…};负分数集合:{…};正有理数集合:{…};无理数集合:{…}.【分析】根据实数的分类,即可解答.【解答】解:整数集合:{③⑤⑨…};负分数集合:{①⑦⑩…};正有理数集合:{②⑥⑨…};无理数集合:{④⑧…}.故答案为:③⑤⑨;①⑦⑩;②⑥⑨;④⑧.【点评】本题考查了实数,熟练掌握实数的分类是解题的关键.【例题2】(2022•海淀区校级模拟)实数a与b在数轴上对应点的位置如图所示,则正确的结论是()A.a<0B.a<b C.b+5>0D.|a|>|b|【分析】根据数轴可以发现b<a,且,由此即可判断以上选项正确与否.【解答】解:A.∵2<a<3,a>0,答案A不符合题意;B.∵2<a<3,﹣4<b<﹣3,∴a>b,∴答案B不符合题意;C.∵﹣4<b<﹣3,∴b+5>0,∴答案C符合题意;D.∵2<a<3,﹣4<b<﹣3,∴|a|<b|,∴答案D不符合题意.故选:C.【点评】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.【变式2-1】(2022春•南岸区期中)实数a在数轴上对应点的位置如图所示,若实数b满足a<b<2,则b的值可以是()A.﹣2B.﹣1C.2D.3【分析】先判断b的范围,再确定符合条件的数即可.【解答】解:∵1<a<2,∴﹣2<﹣a<﹣1,∵﹣a<b<a,∴b只能是﹣1.故选:B.【点评】本题考查了数轴上的点和实数的对应关系,解决本题的关键是根据数轴上的点确定数的范围.【点评】本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.【变式2-2】(2023秋•昌黎县期中)如图,在数轴上,点A表示实数a,则a可能是()A.−12B.−10C.−8D.−3【分析】根据数轴可得−9<<−4,再逐一分析各选项的数据即可.【解答】解:∵﹣3<a<﹣2,∴−9<<−4,∵9<12,9<10,∴−12<−9,−10<−9,故A,B不符合题意;∵3<4,∴−3>−4,故D不符合题意;∵4<8<9,∴−9<−8<−4,即−3<−8<−2,故选:C.【点评】本题考查的是实数与数轴,实数的大小比较,掌握实数的大小比较的方法是解本题的关键.【变式2-3】(2023秋•新吴区校级期中)如图,正方形的边长为1,在正方形的4个顶点处标上字母A,B,C,D,先让正方形上的顶点A与数轴上的数﹣2所对应的点重合,再让正方形沿着数轴按顺时针方向滚动,那么数轴上的数2020将与正方形上的哪个字母重合()A.字母A B.字母B C.字母C D.字母D【分析】正方形滚动一周的长度为4,从﹣2到2020共滚动2022,由2022÷4=505......2,即可作出判断.【解答】解:∵正方形的边长为1,∴正方形的周长为4,∴正方形滚动一周的长度为4,∵正方形的起点在﹣2处,∴2020﹣(﹣2)=2022,∵2022÷4=505......2,∴数轴上的数2020将与正方形上的点C重合,故选:C.【点评】本题考查了实数与数轴,根据正方形的特点找出滚动规律是解题的关键.【变式2-4】把表示下列各数的点画在数轴上,再按从小到大的顺序,用“<”号把这些数连接起来:3,﹣(﹣1),﹣1.5,0,﹣|﹣4|,2.【分析】先计算﹣(﹣1)=1,﹣|﹣4|=﹣4,再利用数轴表示数的方法表示所给的6个数,然后写出它们的大小关系.【解答】解:﹣(﹣1)=1,﹣|﹣4|=﹣4,用数轴表示为:,它们的大小关系为﹣|﹣4|<﹣1.5<0<﹣(﹣1)<2<3.【变式2-5】(2022春•海安市校级月考)7、如图:数轴上表示1、5的对应点分别为A、B,且点A为线段BC的中点,则点C表示的数是()A.5−1B.1−5C.5−2D.2−5【分析】设C点表示的数为x,再根据中点坐标公式求出x的值即可.【解答】解:设C点表示的数为x,则r52=1,解得x=2−5.故选:D.【点评】本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.【变式2-6】(2023•市南区一模)已知实数a,b在数轴上的位置如图所示,下列结论错误的是()A.1<|a|<b B.1<﹣a<b C.|a|<1<|b|D.﹣b<a<﹣1【分析】根据相反数的意义,绝对值的性质,有理数的大小比较,可得答案.【解答】解:由题意,得1<|a|<b,1<﹣a<b,﹣b<a<﹣1,故C符合题意;故选:C.【点评】本题考查了实数与数轴,利用相反数的意义,绝对值的性质,数轴上的点右边的总比左边的大是解题关键.【变式2-7】(2023春•岳池县期末)如图,已知正方形ABCD的面积为5,点A在数轴上,且表示的数为1.现以A为圆心,AB为半径画圆,和数轴交于点E(E在A的右侧),则点E表示的数为1+【分析】根据正方形的面积求出正方形的半径,即圆的半径为5,所以E点表示的数为OE的长度,即1+5.【解答】解:∵正方形的面积为5,∴AB为5;∵以A点为圆心,AB为半径,和数轴交于E点,∴AE=AB=5;∵A点表示的数为1,∴OE=OA+AE=1+5故答案为:1+5【点评】本题主要考查了实数与数轴的位置关系,结合正方形面积以及圆的半径考查.解题关键是求出OE的长度.【变式2-8】(2022秋•西安月考)如图,已知实数−5,﹣1,5,3,其在数轴上所对应的点分别为点A,B,C,D.(1)求点C与点D之间的距离;(2)记点A与点B之间距离为a,点C与点D之间距离为b,求a﹣b的值.【分析】(1)根据数轴上两点间距离的计算方法进行计算即可得出答案;(2)先根据数轴上两点间距离的计算方法计算出a的值,再求a﹣b即可得出答案.【解答】解:(1)根据题意可得,点C与点D之间的距离为3−5;(2)根据题意可得,a=|﹣1+5|=5−1,b=3−5,a﹣b=5−1﹣(3−5)=25−4.【点评】本题主要考查了实数与数轴及数轴上两点间距离,熟练掌握实数与数轴上的点是一一对应关系及数轴上两点间距离的计算方法进行求解是解决本题的关键.【例题3】实数−3的绝对值是()A.3B.C.−3D.33【分析】直接利用绝对值的性质分析得出答案.【解答】解:实数−3的绝对值是:3.故选:A.【点评】此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.【变式3-1】−2的相反数是()A.−2B.2CD.2【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的含义,可得−2的相反数是:2.故选:B.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.【变式3-2】(2023春•潮南区期中)5−2的相反数是()A.﹣0.236B.5+2C.2−5D.﹣2+5【分析】根据相反数的定义即可得出结论.【解答】解:5−2的相反数是2−5.故选C.【点评】本题考查的是相反数,熟知只有符号不同的两个数叫互为相反数是解题的关键.【变式3-3】(2023春•京山市期中)下列各组数中互为相反数的是()A.﹣2与(−2)2B.﹣2与3−8C.﹣2与−12D.2与|﹣2|【分析】根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A、(−2)2=2,﹣2与(−2)2是互为相反数,故本选项正确;B、3−8=−2,﹣2与3−8相等,不是互为相反数,故本选项错误;C、﹣2与−12是互为倒数,不是互为相反数,故本选项错误;D、|﹣2|=2,2与|﹣2|相等,不是互为相反数,故本选项错误.故选:A.【点评】本题考查了实数的性质,对各项准确计算是解题的关键.【变式3-4】(2023秋•秦都区校级月考)下列说法正确的是()A.2的绝对值是22B.2的倒数是22C.2的相反数是22D.4的平方根为±2【分析】根据绝对值的知识、二次根式的知识、平方根的知识、相反数的知识分别对四个选项进行分析.【解答】解:2的绝对值是2,所以A选项不正确;2的倒数是22,所以B选项正确;2的相反数是−2,所以C选项不正确;4的平方根是±2,所以D选项不正确.故选:B.【点评】本题主要考查了绝对值的知识、二次根式的知识、平方根的知识、相反数的知识.【变式3-5】填空:(1)5的相反数是,绝对值是;(2)3−1的相反数是,绝对值是;(3)若|x|=3,则x=.【分析】根据相反数和绝对值的定义即可得出答案.【解答】解:(1)5的相反数是−5,绝对值是5;(2)3−1的相反数是1−3,绝对值是3−1;(3)∵|x|=3,∴x=±3.故答案为:(1)−5,5;(2)1−3,3−1;(3)±3.【点评】本题考查了实数的性质,算术平方根,掌握绝对值等于3的数有2个是解题的关键.【变式3-6】(2022秋•余姚市校级期中)a是4的算术平方根,b是27的立方根,c是15的倒数.(1)填空:a=,b=,c=;(2)求o+p+2−的值.【分析】(1)直接利用算术平方根的概念以及立方根的概念、倒数的概念分别分析得出答案;(2)直接利用绝对值的性质、立方根的性质、算术的性质分析得出答案.【解答】解:(1)∵a是4的算术平方根,b是27的立方根,c是15的倒数,∴a=2,b=3,c=5;故答案为:2,3,5;(2)原式=2(3+5)+22−2×5=6+25+4−25=10.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.【变式3-7】(2022秋•芗城区校级月考)31−2与33−2互为相反数,求代数式6x﹣9y+5的值.【分析】由题意得方程1﹣2x+3y﹣2=0,求得2x﹣3y=﹣1,再将其代入求解即可.【解答】解:由题意得1﹣2x+3y﹣2=0,整理,得2x﹣3y=﹣1,∴6x﹣9y+5=3(2x﹣3y)+5=3×(﹣1)+5=﹣3+5=2.【点评】此题考查了运用立方根和相反数进行化简、求值的能力,关键是能准确理解并运用以上知识和整体思想.【变式3-8】(2022春•如皋市校级月考)已知|x|=5,y是11的平方根,且x>y,求x+y的值.【分析】直接利用绝对值的性质以及平方根的性质分类讨论得出答案.【解答】解:∵|x|=5,∴x=±5,∵y是11的平方根,∴y=±11,∵x>y,∴当x=5,则y=−11,故x+y=5−11,当x=−5,则y=−11,故x+y=−5−11,综上所述:x+y的值为5−11或−5−11.【点评】此题主要考查了实数的性质,正确分类讨论是解题关键.【例题4】(2023•潍坊)在实数1,﹣1,0,2中,最大的数是()A.1B.﹣1C.0D.2【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小可得答案.【解答】解:∵﹣1<0<1<2,∴在实数1,﹣1,0,2中,最大的数是2,故选:D.【点评】本题主要考查了实数的大小比较,解题的关键是掌握实数比较大小的法则.【变式4-1】(2022•沂源县一模)在3,−3,0,2这四个数中,最小的一个数是()A.3B.−3C.0D.2【分析】根据实数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小即可求解.【解答】解:在3,−3,0,2这四个数中,最小的一个数是−3.故选:B.【点评】此题考查了实数大小比较,可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.【变式4-2】三个数﹣π,﹣3,−3的大小顺序是()A.﹣3<﹣π<−3B.﹣π<﹣3<−3C.﹣π<−3<−3D.﹣3<−3<−π【分析】先对无理数进行估算,再比较大小即可.【解答】解:﹣π≈﹣3.14,−3≈−1.732,因为3.14>3>1.732.所以﹣π<﹣3<−3.故选:B.【点评】本题考查了同学们对无理数大小的估算能力及比较两个负数大小的方法,即两个负数相比较,绝对值大的反而小.【变式4-3】(2023秋•农安县期中)将数“22,5,−2,0,﹣1.6”按从小到大的顺序排列,并用“<”连接起来是:.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:∵22=8>5,−2≈−1.57>﹣1.6,∴﹣1.6<−2<0<5<22,故答案为:﹣1.6<−2<0<5<22.【点评】此题主要考查了实数大小比较的方法,解答此题的关键是要明确:正实数>0>负实数,两个负实数比较时绝对值大的反而小.【变式4-4】设a为实数且0<a<1,则在a2,a,,1这四个数中()A.1>>>2B.2>>>1C.>>1>2D.1>>>2【分析】根据正数比较大小的法则进行解答即可.【解答】解:∵0<a<1,∴0<a2<a<<1,1>1,∴1>>a>a2.故选:D.【点评】本题考查的是实数的大小比较,熟知正数比较大小的法则是解答此题的关键.【变式4-5】比较2,5,37的大小,正确的是()A.2<5<37B.2<37<5C.5<37<2D.37<2<5【分析】把2转化为4,38,即可比较大小.【解答】解:∵2=4,∴5>2,∵2=38,∴2>37,∴5>2>37,即37<2<5,故选:D.【点评】本题考查了实数大小的比较,解决本题的关键是把2转化为4,38.【变式4-6】比较大小:− 1.5.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:(−3)2=3,(﹣1.5)2=2.25,∵3>2.25,∴−3<−1.5.故答案为:<.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小,两个负数平方大的反而小.【例题5】已知:x<21<y(x,y是两个连续整数),则x,y的值为()A.x=2,y=3B.x=3,y=4C.x=4,y=5D.x=5,y=6【分析】根据16<21<25,即可得出x、y的值.【解答】解:∵16<21<25,∴x=4,y=5;故选:C.【点评】本题考查了估算算术平方根的大小,解题的关键是用有理数逼近算术平方根.【变式5-1】(2023秋•郁南县期中)估算57的值应在()A.6~7之间B.7~8之间C.8~9之间D.不能确定【分析】利用无理数的估算即可求得答案.【解答】解:∵49<57<64,∴7<57<8,即57的值在7~8之间,故选:B.【点评】本题考查无理数的估算,熟练掌握估算无理数大小的方法是解题的关键.【变式5-2】(2022春•香洲区期末)如图,用边长为3的两个小正方形拼成一个面积为18的大正方形,则大正方形的边长最接近的整数是()A.4B.5C.6D.7【分析】根据算术平方根的概念结合正方形的性质得出其边长,进而得出答案.【解答】解:∵用边长为3的两个小正方形拼成一个大正方形,∴大正方形的面积为:9+9=18,则大正方形的边长为:18,∵16<18< 4.52,∴4<18<4.5,∴大正方形的边长最接近的整数是4.故选:A.【点评】此题主要考查了算术平方根,正确掌握算术平方根的定义是解题的关键.【变式5-3】(2022春•江津区校级月考)若x、y为两个连续的整数,且x<39<y,则x+y=.【分析】通过36<39<49求解.【解答】解:∵36<39<49,∴6<39<7,∴x=6,y=7,∴x+y=13.故答案为:13.【点评】本题考查了估算算术平方根的大小,平方根的定义的应用,解此题的关键是求出x、y的值.【变式5-4】(2023秋•青龙县期中)估算2+14的值在()A.4到5之间B.5到6之间C.6到7之间D.7到8之间【分析】先估算出14的取值范围,进而可得出结论.【解答】解:∵9<14<16,∴3<14<4,∴5<2+14<6.故选:B.【点评】本题考查的是估算无理数的大小,熟知估算无理数大小要用逼近法是解题的关键.【变式5-5】(2023秋•秦都区期中)估计23−2的值在()A.2到3之间B.1到2之间C.3到4之间D.4到5之间【分析】先估算出23的大小,进而估算23−2的范围.【解答】解:∵16<23<25,∴4<23<5,∴2<23−2<3,∴23−2的值在2和3之间.故选:A.【点评】本题考查了估算无理数的大小,估算无理数大小要用逼近法.【变式5-6】(2022•南关区校级开学)已知x,y为两个连续的整数,且x<20<y,则5x+y的值为.【分析】先求出20的范围,求出x、y的值,求出5x+y的值,根据平方根的定义求出即可.【解答】解:∵4<20<5,∴x=4,y=5,∴5x+y=5×4+5=25,∴5x+y的平方根是±5,故答案为:±5.【点评】本题考查了算术平方根的大小,平方根的定义的应用,解此题的关键是求出x、y的值.【变式5-7】(2023秋•二七区校级月考)阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2−1来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将2减去其整数部分,差就是2的小数部分.请解答:(1)23的整数部分是,小数部分是;(2)如果7+1的小数部分为,9−17的整数部分为b,求+−7的平方根;(3)已知10+7=+,其中x是整数,且0<y<1,求x﹣y的相反数.【分析】(1)根据算术平方根的定义,估算无理数23的大小即可;(2)根据算术平方根的定义估算无理数7+1,9−17的大小即可确定a、b的值,再代入计算即可;(3)根据算术平方根的定义估算无理数10+7的大小确定整数部分x,小数部分是y,再求出x﹣y的相反数即可.【解答】解:(1)42=16,52=25,而16<23<25,∴4<23<5,∴23的整数部分是4,小数部分为23−4,故答案为:4,23−4;(2)∵22=4,32=9,而4<7<9,∴2<7<3,∴3<7+1<4,∴7+1的整数部分是3,小数部分为7+1﹣3=7−2,即a=7−2;∵4<17<5,∴﹣5<−17<−4,∴4<9−17<5,∴9−17的整数部分是4,即b=4,∴a+b−7=7−2+4−7=2,∴+−7的平方根是±2;(3)∵2<7<3,∴12<10+7<13,∴10+7的整数部分是12,小数部分是10+7−12=7−2,又∵10+7=+,其中x是整数,且0<y<1,∴x=12,y=7−2,∴x﹣y的相反数是y﹣x=7−14.【点评】本题考查估算无理数的大小,掌握算术平方根、平方根的定义是正确解答的前提.【例题6】通过估算,比较下列各组数的大小:(1)6(2(3)5−121;(4)3+12112.【分析】(1)利用平方运算,比较大小即可解答;(2)根据算术平方根的意义,比较大小即可解答;(3)先估算出5的值的范围,再估算出5−1的值的范围,进行计算即可解答;(4)先估算出3的值的范围,再估算出3+1的值的范围,进行计算即可解答.【解答】解:(1)∵62=36,(35)2=35,∴36>35,∴6>35,故答案为:>;(2)∵8<10,∴8<10,故答案为:<;(3)∵4<5<9,∴2<5<3,∴1<5−1<2,∴12<5−12<1,故答案为:<;(4)∵1<3<4,∴1<3<2,∴2<3+1<3,∴132,故答案为:<.【点评】本题考查了数的大小比较,熟练掌握估算算术平方根的值的大小是解题的关键.【变式6-1】(2023春•西城区校级期中)比较大小:(1;(2)5−11.【分析】(1)先把4写成算术平方根的形式,然后根据算术平方根的被开方数越大,那个数就越大进行解答;(2)先估算5的大小,然后进行判断即可.【解答】解:(1)∵4=16,17>16,∴17>4;(2)∵2<5<3,∴5−1>1,故答案为:(1)>;(2)>.【点评】本题主要考查了实数的大小比较,解题关键是能够正确的估算无理数的大小.【变式6-2】(2022秋•新津县校级月考)比较大小:3−1212,23.【分析】(1)比较出两个数的差的正负,即可判断出它们的大小关系.(2)首先比较出两个数的平方的大小关系;然后根据:两个正实数,平方大的,这个数也大,判断出原来的两个数的大小关系即可.【解答】解:(1)∵3−12−12=32−1<0,∴3−12<12.(2)(32)2=18,(23)2=12,∵18>12,∴32>23.故答案为:<、>.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个正实数,平方大的,这个数也大.【变式6-3】(2023春•前进区月考)比较2,5,37的大小,正确的是()A.2<5<37B.2<37<5C.37<2<5D.37<5<2【分析】先分别求出这三个数的六次方,然后比较它们的六次方的大小,即可比较这三个数的大小.【解答】解:∵26=64,(5)6=[(5)2]3=125,(37)6=[(37)3]2=49,而49<64<125,∴(37)6<(5)6<26,∴37<2<5.故选:C.【点评】此题考查的是实数的比较大小,根据开方和乘方互为逆运算将无理数化为有理数,然后比较大小是解决此题的关键.【变式6-4】比较下列各组数的大小:(1)120与11.(2)5+12与2.【分析】(1)根据11=121,即可进行比较;(2)先通分,可得2=42,再比较分子5+1与4的大小即可求解.【解答】解:(1)∵11=121,120<121,∴120<11.(2)∵2=42,5+1<4,∴5+12<2.【点评】此题主要考查了算术平方根的估算能力,两个正数的算术平方根的比较大小可以通过平方的方法进行,两个式子平方的值大的,对应的式子的值就大.【变式6-5】比较下列各组数的大小(1)8与10;(2)65与8;(3)5−12与0.5;(4)5−12与1.【分析】(1)根据8<10,即可解答;(2)根据8=64,即可进行比较;(3)求出2<5<3,不等式两边都减去1,再不等式两边都除以2即可;(4)求出2<5<3,不等式两边都减去1,再不等式两边都除以2即可.【解答】解:(1)∵8<10,∴8<10;(2)∵64=8,64<65,∴65>64,∴65>8;(3)∵2<5<3,∴1<5−1<2,∴12<5−12<1,∴5−12>12.(4)∵2<5<3,∴1<5−1<2,∴12<5−12<1,∴5−12<1.【点评】本题考查了数的大小比较的应用,主要考查学生能否选择适当的方法比较两个数的大小.【例题7】(2022秋•大竹县校级期末)实数a、b在数轴上对应点的位置如图,则|a﹣b|−2的结果是()A.2a﹣b B.b﹣2a C.b D.﹣b【分析】首先由数轴可得a<b<0,然后利用算术平方根与绝对值的性质,即可求得答案.【解答】解:根据题意得:a<b<0,∴a﹣b<0,∴|a﹣b|−2=|a﹣b|﹣|a|=(b﹣a)﹣(﹣a)=b﹣a+a=b.故选:C.【点评】此题考查了数轴、算术平方根与绝对值的性质.此题难度适中,注意2=|a|.【变式7-1】实数a、b在数轴上所对应的点如图所示,则|3−b|+|a+3|+2的值.【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【解答】解:由数轴可得:a<−3,0<b<3,故|3−b|+|a+3|+2=3−b﹣(a+3)﹣a=3−b﹣a−3−a=﹣2a﹣b.故答案为:﹣2a﹣b.【点评】此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键.【变式7-2】实数a、b、c在数轴上的位置如图,化简(−p2−|a+c|+(−p2−|b|【分析】利用数轴首先得出各式的符号,进而化简得出答案.【解答】解:如图所示:a﹣b<0,a+c<0,c﹣b<0,b>0,则原式=b﹣a+a+c+b﹣c﹣b=b.【点评】此题主要考查了实数与数轴,正确判断出各式的符号是解题关键.【变式7-3】(2021春•南通期末)如图,a,b,c是数轴上三个点A、B、C所对应的实数.试化简:2+|a+b|+3(+p3−|b﹣c|.【分析】直接利用数轴得出c>0,a+b<0,b﹣c<0,再化简求解.【解答】解:由数轴可得:c>0,a+b<0,b﹣c<0,原式=c﹣a﹣b+(a+b)+(b﹣c)=b.【点评】此题主要考查了实数运算以及实数与数轴,正确化简各式是解题关键.【变式7-4】实数a,b,c表示在数轴上如图所示,完成下列问题,试化简:(−p2−|−U+3(−p3.【分析】根据题意可得:b<0<a<c,从而可得a﹣c<0,b﹣a<0,然后利用二次根式的性质,绝对值,立方根的意义进行化简计算,即可解答.【解答】解:由题意得:b<0<a<c,∴a﹣c<0,b﹣a<0,∴(−p2−|−U+3(−p3=c﹣a﹣(a﹣b)+b﹣c=c﹣a﹣a+b+b﹣c=2b﹣2a.【点评】本题考查了整式的加减,实数与数轴,准确熟练地进行计算是解题的关键.【变式7-5】(2022秋•保定月考)如图,一只蚂蚁从点B沿数轴向左爬了2个单位长度到达点A,点B 表示3,设点A所表示的数为m.(1)实数m的值是;(2)求(m+2)2+|m+1|的值.【分析】(1)根据实数与数轴上的点是一一对应关系进行计算即可得出答案;(2)把(1)中m的值代入进行计算即可得出答案.【解答】解:(1)根据题意可得,m=3−2;故答案为:3−2;(2)m+1=3−2+1=3−1,∵1<3<2,∴0<3−1<1,(m+2)2+|m+1|=(3−2+2)2+|3−1|=(3)2+3−1=3+3−1=2+3.故答案为:2+3.【点评】本题主要考查了实数与数轴及绝对值,熟练掌握实数与数轴上的点是一一对应关系及绝对值的性质进行求解是解决本题的关键.【变式7-6】(2022秋•青龙县月考)如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A 表示−2,设点B所表示的数为m.(1)实数m的值是;(2)求(m+1)(1﹣m)的值;(3)在数轴上还有C,D两点分别表示实数c和d,且|c+3|与−5互为相反数,求c+3d的平方根.【分析】(1)根据点A沿数轴向右爬了2个单位长度到达点B,即可得到m的值;(2)根据(1)的结果求值即可;(3)根据非负数的性质得到c,d的值,代入代数式求值,再求平方根即可得出答案.【解答】解:(1)∵一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示−2,∴m=−2+2,故答案为:−2+2;(2)(m+1)(1﹣m)=1﹣m2=1﹣(−2+2)2=1+42−6=42−5;(3)∵|c+3|与−5互为相反数,∴|c+3|+−5=0,∵|c+3|≥0,−5≥0,∴c+3=0,d﹣5=0,∴c=﹣3,d=5,∴c+3d=(﹣3)+3×5=﹣3+15。
八年级上册实数知识点讲解在数学学科中,实数是非常重要的一个概念。
它是指所有普通数字的集合,包括正数、负数和零。
在八年级上册中,实数也是重点学习内容之一。
本文将对八年级上册实数的知识点进行全面讲解,以便帮助学生加深对实数的理解。
一、实数的基础概念实数是指所有常见的数字集合,包括正数、负数和零。
实数的表示方法可以用数轴来表示。
其中,数轴的正方向表示正数,反方向表示负数,原点表示零。
在数轴上,任何一个实数都可以表示为一个唯一的点。
二、绝对值的概念绝对值是一个实数的非负值,表示这个数到零的距离。
比如绝对值为5的实数表示这个数与零的距离为5。
绝对值的表示方法可以用两个竖线(如|4|表示4的绝对值为4)来表示。
三、实数的运算1. 实数的加法实数的加法满足交换律、结合律和分配律。
具体表示为:①交换律:a + b = b + a②结合律:(a + b) + c = a + (b + c)③分配律:a * (b + c) = a * b + a * c2. 实数的减法实数相减,可以转换为实数相加,即 a - b = a + (-b)。
其中,-b 表示b的相反数。
实数的减法满足结合律和分配律,但不满足交换律。
3. 实数的乘法实数的乘法满足交换律、结合律和分配律。
具体表示为:①交换律: a * b = b * a②结合律: (a * b) * c = a * (b * c)③分配律: a * (b + c) = a * b + a * c4. 实数的除法实数的除法用分数表示。
若b不为0,则a/b = a * (1/b)。
其中,1/b表示b的倒数。
实数的除法满足结合律和分配律,但不满足交换律。
四、实数的大小比较实数的大小比较可以通过比较它们的绝对值大小来实现。
其中,绝对值越大的实数,其大小越大;绝对值相等的实数,需要进一步比较它们的正负。
五、实数的平方与平方根实数的平方是该实数与自身相乘的结果,即a² = a * a。
实数的性质与数轴上的表示实数是数学中的一个重要概念,它包括所有的有理数和无理数。
在数轴上,我们可以清晰地表示实数,并通过数轴上的位置来理解实数的性质。
本文将介绍实数的性质,并阐述如何利用数轴进行实数的图像表示。
一、实数的性质实数具有以下主要性质:1. 有序性:实数具有明确的大小顺序,即对于任意两个实数a和b,其中一个总是大于、小于或等于另一个。
这个性质为实数的比较和排序提供了基础。
2. 密度性:在任意两个不相等的实数之间,总存在另一个实数。
也就是说,实数是一个无间隙的数集,任意两个实数之间都可以找到其他的实数。
3. 无限性:实数集合没有上界或下界,即在数轴上可以无限地延伸。
不存在一个最大的实数或最小的实数。
4. 有界性:实数集合可以是有界的,即存在上界和下界。
一个有界的实数集合在数轴上被限制在某个区间内。
二、数轴上的表示数轴是一个直线上的一个有序排列,用来表示实数。
数轴上的每个点都与一个实数相对应,从而可以直观地理解实数之间的关系。
在数轴上,我们可以选择一个点作为原点,正方向为右侧,负方向为左侧。
我们可以用实数0代表原点,并将正实数表示为右侧的点,负实数表示为左侧的点。
例如,实数1表示为原点的右侧第一个点,实数-1表示为原点的左侧第一个点。
对于无理数,由于它无法用有限的小数或分数表示,因此其精确位置不能在数轴上标出。
但我们可以通过逼近法来确定无理数的位置。
例如,我们可以画出一个逼近无理数π的数轴,它可以被理解为π的近似位置。
在数轴上,实数之间的距离可以表示为它们在数轴上的差值。
两个实数之间的距离可以是正的、零或负的,取决于它们在数轴上的相对位置。
三、实数的图像表示利用数轴上的表示,我们可以通过图像来直观地理解实数的性质。
1. 表示区间一个区间是由两个端点和所有位于这两个端点之间的点组成的。
在数轴上,我们可以使用方括号和圆括号来表示区间。
例如,[a, b]表示从a到b的闭区间,包括a和b,(a, b)表示开区间,不包括a和b。
八年级数学上册实数知识点在八年级数学课程中,实数是重要的概念之一。
实数包括有理数和无理数,是数学中的基本概念之一。
本文将重点介绍实数的相关知识。
一、实数的定义实数是可以用数轴上的点来表示的数。
它包括有理数和无理数。
具体来说,有理数是可以表示为两个整数的比值的数,而无理数则不能表示为两个整数的比值。
二、实数的表示1、数轴上的表示实数可以用数轴上的点来表示。
数轴上的零点表示0,正数表示在零点右侧的数,负数表示在零点左侧的数。
2、小数的表示小数是实数的一种常见表示形式。
它的整数部分表示数轴上的整数部分,小数部分表示数轴上的小数部分。
三、实数的基本性质实数具有以下基本性质:1、对于任意实数a,b,c,满足交换律、结合律和分配律。
2、实数有加法逆元和乘法逆元。
对于任意实数a,存在一个实数-b,使得a+b=0;对于任意非零实数a,存在一个实数1/a,使得a×1/a=1。
3、实数的四则运算仍为实数。
特别的,除数为0时,除法没有意义。
四、实数的关系运算实数之间可以进行大小比较。
常用的关系运算有以下几种:1、大于:设a,b为实数,若a>b,则a在数轴上位于b的右侧。
2、小于:设a,b为实数,若a<b,则a在数轴上位于b的左侧。
3、大于等于:设a,b为实数,若a≥b,则a在数轴上位于b 的右侧或位于同一点上。
4、小于等于:设a,b为实数,若a≤b,则a在数轴上位于b 的左侧或位于同一点上。
五、实数的应用实数在生活中的应用广泛。
例如,将数轴上的点和实际情况对应,可以用来表示温度、海拔高度、经纬度等物理量。
六、实数的拓展除了有理数和无理数以外,还有复数等拓展概念。
复数包括实部和虚部,是实数和虚数的和。
虚数有单位虚数i,满足i²=-1。
七、总结实数是数学中的基本概念之一,包括有理数和无理数。
实数有数轴上的表示和小数的表示两种方式,还具有四则运算、大小比较等基本性质。
实数的应用非常广泛,还有复数等拓展概念。
初二年级数学知识点实数数学比赛对青少年的脑力锤炼有着一定的作用,可以通过数学对思维和逻辑进行锤炼,对学生起到的并不仅仅是数学方面的作用。
下面是作者给大家带来的初二年级数学知识点实数,欢迎大家浏览参考,我们一起来看看吧!初二年级数学知识点:实数1、实数的分类:有理数和无理数2、数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上点一一对应.3、相反数:符号不同的两个数,叫做互为相反数.a的相反数是-a,0的相反数是0. (若a与b护卫相反数,则a+b=0)4、绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.5、倒数:乘积为1的两个数6、乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂.(平方和立方)7、平方根:一样地,如果一个数x的平方等于a,即x2=a那么这个数x就叫做a的平方根(也叫做二次方根).一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.(算术平方根:一样地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.)实数,是有理数和无理数的总称。
数学上,实数定义为与数轴上的点相对应的数。
实数可以直观地看作有限小数与无穷小数,它们能把数轴“填满”。
但仅仅以罗列的方式不能描写实数的整体。
实数和虚数共同构成复数。
实数可以用来测量连续的量。
理论上,任何实数都可以用无穷小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也能够是非循环的)。
在实际运用中,实数常常被近似成一个有限小数(保存小数点后 n 位,n 为正整数,包括整数)。
在运算机领域,由于运算机只能储备有限的小数位数,实数常常用浮点数来表示。
1)相反数(只有符号不同的两个数,它们的和为零,我们就说其中一个是另一个的相反数,叫做互为相反数) 实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。
初中数学实数的数轴表示是什么实数的数轴表示是一种用直线上的点来表示实数的方法。
数轴是一条直线,通过在直线上选择一个特定的起点和单位长度,可以将实数与该直线上的点一一对应起来。
在数轴上,我们通常将起点标记为原点O,然后选择一个单位长度,例如1个单位长度,来表示整数。
然后,我们可以根据这个单位长度在数轴上逐个标记整数。
例如,我们可以选择以原点O为起点,向右每隔一个单位长度标记一个整数,向左同样地每隔一个单位长度标记一个整数。
除了标记整数,我们还可以使用分数和小数来表示实数。
对于分数,我们可以将数轴上的一个单位长度分成多个等分,然后根据分数的值在相应的位置上进行标记。
例如,如果我们将一个单位长度分成4等分,那么1/4的位置将位于整数1和2之间的1/4处。
对于小数,我们可以根据小数的值在数轴上的相应位置上进行标记。
例如,如果一个小数是0.5,那么它将位于整数0和1之间的一半处。
通过数轴的表示,我们可以直观地看到实数之间的大小关系和它们在数轴上的位置。
例如,如果我们想比较两个实数a和b,我们可以通过比较它们在数轴上的位置来确定它们的大小关系。
如果a在数轴上位于b的左侧,则a小于b;如果a在数轴上位于b的右侧,则a大于b。
数轴还可以用于表示实数的运算,例如加法和减法。
对于加法,我们可以通过在数轴上进行相应的位移来表示两个实数的和。
例如,如果我们想计算2+3,我们可以从整数2的位置开始,向右移动3个单位长度,最终到达整数5的位置。
对于减法,我们可以通过在数轴上进行相应的反向位移来表示两个实数的差。
例如,如果我们想计算5-3,我们可以从整数5的位置开始,向左移动3个单位长度,最终到达整数2的位置。
总结:实数的数轴表示是一种用直线上的点来表示实数的方法。
通过在数轴上选择起点和单位长度,并根据整数、分数和小数的值在相应的位置上进行标记,我们可以直观地看到实数之间的大小关系和它们在数轴上的位置。
数轴还可以用于表示实数的运算,例如加法和减法,通过在数轴上进行相应的位移来表示实数的和与差。
12.2 实数与数轴【教学目标】一、知识目标1.了解无理数、实数的概念和实数的分类2.了解实数和数轴上的点是一一对应的关系.3.了解实数的相反数、绝对值、倒数等概念.4、会进行实数的大小的比较.二、能力目标1、通过对实数进行分类,培养学生的分类意识.2、用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步体会数形结合的思想.3、通过估算的办法进行实数的大小比较三、情感态度目标通过对实数进行分类的练习,让学生进一步领会分类的思想,鼓励学生要从不同角度入手,寻解决问题的多种途径,训练学生的多角度思维,为他们以后更好地工作作准备。
.【重点难点】1、实数概念的建立.2、实数的分类3、比较实数的大小.【教学设想】教学思路:情境质疑—概念归纳—练习训练—应用提高【媒体平台】教具学具准备:多媒体,投影仪,计算器,圆规、三角板、剪刀、方格纸等【课时安排】2课时第1课时【本课目标】1、 了解无理数、实数的意义2、 理解实数与数轴上的点成一一对应的关系【教学过程】1、 情境导入:利用多媒体演示幻灯片1做一做:(1) 用计算器求2;(2) 利用平方关系验算所得的结果学生动手操作后,教师利用多媒体演示计算结果:2 =10414213562,104142135622=1.9999999 由这个结果可以得出:()999999999.122=你知道产生这种错误现象的原因吗? 教师进一步利用多媒体演示计算机计算2的结果:2=1.4142135623730950488016887242096980785696718753769480731766797379907324784621070388503875343276415727350138462309122970249248360558507372126441214970999358314132226659275055927557999505011527820605715… (计算机计算2的结果表明:2是一个无限不循环的小数,造成上述错误的原因是计算器计算出2的值只是它的一个近似值。
)2.课前热身什么是有理数?有理数可以怎样进行分类?3、合作探究(1) 整体感知 在社会生活和科学研究中,经常出现象2这样无限不循环的小数,这样我们所学的有理数就有着进行扩展的必要,本节课我们将着重学习与之相关的概念.(2)四边互动互动1:师:请同学们把下列各数写成小数的形式。
,41 ,32 71 生:动手一试,交流计算结果师:请同学们把下列各数化成分数的形式:生:讨论交流,并进行解答.师:从上述操作中,你发现什么? 师:2能写成分数吗?试试看生:讨论交流。
(教师指点:请看课本“阅读材料”)明确:分数都可以表示成有限小数或无限循环小数,有限小数或无限循环小数都可以写成分数形式.由于整数可以看成是分母是1的分数,因此,有理数都可以用分形式表示.无限不循环小数不能表示成分数的形式,因此,2不是有理数.互动2:师:请你再举出几个无限不循环小数的实例。
生:逐个举手,列举实例。
师:根据上面的探索结果,你能把小数进行适当地分类吗?请在讨论交流后举手回答。
生:讨论交流,举手发言,不断补充完善,达成共识。
概括:小数可分为有限小数和无限小数,无限小数又可分为无限循环小数和无限不循环小数。
无限不循环小数称为无理数,有理数和无理数统称为实数。
实数可以分类成:互动3:师:请同学们用剪刀剪出两个同代大小的正方形纸片(设其边长为1),然后把这两个正方形纸片通过适当裁剪,拼接成一个较大的正方形,这个较大正方形的边长是多少? 生:动手操作,并回答问题.师:利用多媒体演示课件“拼成正方形”,验证操作的结果(如图16-3-1所示). 师:你能在数轴上找到表示2的点吗?画图试试看.生:在讨论合作的基础上,动手操作. 师:利用多媒体演示课件“在数轴上找到2的点”,验证同学们操作的结果(如图-3-2所示)。
师:在数轴上能够画出表示2的点,这说明一个什么问题?生:讨论交流,逐个举手回答,不断补充完善。
明确:数轴上的任一点表示的数,不是有理数,就是无理数。
数学上可以说明,数轴上的任一点必定表示一个实数;反过来,每一个实数(有理数或无理数)也都可以用数轴上的点来表示,换句话说,实数与数轴上的点一一对应。
互动4:师:利用多媒体演示幻灯片2.分数 无理数 有理数 实数 整数 有限小数或无限循环小数(能表示成分数)无限不循环小数(不能表示成分数)在0.5,π,3,-9,3.14,0,5-1,38-,37,0.2022022202222…中 整数有:{ …}有理数有:{ ...}无理数有:{ …} 明确:正确地理解有理数、无理数、实数的概念和分类是解决此类问题的关键。
3、 达标反馈判断正误:① 无理数是无限小数② 无限小数是无理数③ 无理数是开方开不尽的数④ 无理数不能用分数表示⑤ 整数和分数统称实数⑥ 数轴上的点表示实数⑦ 有理数与数轴上的点成一一对应关系5、学习小结本课我们学习了实数的意义和分类,了解实数与数轴上的一一对应。
6、实践探索(1) 取若干个边长为1的正方形纸片,请用剪刀拼图的方法,作一个边长为5的正方形纸片。
(2) 把下列各数填入相应的集合中:3.14,-π,2,1.414,38,-3,0,5-1,0.1010010001…实数集合有:{ …}有理数集合有:{ ...}无理数集合有:{…}【板书设计】【教学反馈】我国古代数学家关于π的研究:圆的周长与直径的比值是一个常数π,它是一个无理数,我们可以用有理数来近似表示它.求无理数π的近似值,我国古代数学家早已作出了巨大的贡献,在东汉初年的数学书《周髀算经》里已经载有“周三径一”,称之为“古率”,就是说,直径是1的圆,它的周长是3.到了西汉末年,刘歆(约分元前50年到公元23年)定圆周率为3.1547,到了东汉时代,张衡(公元78-139年)求得两个比,一是92 29=3.17241…,另一个是10,约等于3.1622.(印度数学家罗笈多也曾定圆周率为10,但已迟于张衡500多年.)到了三国时,魏人刘徽(公元263年)创立了求圆周率的准确值的原理,他用割圆术求得圆周率的前三位数字是π≈3.14…,称为徽率.到南北朝时代的祖冲之(公元429年—500年),他已推算出3.1415926<π<3.1415927.也就是π≈3.1415926…,他是世界上第一个确定圆周率准确到7位小数的人.祖冲之又提出了用两个分数表示π的近似值.即22 7及355 113,分别称为π的约率和密度.在祖冲之发现密率一千多年后,欧洲的安托尼兹(16世纪~17世纪)才重新发现了这个值第2课时【本课目标】1、了解实数的相反数、倒数和绝对值的意义。
2、会用估算的方法进行实数的大小比较【教学过程】1、复习导入:(1)无理数是怎样定义的?如何把实数进行分类?(2)实数与数轴上的点成怎样的对应关系?在有理数范围内,加法,乘法具有哪些运算律?有理数的运算顺序是怎样的?2.课前热身学生展示上节课的“实践活动”中剪纸拼图的结果,并进行相互评价。
3、合作探究(1)整体感知上节课我们学习了实数的相关概念,这节课我们将着重探讨实数的大小比较。
(2)四边互动互动1:师:有理数a的相反数是什么?非零的有理数a的倒数是什么?有理数a的绝对值是什么?请举手回答。
生:独立思考,举手回答,不断完善。
师:在实数范围内,上述结论是否正确呢?回答是肯定的。
让学生回忆有理数范围内比较大小的方法,体会在实数范围内这些两个数大小的方法依旧成立。
互动2:师:利用多媒体演示幻灯片33 与π的大小关系.例1 试估计2例2 请同学们使用计算器解答问题。
生:动手操作,交流解答结果。
师:在不使用计算器的情况下,你会比较32和23的大小吗?你想到哪些方法? 生:讨论交流后,举手上台板演方法1:∵()223=18,()232=12,∴32>23 方法2:∵()223>4,()232<4,∴32>23方法3:∵3223=3223=621>1,∴32>23 归纳可知:实数的大小比较,一般都可以通过使用计算器,用估算的办法达到目的,但有些实数的大小比较,还可以通过作差、作商等方法来达到目的。
4、 达标反馈比较下列各组实数的大小:(1)32和23 (2) 327π--和 5、学习小结实数范围内的相反数、倒数和绝对值的概念与有理数范围内的相应概念相同。
有理数范围内的运算法则、运算律、运算顺序及整式的乘法公式,在实数的范围内同样适用。
实数的大小比较,一般地都可以通过使用计算器,用估算的方法达到目的,但有些实数的大小比较,还可以通过作差、作商等方法达到目的。
6、实践探索1、 座钟的摆针摆动一个来回所需的时间称为一个周期,其计算公式是T=2πgl ,其中T 表示周期(单位:秒),l 表示摆长(单位:米),g=9.8米/2秒,假如一台座钟的摆长为0.8米,它每摆动一个来回发出一次滴答声,那么在1分钟内,该座钟发出了多少次滴答声?(答:约33次)2、任取一个不等于0的正数,利用计算器连续进行开平方运算,观察所得结果有什么规律?你能解释其中的道理吗?3、巩固练习:课本.【板书设计】【教学反馈】在本教学环节中,先让学生回忆有理数范围内的相关概念及运算法则依然适用,从而引出并回忆有理数的大小的比较方法,体会在实数范围内这些比较两个数大小的方法依旧成立,在比较的过程中让学生体会一个很重要的数学思想:转化思想.。