电子 第四章 李智鹏
- 格式:doc
- 大小:9.38 MB
- 文档页数:7
《模拟电子技术基础》教案 1、本课程教学目的本课程是电气信息类专业的主要技术基础课。
其目的与任务是使学生掌握常用半导体器件和典型集成运放的特性与参数,掌握基本放大、负反馈放大、集成运放应用等低频电子线路的组成、工作原理、性能特点、基本分析方法和工程计算方法;使学生具有一定的实践技能和应用能力;培养学生分析问题和解决问题的能力,为后续课程和深入学习这方面的内容打好基础。
2、本课程教学要求1.掌握半导体器件的工作原理、外部特性、主要参数、等效电路、分析方法及应用原理。
2.掌握共射、共集、共基、差分、电流源、互补输出级六种基本电路的组成、工作原理、特点及分析,熟悉改进放大电路,理解多级放大电路的耦合方式及分析方法,理解场效应管放大电路的工作原理及分析方法,理解放大电路的频率特性概念及分析。
3.掌握反馈的基本概念和反馈类型的判断方法,理解负反馈对放大电路性能的影响,熟练掌握深度负反馈条件下闭环增益的近似估算,了解负反馈放大电路产生自激振荡的条件及其消除原则。
4.了解集成运算放大器的组成和典型电路,理解理想运放的概念,熟练掌握集成运放的线性和非线性应用原理及典型电路;掌握一般直流电源的组成,理解整流、滤波、稳压的工作原理,了解电路主要指标的估算。
3、使用的教材杨栓科编,《模拟电子技术基础》,高教出版社主要参考书目康华光编,《电子技术基础》(模拟部分)第四版,高教出版社童诗白编,《模拟电子技术基础》,高等教育出版社,张凤言编,《电子电路基础》第二版,高教出版社,谢嘉奎编,《电子线路》(线性部分)第四版,高教出版社,陈大钦编,《模拟电子技术基础问答、例题、试题》,华中理工大学出版社,唐竞新编,《模拟电子技术基础解题指南》,清华大学出版社,孙肖子编,《电子线路辅导》,西安电子科技大学出版社,谢自美编,《电子线路设计、实验、测试》(二),华中理工大学出版社,绪论本章的教学目标和要求要求学生了解放大电路的基本知识;要求了解放大电路的分类及主要性能指标。
电子学●第1章电子学基础●1.1 概述●1.2 电压、电流与电阻●1.2.1 电压与电流●1.2.2 电压与电流之间的关系:电阻●1.2.3 分压器●1.2.4 电压源和电流源●1.2.5 戴维南等效电路●1.2.6 小信号电阻●1.3 信号●1.3.1 正弦信号●1.3.2 信号幅度与分贝●1.3.3 其他信号●1.3.4 逻辑电平●1.3.5 信号源●1.4 电容与交流电路●1.4.1 电容●1.4.2 RC电路:随时间变化的V与I●1.4.3 微分器●1.4.4 积分器● 1.5 电感与变压器●1.5.1 电感●1.5.2 变压器●1.6 阻抗与电抗●1.6.1 电抗电路的频率分析●1.6.2 RC滤波器●1.6.3 相位矢量图●1.6.4 “极点”与每二倍频的分贝数●1.6.5 谐振电路与有源滤波器●1.6.6 电容的其他应用●1.6.7 戴维南定理推广●1.7 二极管与二极管电路●1.7.1 二极管●1.7.2 整流●1.7.3 电源滤波●1.7.4 电源的整流器结构●1.7.5 稳压器●1.7.6 二极管的电路应用●1.7.7 感性负载与二极管保护●1.8 其他无源元件●1.8.1 机电器件●1.8.2 显示部分●1.8.3 可变元器件●第2章晶体管●2.1 概述●2.1.1 第一种晶体管模型:电流放大器●2.2 几种基本的晶体管电路●2.2.1 晶体管开关射极跟随器●2.2.2 信号幅度与分贝●2.2.3 射极跟随器作为稳压器●2.2.4 射极跟随器偏置●2.2.5 晶体管电流源●2.2.7 单位增益的反相器●2.2.8 跨导●2.3 用于基本晶体管电路的Ebers-Moll模型●2.3.1 改进的晶体管模型:跨导放大器●2.3.2 对射极跟随器的重新审视●2.3.3 对共射放大器的重新视●2.3.4 共射放大器的偏置●2.3.5 镜像电流源●2.4 几种放大器组成框图●2.4.1 推挽输出级●2.4.2 达林顿连接●2.4.3 自举电路●2.4.4 差分放大器●2.4.5 电容与密勒效应●2.4.6 场效应晶体管●2.5 一些典型的体管电路●2.5.1 稳压源●2.5.2 温度控制器●2.5.3 带体管与二管的简单辑电路●2.6 电路示例●2.6.1 电路集锦●2.6.2 不合理电路●2.7 补充题●第3章场效应管●3.1 概述●3.1.1 FET的特性●3.1.2 FET的种类●3.1.3 FET的普遍特性●3.1.4 FET漏极特性●3.1.5 FET特性参数的制造偏差●3.2 基本 FET电路●3.2.1 JFET电流源●3.2.2 FET放大器●3.2.3 源极跟随器●3.2.4 FET栅极电流●3.2.5 FET用做可变电阻●3.3 FET开关●3.3.1 FET模拟开关●3.3.2 场效应管开关的限性●3.3.3 一些场效应管模拟开关举例●3.3.4 MOSFET逻辑和电源开关●3.3.5 MOSFET使用注意事项●3.4 电路示例●3.4.1 电路集锦●3.4.2 不合理电路●第4章反馈和运算放大器●4.1 概述●4.1.1 反馈●4.1.2 运算放大器●4.1.3 黄金规则●4.2 基本器●4.2.1 反相放大器●4.2.2 同相放器●4.2.3 跟随器●4.2.4 电流源●4.2.5 运器●4.3 运算放器●4.3.1 线性电路●4.3.2 非线性电路●4.4 运算放大器特性详分析●4.4.1 偏离理想运算放大器特性●4.4.2 运算放大器限制对电路特性的影响●4.4.3 低功率编器●4.5 详细分析精选的运算放大器电路●4.5.1 对数放大器●4.5.2 有源峰值检波器●4.5.3 抽样和保持●4.5.4 有源箱位器●4.5.5 绝对值电路●4.5.6 积分器●4.5.7 微分器●4.6 单电源供电的运算放器●4.6.1 单电源交流放大器的偏置●4.6.2 单电源运算放大器●4.7 比较器和施密特触发器●4.7.1 比较器●4.7.2 施密特触发器●4.8 有限增益放大器的反馈●4.81 增益公式●4.8.2 反馈对放大电路的影响●4.8.3 晶体管反馈放大器的两个例子●4.9 一些典型的运算放大器电路●4.9.1 通用的实验放大器●4.9.2 压控振荡器●4.9.3 带Ro补偿的JFET线性开关●4.9.4 TTL过零检测器●4.9.5 负载电流感应电路●4.10 反馈放大器的频率补偿●4.10.1 增益和相移与频率的关系●4.10.2 放大器的补偿方法●4.10.3 反馈网络的频率响应●4.11 电路示例●4.11.1 电路集锦●4.11.2 不合理电路●4.12 补充题●第5章有源滤波器和振荡器●5 .1 有源滤波器●5.1.1 RC滤波器的频率响应●5.1.2 LC滤波器的理想性能●5.1.3 有源滤波器:一般描述●5.1.4 滤波器的主要性能指标●5.1.5 滤波器类型●5.2 有源器●5.2.1 VCVS电路●5.2.2 使用简化表格设计VCVS滤波器●5.2.3状态可变的器●5.2.4双T型陷波滤波器●5.2.5 回转滤波器的实现●5.2.6 开关电容滤波器●5.3 振荡器●5.3.1 振荡器介绍●5.3.2 阻尼振荡器●5.3.3 经典定时芯片:555●5.3.4 压控振荡器●5.3.5 正交振荡器●5.3.6文氏电桥和LC振荡器●5.3.7 LC振荡器●5.3.8 石英晶体振荡器●5.4 电路例●5.4.1 电路集锦●5.5 补充题●第6章稳压器和电源电路●6.1采用典型稳压芯片723的基本稳压电路●6.1.1 723稳压器●6.1.2 正电压稳压器●6.1.3 大电流稳压器●6.2散热和功率设计●6.2.1 功率晶体管及其散热●6.2.2 反馈限流保护●6.2.3 杠杆式过压保护●6.2.4大电流功率器件电源设计的进一步研究●6.2.5 可编程电源●6.2.6 电源电路实例●6.2.7 其他稳压芯片●6.3 未稳压电源●6.3.1 交流器件●6.3.2变压器●6.3.3 直流器件●6.4基准●6.4.1 齐纳管●6.4.2 能带隙基准源●6.5 3端和4端稳压器●6.5.1 3端稳压器●6.5.2 3端可调稳压芯片●6.5.3 3端稳压器注意事项●6.5.4 开关稳压器和直流直流转换器●6.6 专用电源电路●6.6.1 高压稳压电路.●6.6.2 低噪声低漂移电源●6.6.3 微功耗稳压器●6.6.4 快速电容(电荷泵)电压转换器●6.6.5 恒流源●6.6.6 商用供电模块●6.7 电路示例●6.7.1 电路集锦●6.7.2 不合理电路●6.8 补充题●第7章精密电路和低噪声技术●7.1 精密运算放大器设计技术●7.1.1 精度与动态范围的关系●7.1.2 误差预算●7.1.3 电路示例:带自动调零的精密●7.1.4 精密设计的误差预算●7.1.5 元器件误差●7.1.6 放大器的输入误差●7.1.7 放大器输出误差●7.1.8 自动调零(斩波器稳定)放大器●7.2 差分和仪器用放大器●7.2.1 差分放大器●7.2.2 标准3运算放大器仪器用放大器●7.3 放大器噪声●7.3.1 噪声的起源和种类●7.3.2 信噪比和噪声系数●7.3.3 晶体管放大器的电压和电流声●7.3.4 晶体管的低噪声设计●7.3.5 场效应管噪声●7.3.6 低噪声晶体管的选定●7.3.7 差分和反馈放大器的噪声●7.4 噪声测量和噪声源●7.4.1 无需噪声源的测量●7.4.2 有噪声源的测量●7.4.3 噪声和信号源●7.4.4 带宽限制和电压均方根值的测量●7.4.5 混合噪声●7.5 干扰:屏蔽和接地●7.5.1 干扰●7.5.2 信号接地●7.5.3 仪器之间的接地●7.6 电路例●7.6.1 电路集锦●7.7 补充题●第8章数字电子学●8.1 基本辑概念●8.1.1 数字与模拟●8.1.2 逻辑状态●8.1.3 数码●8.1.4 门和真值表●8.1.5 门的分立电路●8.1.6 门电路举例●8.1.7 有效电平辑表示法●8.2 TTL和CMOS●8.2.1 一般门的分类●8.2.2 IC门电路●8.2.3 TTL和CMOS特性●8.2.4 三态门和集电开路器件●8.3 组●8.3.1 逻辑等式●8.3.2 最小化卡诺图●8.3.3 用IC实现的组合功能●8.3.4 任意真值表的实现●8.4 时序辑●8.4.1 存储器件:触发器●8.4.2 带时钟的触发器●8.4.3 存储器和门组合:序辑●8.4.4 同步器●8.5 单稳态触发器●8.5.1 一次触发特性●8.5.2 单稳态电例●8.5.3 有关单态触发器的注意事项●8.5.4 计数器的定时●8.6 利用集成电路实现的时序功能●8.6.1 锁存器和寄存器●8.6.2 计数器●8.6.3 移位寄存器●8.6.4 时序PAL●8.6.5 各种时功能●8.7 一些典型的数字电路●8.7.1 模n计数器:时间的例子●8.7.2 多用LED数字显示●8.7.3 恒星望远镜驱动●8.7.4 n脉冲产生器●8.8 辑问题●8.8.1 直流问题●8.8.2 开关问题●8.8.3 TTL和CMOS的先天缺陷●8.9 电路示例●8.9.1 电路集锦●8.9.2 不合理电路●8.10 补充题●第9章数字与模拟●9.1 CMOS和TTL逻辑电路●9.1 逻辑电路●9.1.1 数字逻辑电路家系列的发展历史●9.1.2 输入和输出特性●9.1.3 逻辑系列之间的接口●9.1.4 驱动CMOS和TTL输人端●9.1.5 用比较器和运算放大器驱动数字●9.1.6 关于辑输入的一些说明●9.1.7 比较器●9.1.8 用CMOS和TTL驱动外部数字●9.1.9 与MOS规模集成电路的接●9.1.10 光电子●9.2 数字信号和长线传输●9.2.1 电路板上的连接●9.2.2 板卡间的连接●9.2.4 驱动电缆●9.2.3 数据总线●9.3 模/数转换●9.3.1 模/数转换概述●9.3.2 数/模转换器●9.3.3 时域(平均)D/A转换器●9.3.4 乘法D/A转换器●9.3.5 如何选择D/A转换器●9.3.6 模/数转换器●9.3.7 电荷平衡技术●9.3.8一些特殊的A/D和D/A转换器●9.3.9 A/D转换器选择●9.4 A/D转换示例●9.4.1 16通道A/D数据采集系统●9.4.2 31/2位数字电计●9.4.3 库仑计●9.5 锁相环●9.5.1 锁相环介绍●9.5.2 锁相环设计●9.5.3 设计实例:频器 (518)●9.5.4 锁相环的捕捉和锁定●9.5.5 锁相环的一些应用●9.6 伪随机特列525●9.6.1 数字噪声的生成●9.6.2 反馈移位寄存器序列●9.6.3 利用最大长度序列生成模拟噪声●9.6.4 移位寄存器序列的功率谱●9.6.5 低通滤波●9.6.6 小结●9.6.7 数字滤波器●9.7 电路示例●9.7.1 电路集锦.●9.7.2 不合理电路●第10章微型计算机●10.1小型计算机、微型计算机与微处理器●10.1.1 计算机的结构●10.2 计算机的指令集●10.2.1 汇编语言和机器语言●10.2.2 简化的8086/8指令集●10.2.3 一个编程实例●10.3 总线信号和接口●10.3.1 基本的总线信号:数据、地址、选通●10.3.2 可编程/0:数据输出●10.3.3 可编程I/O:数据输人●10.3.4 可编程I/O:状态寄存器●10.3.5 中断●10.3.6 中断处理●10.3.7 一般中断●10.3.8 直接存储器访问●10.3.9 IBM PC总线信号综述●10.3.10 同步总线通信与异步总线通信的比较●10.3.11 其他微型计算机总线●10.3.12 将外围设备与计算机连接●10.4 软件系统概念●10.4.1 编程●10.4.2 操作系统、文件以及存储器的使用●10.5 数据通信概念●10.5.1 串行通信和ASCII●10.5.2 并行通信:Centronics、SCSI、IPI 和GPIB(488)●10.5.3 局域网●10.5.4 接口实例:硬件数据打包●10.5.5 数字格式●第11章微处理器●11.1 68008的详细介绍●11.1.1 寄存器、存储器和I/O●11.1.2 指令集和寻址●11.1.3 机器语言介绍●11.1.4 总线信号●11.2 完整的设计实例:模拟信号均衡器●11.2.1 电路设计●11.2.2 编制程序:任务的确定●11.2.3 程序编写:详细介绍●11.2.4 性能●11.2.5 一些设计后的想法●11.3 微处理器的配套芯片●11.3.1 中规模集成电路●11.3.2 外围大规模集成电路芯片●11.3.3 存储器●11.3.4 其他微处理器●11.3.5 仿真器、开发系统、逻辑分析器和评估板●第12章电气结构●12.1 基本方法●12.1.2 印制电路原型板●12.1.3 绕线镶嵌板●12.2 印制电路●12.2.1 印制电路板生产●12.2.2 印制电路板设计●12.2.3 印制电路板器件安装●12.2.4 印制电路板的进一步考虑●12.2.5 高级技术●12.3 仪器结构●12.3.1 电路板安装●12.3.2 机壳●12.3.3 提示●12.3.4 冷却●12.3.5 关于电子器件的注意事项●12.3.6 器件采购●第13章高频和高速技术●13.1 高频放大器●13.1.1 高频晶体管放大器●13.1.2 高频放大器交流模型●13.1.3 高频计算举例●13.1.4 高频放大器参数●13.1.5 宽带设计举例●13.1.6 改进的交流模型●13.1.7 分流级联对●13.1.8 放大器模块●13.2 射频电路●13.2.1 传输线●13.2.2 短线、巴仑线和变压器●13.2.3 调谐放大器●13.2.4 射频电元件●13.2.5 信号幅度或功率检测●13.3 射频通信:AM●13.3.1 通信基本概念●13.3.2 幅度调制●13.3.3 超外差接收机●13.4 高级调制技术●13.4.1 单边带●13.4.2 频率调制…●13.4.3 频移键控●13.4.4 脉冲调制技术●13.5 射频电路●13.5.1 电路结构●13.5.2 射频放大器●13.6 高速开关●13.6.1 晶体管模型●13.6.2 仿真建模工具●13.7 高速开关电路举例●13.7.1 高压驱动器●13.7.2 集电极开路总线驱动器●13.7.3 举例:光电倍增器前置放大器●13.8 电路示例●13.8.1 电路集锦●13.9 补充题●第14章低功耗设计●14.1 引言●14.1.1 低功耗应用●14.2 电源●14.2.1 电池类型●14.2.2 插在墙上的便携式电源●14.2.3 太阳能电池●14.2.4 信号电流●14.3 电源开关和微功耗稳压器●14.3.1 电源开关●14.3.2 微功耗稳压器●14.3.3 参考地●14.3.4 微功耗电压参考和温度传感器●14.4 线性微功耗设计技术●14.4.1 微功耗线性设计●14.4.2 分立器件线性设计举例●14.4.3 微功耗运算放大器●14.4.4 微功耗比较器●14.4.5 微功耗定时器和振荡器●14.5 微功耗数字设计●14.5.1 CMOS●14.5.2 CMOS低功耗保持●14.5.3 微功耗微处理器及其外围器件●14.5.4 微处理器设计举例:温度记录仪●14.6 电路示例●14.6.1 电路集锦●第15章测量与信号处理●15.1 概述●15.2 测量传感器●15.2.1 温度●15.2.2 光强度●15.2.3 应变和位移●15.2.4 加速度、压力、力和周转率(速度)●15.2.5 磁场●15.2.6 真空计●15.2.7 粒子检测器●15.2.8 生物和化学电压探针●15.3 精度标准和精度测量●15.3.1 频率标准●15.3.2 频率、周期和时间间隔测量●15.3.3 电压和阻抗标准与测量●15.4 限制带宽技术●15.4.1 信噪比问题●15.4.2 信号平均和多通道计数●15.4.3 信号周期化●15.4.4 锁定检测●15.4.5 脉冲高度分析●15.4.6 时间幅度转换器●15.5 频谱分析和傅里叶变换●15.5.1 频谱分析仪●15.5.2 离线频谱分析●15.6 电路示例●15.6.1 电路集锦。
模拟电子电路-视频教学电子科技大学曲健全56讲•••••模拟电子电路01•韩原123•279••••••模拟电子电路02•韩原123•133••••••模拟电子电路03•韩原123•227••••••模拟电子电路04 •韩原123•158••••••模拟电子电路05 •韩原123•124••••••模拟电子电路06 •韩原123•82••••••模拟电子电路07 •韩原123•56••••••模拟电子电路08 •韩原123•71••••••模拟电子电路09 •韩原123•62••••••模拟电子电路10 •韩原123•80•••••模拟电子电路11 •韩原123•118••••••模拟电子电路12 •韩原123•67••••••模拟电子电路13 •韩原123•61•••••模拟电子电路14 •韩原123•70••••••模拟电子电路15 •韩原123•94••••••模拟电子电路16 •韩原123•116••••••模拟电子电路17 •韩原123•85••••••模拟电子电路18 •韩原123•69••••••模拟电子电路19 •韩原123•86••••••模拟电子电路20 •韩原123•89•••••模拟电子电路21 •韩原123•78••••••模拟电子电路22 •韩原123•55••••••模拟电子电路23 •韩原123•63••••••模拟电子电路24 •韩原123•42••••••模拟电子电路25 •韩原123•47••••••模拟电子电路26 •韩原123•51••••••模拟电子电路27 •韩原123•48••••••模拟电子电路28 •韩原123•57••••••模拟电子电路29 •韩原123•40••••••模拟电子电路30 •韩原123•40••••••模拟电子电路31 •韩原123•37••••••模拟电子电路32 •韩原123•37••••••模拟电子电路33 •韩原123•47••••••模拟电子电路34 •韩原123•46••••••模拟电子电路35 •韩原123•55••••••模拟电子电路36•韩原123•46••••••模拟电子电路37 •韩原123•44••••••模拟电子电路38 •韩原123•124••••••模拟电子电路39 •韩原123•108••••••模拟电子电路40 •韩原123•122•••••模拟电子电路41 •韩原123•116••••••模拟电子电路42 •韩原123•104••••••模拟电子电路43 •韩原123•104••••••模拟电子电路44 •韩原123•110••••••模拟电子电路45 •韩原123•161•••••模拟电子电路46 •韩原123•101••••••模拟电子电路47 •韩原123•124••••••模拟电子电路48 •韩原123•102•••••模拟电子电路49 •韩原123•107••••••模拟电子电路50 •韩原123•107••••••模拟电子电路51 •韩原123•97••••••模拟电子电路52 •韩原123•84••••••模拟电子电路53 •韩原123•113••••••模拟电子电路54 •韩原123•183••••••模拟电子电路55 •韩原123•156••••••模拟电子电路56 •韩原123•195。
《高频电子电路》(王卫东版)课后答案下载《高频电子电路》(王卫东版)内容简介绪论0.1通信系统的组成0.2发射机和接收机的组成0.3本书的研究对象和任务第1章高频小信号谐振放大器1.1LC选频网络1.1.1选频网络的基本特性1.1.2LC选频回路1.1.3LC阻抗变换网络__1.1.4双耦合谐振回路及其选频特性1.2高频小信号调谐放大器1.2.1晶体管的高频小信号等效模型1.2.2高频小信号调谐放大器1.2.3多级单调谐放大器__1.2.4双调谐回路谐振放大器__1.2.5参差调谐放大器1.2.6谐振放大器的稳定性1.3集中选频放大器1.3.1集中选频滤波器1.3.2集成宽带放大器1.3.3集成选频放大器的应用1.4电噪声1.4.1电阻热噪声1.4.2晶体三极管噪声1.4.3场效应管噪声1.4.4噪声系数__小结习题1第2章高频功率放大器2.1概述2.2高频功率放大器的工作原理 2.2.1工作原理分析2.2.2功率和效率分析2.2.3D类和E类功率放大器简介 2.2.4丙类倍频器2.3高频功率放大器的动态分析----------DL2.FBD2.3.1高频功率放大器的动态特性 2.3.2高频功率放大器的负载特性2.3.3高频功率放大器的调制特性2.3.4高频功率放大器的放大特性2.3.5高频功率放大器的调谐特性2.3.6高频功放的高频效应2.4高频功率放大器的实用电路2.4.1直流馈电电路2.4.2滤波匹配网络2.4.3高频谐振功率放大器设计举例2.5集成高频功率放大电路简介2.6宽带高频功率放大器与功率合成电路2.6.1宽带高频功率放大器2.6.2功率合成电路__小结习题2第3章正弦波振荡器3.1概述3.2反馈型自激振荡器的工作原理 3.2.1产生振荡的基本原理3.2.2反馈振荡器的振荡条件3.2.3反馈振荡电路的判断3.3LC正弦波振荡电路3.3.1互感耦合LC振荡电路3.3.2三点式LC振荡电路3.4振荡器的频率稳定度3.4.1频率稳定度的定义3.4.2振荡器的稳频原理3.4.3振荡器的稳频措施3.5晶体振荡器3.5.1石英晶体谐振器概述3.5.2晶体振荡器电路3.6集成电路振荡器3.6.1差分对管振荡电路3.6.2单片集成振荡电路E16483.6.3运放振荡器3.6.4集成宽带高频正弦波振荡电路3.7压控振荡器3.7.1变容二极管3.7.2变容二极管压控振荡器3.7.3晶体压控振荡器__3.8RC振荡器3.8.1RC移相振荡器3.8.2文氏电桥振荡器__3.9负阻振荡器3.9.1负阻器件的基本特性----------DL3.FBD3.9.2负阻振荡电路 3.10振荡器中的几种现象3.10.1间歇振荡3.10.2频率拖曳现象3.10.3振荡器的频率占据现象3.10.4寄生振荡__小结习题3第4章频率变换电路基础4.1概述4.2非线性元器件的特性描述4.2.1非线性元器件的基本特性4.2.2非线性电路的工程分析方法4.3模拟相乘器及基本单元电路4.3.1模拟相乘器的基本概念4.3.2模拟相乘器的基本单元电路4.4单片集成模拟乘法器及其典型应用 4.4.1MC1496/MC1596及其应用4.4.2BG314(MC1495/MC1595)及其应用 4.4.3第二代、第三代集成模拟乘法器 __小结习题4第5章振幅调制、解调及混频5.1概述5.2振幅调制原理及特性5.2.1标准振幅调制信号分析5.2.2双边带调幅信号5.2.3单边带信号5.2.4AM残留边带调幅5.3振幅调制电路5.3.1低电平调幅电路5.3.2高电平调幅电路5.4调幅信号的解调5.4.1调幅波解调的方法5.4.2二极管大信号包络检波器5.4.3同步检波----------DL4.FBD5.5混频器原理及电路 5.5.1混频器原理5.5.2混频器主要性能指标5.5.3实用混频电路5.5.4混频器的干扰5.6AM发射机与接收机5.6.1AM发射机5.6.2AM接收机5.6.3TA7641BP单片AM收音机集成电路 __小结习题5第6章角度调制与解调6.1概述6.2调角信号的分析6.2.1瞬时频率和瞬时相位6.2.2调角信号的分析与特点6.2.3调角信号的频谱与带宽6.3调频电路6.3.1实现调频、调相的方法6.3.2压控振荡器直接调频电路6.3.3变容二极管直接调频电路6.3.4晶体振荡器直接调频电路6.3.5间接调频电路6.4调频波的解调原理及电路6.4.1鉴频方法及其实现模型6.4.2振幅鉴频器6.4.3相位鉴频器6.4.4比例鉴频器6.4.5移相乘积鉴频器6.4.6脉冲计数式鉴频器6.5调频制的`抗干扰性及特殊电路6.5.1调频制中的干扰及噪声6.5.2调频信号解调的门限效应6.5.3预加重电路与去加重电路6.5.4静噪声电路6.6FM发射机与接收机6.6.1调频发射机的组成6.6.2集成调频发射机6.6.3调频接收机的组成6.6.4集成调频接收机__小结习题6----------DL5.FBD第7章反馈控制电路 7.1概述7.2反馈控制电路的基本原理与分析方法 7.2.1基本工作原理7.2.2数学模型7.2.3基本特性分析7.3自动增益控制电路7.3.1AGC电路的工作原理7.3.2可控增益放大器7.3.3实用AGC电路7.4自动频率控制电路7.4.1AFC电路的组成和基本特性7.4.2AFC电路的应用举例7.5锁相环路7.5.1锁相环路的基本工作原理7.5.2锁相环路的基本应用7.6单片集成锁相环电路简介与应用 7.6.1NE5627.6.2NE562的应用实例__小结习题7第8章数字调制与解调8.1概述8.2二进制振幅键控8.2.12ASK调制原理8.2.22ASK信号的解调原理8.3二进制频率键控8.3.12FSK调制原理8.3.22FSK解调原理8.4二进制相移键控8.4.12PSK调制原理8.4.22PSK解调原理8.5二进制差分相移键控8.5.12DPSK调制原理8.5.22DPSK解调原理__小结习题8第9章软件无线电基础9.1概述9.2软件无线电的关键技术 9.3软件无线电的体系结构 9.4软件无线电的应用__小结习题9附录A余弦脉冲分解系数表部分习题答案参考文献《高频电子电路》(王卫东版)图书目录本书为普通高等教育“十二五”、“十一五”国家级规划教材。