特殊的平行四边形矩形
- 格式:docx
- 大小:41.89 KB
- 文档页数:4
人教版数学《第十八讲特殊的平行四边形第一课时菱形、矩形》说课稿——“学教2:1堂清”复习模式课解读一、说教材本节课教学内容安排在平行四边形与正方形之间,它既是学生前面复习三角形以及平行四边形的有关知识等的进一步延伸,研究菱形、矩形的思想方法又为我们学习后面的正方形奠定了基础,起着承上启下的作用.本节课是中考中的重点内容,而且通过近两年的考试题来看,难度也有所增加,综合运用的要求也再逐渐提高,而且解答题的设计上也由原来单纯的考查推理证明题,变为推理加计算.二、说教法、学法复习课是根据学生的认知特点和规律,在学习的某一阶段,以巩固、疏理已学知识、技能,促进知识系统化,提高学生运用所学知识解决问题的能力为主要任务的一种课型. 其目的是温故知新,查漏补缺,完善认知结构,促进学生解题思想方法的形成;发展数学能力,促进学生运用数学知识解决问题的能力.我校“学教2:1”堂清课堂教学模式主导下的课堂教学全过程始终遵循着两条线:一条是学生的自学和合作,这是明线;另一条是教师的适时的和必要的指导,这是暗线.“学教2:1”堂清教学模式的本质在于在原有的“学”、“教”的基础上增加“练”的模块,“学”指学生的自主、探究、合作学习;“教”指教师的点拨和引导;“练”指学生的知识巩固和能力提升.以学定教,以练促学.“学”、“教”、“练”三者应该是交叉的、循环的.这样既兼顾了学生主体地位和教师的指导作用的双向融合,又能使课堂教学过程变为学生自己获得信息、掌握技能、形成态度的过程.三、说教学过程(一)温故学(5——10分钟)教师展示教学目标、考情分析、知识梳理等设计意图:让学生明确本节课的重要性,引起学生的重视并能以一个端正的心态去进行本节内容的学习.1、认定目标复习课的复习目标要全面要准确要具体,突出重点,突破难点.确定复习重点可从以下几方面考虑:首先,根据教材的教学要求提出四个层次的基本要求:了解、理解、掌握和熟练掌握.这是确定复习重点的依据和标准.对教材要求“了解”的,让学生知其然即可;要求“理解”的,要领会其实质,在原有的基础上加深印象;要求“掌握”的,要巩固加深,对所涉及的各种类型的习题,能准的解答;要求“熟练掌握”的,要灵活掌握解题的技能技巧.其次,熟识每一个知识点在初中数学教材中的地位、作用;再次,中考复习要熟悉近年来的试题类型,考试中所占比重以及考试改革的情况等.依据本节内容在中考中所占的地位和复习丛书的要求,制定如下教学目标:(1)理解菱形、矩形的概念,掌握菱形、矩形的性质定理和判定定理(重点),并能够综合运用它们进行有关计算与推理证明(难点).(2)会用两种方法计算菱形面积.2、考情分析依据近几年中考情况以表格的形式明确考什么(考点、考点解读),怎么考(考的时间、考查角度、考频、命题形式、命题趋势)等,让学生对本节复习内容在考试中所占的比重有一个整体的认识以端正学生的学习态度.3、知识梳理采用结构框图、表格、树状图、大括号图等形式梳理知识,让学生了解所学的内容之间的联系,并发展其归纳能力,通过引导点拨来达到促使学生相对完善知识,并使知识逐步趋于系统化.依据本节内容的特点,把知识梳理和知新学中的典例分析进行了有机地结合,穿插进行,这样是为了让学生把知识和运用更好地衔接和融合.(二)知新学(20——30分钟)1、考点精讲挖掘教材中的例题、习题、中考题的功能,尤其对有代表性的问题和具有可变性的例习题,可变式或延伸后作为例题,引导学生进行变式训练,鼓励学生一题多解、一题多变、拓展、拓宽, 培养学生的应变能力,提高学生的技能技巧,提高学生综合分析问题、解决问题的能力,让学生从多方面感知数学的方法,总结解题规律,提高复习效率.本节所选的四个例题中的例1、例4,就是从我校的复习模式课的流程要求出发而选择的,并且注重了所复习知识的前后联系.例1设计意图:首先是为了及时巩固所复习知识点,并通过一题多解来提高学生的综合解题能力,也是对前面所复习知识的再加强;其次,本题和2016枣庄中考的第9题类似,因此选择此题作为菱形的性质的考查也具有一定的代表性.例2设计意图:此例题是借助菱形的轴对称性求线段和的最小值,这种类型的题目在正方形、圆、函数(2016枣庄中考第25题的第二问)中都有考查,是考试的一个热点题型.主要是通过此题让学生掌握这类题目的基本解法.例3设计意图:通过此例巩固菱形的判定方法的应用,并通过老师的板演进一步规范学生的解题步骤.本题是把丛书的第16题做了一些改动,主要是为了突出对菱形判定的考查,另外此题还结合了等腰三角形的“三线合一”定理,并且图形比较复杂,对学生的识图能力是一个考验.例4设计意图:原题的难度不大,多数学生应该能够独立解决,由于对轴对称的性质的遗忘而得不到OA=OC是学生解决问题1的难度所在,而且这两个问题的解决方法并不唯一,具有很强的灵活性,所以通过本题一方面是为了提高学生在做题过程中的挖掘意识,不要浅尝辄止,另一方面是为了提高学生的综合运用所学知识解决问题的能力. 而中考中对于矩形的考查多数和折叠有关,并且都具有一定的难度(结合相似三角形考查),这也是选择这道题目作为例题的一个重要原因.2、课堂小结教师引导学生总结知识方法和数学思想方法,也可让学生在小组讨论的基础上展示,再让其他学生补充完善.本节课通过课堂小结提高学生解决此类问题时的思维宽度,建立知识点之间的联系,以便学生能够快速地找到解决问题的突破口.(三)达标学(5——8分钟)即堂清.堂清的内容是让学生运用本节课所复习知识解决实际的问题,堂清的形式则是教师出示复习针对性达标题,学生独立完成,当堂完成,教师不提供任何形式的指导,学生之间也不允许进行讨论.堂清结束后教师可采取个别面批或者小组互批等方式,了解哪些学生已经达到了复习目标,哪些学生课后还需要单独进行辅导,并针对学生作业中出现的问题做出相应的处理.在此过程中教师要及时评价并点拨学生提出的疑难问题.设计意图:通过三道题目的练习,检测学生对本节课所复习要点的掌握情况,看学生能否灵活综合运用所学知识点熟练地解决问题.(四)拓展学(5分钟)预设与本节课有关的拓展内容,以让有能力的同学提高知识技能.教师也可根据学生复习情况适时链接中考,选取近两年与本节课复习内容有关的中考题进行训练.本环节可以课上进行,如果没时间可以放在课下.设计意图:本题和例4的考查类似,但比例4的难度较大,所以给出了两种解法的提示,对于程度较好的同学可以依据提示独立解决,而且方法一中所使用的直角三角形的判定方法在教材和复习丛书P84的直角三角形的判定的知识梳理中都没有提到(不用此判定,利用等边对等角和三角形的内角和定理也能得出直角的结论),方法二中的两个相似三角形也不太容易观察出来,所以对学生而言此题的解法有一定难度.。
特殊平行四边形——菱形、矩形、正方形
【菱形】
定义:有一组邻边相等的平行四边形是菱形
性质:菱形的四条边相等。
菱形的对角线互相垂直。
判定:对角线互相垂直的平行四边形是菱形。
四边相等的四边形是菱形。
有一组邻边相等的平行四边形是菱形。
【矩形】
定义:有一个角是直角的平行四边形叫做矩形。
性质:矩形的四个角都是直角。
矩形的对角线相等。
&&直角三角形斜边上中线等于斜边的一半。
判定:对角线相等的平行四边形是矩形。
有三个角是直角的四边形是矩形。
有一个角是直角的平行四边形叫做矩形。
【正方形】
定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。
性质:正方形的四个角都是直角,四条边相等。
正方形的对角线相等且互相垂直平分。
判定:有一组邻边相等的矩形是正方形。
对角线互相垂直的矩形是正方形。
有一个角是直角的菱形是正方形。
对角线相等的菱形是正方形。
有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。
平行四边形的知识点总结
定义
平行四边形是一个拥有两组平行边的四边形。
每对相邻边都是
平行的,且所有内角都是直角。
特性
1. 边长:平行四边形的对边长度相等。
2. 内角:平行四边形的内角都是直角,即90度。
3. 对角线:平行四边形的对角线互相垂直且相等长。
命名规则
平行四边形可以根据边长和角度特性进行命名:
1. 矩形:它是一种特殊的平行四边形,拥有四个直角。
2. 正方形:它是一种特殊的矩形,拥有四条相等边和四个直角。
3. 长方形:它是一种特殊的矩形,拥有两对相等边和四个直角。
4. 菱形:它是一种拥有两条对角线互相垂直且相等边的平行四边形。
常见计算公式
1. 周长:平行四边形的周长可以通过两边长相加再乘以2来计算。
周长 = (边长1 + 边长2) * 2
2. 面积:平行四边形的面积可以通过两对相邻边的长度和夹角来计算。
面积 = 边长1 * 边长2 * sin(夹角)
图形展示
以下是平行四边形的示意图:
-------------
| |
| |
| |
-------------
平行四边形的边和角度特性可以帮助我们理解和计算该图形的性质和参数。
以上是对平行四边形的知识点总结。
注意:本文档的内容仅供参考,不代表法律观点,具体情况还需结合实际法律条款进行判断。
特殊的平行四边形——矩形、菱形、正方形专题培优、能力提升复习讲义中考考点梳理一、矩形1、矩形的概念有一个角是直角的平行四边形叫做矩形。
2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积:S矩形=长×宽=ab二、菱形1、菱形的概念有一组邻边相等的平行四边形叫做菱形。
2、菱形的性质(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积:S菱形=底边长×高=两条对角线乘积的一半三、正方形1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3、正方形的判定(1)判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。
先证它是菱形,再证有一个角是直角。
(2)判定一个四边形为正方形的一般顺序如下:第一步:先证明它是平行四边形;第二步:再证明它是菱形(或矩形);第三步:最后证明它是矩形(或菱形)4、正方形的面积: 设正方形边长为a ,对角线长为b ,S 正方形=222b a 中考典例精选考点典例一、矩形的性质与判定【例1】如图,矩形ABCD 的对角线AC 、BD 相交于点O ,若AB =AO , 求∠ABD 的度数.图6A B 【答案】∠ABD =60°.【解析】考点:矩形的性质;等边三角形的判定及性质.【点睛】此题考查了等边三角形的判定与性质,矩形的性质,熟练掌握等边三角形的判定与性质是解本题的关键.【举一反三】1.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.【答案】详见解析.【解析】试题分析:由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到△BEF≌△CFD,利用全等三角形对应边相等即可得证.考点:矩形的性质;全等三角形的判定与性质.2. 如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在E 处,EQ 与BC 相交于F .若AD=8cm ,AB=6cm ,AE=4cm .则△EBF 的周长是 cm .【答案】8.【解析】试题分析:BE=AB-AE=2.设AH=x ,则DH=AD ﹣AH=8﹣x ,在Rt △AEH 中,∠EAH=90°,AE=4,AH=x ,EH=DH=8﹣x ,∴EH 2=AE 2+AH 2,即(8﹣x )2=42+x 2,解得:x=3.∴AH=3,EH=5.∴C △AEH =12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH .又∵∠EAH=∠FBE=90°,∴△EBF ∽△HAE ,∴32==∆∆AH BE C C HAE EFB . ∴C △EBF =23=C △HAE =8.考点:1折叠问题;2勾股定理;3相似三角形.考点典例二、菱形的性质与判定【例2】如图,在▱ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.【答案】(1)详见解析;(2)四边形ABEF是菱形,理由详见解析.【解析】(2)四边形ABEF是菱形;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB,由(1)得:AF=AB,∴BE=AF,又∵BE ∥AF ,∴四边形ABEF 是平行四边形,∵AF=AB ,∴四边形ABEF 是菱形.考点:角平分线的画法;平行四边形的性质;菱形的判定.【点睛】本题考查了平行四边形的性质,菱形的判定,熟记各性质与平行四边形和菱形的判定方法是解题的关键.在利用菱形计算或证明时,应充分利用菱形的性质,如“菱形的四条边都相等”“菱形的对角线互相垂直且平分,并且每一组对角线平分一组对角”等.对于菱形的判定,若可证出四边形为平行四边形,则可证一组邻边相等或对角线互相垂直;若相等的边较多,则可证四条边都相等.【举一反三】1. 如图,四边形ABCD 是菱形,8=AC ,6=DB ,AB DH ⊥于H ,则DH 等于A .524 B .512 C .5 D .4【答案】A.【解析】 考点:菱形的性质.2. 如图,菱形ABCD 的边AB=8,∠B=60°,P 是AB 上一点,BP=3,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点为A ′,当CA ′的长度最小时,CQ 的长为( )A. 5B. 7C. 8D. 213 CD H【答案】B.【解析】考点:菱形的性质;轴对称(折叠);等边三角形的判定和性质;最值问题.考点典例三、正方形的性质与判定【例3】如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【答案】证明见解析.【解析】考点:正方形的判定;全等三角形的判定与性质.【点睛】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.正方形是特殊的矩形又是特殊的菱形,具有矩形和菱形的所有性质.证明一个四边形是正方形,可以先判定为矩形,再证邻边相等或对角线互相垂直;或先判定为菱形,再证有一个角是直角或对角线相等.【举一反三】1.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2 C.D.10﹣5【答案】B.【解析】考点:正方形的性质;全等三角形的判定及性质;勾股定理.考点典例四、特殊平行四边形综合题【例4】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE ⊥BC,交直线MN于E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.【答案】(1)证明见解析;(2)四边形BECD是菱形,(3)当∠A=45°时,四边形BECD是正方形.理由见解析.【解析】(3)当∠A=45°时,四边形BECD是正方形,理由是:考点:正方形的判定;平行四边形的判定与性质;菱形的判定.【点睛】本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力. 【举一反三】如图,正方形ABCD 的边长为1,AC 、BD 是对角线,将△DCB 绕点D 顺时针旋转450得到△DGH , HG 交AB 于点E ,连接DE 交AC 于点F ,连接FG ,则下列结论:①四边形AEGF 是菱形 ②△AED ≌△GED③∠DFG =112.5︒ ④BC +FG =1.5其中正确的结论是 .(填写所有正确结论的序号)图5F EH G BA【答案】①②③. 【解析】试题分析:由旋转的性质可得HD=BD=2 ∴HA=12-考点:旋转的性质;全等三角形的判定及性质;菱形的判定.课后巩固、提高自测小练习一、选择题1.关于ABCD的叙述,正确的是()A.若AB⊥BC ABCD是菱形B.若AC⊥BD ABCD是正方形C.若AC=BD,则ABCD是矩形D.若AB=AD ABCD是正方形【答案】C.【解析】试题分析:根据矩形的判定可得A、C项应是矩形;根据菱形的判定可得B、D项应是菱形,故答案选C.考点:矩形、菱形的判定.2. 下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形【答案】D.【解析】考点:1菱形的判定;2矩形的性质;3平行四边形的判定.3.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【答案】C.【解析】试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.此时,EP+FP的值最小,值为EF′.∵四边形ABCD为菱形,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选:C.考点:1轴对称;2菱形.4.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是( )A .AB =AD B .AC ⊥BD C .AC =BD D .∠BAC =∠DAC 【答案】C . 【解析】考点:菱形的判定;平行四边形的性质.5. 如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CE =2DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③EG =DE +BG ;④AG ∥CF ;⑤S △FGC =3.6.其中正确结论的个数是( )A .2B .3C .4D .5 【答案】D . 【解析】试题分析:∵正方形ABCD 的边长为6,CE =2DE ,∴DE =2,EC =4,∵把△ADE 沿AE 折叠使△ADE 落在△AFE 的位置,∴AF =AD =6,EF =ED =2,∠AFE =∠D =90°,∠FAE =∠DAE ,在Rt △ABG 和Rt △AFG 中,∵AB =AF ,AG =AG ,∴Rt △ABG ≌Rt △AFG (HL ),∴GB =GF ,∠BAG =∠FAG ,∴∠GAE =∠FAE +∠FAG =12∠BAD =45°,所以①正确; 设BG =x ,则GF =x ,C =BC ﹣BG =6﹣x ,在Rt △CGE 中,GE =x +2,EC =4,CG =6﹣x ,∵222CG CE GE +=,∴222(6)4(2)x x-+=+,解得x=3,∴BG=3,CG=6﹣3=3,∴BG=CG,所以②正确;∵EF=ED,GB=GF,∴GE=GF+EF=BG+DE,所以③正确;∵GF=GC,∴∠GFC=∠GCF,又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,而∠BGF=∠GFC+∠GCF,∴∠AGB+∠AGF=∠GFC+∠GCF,∴∠AGB=∠GCF,∴CF∥AG,所以④正确;过F作FH⊥DC.∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴EH EFGC EG=,EF=DE=2,GF=3,∴EG=5,∴△EFH∽△EGC,∴相似比为:EH EFGC EG==25,∴S△FGC=S△GCE﹣S△FEC=12×3×4﹣12×4×(25×3)=3.6,所以⑤正确.故正确的有①②③④⑤,故选D.考点:翻折变换(折叠问题);全等三角形的判定与性质;正方形的性质.6.小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了()A.1次B.2次C.3次D.4次【答案】B.【解析】考点:翻折变换(折叠问题).7.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直【答案】D.【解析】考点:菱形的性质;平行四边形的性质.8.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°【答案】B.【解析】试题分析:∵将△ABC沿BC方向平移得到△DCE,∴AB//CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.故选B.考点:菱形的判定;平移的性质.二、填空题1.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是(只填写序号)【答案】①②③④.【解析】考点:1菱形的性质和判定;2轴对称;3平行线的性质.2. 如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.【答案】22.5°.【解析】试题分析:已知四边形ABCD是矩形,由矩形的性质可得AC=BD,OA=OC,OB=OD,即可得OA=OB═OC,由等腰三角形的性质可得∠OAC=∠ODA,∠OAB=∠OBA,即可得∠AOE=∠OAC+∠OCA=2∠OAC,再由∠EAC=2∠CAD,可得∠EAO=∠AOE,因AE⊥BD,可得∠AEO=90°,所以∠AOE=45°,所以∠OAB=∠OBA=67.5°,即∠BAE=∠OAB ﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.3. 如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是.(1)EF=OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=;(5)OG•BD=AE2+CF2.【答案】(1),(2),(3),(5).【解析】1(2)∵S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD,4∴S四边形OEBF:S正方形ABCD=1:4;故正确;(3)∴BE+BF=BF+CF=BC=2OA;故正确;(5)∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG•OB=OE2,∵OB=12BD,OE=22EF,∴OG•BD=EF2,∵在△BEF中,EF2=BE2+BF2,∴EF2=AE2+CF2,∴OG•BD=AE2+CF2.故正确.考点:四边形综合题.4.如图,已知菱形ABCD的两条对角线长分别为AC=8和BD=6,那么,菱形ABCD的面积为.【答案】24. 【解析】试题分析:根据菱形面积等于两条对角线的长度的乘积的一半即可得,菱形的面积=21×6×8=24. 考点:菱形的性质.5.将矩形ABCD 纸片按如图所示的方式折叠,EF ,EG 为折痕,试问∠AEF +∠BEG = .【答案】90°. 【解析】考点:翻折变换(折叠问题).6. 如图,四边形OABC 为矩形,点A ,C 分别在x 轴和y 轴上,连接AC ,点B 的坐标为(4,3),∠CAO 的平分线与y 轴相交于点D ,则点D 的坐标为 .【答案】(0,43).【解析】考点:矩形的性质;坐标与图形性质.三、解答题1.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:C P=AQ;(2)若BP=1,PQ=22,∠AEF=45°,求矩形ABCD的面积.【答案】(1)证明见解析;(2)8.【解析】考点:矩形的性质;全等三角形的判定与性质.2.如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.【答案】(1)证明见解析;(2)证明见解析,面积相等.【解析】试题分析:(1)由矩形的性质得出对边平行,再根据平行线的性质得出相等的角,结合全等三角形的判定定理AAS即可得出△PHC≌△CFP;(2)由矩形的性质找出∠D=∠B=90°,再结合对边互相平行即可证出四边形PEDH和四边形PFBG都是矩形,通过角的正切值,在直角三角形中表示出直角边的关系,利用矩形的面积公式即可得出两矩形面积相等.考点:矩形的判定与性质;全等三角形的判定与性质.3.如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:A E=EF.【答案】证明见解析.【解析】试题分析:先取AB的中点H,连接EH,根据∠AE F=90°和ABCD是正方形,得出∠1=∠2,再根据E是BC 的中点,H是AB的中点,得出BH=BE,AH=CE,最后根据CF是∠DCG的角平分线,得出∠AHE=∠ECF=135°,从而证出△AHE≌△ECF,即可得出AE=EF.试题解析:取AB的中点H,连接EH.∵∠AEF=90°,∴∠2+∠AEB=90°,∵四边形ABCD是正方形,∴∠1+∠AEB=90°,∴∠1=∠2,∵E是BC的中点,H是AB的中点,∴BH=BE,AH=CE,∴∠BHE=45°,∵CF是∠DCG的角平分线,∴∠FCG=45°,∴∠AHE=∠ECF=135°,在△AHE和△ECF中,∵∠1=∠2,AH=EC,∠AHE=∠ECF,∴△AHE≌△ECF(ASA),∴AE=EF.考点:正方形的性质;全等三角形的判定与性质.4. 如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.【答案】详见解析.【解析】∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.考点:全等三角形的性质;菱形的判定.。
特殊的平行四边形矩形矩形的性质【基础练习】一、矩形性质1.矩形具有而一般平行四边形不具有的性质是()A.对角线相等 B.对角相等 C.对边相等 D.对角线互相平分二、矩形边、对角线1.如果矩形的一边与对角线的夹角为50 ,则两条对角线相交所成的锐角的度数为( ) A.60° B.70° C.80° D.90°2.一个矩形的对角线等于长边的一半与短边的和,则短边与长边的比为。
3、2,则它的一条对角线的长是______.4.矩形ABCD的周长为56,对角线AC,BD交于点O,△ABO与△BCO的周长差为4,•则AB 的长是()A.12 B.22 C.16 D.265.矩形的三个顶点坐标分别是(-2,-3),(1,-3),(-2,-4),那么第四个顶点坐标是()A.(1,-4) B.(-8,-4) C.(1,-3) D.(3,-4)6.如图所示,矩形ABCD的两条对角线交于点O,则图中的全等三角形共有()A.2对 B.4对 C.6对 D.8对7.矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86cm,对角线是13cm,那么矩形的周长是____________8.如图,把一个长方形纸片沿EF折叠后,点D、C分别在D′、C′位置,若∠EFB=65°,则∠AED′=_____.9.如图,矩形ABCD中,AC与BD交于O点,BE⊥AC于E,CF⊥BD于F.求证:BE=CF.AB CDE FO三、矩形与等腰三角形1.如图,在矩形ABCD中,对角线AC BD,交于点O,已知120 2.5AOD AB∠==o,,则AC的长为.2.矩形边长为10cm和15cm,其中一个内角的平分线分长边为两部分,则这两部分的长分别为 ( ) A.6cm和9cm B.5cm和10cm C.4cm和11cm D.7cm和8cm3.矩形的两条对角线的夹角为60°,一条对角线和短边的和为15,则短边的长是,对角线长是。
北师大版九上第一章《矩形》题型全解讲义题型解读2-1 矩形的定义与性质应用题型【知识梳理】1.定义:有一个角是直角的平行四边形;(既是性质也是判定)2.性质:(1)边:对边平行且相等(共有);(2)角:四个角都是直角(独有);(3)对角线:互相平分(共有);相等(独有);①注意:是“平分、相等”而不是“垂直”;②矩形的一条对角线把平行四边形分成两个面积相等的三角形(共有),矩形的两条对角线把平行四边形分成两个面积相等的三角形(共有);③矩形的对角线把矩形分成4个直角三角形、4个等腰三角形;若对角线的夹角为60º,则出现2个等边三角形和2个含30º角的等腰三角形;如图:④性质推论:直角三角形斜边上的中线等于斜边的一半。
如图:4.对称性矩形是轴对称图形,对每组对边中点的两条直线是它的两条对称轴;矩形是中心对称图形,两条对角线的交点是对称中心;【典型例题】例1.(性质③)如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A. ∠ABC=90°B. AC=BDC. OA=OBD. OA=AD解析:选D只有当∠DAC=60°时才成立;例2.(矩形对角线平分且相等)如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE= 度.若∠AEB=60°,则出现:①2个等边三角形:ABE、DEC;②2个含30°角的等腰三角形:AED、BEC;③矩形的一边等于对角线的一半:AB=12AC;EDCBARt ABC中,E是斜边AC的中点,则BE=12AC;BE=AE=ECEDCBA【解析】利用矩形性质“对角线相等且平分”可得OA=OD,由条件∠EAC=2∠CAD,可找到∠ADO与∠EAD之间的关系,即可求解结论;∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAC=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAC+∠OCA=2∠OAC,∵∠EAC=2∠CAD,∴∠EAO=∠AOE,∵AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA=(180°-45°)÷2=67.5°,∴∠BAE=∠OAB﹣∠OAE=22.5°.例3.(矩形对角线相等)如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E= 度.【解析】连接AC,利用矩形对角线相等及CE=BD可得AC=CE,再利用外角定理可求解∠E的度数。
平行四边形与矩形平面中的特殊四边形平行四边形与矩形是平面几何中的两类特殊四边形,它们在形状和性质上都有一些共同之处,同时也存在一些不同之处。
深入了解这两类特殊四边形的性质和特点,对于我们理解几何学的基本概念和解决相关问题具有重要意义。
一、平行四边形的性质平行四边形是指具有两对平行边的四边形。
以下列举了平行四边形的一些重要性质:1. 对边平行性:平行四边形的相对边互相平行,即对边平行性质。
这意味着任意一对对边都是平行的。
2. 对角线性质:平行四边形的对角线互相等分,即两条对角线的中点重合。
3. 同位角相等性质:平行四边形的同位角(指在平行四边形上同一边的内侧或外侧的两个相邻角)互相相等。
4. 对边长度比:平行四边形的对边长度之比相等。
例如,如果AB || CD,那么AB/CD = AD/BC。
二、矩形的性质矩形是指具有四个内角均为直角(90度)的四边形。
下面列举了矩形的一些重要性质:1. 对边平行性:矩形的相对边互相平行,即对边平行性质,这与平行四边形的性质相同。
2. 对角线相等性质:矩形的对角线相等,即两条对角线的长度相等。
3. 内角度数:矩形的内角都是直角(90度),即所有内角都相等。
4. 边长相等性质:矩形的相对边长度相等,即矩形的两对边长度相等。
三、平行四边形与矩形的区别尽管平行四边形和矩形具有一些相同的性质,但它们在一些方面也存在着不同:1. 矩形的特殊性:由于矩形的内角均为直角,所以矩形是一种特殊的平行四边形。
可以说,矩形是平行四边形的一种特例。
2. 对角线性质:尽管平行四边形和矩形的对角线都具有相等性质,但对角线对于矩形的重要性更加突出。
矩形的对角线不仅相等,还相互垂直。
3. 内角度数:平行四边形的内角度数没有具体限制,可以是任意值,而矩形的内角度数必须为直角(90度)。
四、应用示例1. 题目:已知ABCD是平行四边形,E是AD的中点,连接BE。
证明:BE平分∠ABC。
解析:首先,根据平行四边形的性质可知,对边平行,即AD || BC。
证明四边形是矩形的方法
证明四边形是矩形的方法需要从矩形的定义入手,矩形是一种特
殊的平行四边形,具有以下特点:
1.四个内角均为直角,即90度。
2.对边平行,即相对的两条边长度相等,且相对的两条边互相垂直。
因此,要证明一个四边形是矩形,需要证明它满足上述两个条件。
具体来说,可以采用以下方法:
方法一:证明四个内角均为直角
可以通过以下步骤证明:
1.取该四边形的一条边作为基准线,以该边为直线,画出该四边
形的对角线。
2.根据平行四边形的性质可知,该四边形的两对相邻的内角互补,即加起来为180度。
3.根据直角的性质可知,任何一个直角都等于90度。
4.因此,如果该四边形的两对相邻内角都等于90度,则该四边形
四个内角均为直角,即符合矩形的定义。
方法二:证明对边平行且相等
可以通过以下步骤证明:
1.对该四边形的两对相邻边分别进行平行线的延长,得到四个点,这四个点组成一个矩形。
2.如果原来的四边形是矩形,那么这个矩形的两对相邻边互相垂直,且长度相等。
3.根据平行线之间的定理可知,对于平行四边形来说,其对边互
相平行。
4.因此,如果该四边形的两对相邻边在延长后形成了一个矩形,
就可以得出结论该四边形的对边平行且相等,符合矩形的定义。
方法三:结合两种方法
可以通过以上两种方法结合进行证明,即先证明内角均为直角,
然后证明对边平行且相等。
总之,证明一个四边形是矩形的方法,需要根据矩形的定义,利
用平行线之间的定理、内角互补性、对角线的性质等进行分析和推理,最终得出结论。
《矩形的性质》教学设计
一,教学目标:
1. 掌握矩形的定义和性质,并学会运用矩形的性质计算矩形中的角度、线段问
题,及其有关证明冋题。
2. 通过讨论、类比归纳使学生了解矩形与平行四边形的区别与联系。
3. 经历探索矩形有关性质的过程,在直观操作活动中学会简单说理,发展初步 的合情
推理能力和主动探究习惯,逐步掌握说理的基本方法.
4. 使学生感受到图形中的对称美,体会到数学来源于生活又应用于生活,从而 增强学
生学习数学的兴趣。
二,学习重点、难点:
学习重点:矩形性质定理及推论.
学习难点:矩形性质定理、推论及特殊三角形的性质的综合应用 . 三,学生分析:
本节课学习,学生在心理上易受到下列因素影响:一是受日常用语的影响, 日常生活中的矩形常被称作长方形,容易给学生造成矩形是另一种图形的错误认 识。
二是受平行四边形的影响,学生在学习矩形的性质以前,已经学习了平行四 边形的性质和判定,对特殊四边形的性质有了一个初步的感知,但有些学生容 易将两种图形的性质混淆,因此,在教学中要注意区别,帮助学生抓住图形的本 质特征。
四,教学器材
矩形纸片。
可滑动的平行四边形教具。
五,教学流程:
教学环节
问题(1) 同学们,你们留意观察过这些 图形
吗?他们是什么形状吗?
学生根据自己的生活经验,可能回答:平行 四边
形、矩形、四边形……
通过本节课的学习,大家就能明白其中的道 理.
今天,我们来共同研究矩形及其性质. (板 书:矩形的性质) 1、矩形的定义
制一个活动的平行四边形教具,堂上进行演 示,使学生注意观察四边形角的变化。
以图形变化为引入,让学生从变化的平行四
创 设
情 境
导
入
新
课
设计意图
从学生的生活实际
出发,创设情境,提出 问
题,激发学生强烈的 好奇
心和求知欲.学生 经历了
将实际问题抽象 为数学问
题的建模过 程. 通过教具演示,让学 生经历了矩形概念的探 究过程,自然而然地形 成矩形的概念,符合学
实践探究
实践探究边形中体会矩形,从而发现平行四边形与矩形之间
的联系..
(1)四边形在运动过程中还是平行四边形
吗?
(2)观察四边形在运动过程中不变的是什
么?
(3)观察四边形在运动过程中改变的是什
么?
不变:对边仍保持相等,对边仍分别平行,
所以仍然是平行四边形
变:角的大小
(4)角的大小改变过程中有特殊值吗?这时
的平行四边形是什么图形。
(矩形)
(5)你能给矩形下个定义吗?
矩形的定义
有一个内角是直角的平行四边形是矩形
2、矩形的性质。
图形对称性边角对角线
平行四
边线
矩
具有平行四边形的所有性质
形
提冋:
(1)矩形是平行四边形吗?(是)
(2)矩形是平行四边形,所以矩形具有哪
些
基本性质?(具有平行四边形的所有性质)
(3)平行四边形是矩形吗?(不一定,因
为矩形具有平行四边形所不具备的性质)
(4)矩形既是特殊的平行四边形,它除了
有“平行四边形的一切性质和有一个角是直角”
生的认知规律•避免了
以往概念教学的机械记
忆,同时发展了学生的
探究意识,培养了学生
思维的广阔性
激发学生探究数学
问题,在演示中使学生
明确矩形是特殊的平行
四边形(特殊之处就在
于一个角是直角,深刻
理解矩形与平行四边形
的联系和区别)
从变化的图形中让学
生归纳出矩形的定义
渗透类比思想•在比
较中学习,能够加深学生
对矩形性质的理解.
利用问题,激活学生
的思维,吸引学生的注意
力。