《第一章特殊平行四边形》课时练习题及答案
- 格式:doc
- 大小:654.35 KB
- 文档页数:10
北师大版九年级上册第一章特殊平行四边形各小节练习题(含答案)菱形巩固练习一.选择题1.(2015•潍坊模拟)下列说法中,错误的是()A.平行四边形的对角线互相平分B.对角线互相平分的四边形是平行四边C.菱形的对角线互相垂直 D.对角线互相垂直的四边形是菱形2.(2016•莆田)菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直3.如图,在菱形ABCD中,E、F分别是AB、AC的中点,如果EF=2,那么菱形ABCD的周长是( )A.4B.8C.12D.164.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于()A.20 B.15 C.10 D.55.如图,在菱形ABCD中,AC、BD是对角线,若∠BAC=50°,则∠ABC等于()A.40° B.50° C.80° D.100°6.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为( )A.1B. 2C.D.二.填空题 7.已知菱形的周长为40,两个相邻角度数之比为1∶2,则较长对角线的长为______.8.(2015•南充)如图,菱形ABCD 的周长为8cm ,高AE 长为cm ,则对角线AC 长和BD 长之比为 .9. 已知菱形ABCD 两对角线AC = 8, BD = 6, 则菱形的高为________.10. (2016•内江)如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC=8,BD=6,OE ⊥BC ,垂足为点E ,则OE= .11. 如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB =13,AC =10,过点D 作DE∥AC 交BC 的延长线于点E ,则△BDE 的周长为_____.12.如图,在平面直角坐标系中,菱形OABC 的顶点B 的坐标为(8,4),则C 点的坐标为_______.三.解答题13.如图,在菱形ABCD 中,∠ABC =120°,E 是AB 边的中点,P 是AC 边上一动点,PB +PE 的最小值是,求AB 的值.23cm cm cm cm 314.如图,在平行四边形ABCD中,E、F分别为边AB,CD的中点,连接DE、BF、BD.若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.15(2015春•泰安校级期中)如图,在△ABC中,△ABC=90°,BD为AC的中线,过点C作CE△BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.矩形巩固练习一.选择题1.(2015春•宜兴市校级期中)下列说法中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.平行四边形的对角线平分一组对角D.矩形的对角线相等且互相平分2.若矩形对角线相交所成钝角为120°,短边长3.6cm,则对角线的长为( ).A. 3.6cmB. 7.2cmC. 1.8cmD. 14.4cm3.矩形邻边之比3∶4,对角线长为10cm,则周长为( ).A.14cmB.28cmC.20cmD.22cm 4.(2016•海南)如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°5. 在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分 B.测量两组对边是否分别相等C.测量一组对角是否都为直角 D.测量其中三角形是否都为直角6. 如图,△ABC中,AC的垂直平分线分别交AC、AB于点D、F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是()A. B. C.4 D.二.填空题7.矩形ABCD中,对角线AC、BD相交于O,∠AOB=60°,AC=10cm,则AB=______cm,BC=______cm.8.在△ABC中,∠C=90°,AC=5,BC=3,则AB边上的中线CD=______.9. (2016•巴中)如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=度.10.(2015•重庆模拟)如图,在矩形ABCD中,E为BC的中点,且∠AED=90°,AD=10,则AB的长为.11.如图,ABCD的顶点B在矩形AEFC的边EF上,点B与点E、F不重合,若△ACD的面积为3,则图中阴影部分两个三角形的面积和为_______.12. 如图,Rt△ABC中,∠C=90°,AC=BC=6,E是斜边AB上任意一点,作EF⊥AC于F,EG⊥BC于G,则矩形CFEG的周长是______.三.解答题13.如图,矩形ABCD的对角线相交于点O,OF⊥BC,CE⊥BD,OE∶BE=1∶3,OF=4,求∠ADB的度数和BD的长.14.如图,在矩形ABCD中,F是BC边上的一点,AF的延长线交DC的延长线于G,DE⊥AG于E,且DE=DC,根据上述条件,请你在图中找出一对全等三角形,并证明你的结论.15.(2015•通州区一模)已知菱形ABCD的对角线AC与BD相交于点E,点F在BC的延长线上,且CF=BC,连接DF,点G是DF中点,连接CG.求证:四边形ECGD是矩形.正方形巩固练习一.选择题1. (2016•陕西)如图,在正方形ABCD 中,连接BD ,点O 是BD 的中点,若M 、N 是边AD 上的两点,连接MO 、NO ,并分别延长交边BC 于两点M ′、N ′,则图中的全等三角形共有( )A .2对B .3对C .4对D .5对2. (2015•漳州一模)正方形具有而菱形不一定具有的性质是( )A. 四条边相等B. 对角线互相垂直平分C. 对角线平分一组对角D. 对角线相等3. 如图,正方形ABCD 的边长为4,则图中阴影部分的面积为( ).A.6B.8C.16D.不能确定4. 顺次连结对角线互相垂直的四边形各边的中点,所得的四边形是 ( )A. 矩形B. 菱形C. 正方形D. 梯形5.如图,在边长为2的正方形ABCD 中,M 为边AD 的中点,延长MD 至点E ,使ME =MC ,以DE 为边作正方形DEFG ,点G 在边CD 上,则DG 的长为( )AB.cm 2cm 13116.如图,正方形ABCD 中,对角线AC ,BD 相交于点O ,则图中的等腰三角形有( )A .4个B .6个C .8个D .10个二.填空题7.若正方形的边长为,则其对角线长为______,若正方形ACEF 的边是正方形ABCD 的对角线,则正方形ACEF 与正方形ABCD 的面积之比等于______.8. 如图,在四边形ABCD 中,AB =BC =CD =DA ,对角线AC 与BD 相交于点O ,若不增加任何字母与辅助线,要使四边形ABCD 是正方形,则还需增加一个条件是_________.9. 如图,将边长为2的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△,若两个三角形重叠部分的面积是1,则它移动的距离等于____.10. 如图,边长为2的正方形ABCD 的对角线相交于点O ,过点O 的直线分别交AD 、BC 于E 、F ,则阴影部分的面积是_______.a cm A B C '''2cm AA 'cm11. 如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是______.12.(2015•长春)如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为.三.解答题13.(2016•乐山)如图,在正方形ABCD中,E是边AB的中点,F是边BC的中点,连结CE、DF.求证:CE=DF.14.(2015•铁力市二模)如图,点P是正方形ABCD的对角线BD上一点,PE△BC于点E;PF△CD于点F,连接EF,给出下列五个结论:①AP=EF;②AP△EF;③△PFE=△BAP;④PD=EC;⑤PB2+PD2=2PA2,正确的有几个?.15.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后,得到正方形EFCG,EF交AD 于H ,求DH 的长.菱形答案与解析一.选择题1.【答案】D ;2.【答案】D【解析】∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直; 平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D .3.【答案】D ;【解析】BC =2EF =4,周长等于4BC =16.4.【答案】B ;【解析】∵∠BCD=120°,∴∠B=60°,又∵ABCD 是菱形,∴BA=BC,∴△ABC 是等边三角形,故可得△ABC 的周长=3AB=15.5.【答案】C ;【解析】∵四边形ABCD 是菱形,∴∠BAC=∠BAD,CB∥AD,∵∠BAC=50°,∴∠BAD =100°,∵CB∥AD,∴∠ABC+∠BAD=180°,∴∠ABC=180°-100°=80°.6.【答案】D ;【解析】∠DAF =∠FAO =∠OAE =30°,所以2BE =CE =AE ,3BE =3,BC=.二.填空题7.【答案】;【解析】由题意,菱形相邻内角为60°和120°,较长对角线为8.【答案】1:;【解析】如图,设AC ,BD 相较于点O , 123=△菱形ABCD 的周长为8cm ,△AB=BC=2cm ,△高AE 长为cm ,△BE==1(cm ),△CE=BE=1cm ,△AC=AB=2cm ,△OA=1cm ,AC △BD ,△OB==(cm ), △BD=2OB=2cm , △AC :BD=1:. 9.【答案】; 【解析】菱形的边长为5,面积为,则高为. 10.【答案】.【解析】∵四边形ABCD 为菱形,∴AC ⊥BD ,OB=OD=BD=3,OA=OC=AC=4,在Rt △OBC 中,∵OB=3,OC=4,∴BC==5,∵OE ⊥BC ,∴OE •BC=OB •OC ,∴OE==. 故答案为. 11.【答案】60;【解析】因为菱形的对角线互相垂直及互相平分就可以在Rt△AOB 中利用勾股定理求出OB =12,BD =2OB =24,DE =2OC =10,BE =2BC =26,△BDE 的周长为60.12.【答案】(3,4);【解析】过B 点作BD ⊥OA 于D ,过C 点作CE ⊥OA 于E ,BD =4,OA =,AD =8-,,解得,所以OE =AD =8-5=3,C 点坐标为(3,4).三.解答题13.【解析】解:∵∠ABC =120°∴∠BCD =∠BAD =60°;245cm 168242⨯⨯=245cm x x ()22284x x =-+5x =∵菱形ABCD 中, AB =AD∴△ABD 是等边三角形;又∵E 是AB 边的中点, B 关于AC 的对称点是D ,DE ⊥AB连接DE ,DE 与AC 交于P ,PB =PD ;DE 的长就是PB +PE 的最小值; 设AE =,AD =,DE =,所以,AB =.14.【解析】四边形BFDE 是菱形,证明:∵AD⊥BD,∴△ABD 是直角三角形,且AB 是斜边,∵E 为AB 的中点,∴DE=AB =BE , ∵四边形ABCD 是平行四边形,∴DC∥AB,DC =AB ,∵F 为DC 中点,E 为AB 中点,∴DF=DC ,BE =AB , ∴DF=BE ,DF∥BE,∴四边形DFBE 是平行四边形,∵DE=EB ,∴四边形BFDE 是菱形.15.【解析】证明:△△ABC=90°,BD 为AC 的中线,△BD=AC ,△AG △BD ,BD=FG ,△四边形BGFD 是平行四边形,△CF △BD ,△CF △AG ,又△点D 是AC 中点,△DF=AC ,△BD=DF ;(2)证明:△BD=DF ,△四边形BGFD 是菱形,(3)解:设GF=x ,则AF=13﹣x ,AC=2x ,△在Rt △ACF 中,△CFA=90°,3x 2x ()22233x x x -==1x =22x =121212△AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,∴四边形BDFG的周长=4GF=20.矩形答案与解析一.选择题1.【答案】D;【解析】△对角线相等的平行四边形是矩形,△A不正确;△对角线互相垂直的四边形不一定是菱形,△B不正确;△平行四边形的对角线互相平分,菱形的对角线平分一组对角,△C不正确;△矩形的对角线互相平分且相等,△D正确;2.【答案】B;【解析】直角三角形中,30°所对的边等于斜边的一半.3.【答案】B;【解析】由勾股定理,可算得邻边长为6cm和8cm,则周长为28cm.4.【答案】C.【解析】过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C.5.【答案】D;6.【答案】A;【解析】先证△ADF ≌△BEF ,则DF 为△ABC 中位线,再证明四边形BCDE 是矩形,BE 可求面积.二.填空题7.【答案】5,53;【解析】可证△AOB 为等边三角形,AB =AO =CO =BO.8.【答案】2【解析】由勾股定理算得斜边AB CD =12AB 9.【答案】15.【解析】连接AC ,∵四边形ABCD 是矩形,∴AD ∥BE ,AC=BD ,且∠ADB=∠CAD=30°,∴∠E=∠DAE ,又∵BD=CE ,∴CE=CA ,∴∠E=∠CAE ,∵∠CAD=∠CAE +∠DAE ,∴∠E +∠E=30°,即∠E=15°,故答案为:15.10.【答案】5;【解析】△矩形ABCD 中,E 是BC 的中点,△AB=CD ,BE=CE ,△B=△C=90°,可证得△ABE △△DCE (SAS ),△AE=DE ,△△AED=90°,△△DAE=45°,△△BAE=90°﹣△DAE=45°,△△BEA=△BAE=45°,△AB=BE=AD=×10=5.11.【答案】3;【解析】根据平行四边形的性质求出AD =BC ,DC =AB ,证△ADC ≌△CBA ,推出△ABC 的面积是3,求出AC ×AE =6,即可求出阴影部分的面积.12.【答案】12;【解析】推出四边形FCGE 是矩形,得出FC =EG ,FE =CG ,EF ∥CG ,EG ∥CA ,求出∠BEG=∠B ,推出EG =BG ,同理AF =EF ,求出矩形CFEG 的周长是CF +EF +EG +CG=AC+BC,代入求出即可.三.解答题13.【解析】解:由矩形的性质可知OD=OC.又由OE∶BE=1∶3可知E是OD的中点.又因为CE⊥OD,根据三线合一可知OC=CD,即OC=CD=OD,即△OCD是等边三角形,故∠CDB=60°.所以∠ADB=30°.又因为CD=2OF=8,即BD=2OD=2CD=16.14.【解析】证明:∵四边形ABCD是矩形,∴AD∥BC,DC=AB.∴∠DAE=∠AFB.∵DE=DC,∴DE=AB.∵DE⊥AG,∴∠DEA=∠ABF=90°.∴△ABF≌△DEA.15.【解析】证明:△CF=BC,△C点是BF中点,△点G是DF中点,△CG是△DBF中位线,△CG△BD,CG=,△四边形ABCD是菱形,△AC△BD,DE=,△△DEC=90°,CG=DE,△CG△BD,∴四边形ECGD是矩形.正方形答案与解析一.选择题1.【答案】C.【解析】∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,,∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,,∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C.2.【答案】D;【解析】正方形的性质:正方形的四条边相等,四个角都是直角,对角线互相垂直平分且相等,并且每一条对角线平分一组对角;菱形的性质:菱形的四条边相等,对角线互相垂直平分,并且每一条对角线平分一组对角;因此正方形具有而菱形不一定具有的性质是:对角线相等;故选:D .3.【答案】B ;【解析】阴影部分面积为正方形面积的一半.4.【答案】A ;5.【答案】D ;【解析】利用勾股定理求出CM =,即ME 的长,有DM =DE ,所以可以求出DE =,进而得到DG 的长.6.【答案】C ;二.填空题7.【答案】,2∶1 ;【解析】正方形ACEF 与正方形ABCD 的边长之比为.8.【答案】AC =BD 或AB⊥BC;【解析】∵在四边形ABCD 中,AB =BC =CD =DA∴四边形ABCD 是菱形∴要使四边形ABCD是正方形,则还需增加一个条件是AC =BD 或AB⊥BC .9.【答案】1;【解析】移动距离为,重叠部分面积为CE ×,所以,得,所以.10.【答案】1;【解析】由题可知△DEO≌△BFO,阴影面积就等于三角形BOC 面积.11.【答案】;【解析】,重叠部分面积为. 12.【答案】5;【解析】解:过E 作EM △AB 于M ,△四边形ABCD 是正方形,△AD=BC=CD=AB ,△EM=AD ,BM=CE ,△△ABE 的面积为8,△×AB ×EM=8,解得:EM=4,即AD=DC=BC=AB=4,△CE=3,由勾股定理得:BE===5, 551-2a 2:1B C x '=1B C '=()21x x -=()210x -=1x =21-21D E D C ''==-()12121212⨯⨯⨯-=-故答案为:5.三.解答题13.【解析】证明:∵ABCD 是正方形,∴AB=BC=CD ,∠EBC=∠FCD=90°,又∵E 、F 分别是AB 、BC 的中点,∴BE=CF ,在△CEB 和△DFC 中,,∴△CEB ≌△DFC ,∴CE=DF .14.【解析】解:①正确,连接PC ,可得PC=EF ,PC=PA ,△AP=EF ;②正确;延长AP ,交EF 于点N ,则△EPN=△BAP=△PCE=△PFE ,可得AP △EF ; ③正确;△PFE=△PCE=△BAP ;④错误,PD=PF=CE ;⑤正确,PB 2+PD 2=2PA 2.所以正确的有4个:∴∴∴∴.15.【解析】解:如图,连接CH ,∵正方形ABCD 绕点C 按顺时针方向旋转30°,∴∠BCF=30°,则∠DCF=60°,在Rt△CDH 和Rt△CFH 中,∴Rt△C DH ≌Rt△CF H ,CH CH CD CF =⎧⎨=⎩∴∠DCH=∠FCH=∠DCF=30°,在Rt△CDH中,DH=,CH=2,CD,∴DH12x x3。
北师大版九年级上册数学第一章特殊平行四边形解答题训练(一)解析版1.在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.2.(1)计算:﹣(﹣1)+|﹣2|+(﹣2)0;(2)如图,四边形ABCD中,AB=CD,AD=BC,对角线AC,BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.3.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.4.已知:如图,在菱形ABCD中,点E,F分别在边BC,CD上,且BE=DF,连结AE,AF.求证:AE=AF.5.如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:AF=CE.6.如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB、CD 边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.7.如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.8.如图,在菱形ABCD中,点E、F分别为AD、CD边上的点,DE=DF,求证:∠1=∠2.9.如图,在△ABC中,AB=AC.将△ABC沿着BC方向平移得到△DEF,其中点E在边BC上,DE 与AC相交于点O.(1)求证:△OEC为等腰三角形;(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由.10.如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD 于点G.(1)证明:△ADG≌△DCE;(2)连接BF,证明:AB=FB.11.如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.12.如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.13.如图,在矩形ABCD中,分别取AB,BC,CD,DA的中点E,F,G,H,连接EF,FG,GH,HE,求证:四边形EFGH是菱形.14.如图,矩形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E、F.(1)求证:四边形BEDF是平行四边形;(2)只需添加一个条件,即,可使四边形BEDF为菱形.15.如图1,在正方形ABCD中,点E在AD的延长线上,P是对角线BD上的一点,且点P位于AE的垂直平分线上,PE交CD于点F.(1)猜测PC和PE有什么大小及位置关系,并给出证明.(2)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系.并说明理由.16.如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ=DP,连接AP、BQ、PQ.(1)求证:△APD≌△BQC;(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.17.如图,等边△AEF的顶点E,F在矩形ABCD的边BC,CD上,且∠CEF=45°.求证:矩形ABCD 是正方形.18.如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.19.如图,在矩形ABCD中,E是AB的中点,连接DE、CE.(1)求证:△ADE≌△BCE;(2)若AB=6,AD=4,求△CDE的周长.20.如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM=CN,E、F分别是AD、BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.第一章特殊平行四边形解答题训练(一)参考答案与试题解析1.【分析】(1)根据菱形的性质得到AB=AD,AD∥BC,由平行线的性质得到∠BOA=∠DAE,等量代换得到∠BAF=∠ADE,求得∠ABF=∠DAE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AE=BF,DE=AF,根据线段的和差即可得到结论.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=AD,AD∥BC,∴∠BPA=∠DAE,∵∠ABC=∠AED,∴∠BAF=∠ADE,∵∠ABF=∠BPF,∠BPA=∠DAE,∴∠ABF=∠DAE,∵AB=DA,∴△ABF≌△DAE(ASA);(2)∵△ABF≌△DAE,∴AE=BF,DE=AF,∵AF=AE+EF=BF+EF,∴DE=BF+EF.【点评】本题考查了菱形的性质,全等三角形的判定和性质,熟练掌握菱形的性质是解题的关键.2.【分析】(1)先根据相反数,绝对值,零指数幂进行计算,再求出即可;(2)先求出四边形ABCD是平行四边形,再求出AC=BD,最后根据矩形的判定得出即可.)【解答】解:(1)﹣(﹣1)+|﹣2|+(﹣2)0=1+2+1=4;(2)证明:∵四边形ABCD中,AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴AC=2AO,BD=2OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形.【点评】本题考查了相反数,绝对值,零指数幂,平行四边形的性质和判定,矩形的判定等知识点,能求出每一部分的值是解(1)的关键,能求出四边形ABCD是平行四边形是解(2)的关键.3.【分析】(1)根据矩形的性质得到EH=FG,EH∥FG,得到∠GFH=∠EHF,求得∠BFG=∠DHE,根据菱形的性质得到AD∥BC,得到∠GBF=∠EDH,根据全等三角形的性质即可得到结论;(2)连接EG,根据菱形的性质得到AD=BC,AD∥BC,求得AE=BG,AE∥BG,得到四边形ABGE 是平行四边形,得到AB=EG,于是得到结论.【解答】解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.【点评】本题考查了菱形的性质,矩形的性质,全等三角形的判定和性质,正确的识别作图是解题的关键.4.【分析】根据菱形的性质和全等三角形的判定和性质解答即可.【解答】证明:∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵BE=DF,∴△ABE≌△ADF(SAS),∴AE=CF.【点评】此题考查菱形的性质,关键是根据菱形的性质和全等三角形的判定和性质解答.5.【分析】由SAS证明△ADF≌△BCE,即可得出AF=CE.【解答】证明:∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC,在△ADF和△BCE中,,∴△ADF≌△BCE(SAS),∴AF=CE.【点评】本题考查了矩形的性质、全等三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等是解题的关键.6.【分析】(1)根据矩形的性质得到AB∥CD,由平行线的性质得到∠DFO=∠BEO,根据全等三角形的性质得到DF=BE,于是得到四边形BEDF是平行四边形;(2)推出四边形BEDF是菱形,得到DE=BE,EF⊥BD,OE=OF,设AE=x,则DE=BE=8﹣x 根据勾股定理即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠DFO=∠BEO,又因为∠DOF=∠BOE,OD=OB,∴△DOF≌△BOE(ASA),∴DF=BE,又因为DF∥BE,∴四边形BEDF是平行四边形;(2)解:∵DE=DF,四边形BEDF是平行四边形∴四边形BEDF是菱形,∴DE=BE,EF⊥BD,OE=OF,设AE=x,则DE=BE=8﹣x在Rt△ADE中,根据勾股定理,有AE2+AD2=DE2∴x2+62=(8﹣x)2,解之得:x=,∴DE=8﹣=,在Rt△ABD中,根据勾股定理,有AB2+AD2=BD2∴BD=,∴OD=BD=5,在Rt△DOE中,根据勾股定理,有DE2﹣OD2=OE2,∴OE=,∴EF=2OE=.【点评】本题考查了矩形的性质,平行四边形的判定和性质,全等三角形的判定和性质,勾股定理,熟练掌握矩形的性质是解题的关键.7.【分析】(1)设出正方形CEFG的边长,然后根据S1=S2,即可求得线段CE的长;(2)根据(1)中的结果可以题目中的条件,可以分别计算出HD和HG的长,即可证明结论成立.【解答】解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1﹣a,∵S1=S2,∴a2=1×(1﹣a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH==,∵CH=0.5,CG=,∴HG=,∴HD=HG.【点评】本题考查正方形的性质、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.8.【分析】由菱形的性质得出AD=CD,由SAS证明△ADF≌△CDE,即可得出结论.【解答】证明:∵四边形ABCD是菱形,∴AD=CD,在△ADF和△CDE中,,∴△ADF≌△CDE(SAS),∴∠1=∠2.【点评】本题考查了菱形的性质、全等三角形的判定与性质;熟练掌握菱形的性质,证明三角形全等是解题的关键.9.【分析】(1)根据等腰三角形的性质得出∠B=∠ACB,根据平移得出AB∥DE,求出∠B=∠DEC,再求出∠ACB=∠DEC即可;(2)求出四边形AECD是平行四边形,再求出四边形AECD是矩形即可.【解答】(1)证明:∵AB=AC,∴∠B=∠ACB,∵△ABC平移得到△DEF,∴AB∥DE,∴∠B=∠DEC,∴∠ACB=∠DEC,∴OE=OC,即△OEC为等腰三角形;(2)解:当E为BC的中点时,四边形AECD是矩形,理由是:∵AB=AC,E为BC的中点,∴AE⊥BC,BE=EC,∵△ABC平移得到△DEF,∴BE∥AD,BE=AD,∴AD∥EC,AD=EC,∴四边形AECD是平行四边形,∵AE⊥BC,∴四边形AECD是矩形.【点评】本题考查了矩形的判定、平行四边形的判定、平移的性质、等腰三角形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键.10.【分析】(1)依据正方形的性质以及垂线的定义,即可得到∠ADG=∠C=90°,AD=DC,∠DAG =∠CDE,即可得出△ADG≌△DCE;(2)延长DE交AB的延长线于H,根据△DCE≌△HBE,即可得出B是AH的中点,进而得到AB =FB.【解答】解:(1)∵四边形ABCD是正方形,∴∠ADG=∠C=90°,AD=DC,又∵AG⊥DE,∴∠DAG+∠ADF=90°=∠CDE+∠ADF,∴∠DAG=∠CDE,∴△ADG≌△DCE(ASA);(2)如图所示,延长DE交AB的延长线于H,∵E是BC的中点,∴BE=CE,又∵∠C=∠HBE=90°,∠DEC=∠HEB,∴△DCE≌△HBE(ASA),∴BH=DC=AB,即B是AH的中点,又∵∠AFH=90°,∴Rt△AFH中,BF=AH=AB.【点评】本题主要考查了正方形的性质以及全等三角形的判定与性质,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.11.【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG ∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF是平行四边形,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【点评】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12.【分析】根据正方形的性质对角线垂直且平分,得到OB=OA,根据AM⊥BE,即可得出∠MEA+∠MAE=90°=∠AFO+∠MAE,从而证出Rt△BOE≌Rt△AOF,得到OE=OF.【解答】证明:∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO.∴△BOE≌△AOF(AAS).∴OE=OF.【点评】本题主要考查了正方形的性质、三角形全等的性质和判定,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.13.【分析】连接AC,BD,根据三角形的中位线定理和矩形的对角线相等证明EF=FG=GH=HE,即可得出结论.【解答】证明:连接AC,BD,如图所示:∵E为AB的中点,F为BC的中点,∴EF为△ABC的中位线,∴EF=AC,同理HG=AC,EH=FG=BD,∵矩形ABCD,∴AC=BD,∴EF=FG=GH=HE,∴四边形EFGH是菱形.【点评】本题考查了三角形中位线定理、菱形的判定定理和矩形的性质,根据题意正确找出辅助线是解决问题的关键.14.【分析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)根据根据菱形的性质作出判断:EF与BD互相垂直平分.【解答】证明:(1)∵四边形ABCD是平行四边形,O是BD的中点,∴AB∥DC,OB=OD,∴∠OBE=∠ODF,又∵∠BOE=∠DOF,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)EF⊥BD或DE=BE或∠EDO=∠FDO.∵四边形BEDF是平行四边形,∵EF⊥BD,∴平行四边形BEDF是菱形.故答案为:EF⊥BD或DE=BE或∠EDO=∠FDO(答案不唯一)【点评】本题主要考查了平行四边形的判定与性质,菱形以及全等三角形的判定与性质,解题时注意:菱形的对角线互相垂直平分,对角线互相平分的四边形是平行四边形.15.【分析】(1)这里利用正方形的轴对称性质和线段垂直平分线的性质证明PC=PC,再利用三角形的内角和的关系证明∠CPF=∠FDE,再结合正方形的每个内角是90°,证明∠CPF=90°即可.(2)由菱形轴对称性质,利用题(1)的方法证明∠CPF=60°,又因为PC=PE,所以△PCE是等边三角形,因此CE=PC=AP.【解答】解:(1)PC=PE,PC⊥PE证明:∵正方形ABCD,点P是对角线上一点∴PA=PC∵点P位于AE的垂直平分线上∴PA=PE∴PC=PE由正方形的轴对称性质可得,∠PAD=∠PCD,∵PA=PE∴∠PAD=∠E∴∠PCD=∠E∵∠PFC=∠DFE∴∠CPF=∠FDE∵正方形ABCD∴∠ADC=90°∴∠FDE=90°∴∠CPF=90°∴PC⊥PE(2)PA=CE.理由如下:∵菱形ABCD,点P是对角线BD上一点∴AP=PF,∠PAD=∠PCD∵点P在AE的垂直平分线上∴AP=PE∴PE=PC,∠PAD=∠PED∵∠PFC=∠DFE∴∠CPF=∠EDF∵菱形ABCD,∠ABC=120°∴∠ADC=∠ABC=120°∴∠EDF=180°﹣∠ADC=60°∴∠CPF=60°∵PE=PC∴△PCE是等边三角形∴CE=PE∴AP=CE【点评】本题主要考查了线段垂直平分线、等边三角形、正方形和菱形的性质.注意正方形和菱形是轴对称图形.16.【分析】(1)只要证明AD=BC,∠ADP=∠BCQ,DP=CQ即可解决问题;(2)首先证明四边形ABQP是平行四边形,再证明AB=AP即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC,∵CQ∥DB,∴∠BCQ=∠DBC,∴∠ADB=∠BCQ∵DP=CQ,∴△ADP≌△BCQ.(2)证明:∵CQ∥DB,且CQ=DP,∴四边形CQPD是平行四边形,∴CD=PQ,CD∥PQ,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴AB=PQ,AB∥PQ,∴四边形ABQP是平行四边形,∵△ADP≌△BCQ,∴∠APD=∠BQC,∵∠APD+∠APB=180°,∠ABP+∠BQC=180°,∴∠ABP=∠APB,∴AB=AP,∴四边形ABQP是菱形.【点评】本题考查菱形的判定、全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【分析】先判断出AE=AF,∠AEF=∠AFE=60°,进而求出∠AFD=∠AEB=75°,进而判断出△AEB≌△AFD,即可得出结论.【解答】解:∵四边形ABCD是矩形,∴∠B=∠D=∠C=90°,∵△AEF是等边三角形,∴AE=AF,∠AEF=∠AFE=60°,∵∠CEF=45°,∴∠CFE=∠CEF=45°,∴∠AFD=∠AEB=180°﹣45°﹣60°=75°,∴△AEB≌△AFD(AAS),∴AB=AD,∴矩形ABCD是正方形.【点评】此题主要考查了矩形的性质,等边三角形的性质,全等三角形的判定和性质,正方形的判定,判断出∠AFD=∠AEB是解本题的关键.18.【分析】(1)如图1,连接DF,根据对称得:△ADE≌△FDE,再由HL证明Rt△DFG≌Rt△DCG,可得结论;(2)证法一:如图2,作辅助线,构建AM=AE,先证明∠EDG=45°,得DE=EH,证明△DME ≌△EBH,则EM=BH,根据等腰直角△AEM得:EM=AE,得结论;证法二:如图3,作辅助线,构建全等三角形,证明△DAE≌△ENH,得AE=HN,AD=EN,再说明△BNH是等腰直角三角形,可得结论.【解答】证明:(1)如图1,连接DF,∵四边形ABCD是正方形,∴DA=DC,∠A=∠C=90°,∵点A关于直线DE的对称点为F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵,∴Rt△DFG≌Rt△DCG(HL),∴GF=GC;(2)BH=AE,理由是:证法一:如图2,在线段AD上截取AM,使AM=AE,∵AD=AB,∴DM=BE,由(1)知:∠1=∠2,∠3=∠4,∵∠ADC=90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,△DEH是等腰直角三角形,∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,∴∠1=∠BEH,在△DME和△EBH中,∵,∴△DME≌△EBH,∴EM=BH,Rt△AEM中,∠A=90°,AM=AE,∴EM=AE,∴BH=AE;证法二:如图3,过点H作HN⊥AB于N,∴∠ENH=90°,由方法一可知:DE=EH,∠1=∠NEH,在△DAE和△ENH中,∵,∴△DAE≌△ENH,∴AE=HN,AD=EN,∵AD=AB,∴AB=EN=AE+BE=BE+BN,∴AE=BN=HN,∴△BNH是等腰直角三角形,∴BH=HN=AE.【点评】本题考查了正方形的性质,全等三角形的判定定理和性质定理,对称的性质,等腰直角三角形的性质等知识,解决本题的关键是利用正方形的性质得到相等的边和相等的角,证明三角形全等,作出辅助线也是解决本题的关键.19.【分析】(1)由全等三角形的判定定理SAS证得结论;(2)由(1)中全等三角形的对应边相等和勾股定理求得线段DE的长度,结合三角形的周长公式解答.【解答】(1)证明:在矩形ABCD中,AD=BC,∠A=∠B=90°.∵E是AB的中点,∴AE=BE.在△ADE与△BCE中,,∴△ADE≌△BCE(SAS);(2)由(1)知:△ADE≌△BCE,则DE=EC.在直角△ADE中,AD=4,AE=AB=3,由勾股定理知,DE===5,∴△CDE的周长=2DE+CD=2DE+AB=2×5+6=16.【点评】本题主要考查了全等三角形的判定和性质,矩形的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.20.【分析】(1)根据四边形的性质得到AB∥CD,求得∠MAB=∠NCD.根据全等三角形的判定定理得到结论;(2)连接EF,交AC于点O.根据全等三角形的性质得到EO=FO,AO=CO,于是得到结论.【解答】(1)证明∵四边形ABCD是矩形,∴AB∥CD,∴∠MAB=∠NCD.在△ABM和△CDN中,,∴△ABM≌△CDN(SAS);(2)解:如图,连接EF,交AC于点O.在△AEO和△CFO中,,∴△AEO≌△CFO(AAS),∴EO=FO,AO=CO,∴O为EF、AC中点.∵∠EGF=90°,OG=EF=,∴AG=OA﹣OG=1或AG=OA+OG=4,∴AG的长为1或4.【点评】本题考查了矩形的性质,全等三角形的判定和性质,熟练正确全等三角形的判定和性质是解题的关键.。
北师大版数学九年级上册第一章 特殊平行四边形1.1 菱形的性质与判定菱形的性质和判定的应用 同步课堂练习1.菱形的两条对角线的长为a 和b ,且a ,b 满足(a -1)2+b -4=0,那么菱形的面积为( )A .1B .2C .4D .82.如图,在菱形ABCD 中,∠BAD=120°,已知△ABC 的周长是15,则菱形ABCD 的周长是( )A .25B .20C .15D .103.菱形的一个内角为120°,边长为8,那么它较短的对角线长是( )A .3B .4C .8D .64. 如图,在菱形ABCD 中,AB =5,对角线AC =6,若过点A 作AE⊥BC,垂足为点E ,则AE 的长为( )A .4 B.125 C.245D .5 5.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为( )A.15°或30° B.30°或45°C.45°或60° D.30°或60°6.如图,在菱形ABCD中,E是AB边上一点,且∠A=∠EDF=60°,有下列结论:①AE=BF;②△DEF是等边三角形;③△BEF是等腰三角形;④∠ADE=∠BEF.其中结论正确的个数是( )A.3 B.4 C.1 D.27.在菱形ABCD中,AB=10,AC=12,则它的面积是________.8.在菱形ABCD中,AE垂直平分BC,垂足为点E,AB=4,那么菱形ABCD的面积是__________,对角线BD的长是________.9.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,阴影部分的面积为________.10. 如图,菱形ABCD的对角线AC,BD相交于点O,E为AD的中点,若OE=3,则菱形ABCD的周长为________.11.如图,两条笔直的公路l1,l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A,B,D,已知AB=BC=CD=DA=5 km,村庄C到公路l1的距离为4 km,则村庄C到公路l2的距离是________km.12.如图,菱形ABCD的周长为8 cm,高AE长为3cm,则对角线AC和BD的长之比为________.13.如图,在菱形ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,过点D 作AC的平行线交BC的延长线于点E,则△BDE的面积为________.14.已知菱形ABCD的周长为16 cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.15.如图,在菱形ABCD中,∠A=60°,AB=4,O是对角线BD的中点,过O点作OE⊥AB,垂足为点E.(1)求∠ABD的度数;(2)求线段BE的长;(3)求菱形ABCD的面积.1.1答案;1---6 BBCCD A7. 968. 8 3 4 39. 1210. 2411. 412. 1∶ 313. 2414. 设AC与BD交于点O(图略),由已知得AB=4 cm,∠BAD=60°,∴△ABD为等边三角形.∴BD=4 cm ,∴AO=2 3 cm ,AC =4 3 cm ,∴S 菱形=12AC·BD=83(cm 2).15. (1)∵四边形ABCD 是菱形,∠A=60°,∴△ABD 是等边三角形,∴∠ABD=60°.1.2矩形的判定一.【基础题】1.下列命题中,真命题是( )A .对角线互相平分且相等的四边形是矩形B .对角线互相垂直且相等的四边形是矩形C .对角线互相平分且相等的四边形是菱形D .对角线互相垂直且相等的四边形是菱形2.矩形具有而平行四边形不一定具有的性质是( )A .对角相等B .对边相等C .对角线相等D .对角线互相平分3.如图,矩形ABCD 的两条对角线相交于点O ,∠AOB=60°,AB=2,则矩形的边长BC 的长是( )A .2B .4C .2D .44.若O是四边形ABCD对角线的交点且OA=OB=OC=OD,则四边形ABCD是()A.平行四边形B.矩形C.正方形D.菱形5.下列条件之一能使平行四边形ABCD是矩形的为()①AC⊥BD ②∠BAD=90°③AB=BC ④AC=BD.A.①③B.②④C.③④D.①②③6在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD 为矩形的是()A.AB=CD,AD=BC,AC=BD B.AO=CO,BO=DO,∠A=90°C.∠A=∠C,∠B+∠C=180°,AC⊥BD D.∠A=∠B=90°,AC=BD7.下列判断正确的是()A.有一个角是直角的四边形是矩形B.两条对角线互相平分的四边形是矩形C.有三个角是直角的四边形是矩形D.两条对角线互相垂直的四边形是矩形8.如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是.9.如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.10.如图,在矩形ABCD中,AB=3,点P是直线AD上一点,若满足△PBC是等腰三角形的点P有且只有3个,则AD的长为.二.11.如图,在矩形ABCD中,O为AC中点,EF过点O且EF⊥AC分别交DC于点F,交AB于点E,点G是AE中点且∠AOG=30°,给出以下结论:①∠AFC=120°;②△AEF是等边三角形;③AC=3OG;④S△AOG=S△ABC其中正确的是.(把所有正确结论的序号都选上)12.(2017•奉化市模拟)如图,矩形ABCD的对角线AC,BD相交于点O,过点O 作OE⊥AC交AB于E.若BC=4,△AOE的面积为5,则BE= .13.(2017•盐城)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.14.(2017•蓝田县二模)如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F,连接BD.(1)求证:△ABE≌△CDF;(2)若AB=DB,求证:四边形DFBE是矩形.15.(2017•沈阳二模)已知:如图,在△ABC中,AB=AC,点D为BC中点,AN 是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.求证:四边形ADCE为矩形.16.(2017•启东市一模)如图,已知E、F为平行四边形ABCD的对角线上的两点,且BE=DF,∠AEC=90°.求证:四边形AECF为矩形.17.(2017•蒙阴县二模)已知:如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD,EC.(1)求证:AD=CE;(2)当点D在什么位置时,四边形ADCE是矩形,请说明理由.18.(2017•崇安区一模)如图,在△ABC中,AB=AC,D为BC的中点,AE∥BC,DE∥AB.求证:四边形ADCE为矩形.1.2矩形的判定答案1.A.2.C.3.C.4.B.5.B.6.C.7.C.8..9..10.3或2 .11.①②④.12.3.13.【解答】证明:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.14.【解答】证明:(1)在□ABCD中,AB=CD,∠A=∠C.∵AB∥CD,∴∠ABD=∠CDB.∵BE平分∠ABD,DF平分∠CDB,∴∠ABE=∠ABD,∠CDF=∠CDB.∴∠ABE=∠CDF.∵在△ABE和△CDF中,∴△ABE≌△CDF(ASA).(2)∵△ABE≌△CDF,∴AE=CF,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴DE∥BF,DE=BF,∴四边形DFBE是平行四边形,∵AB=DB,BE平分∠ABD,∴BE⊥AD,即∠DEB=90°.∴平行四边形DFBE是矩形.15.【解答】证明:∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠MAC,∵∠MAC=∠B+∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠MAE=∠B,∴AN∥BC,∵AB=AC,点D为BC中点,∴AD⊥BC,∵CE⊥AN,∴AD∥CE,∴四边形ADCE为平行四边形(有两组对边分别平行的四边形是平行四边形),∵CE⊥AN,∴∠AEC=90°,∴四边形ADCE为矩形(有一个角是直角的平行四边形是矩形).16.【解答】证明:连接AC交BD于O,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵BE=DF,OE=OF.∵OA=OC,∴AECF是平行四边形;∵∠AEC=90°,∴四边形AECF为矩形.17.【解答】(1)证明:∵AB=AC,∴∠B=∠ACB,又∵▱ABDE中,AB=DE,AB∥DE,∴∠B=∠EDC=∠ACB,AC=DE,在△ADC和△ECD中,,∴△ADC≌△ECD(SAS).(2)解:点D在BC的中点上时,四边形ADCE是矩形,理由如下:∵四边形ABDE是平行四边形,∴AE=BD,AE∥BC,∵D为边长BC的中点,∴BD=CD,∴AE=CD,AE∥CD,∴四边形ADCE是平行四边形,∵△ADC≌△ECD,∴AC=DE,∴四边形ADCE是矩形.18.【解答】证明:∵AE∥BC,∴AE∥BD.又∵DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD.∵D为BC的中点,∴BD=DC,∴AE=DC;∵AE∥CD,AE=BD=DC,即AE=DC,∴四边形ADCE是平行四边形.又∵AB=AC,D为BC的中点,∴AD⊥CD,∴平行四边形ADCE为矩形.第一章检测卷时间:120分钟满分:150分班级:__________姓名:__________得分:__________一、选择题(每小题3分,共45分)1.下列四边形中,对角线互相垂直平分的是()A.平行四边形、菱形B.矩形、菱形C.矩形、正方形D.菱形、正方形2.在四边形ABCD中,AB=BC=CD=DA,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是()A.AC⊥BD B.AB∥CD C.∠A=90°D.∠A=∠C3.若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是()A.20°B.40°C.80°D.100°4.如图,在矩形ABCD中,对角线AC,BD交于点O,下列说法错误的是()A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC第4题图第5题图第6题图5.如图,点P是菱形ABCD对角线BD上一点,PE⊥AB于点E,且PE=2.连接PC,若菱形的周长为24.则△BCP的面积为()A.4 B.6 C.8 D.126.如图,在△ABC中,BC=12,AC=5,AB=13,点D是AB的中点,则CD的长为()A.6.5 B.6 C.2.5 D.不能确定7.如图,已知面积为1的正方形ABCD的对角线相交于点O,过点O任意作一条直线分别交AD,BC于E,F,则阴影部分的面积是()A.1 B.0.5 C.0.25 D.无法确定第7题图第8题图第9题图8.如图,在矩形ABCD中,对角线AC、BD相交于点O.若∠ACB=30°,AB=2,则BD的长为()A.4 B.3 C.2 D.19.菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,点A 的坐标为(2,0),则点B的坐标为()A.(2,1) B.(1,2) C.(1,2+1) D.(2+1,1)10.如图,四边形ABCD是正方形,点E在对角线BD上,且BE=BC,则∠ACE的度数等于()A.20°B.22.5°C.25°D.30°第10题图第11题图第12题图11.如图,在菱形ABCD中,对角线AC、BD相交于点O,作OE∥AB,交BC于点E,则OE的长一定等于()A.BE B.AO C.AD D.OB12.如图,四边形ABCD是正方形,BE⊥EF,DF⊥EF,BE=2.5dm,DF =4dm,那么EF的长为()A.6.5dm B.6dm C.5.5dm D.4dm13.顺次连接对角线相等的四边形各边中点所得四边形是()A.矩形B.平行四边形C.菱形D.任意四边形14.如图,将边长为2cm的菱形ABCD沿边AB所在的直线l翻折得到四边形ABEF,若∠DAB=30°,则四边形CDFE的面积为()A.2cm2B.3cm2C.4cm2D.6cm2第14题图第15题图15.如图,四边形ABCD为矩形纸片,把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF.若CD=6,则AF等于()A.4 3 B.3 3 C.4 2 D.8二、填空题(每小题5分,共25分)16.Rt△ABC中,如果斜边上的中线CD=4cm,那么斜边AB=cm.17.如图,一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α为度时,两条对角线长度相等.第17题图18.矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为1cm,则其对角线长为cm,矩形的面积为cm2.19.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.第19题图第20题图20.如图,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B =60°,则菱形ABCD的面积为.三、解答题(共80分)21.(8分)如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.22.(8分)如图,正方形ABCD中,E为CD边上一点,F为BC延长线上一点,且CE=CF.求证:△BCE≌△DCF.23.(10分)如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD 于点E,BE∶ED=1∶3,AD=6cm,求AE的长.24. (12分)如图,等腰三角形ABC中,AB=AC,AH⊥BC,点E是AH上一点,延长AH至点F,使FH=EH.(1)求证:四边形EBFC是菱形;(2)如果∠BAC=∠ECF,求证:AC⊥CF.25.(12分)如图,在矩形ABCD中,沿EF将矩形折叠,使A,C重合,点D落在点G处,AC与EF交于点H.(1)求证:△ABE≌△AGF;(2)若AB=6,BC=8,求△ABE的面积.26.(14分)已知梯形ABCD中,AD∥BC,AB=AD(如图所示).(1)在下图中,用尺规作∠BAD的平分线AE交BC于点E,连接DE(保留作图痕迹,不写作法),并证明四边形ABED是菱形;(2)若∠ABC=60°,EC=2BE.求证:ED⊥DC.27.(16分)如图,已知△ABC,直线PQ垂直平分AC,与边AB交于点E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形;(3)若AD=3,AE=5,则菱形AECF的面积是多少?上册第一章检测卷1.D 2.C 3.C 4.C 5.B 6.A7.C8.A9.D10.B11.A12.A13.C14.C15.A解析:∵纸片ABCD为矩形,∴AB=CD=6.∵矩形纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF,∴AE=AB=6,∠EAF=∠F AB.∵E为DC的中点,∴DE=3.在Rt△ADE中,∵AE=6,DE=3,∴∠DAE =30°,∴∠EAF=∠F AB=30°.在Rt△ABF中,∵∠BAF=30°,AB=6,∴由勾股定理得(2BF)2=BF2+62,∴BF=23,∴AF=2BF=4 3.16.817.9018.2319.45°20.83 解析:∵菱形ABCD 的边长为4,∴AB =BC =4.∵AE ⊥BC ,∠B =60°,∴∠BAE =30°,∴BE =12AB =2,∴由勾股定理可得AE =23,∴S菱形ABCD =4×23=8 3.21.证明:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形.(2分)∵四边形ABCD 是菱形,∴∠COD =90°,CD =BC .(4分)∴四边形OCED 是矩形,∴OE =CD .(6分)又∵CD =BC ,∴OE =BC .(8分)22.证明:∵四边形ABCD 为正方形,∴BC =DC ,∠BCD =90°,∴∠BCE=∠DCF =90°.(3分)在△BCE 与△DCF 中,⎩⎪⎨⎪⎧BC =DC ,∠BCE =∠DCF ,CE =CF ,∴△BCE ≌△DCF .(8分)23.解:∵四边形ABCD 是矩形,∴∠BAD =90°,OB =OD =12BD =AO .∵BE ∶ED =1∶3,∴BE =OE .(4分)∵AE ⊥BD ,∴AB =AO ,∠AED =90°,∴AB =AO =OB ,(6分)∴∠ABO =60°,∴∠ADE =30°,∴AE =12AD =3cm.(10分)24.证明:(1)∵AB =AC ,AH ⊥CB ,∴BH =HC .(2分)∵FH =EH ,∴四边形EBFC 是平行四边形.(4分)又∵AH ⊥CB ,∴四边形EBFC 是菱形;(6分)(2)如图,∵四边形EBFC 是菱形,∴∠2=∠3=12∠ECF .(7分)∵AB =AC ,AH ⊥CB ,∴∠4=12∠BAC .(8分)∵∠BAC =∠ECF ,∴∠4=∠3.(9分)∵AH ⊥CB ,∴∠4+∠1+∠2=90°,∴∠3+∠1+∠2=90°.即AC ⊥CF .(12分)25.(1)证明:∵四边形ABCD 是矩形,∴AB =CD ,∠BAD =∠BCD .(2分)由折叠的性质得AG =CD ,∠EAG =∠BCD ,∠G =∠D =90°,∴AB =AG ,∠BAD =∠EAG ,∴∠BAE =∠GAF .(4分)在△ABE 和△AGF 中,⎩⎪⎨⎪⎧∠BAE =∠GAF ,AB =AG ,∠B =∠G ,∴△ABE ≌△AGF (ASA);(7分)(2)解:根据折叠的性质可得AE =EC ,设BE =x ,则AE =EC =8-x .在直角△ABE 中,根据勾股定理可得62+x 2=(8-x )2,解得x =74,(10分)则S △ABE =12AB ·BE =12×6×74=214.(12分)26.(1)解:作图如图所示.(2分)在△ABE 与△ADE 中,∵⎩⎪⎨⎪⎧AB =AD ,∠BAE =∠DAE ,AE =AE ,∴△ABE ≌△ADE ,∴∠AEB =∠AED .(5分)∵AD ∥BE ,∴∠AEB =∠DAE ,∴∠BAE =∠AED ,∴AB ∥DE ,∴四边形ABED 是平行四边形.∵AB =AD ,∴四边形ABED 为菱形;(7分)(2)证明:取EC 的中点F ,连接DF .∵四边形ABED 是菱形,∴EC =2BE =2DE =2EF =2CF ,∠CED =∠ABC =60°,∴△DEF 是等边三角形,(10分)∴DF =EF =CF ,∠DFE =60°,∴∠CDF +∠C =∠DFE =60°=2∠C .即∠C =30°,∴∠EDC =180°-∠CED -∠C =90°,即ED ⊥DC .(14分)27.(1)证明:∵PQ 为线段AC 的垂直平分线,∴AD =CD .∵CF ∥AB ,∴∠EAC =∠FCA ,∠CFD =∠AED .(3分)在△AED 与△CFD 中,⎩⎪⎨⎪⎧∠EAD =∠FCD ,∠AED =∠CFD ,AD =CD ,∴△AED ≌△CFD ;(6分) (2)证明:由(1)可知△AED ≌△CFD ,∴AE =CF .(7分)∵EF 为线段AC 的垂直平分线,∴EC =EA ,FC =F A ,(9分)∴EC =EA =FC =F A ,∴四边形AECF 为菱形;(11分)(3)解:∵AD =3,AE =5,∴根据勾股定理得ED =4,(13分)∴EF =8,AC =6,∴S 菱形AECF =8×6÷2=24.(16分)1.3 第1课时 正方形的性质知识点 1 利用正方形的性质求解与线段有关的问题1.如图1-3-1,在正方形ABCD 中,点E 在边DC 上,DE =4,EC =2,则AE 的长为________.1-3-11-3-22.如图1-3-2,正方形ABCD 的边长为1,点E 在边DC 上,AE 平分∠DAC ,EF⊥AC,F为垂足,那么FC=________.3.2017·广安如图1-3-3,四边形ABCD是正方形,E,F分别是AB,AD 上的一点,且BF⊥CE,垂足为G.求证:AF=BE.图1-3-3知识点2利用正方形的性质求解与角有关的问题4.如图1-3-4,在正方形ABCD的外侧作等边三角形ADE,则∠AEB的度数为()A.10°B.12.5°C.15°D.20°1-3-41-3-55.如图1-3-5,E为正方形ABCD的对角线BD上的一点,且BE=BC,则∠DCE=________°.6.2017·怀化如图1-3-6,四边形ABCD是正方形,△EBC是等边三角形.(1)求证:△ABE≌△DCE;(2)求∠AED的度数.图1-3-6知识点3利用正方形的性质求解与面积有关的问题7.若正方形的一条对角线长为4,则这个正方形的面积是()A.8 B.4 2 C.8 2 D.16图1-3-78.如图1-3-7,三个边长均为2的正方形重叠在一起,O1,O2是其中两个正方形的中心,则阴影部分的面积是________.9.如图1-3-8,正方形ABCD的边长为4,E,F分别为DC,BC的中点.(1)求证:△ADE≌△ABF;(2)求△AEF的面积.图1-3-8知识点4正方形对称性的应用10.如图1-3-9,在平面直角坐标系中,正方形OABC的顶点O,B的坐标分别是(0,0),(2,0),则顶点C的坐标是()A.(1,1) B.(-1,-1)C.(1,-1) D.(-1,1)1-3-91-3-1011.如图1-3-10,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是________.12.如图1-3-11,在正方形ABCD的外侧,作等边三角形ADE,AC,BE 相交于点F,则∠BFC的度数为()A.45°B.55°C.60°D.75°1-3-111-3-1213.如图1-3-12,正方形ABCD的边长为2,连接AC,AE平分∠CAD,交BC的延长线于点E,F A⊥AE,交CB的延长线于点F,则EF的长为________.14.如图1-3-13,将边长为8 cm的正方形ABCD折叠,使点D落在BC 边的中点E处,点A落在点F处,折痕为MN,则线段CN的长是________.1-3-131-3-14 15.如图1-3-14,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推,则正方形OB2017B2018C2018的顶点B2018的坐标是________.16.如图1-3-15,在正方形ABCD中,对角线AC,BD相交于点O,点E,F分别在OD,OC上,且DE=CF,连接DF,AE,AE的延长线交DF于点M.求证:AM⊥DF.图1-3-1517.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1-3-16①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图1-3-16②),求证:EF2=ME2+NF2.图1-3-161.2132.2-13.证明:∵四边形ABCD是正方形,∴AB=BC,∠A=∠CBE=90°.∵BF⊥CE,∴∠BCE+∠CBG=90°.∵∠ABF+∠CBG=90°,∴∠BCE=∠ABF.在△BCE和△ABF中,∠BCE=∠ABF,BC=AB,∠CBE=∠A,∴△BCE≌△ABF(ASA),∴AF=BE.4.C5.22.56.解:(1)证明:∵四边形ABCD是正方形,△EBC是等边三角形,∴BA=BC=CD=BE=CE,∠ABC=∠BCD=90°,∠EBC=∠ECB=60°,∴∠ABE=∠ECD=30°.在△ABE和△DCE中,AB=DC,∠ABE=∠DCE,BE=CE,∴△ABE≌△DCE(SAS).(2)∵BA=BE,∠ABE=30°,∴∠BAE=12×(180°-30°)=75°.∵∠BAD =90°,∴∠EAD =90°-75°=15°, 同理可得∠ADE =15°,∴∠AED =180°-15°-15°=150°. 7.A 8.29.解:(1)证明:∵四边形ABCD 为正方形, ∴AD =AB ,∠D =∠B =90°,BC =DC . ∵E ,F 分别为DC ,BC 的中点, ∴DE =12DC ,BF =12BC , ∴DE =BF .在△ADE 和△ABF 中,AD =AB ,∠D =∠B ,DE =BF , ∴△ADE ≌△ABF (SAS).(2)由题知△ABF ,△ADE ,△CEF 均为直角三角形,且AB =AD =4,DE =BF =12×4=2,CE =CF =12×4=2,∴S △AEF =S 正方形ABCD -S △ADE -S △ABF -S △CEF = 4×4-12×4×2-12×4×2-12×2×2=6. 10.C11.10 12.C 13.4 14.3 cm15.(0,21009)16.证明:∵四边形ABCD 是正方形, ∴OD =OC . 又∵DE =CF ,∴OD -DE =OC -CF ,即OE =OF .在△AOE 和△DOF 中,AO =DO ,∠AOE =∠DOF ,OE =OF , ∴△AOE ≌△DOF (SAS), ∴∠OAE =∠ODF .∵∠OAE +∠AEO =90°,∠AEO =∠DEM , ∴∠ODF +∠DEM =90°, 即AM ⊥DF .17.证明:(1)∵△ADF 绕着点A 顺时针旋转90°,得到△ABG , ∴AG =AF ,∠GAF =90°. ∵∠EAF =45°,∴∠GAE =∠GAF -∠EAF =90°-45°=45°, 即∠GAE =∠EAF .在△AEG 和△AEF 中,⎩⎪⎨⎪⎧AG =AF ,∠GAE =∠EAF ,AE =AE ,∴△AEG ≌△AEF (SAS).(2)把△ADF 绕着点A 顺时针旋转90°,得到△ABG ,如图,连接GM ,则△ADF ≌△ABG ,∴DF =BG .由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME,△DNF,△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=2DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2.又∵EG=EF,MG=2BM=2DF=NF,∴EF2=ME2+NF2.1.2正方形的判定1.如果要证明平行四边形ABCD为正方形,那么我们需要在四边形ABCD 是平行四边形的基础上,进一步证明()A.AB=BD且AC⊥BDB.∠A=90°且AB=ADC.∠A=90°且AC=BDD.AC和BD互相垂直平分2.已知在四边形ABCD中,∠A=∠B=∠C=90°,若使四边形ABCD是正方形,则还需加上一个条件:________________.知识点2利用菱形判定四边形是正方形3.在四边形ABCD中,AC,BD相交于点O,下列条件能判定四边形ABCD 是正方形的是()A.OA=OC,OB=ODB.OA=OB=OC=ODC.OA=OC,OB=OD,AC=BDD.OA=OB=OC=OD,AC⊥BD图1-3-174.如图1-3-17,将一张长方形纸片对折两次,然后剪下一个角,打开.如果要剪出一个正方形,那么剪口线与折痕成()A.22.5°角B.30°角C.45°角D.60°角5.教材习题1.8第3题变式题如图1-3-18,有4个动点P,Q,E,F分别从正方形ABCD的4个顶点出发,沿着AB,BC,CD,DA以同样的速度向B,C,D,A各点移动.请判断四边形PQEF的形状.图1-3-186.2017·齐齐哈尔矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件:________,使其成为正方形.(只填一个即可)图1-3-197.如图1-3-19所示,一张矩形纸片,要折叠出一个最大的正方形,小明把矩形上的一个角沿折痕AE翻折上去,使AB与AD边上的AF重合,则四边形ABEF就是一个最大的正方形,他判定的方法是__________________________.8.2017·邵阳如图1-3-20所示,已知平行四边形ABCD,对角线AC,BD 相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.图1-3-209.若顺次连接四边形ABCD各边中点所得的四边形是正方形,则四边形ABCD一定是()A.矩形B.对角线互相垂直的四边形C.菱形D.对角线互相垂直且相等的四边形图1-3-2110.如图1-3-21,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF.添加一个条件,仍不能判定四边形ECFB 为正方形的是()A.BC=AC B.CF⊥BFC.BD=DF D.AC=BF图1-3-2211.教材习题1.8第3题变式题如图1-3-22,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是() A.30 B.34 C.36 D.4012.2017·贵阳期末如图1-3-23,在平行四边形ABCD中,对角线AC,BD相交于点O,E是BD延长线上的点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.图1-3-2313.如图1-3-24,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为N.(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE为正方形?并给出证明.图1-3-2414.观察如图1-3-25所示图形的变化过程,解答以下问题:图1-3-25如图1-3-26,在△ABC中,D为BC边上的一动点(点D不与B,C两点重合),DE∥AC交AB于点E,DF∥AB交AC于点F.(1)试探索当AD满足什么条件时,四边形AEDF为菱形,并说明理由;(2)在(1)的条件下,当△ABC满足什么条件时,四边形AEDF为正方形?为什么?图1-3-2615.如图1-3-27,在四边形ABCD中,E,G分别是AD,BC的中点,F,H分别是BD,AC的中点.(1)当AB,CD满足什么条件时,四边形EFGH是矩形?并证明你的结论;(2)当AB,CD满足什么条件时,四边形EFGH是菱形?并证明你的结论;(3)当AB,CD满足什么条件时,四边形EFGH是正方形?并证明你的结论.图1-3-271.B 2.AB=BC(答案不唯一)3.D4.C.5.解:在正方形ABCD中,AP=BQ=CE=DF,AB=BC=CD=DA,∴AF=BP=CQ=DE.又∵∠A=∠B=∠C=∠D=90°,∴△AFP≌△BPQ≌△CQE≌△DEF,∴FP=PQ=QE=EF,∴四边形PQEF是菱形.∵△AFP≌△BPQ,∴∠APF=∠BQP.∵∠BPQ+∠BQP=90°=∠BPQ+∠APF,∴∠FPQ=90°,∴四边形PQEF为正方形.6.AB=BC或AC⊥BD(答案不唯一)7.有一组邻边相等的矩形是正方形8.解:(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵∠OBC=∠OCB,∴OB=OC,∴AC=BD,∴平行四边形ABCD是矩形.(2)AB=AD(或AC⊥BD,答案不唯一).9.D10.D11.B12.证明:(1)∵四边形ABCD是平行四边形,∴AO=CO.又∵△ACE是等边三角形,∴EO⊥AC,即AC⊥BD,∴四边形ABCD是菱形.(2)∵四边形ABCD是平行四边形,∴AO=CO.又∵△ACE是等边三角形,∴EO平分∠AEC,∴∠AED=12∠AEC=12×60°=30°.又∵∠AED=2∠EAD,∴∠EAD=15°,∴∠ADO=∠EAD+∠AED=15°+30°=45°.∵四边形ABCD是菱形,∴∠ADC=2∠ADO=90°,∴四边形ABCD是正方形.13.解:(1)证明:∵在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC.∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∴∠DAE =∠DAC +∠CAE =12×180°=90°. 又∵AD ⊥BC ,CE ⊥AN , ∴∠ADC =∠CEA =90°, ∴四边形ADCE 为矩形.(2)当△ABC 满足∠BAC =90°时,四边形ADCE 为正方形. 证明:∵AB =AC ,∠BAC =90°, ∴∠ACB =∠B =45°.∵AD ⊥BC ,∴∠CAD =∠ACD =45°, ∴DC =AD .又∵四边形ADCE 是矩形, ∴矩形ADCE 是正方形.∴当∠BAC =90°时,四边形ADCE 是正方形.14.解:(1)当AD 平分∠BAC 时,四边形AEDF 为菱形. 理由:∵AE ∥DF ,DE ∥AF , ∴四边形AEDF 为平行四边形. ∵AD 平分∠BAC , ∴∠EAD =∠F AD . 又∵DE ∥AF , ∴∠F AD =∠ADE , ∴∠EAD =∠ADE , ∴AE =DE ,∴平行四边形AEDF 为菱形.(2)当∠BAC =90°时,菱形AEDF 是正方形.因为有一个角是直角的菱形是正方形.15.解:(1)当AB ⊥CD 时,四边形EFGH 是矩形.证明:∵E ,F 分别是AD ,BD 的中点,G ,H 分别是BC ,AC 的中点, ∴EF ∥AB ,EF =12AB , GH ∥AB ,GH =12AB , FG ∥CD .∴EF ∥GH ,EF =GH , ∴四边形EFGH 是平行四边形. ∵AB ⊥CD ,∴EF ⊥FG ,即∠EFG =90°, ∴四边形EFGH 是矩形.(2)当AB =CD 时,四边形EFGH 是菱形.证明:∵E ,F 分别是AD ,BD 的中点,H ,G 分别是AC ,BC 的中点, ∴EF =12AB ,GH =12AB ,FG =12CD ,EH =12CD . 又∵AB =CD , ∴EF =FG =GH =EH , ∴四边形EFGH 是菱形.(3)当AB =CD 且AB ⊥CD 时,四边形EFGH 是正方形. 证明:∵E ,F 分别是AD ,BD 的中点, ∴EF ∥AB ,EF =12AB ,同理,EH ∥CD ,EH =12CD ,FG =12CD ,GH=12AB.∵AB=CD,∴EF=EH=GH=FG,∴四边形EFGH是菱形.∵AB⊥CD,∴EF⊥EH,即∠FEH=90°,∴菱形EFGH是正方形.第一章特殊平行四边形一、选择题(本大题共6小题,每小题5分,共30分.在每小题列出的四个选项中,只有一项符合题意)1.下列说法中错误的是()A.平行四边形的对角线互相平分B.两组对边分别相等的四边形是平行四边形C.矩形的对角线相等D.有一组邻边相等且有一个角是直角的四边形是正方形2.菱形的周长为8 cm,高为1 cm,则该菱形两邻角的度数比为() A.3∶1B.4∶1C.5∶1D.6∶13.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定满足()A.对角线相等B .对角线互相平分C .对角线互相垂直D .对角线相等且互相平分4.如图1-Z -1,P 是矩形ABCD 的边AD 上的一个动点,矩形的两条边AB ,BC 的长分别为3和4,那么点P 到矩形的两条对角线AC 和BD 的距离之和是( )图1-Z -1A.125B.65C.245 D .不能确定5.如图1-Z -2,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =1,CE =3,H 是AF 的中点,那么CH 的长是( )图1-Z -2A .2.5 B. 5 C.32 2 D .26.如图1-Z -3,过矩形ABCD 的对角线AC 的中点O 作EF ⊥AC ,交BC 边于点E ,交AD 边于点F ,分别连接AE ,CF .若AB =3,∠DCF =30°,则EF 的长为( )图1-Z -3A.2 B.3 C.32 D. 3二、填空题(本大题共5小题,每小题5分,共25分)7.如图1-Z-4,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的度数为________.图1-Z-48.如图1-Z-5,在正方形ABCD中,对角线AC与BD相交于点O,E为BC 上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为________.图1-Z-59.如图1-Z-6,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为________.图1-Z-610.如图1-Z-7所示,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB于点F,∠AED=2∠CED,G是DF的中点,若BE=1,AG=4,则AB的长为________ .图1-Z-711.如图1-Z-8,边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠F AC=60°.连接AE,再以AE为边作第三个菱形AEGH,使∠HAE=60°……按此规律所作的第2018个菱形的边长是________.图1-Z-8三、解答题(本大题共4小题,共45分)12.(10分)如图1-Z-9,在正方形ABCD中,E,F分别为边AD和CD上的点,且AE=CF,连接AF,CE交于点G.求证:AG=CG.图1-Z-913.(10分)如图1-Z-10,四边形ABCD是菱形,对角线AC与BD相交于点O,菱形ABCD的周长是20,BD=6.(1)求AC的长;(2)求菱形ABCD的高DE的长.图1-Z-1014.(10分)如图1-Z-11,已知矩形ABCD,把矩形ABCD按图中所示方式折叠,使顶点B和D重合,折痕为EF.(1)连接BE,求证:四边形BFDE是菱形;(2)若AB=8 cm,BC=16 cm,求线段DF和EF的长.图1-Z-1115.(15分)已知:如图1-Z-12,在矩形ABCD中,M,N分别是边AD,BC 的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;。
特殊的平行四边形练习题(50题)菱形、矩形、正方形一、单选题(共18题;共36分)1.下列条件中,能判定一个四边形为矩形的条件是( )A. 对角线互相平分的四边形B. 对角线相等且平分的四边形C. 对角线相等的四边形D. 对角线相等且互相垂直的四边形【答案】B【解析】【解答】解:A、对角线互相平分的四边形是平行四边形,故A不符合题意;B、对角线相等且平分的四边形是矩形,故B符合题意;C、对角线相等的四边形不是矩形,故C不符合题意;D、对角线相等且互相垂直的四边形不是矩形,故D不符合题意.故答案为:B.【分析】根据矩形的判定方法,逐项进行判断,即可求解2.如图,点A、D、G、M在半圆上,四边形ABOC、DEOF、HNMO均为矩形,设BC=a ,EF=b ,NH= c ,则下列各式中正确的是()A. a > b > cB. a =b =cC. c > a > bD. b > c > a【答案】B【解析】【解答】解:连接OA、OD、OM,如图所示:则OA=OD=OM,∵四边形ABOC、DEOF、HNMO均为矩形,∴OA=BC=a,OD=EF=b,OM=NH=c,∴a=b=c;故答案为:B.【分析】连接OA、OD、OM,则OA=OD=OM,由矩形的对角线相等得出OA=BC=a,OD=EF=b,OM=NH=c,再由同圆的半径相等即可得出a=b=c.3.如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是( )A. 1B. 2C.D.【答案】 D【解析】【解答】解:连接DE交AC于P,连接BD,BP,由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,∴PE+PB=PE+PD=DE,即DE就是PE+PB的最小值,∵∠BAD=60°,AD=AB,∴△ABD是等边三角形,∴AD=BD,∵AE=BE=AB=1,∴DE⊥AB,在Rt△ADE中,DE=,∴ PE+PB的最小值是.故答案为:D.【分析】连接DE交AC于P,连接BD,BP,根据菱形的性质得出B、D关于AC对称,得出DE就是PE+PB 的最小值,根据等边三角形的判定与性质得出DE⊥AB,再根据勾股定理求出DE的长,即可求解.4.若正方形的对角线长为2 cm,则这个正方形的面积为()A. 4B. 2C.D.【答案】B【解析】【解答】解:设正方形的边长为xcm,根据题意得:x2+x2=22,∴x2=2,∴正方形的面积=x2=2(cm2).故答案为:B.【分析】设正方形的边长为xcm,利用勾股定理列出方程,求出x2=2,即可求出正方形的面积为2.5.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A. 72B. 24C. 48D. 96【答案】C【解析】【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=4,∴BD=8,∵OA=6,∴AC=12,∴菱形ABCD的面积= AC•BD=×12×8=48.故答案为:C.【分析】根据菱形的性质得O为BD的中点,再由直角三角形斜边上的中线等于斜边的一半,得BD的长度,最后由菱形的面积公式求得面积.6.将一张长方形纸片折叠成如图所示的形状,则∠ABC等于( )A. 73°B. 56°C. 68°D. 146°【答案】A【解析】【解答】如图,∵∠CBD=34°,∴∠CBE=180°﹣∠CBD=146°,由折叠的性质可得∠ABC=∠ABE= ∠CBE=73°.故答案为:A【分析】根据补角的知识可求出∠CBE,从而根据折叠的性质∠ABC=∠ABE= ∠CBE,可得出∠ABC的度数.7.如图,已知矩形AOBC的顶点O(0,0),A(0,3),B(4,0),按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OC,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠BOC内交于点F;③作射线OF,交边BC于点G,则点G的坐标为()A. (4,1)B. (4,)C. (4,)D. (4,)【答案】B【解析】【解答】解:∵四边形AOBC是矩形,A(0,3),B(4,0),∴OB=4,OA=BC=3,∠OBC=90°,∴OC==5,作GH⊥OC于H,如图,由题意可知:OG平分∠BOC,∵GB⊥OB,GH⊥OC,∴GB=GH,设GB=GH=x,由S△OBC=×3×4=×5×x+ ×4×x,解得:x=,∴G(4,).故答案为:B.【分析】根据勾股定理可得OC的长,作GH⊥OC于H,根据角平分线的性质可得GB=GH,然后利用面积法求出GB即可.8.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B的路径匀速运动到点B停止,作PQ⊥CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是( )A. 2B.C.D. 1【答案】B【解析】【解答】解:由图象可知:AE=3,BE=4,在Rt ABE中,∠AEB=90°AB= =5当x=6时,点P在BE上,如图,此时PE=4-(7-x)=x-3=6-3=3∵∠AEB=90°, PQ⊥CD∴∠AEB=∠PQE=90°,在矩形ABCD中,AB//CD∴∠QEP=∠ABE∴PQE BAE, ∴=∴=∴PQ=故答案为:B.【分析】由图象可知:AE=3,BE=4,根据勾股定理可得AB=5,当x=6时,点P在BE上,先求出PE的长,再根据△ PQE ∽△ BAE,求出PQ的长.9.如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是()A. 向左平移1个单位,再向下平移1个单位B. 向左平移个单位,再向上平移1个单位C. 向右平移个单位,再向上平移1个单位D. 向右平移1个单位,再向上平移1个单位【答案】 D【解析】【解答】解:因为B(1,1)由勾股定理可得OB=,所以OA=OB,而AB<OA.故以AB为对角线,OB//AC,由O(0,0)移到点B(1,1)需要向右平移1个单位,再向上平移1个单位,由平移的性质可得由A(,0)移到点C需要向右平移1个单位,再向上平移1个单位,故选D.【分析】根据平移的性质可得OB//AC,平移A到C,有两种平移的方法可使O,A,B,C四点构成的四边形是平行四边形;而OA=OB>AB,故当OA,OB为边时O,A,B,C四点构成的四边形是菱形,故点A平移到C的运动与点O平移到B的相同.10.如图,把长方形ABCD沿EF对折,若∠1=500,则∠AEF的度数等于()A. 25ºB. 50ºC. 100ºD. 115º【答案】 D【解析】解析:∵把矩形ABCD沿EF对折,∴AD∥BC,∠BFE=∠2,∵∠1=50°,∠1+∠2+∠BFE=180°,∴∠BFE==65°,∵∠AEF+∠BFE=180°,∴∠AEF=115°.故选D11.在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A. ②③B. ③④C. ①②④D. ②③④【答案】 D【解析】【解答】∵AB=1,AD=,∴BD=AC=2,OB=OA=OD=OC=1.∴△OAB,△OCD为正三角形.AF平分∠DAB,∴∠FAB=45°,即△ABF是一个等腰直角三角形.∴BF=AB=1,BF=BO=1.∵AF平分∠DAB,∴∠FAB=45°,∴∠CAH=45°﹣30°=15°.∵∠ACE=30°(正三角形上的高的性质)∴∠AHC=15°,∴CA=CH由正三角形上的高的性质可知:DE=OD÷2,OD=OB,∴BE=3ED.所以正确的是②③④.故选D.【分析】这是一个特殊的矩形:对角线相交成60°的角.利用等边三角形的性质结合图中的特殊角度解答.本题主要考查了矩形的性质及正三角形的性质.12.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB 上,当△CDE的周长最小时,点E的坐标为()A. (3,1)B. (3,)C. (3,)D. (3,2)【答案】B【解析】【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y= ,∴点E坐标(3,)故选:B.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.13.如图,正方形ABCD的边长为4,M在DC上,且DM=1,N是AC上一动点,则DN+MN的最小值为().A. 3B. 4C. 5D.【答案】C【解析】【分析】由正方形的对称性可知点B与D关于直线AC对称,连接BM交AC于N′点,N′即为所求在Rt△BCM中利用勾股定理即可求出BM的长即可.【解答】∵四边形ABCD是正方形,∴点B与D关于直线AC对称,连接BD,BM交AC于N′,连接DN′,N′即为所求的点,则BM的长即为DN+MN的最小值,∴AC是线段BD的垂直平分线,又CM=CD-DM=4-1=3,在Rt△BCM中,BM==5,故DN+MN的最小值是5.故选C.【点评】本题考查的是轴对称-最短路线问题及正方形的性质,先作出M关于直线AC的对称点M′,由轴对称及正方形的性质判断出点M′在BC上是解答此题的关键.14.将矩形OABC如图放置,O为原点.若点A(﹣1,2),点B的纵坐标是,则点C的坐标是()A. (4,2)B. (2,4)C. (,3)D. (3,)【答案】 D【解析】【解答】解:过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,过点A作AN⊥BF于点N,过点C作CM⊥x轴于点M,∵∠EAO+∠AOE=90°,∠AOE+∠MOC=90°,∴∠EAO=∠COM,又∵∠AEO=∠CMO,∴∠AEO∽△COM,∴=,∵∠BAN+∠OAN=90°,∠EAO+∠OAN=90°,∴∠BAN=∠EAO=∠COM,在△ABN和△OCM中∴△ABN≌△OCM(AAS),∴BN=CM,∵点A(−1,2),点B的纵坐标是,∴BN= ,∴CM= ,∴MO==2CM=3,∴点C的坐标是:(3, ).故选:D.【分析】次题主要考查了矩形的性质以及相似三角形的判定与性质以及结合全等三角形的判定与性质等知识.构造直角三角形,正确得出CM的长是解题的关键.15.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A. 1B. 2C. 3D. 4【答案】 D【解析】【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB= FB•FG= S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【分析】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB= FB•FG= S四边形CEFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.16.如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M 为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为()A. 5B.C.D.【答案】B【解析】【解答】设BE=x,则CE=6-x,∵四边形ABCD矩形,AB=4,∴AB=CD=4,∠C=∠B=90°,∴∠DEC+∠CDE=90°,又∵F是AB的中点,∴BF=2,又∵EF⊥ED,∴∠FED=90°,∴∠FEB+∠DEC=90°,∴∠FEB=∠CDE,∴△BFE∽△CED,∴=,∴=,∴(x-2)(x-4)=0,∴x=2,或x=4,①当x=2时,∴EF=2,DE=4,DF=2,∴AM=ME=,∴AE===2,②当x=4时,∴EF=2,DE=2,DF=2,∴AM=ME=,∴AE==2,AE==4,∴x=4不合题意,舍去故答案为:B.【分析】设BE=x,则CE=6-x,由矩形性质得出AB=CD=4,∠C=∠B=90°,又由EF⊥ED,根据同角的余角相等可得出∠FEB=∠CDE;由相似三角形的判定得出△BFE∽△CED,再根据相似三角形的性质得出=,由此列出方程从而求出x=2或x=4,分情况讨论:①当x=2时,由勾股定理算出AE===2,②当x=4时,由勾股定理算出AE==2,AE==4,故x=4不合题意,舍去.17.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH,其中,正确的结论有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【解答】∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.18.如图,P是正方形ABCD内一点,∠APB=135,BP=1,AP=,求PC的值()A. B. 3 C. D. 2【答案】B【解析】【分析】解答此题的关键是利用旋转构建直角三角形,由勾股定理求解.如图,把△PBC绕点B逆时针旋转90°得到△ABP′,点C的对应点C′与点A重合.根据旋转的性质可得AP′=PC,BP′=BP,△PBP′是等腰直角三角形,利用勾股定理求出,然后由∠APB=135,可得出∠APP′=90°,再利用勾股定理列式计算求出.故选B.二、填空题(共15题;共16分)19.如图所示,△ABC为边长为4的等边三角形,AD为BC边上的高,以AD为边的正方形ADEF的面积为________。
北师大版九年级数学上册第一章特殊的平行四边形综合练习题(含答案,教师版)北师大版九年级数学上册第一章特殊的平行四边形综合练习题1.如图,以正方形ABCD的顶点A为坐标原点,直线AB为x轴建立平面直角坐标系,对角线AC与BD相交于点E,P为BC上一点,点P坐标为(a,b),则点P绕点E顺时针旋转90°得到的对应点P′的坐标是(D)A.(a-b,a) B.(b,a) C.(a-b,0) D.(b,0)2.如图,菱形ABCD边长为6,∠BAD=120°,点E,F分别在AB,AD上且BE=AF,则EF的最小值为(A).A.B..D3.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C4.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A′B′D′,分别连接A′C,A′D,B′C,则A′C+B′C5.菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,-1),当EP+BP最短时,点P6.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且OA =5,OC =3.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的A 1处,则点C 的对应点C 1的坐标为(-95,125).7.如图,∠MON =90°,矩形ABCD 的顶点A ,B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB =4,BC =1,在运动过程中,点D 到点O8.如图,在矩形纸片ABCD 中,AB =8,BC =6,点E 是AD 的中点,点F 是AB 上一动点.将△AEF 沿直线EF 折叠,点A 落在点A ′处.在EF 上任取一点G ,连接GC ,GA ′,CA ′,则△CGA ′周长的最小值为9.如图,在△ABC 中,∠ABC =90°,BD 为AC 的中线,过点C 作CE ⊥BD 于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG =BD ,连接BG ,DF.(1)求证:四边形BDFG 为菱形;(2)若AG =13,CF =6,则四边形BDFG 的周长为20.证明:∵∠ABC =90°,BD 为AC 的中线,∴BD =12AC.∵AG ∥BD ,BD =FG ,∴四边形BDFG 是平行四边形.∵CF ⊥BD ,∴CF ⊥AG.又∵点D 是AC 中点,∴DF =12AC.∴BD =DF.∴四边形BDFG 是菱形.10.如图,E ,F 分别是矩形ABCD 的边AD ,AB 上的点,EF =EC ,且EF ⊥EC. (1)求证:AE =DC ; (2)若DC =2,则BE =2.证明:在矩形ABCD 中,∠A =∠D =90°,∴∠EFA +∠AEF =90°. ∵EF ⊥EC ,∴∠FEC =90°. ∴∠AEF +∠CED =90°. ∴∠EFA =∠CED. 在△AEF 和△DCE 中,∠A =∠D ,∠EFA =∠CED ,EF =CE ,∴△AEF ≌△DCE(AAS).∴AE =DC.11.已知:在矩形ABCD 中,BD 是对角线,AE ⊥BD 于点E ,CF ⊥BD 于点F. (1)如图1,求证:AE =CF ;(2)如图2,当∠ADB =30°时,连接AF ,CE ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD 面积的18.解:(1)证明:∵四边形ABCD 是矩形,∴AB =CD ,AB ∥CD ,AD ∥BC. ∴∠ABE =∠CDF. ∵AE ⊥BD ,CF ⊥BD ,∴∠AEB =∠CFD =90°.在△ABE 和△CDF 中,∠ABE =∠CDF ,∠AEB =∠CFD ,AB =CD ,∴△ABE ≌△CDF(AAS).∴AE =CF. (2)S △ABE =S △CDF =S △BCE =S △ADF =18S 矩形ABCD .12.如图,在四边形ABCD 中,BC ∥AD ,BC =12AD ,点E 为AD 的中点,点F 为AE 的中点,AC⊥CD ,连接BE ,CE ,CF.(1)判断四边形ABCE 的形状,并说明理由;(2)如果AB =4,∠D =30°,点P 为BE 上的动点,求△PAF 周长的最小值.解:(1)四边形ABCE 是菱形,理由如下:∵点E 是AD 的中点,∴AE =12AD.∵BC =12AD ,∴AE =BC.∵BC ∥AD ,∴四边形ABCE 是平行四边形.∵AC ⊥CD ,点E 是AD 的中点,∴CE =AE =DE. ∴四边形ABCE 是菱形.(2)∵四边形ABCE 是菱形.∴AE =EC =AB =4,点A ,C 关于BE 对称.2AE=2.∴当PA+PF最小时,△PAF的周长最小,即点P为CF与BE的交点时,△PAF的周长最小.此时△PAF的周长为PA+PF+AF=CF+AF.∵CE=DE,∴∠ECD=∠D=30°,∠ACE=90°-30°=60°.∴△ACE是等边三角形.∴AC=AE=CE=4.∵AF=EF,∴CF⊥AE.∴CF=AC2-AF2=2 3.△PAF周长的最小值为CF+AF=23+2.13.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D 作DE⊥BC,垂足为F,交直线MN于点E,连接CD,BE.(1)求证:CE=AD;(2)当D为AB的中点时,四边形CDBE是什么特殊四边形?说明你的理由;(3)若D为AB的中点,则当∠A的大小满足什么条件时,四边形CDBE是正方形?请说明你的理由.解:(1)证明:∵DE⊥BC,∴∠DFB=90°.∵∠ACB=90°,∴∠ACB=∠DFB.∴AC∥DE.∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形.∴CE=AD.(2)四边形CDBE是菱形.理由:∵CE=AD,∴BD=CE.∵BD∥CE,∴四边形CDBE是平行四边形.∵∠ACB=90°,D为AB的中点,∴CD=BD.∴四边形CDBE是菱形.(3)当∠A=45°时,四边形CDBE是正方形.理由:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°.∴AC=BC.∵D为AB的中点,∴CD⊥AB.∴∠CDB=90°.又∵四边形CDBE是菱形,∴四边形CDBE是正方形.14.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连接EC,连接AP并延长交CD于点F,连接BP,交CE于点H.(1)若∠PBA∶∠PBC=1∶2,判断△PBC的形状,并说明理由;(2)求证:四边形AECF为平行四边形.解:(1)△PBC是等边三角形,理由如下:在矩形ABCD中,∠ABC=90°,∵∠PBA∶∠PBC=1∶2,∴∠PBC=60°.由折叠的性质,得PC=BC.∴△PBC是等边三角形.(2)证明:由折叠的性质,得△EBC≌△EPC.∴BE=PE.∴∠EBP=∠EPB.∵E为AB的中点,∴BE=AE.∴AE=PE.∴∠EPA=∠EAP.∵∠EBP +∠EPB +∠EPA +∠EAP =180°,∴∠EPB +∠EPA =90°. ∴∠BPA =90°,即BP ⊥AF.由折叠的性质,得BP ⊥CE ,∴AF ∥CE. ∵四边形ABCD 是矩形,∴AE ∥CF. ∴四边形AECF 为平行四边形.15.如图,将一张矩形纸片ABCD 沿直线MN 折叠,使点C 落在点A 处,点D 落在点E 处,直线MN 交BC 于点M ,交AD 于点N.(1)求证:CM =CN ;(2)若△CMN 的面积与△CDN 的面积比为3∶1,求MNDN的值.解:(1)证明:由折叠的性质,得∠ENM =∠DNM ,又∵∠ANE =∠CND ,∴∠ANM =∠CNM. ∵四边形ABCD 是矩形,∴AD ∥BC. ∴∠ANM =∠CMN. ∴∠CMN =∠CNM. ∴CM =CN.(2)过点N 作NH ⊥BC 于点H ,则四边形NHCD 是矩形,∴HC =DN ,NH =DC. ∵S △CMN S △CDN =12MC ·NH12ND ·NH =MC ND=3,∴MC =3ND =3HC.∴MH =2HC.设DN =x ,则HC =x ,MH =2x. ∴CM =CN =3x.在Rt △CDN 中,DC =CN 2-DN 2=22x. 在Rt △MNH 中,MN =MH 2+HN 2=23x. ∴MN DN =23x x=2 3. 16.在正方形ABCD 中,点E ,F 分别在边BC ,AD 上,DE =EF ,过点D 作DG ⊥EF 于点H ,交AB 边于点G.(1)如图1,求证:DE =DG ;(2)如图2,将EF 绕点E 逆时针旋转90°得到EK ,点F 对应点K ,连接KG ,EG.若H 为DG 的中点,在不添加任何辅助线及字母的情况下,请直接写出图中所有与EG 长度相等的线段(不包括EG).解:(1)证明:∵四边形ABCD 是正方形,∴AD =DC ,AD ∥BC ,∠DAG =∠DCE =90°. ∴∠DEC =∠EDF.∵DE =EF ,∴∠EFD =∠EDF. ∴∠EFD =∠DEC.∵DG ⊥EF ,∴∠GHF =90°. ∴∠DGA +∠AFH =180°. ∵∠AFH +∠EFD =180°,∴∠DGA =∠EFD =∠DEC. 在△DAG 和△DCE 中,∠DGA =∠DEC ,∠DAG =∠DCE ,DA =DC ,∴△DAG ≌△DCE(AAS).∴DG =DE.(2)与线段EG 相等的线段有:DE ,DG ,GK ,KE ,EF.17.如图,BD 是正方形ABCD 的对角线,线段BC 在其所在的直线上平移,将平移得到的线段记为PQ ,连接PA ,过点Q 作QO ⊥BD ,垂足为O ,连接OA ,OP.(1)如图1所示,求证:AP =2OA ;(2)如图2所示,PQ 在BC 的延长线上,如图3所示,PQ 在BC 的反向延长线上,猜想线段AP ,OA 之间有怎样的数量关系?请直接写出你的猜想,不需证明.解:(1)证明:∵四边形ABCD 是正方形,∴AB =BC ,∠ABD =∠CBD =45°. ∵QO ⊥BD ,∴∠BOQ =90°. ∴∠BQO =∠CBD =45°.∴OB =OQ. ∵PQ =BC ,∴AB =PQ.在△ABO 和△PQO 中,OB =OQ ,∠ABO =∠PQO ,AB =PQ ,∴△ABO ≌△PQO(SAS).∴OA =OP ,∠AOB =∠POQ. ∵∠BOP +∠POQ =90°,∴∠BOP +∠AOB =90,即∠AOP =90°. ∴△AOP 是等腰直角三角形.∴AP =2OA.(2)当PQ 在BC 的延长线上时,线段AP ,OA 之间的数量关系为AP =2OA ;当PQ 在BC 的反向延长线上时,线段AP ,OA 之间的数量关系为AP =2OA.。
新北师大版九上数学第一章特殊的平行四边形同步练习题一、填空题1、如图,将△A BC绕AC的中点O按顺时针旋转180°得到△CDA,添加一个条件____________,使四边形ABCD为矩形.2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为________.3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为____________.二、选择题4、矩形具有而菱形不具有的性质是( ) A.两组对边分别平行 B.对角线相等 C.对角线互相平分 D.两组对角分别相等5、如图,菱形ABCD的两条对角线相交于点O,若AC=6,BD=4,则菱形ABCD的周长是( ) A.24 B.16 C.413 D.2136、如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件中能够判定四边形ACED 为菱形的是( )A.AB=BC B.AC=BC C.∠B=60° D.∠ACB=60°7、如图,4×4的方格中每个小正方形的边长都是1,则S四边形ABDC与S四边形ECDF的大小关系是( ) A.S四边形ABDC=S四边形ECDF B.S四边形ABDC < S四边形ECDFC.S四边形ABDC=S四边形ECDF+1 D.S四边形ABDC=S四边形ECDF+28、如图4338,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( ) A.14 B.15 C.16 D.179、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )A.12 B. 24 C. 123 D. 163三、简答题10、如图4,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F. 求证:DF=DC.11、如图,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm.将△ABC沿射线BC方向平移10 cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD 是菱形.12、如图4342,在△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE. (1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.13、已知:如图4346,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD∶AB=__________时,四边形MENF是正方形(只写结论,不需证明).14、如图4347,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s 的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0 < t≤ 15).过点D作DF⊥BC于点F,连接DE,EF. (1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.参考答案一、填空题1、∠B =90°或∠BAC +∠BCA =90°2、123、5 解析:连接BP ,交AC 于点Q ,连接QD .∵点B 与点D 关于AC 对称,∴BP 的长即为PQ +DQ 的最小值,∵CB =4,DP =1.∴CP =3,在Rt △BCP 中,BP =222234+=+CP BC =5.二、选择题4、B5、C6、B7、A8、C9、D三、简答题10、证明:∵四边形ABCD 是矩形,∴AB =CD ,AD ∥BC ,∠B =90°.∵DF ⊥AE ,∴∠AFD =∠B =90°.∵AD ∥BC ,∴∠DAE =∠AEB .又∵AD =AE ,∴△ADF ≌△EAB .∴DF =AB .∴DF =DC .11、证明:由平移变换的性质,得CF =AD =10 cm ,DF =AC ,∵∠B =90°,AB =6 cm ,BC =8 cm ,∴AC 2=AB 2+CB 2,即AC =10 cm.∴AC =DF =AD =CF =10 cm.∴四边形ACFD 是菱形.12、 (1)证明:∵点O 为AB 的中点,OE =OD ,∴四边形AEBD 是平行四边形.∵AB =AC ,AD 是△ABC 的角平分线,∴AD ⊥BC .即∠ADB =90°.∴四边形AEBD 是矩形.(2)解:当△ABC 是等腰直角三角形时,矩形AEBD 是正方形.∵△ABC 是等腰直角三角形,∴∠BAD =∠CAD =∠DBA =45°.∴BD =AD .由(1)知四边形AEBD 是矩形,∴四边形AEBD 是正方形.13、 (1)证明:在矩形ABCD 中,AB =CD ,∠A =∠D =90°,又∵M 是AD 的中点,∴AM =DM .∴△ABM ≌△DCM (SAS).(2)解:四边形MENF 是菱形.证明如下:E ,F ,N 分别是BM ,CM ,CB 的中点,∴NE ∥MF ,NE =MF .∴四边形MENF 是平行四边形.由(1),得BM =CM ,∴ME =MF .∴四边形MENF 是菱形.(3)2∶1 解析:当AD ∶AB =2∶1时,四边形MENF 是正方形.理由: ∵M 为AD 中点,∴AD =2AM .∵AD ∶AB =2∶1,∴AM =AB .∵∠A =90,∴∠ABM =∠AMB =45°.同理∠DMC =45°,∴∠EMF =180°-45°-45°=90°.∵四边形MENF 是菱形,∴菱形MENF 是正方形.14、解:(1)在△DFC 中,∠DFC =90°,∠C =30°,DC =4t , ∴DF =2t ,又∵AE =2t ,∴AE =DF .(2)能.理由如下:∵AB ⊥BC ,DF ⊥BC ,∴AE ∥DF .又∵AE =DF ,∴四边形AEFD 为平行四边形.当AE =AD 时,四边形AEFD 是菱形,即60-4t =2t .解得t =10 s ,∴当t =10 s 时,四边形AEFD 为菱形.(3)①当∠DEF =90°时,由(2)知EF ∥AD ,∴∠ADE =∠DEF =90°.∵∠A =60°,∴AD =AE ·cos60°=t .又AD =60-4t ,即60-4t =t ,解得t =12 s.②当∠EDF =90°时,四边形EBFD 为矩形.在Rt △AED 中,∠A =60°,则∠ADE =30°.∴AD =2AE ,即60-4t =4t ,解得t =215s. ③若∠EFD =90°,则E 与B 重合,D 与A 重合,此种情况不存在. 综上所述,当t =215s 或t =12s 时,△DEF 为直角三角形.。
九(上)第一章特殊平行四边形重点题目菱形的性质1、菱形具有而一般平行四边形不具有的性质是()A. 对角相等B. 对边相等C. 对角线互相垂直D. 对角线相等2、菱形的周长为100cm;一条对角线长为14cm;它的面积是()A. 168cm2B. 336cm2C. 672cm2D. 84cm23、下列语句中;错误的是()A. 菱形是轴对称图形;它有两条对称轴B. 菱形的两组对边可以通过平移而相互得到C. 菱形的两组对边可以通过旋转而相互得到D. 菱形的相邻两边可以通过旋转而相互得到4、菱形的两条对角线分别是6 cm;8 cm;则菱形的边长为_____;面积为______.5、四边形ABCD是菱形;点O是两条对角线的交点;已知AB=5;AO=4;求对角线BD和菱形ABCD的面积.6、如图;在菱形ABCD中;∠ADC=120°;则BD:AC等于().(A)3:2 (B)3:3(C)1:2 (D)3:17、菱形ABCD的周长为20cm;两条对角线的比为3∶4;求菱形的面积。
8、如左下图;菱形ABCD的对角线AC、BD交于点O;且AC=16cm;BD=12cm;求菱形ABCD的高DH。
9、如右上图;在菱形ABCD中;∠BAD=80°;AB的垂直平分线交对角线AC于点F;E为垂足;连接DF;则∠CDF的度数为.10、在菱形ABCD中;∠A与∠B的度数比为1:2;周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.11、如图所示;在平面直角坐标系中;菱形MNPO的顶点P的坐标是(3;4);则顶点M、N的坐标分别是()A.M(5;0);N(8;4)B.M(4;0);N(8;4)C.M(5;0);N(7;4)D.M(4;0);N(7;4)12、(2010•襄阳)菱形的周长为8cm;高为1cm;则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:113、如左下图;菱形ABCD的对角线AC、BD相交于点O;且AC=8;BD=6;过点O作OH丄AB;垂足为H;则点0到边AB的距离OH=_________.EOB第7题CF DA 15、【提高题】 如图;在菱形ABCD 中;顶点A 到边BC 、CD 的距离AE 、AF 都为5; EF =6;那么;菱形ABCD 的边长是_____菱形的判定1、能够判别一个四边形是菱形的条件是( )A. 对角线相等且互相平分B. 对角线互相垂直且相等C. 对角线互相平分D. 一组对角相等且一条对角线平分这组对角2、平行四边形ABCD 的两条对角线AC 、BD 相交于点O ; AB=5; AO=2; OB=1. 四边形ABCD 是菱形吗?为什么?3、 如左下图;AD 是△ABC 的角平分线。
北师大版九年级上册第一章特殊平行四边形知识点讲解(含例题及答案)【学习目标】1. 掌握平行四边形、矩形、菱形、正方形的概念, 了解它们之间的关系.2. 探索并掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法, 并能运用这些知识进行有关的证明和计算. 【知识关系】【知识点梳理】知识点一、平行四边形1.定义:两组对边分别平行的四边形叫做平行四边形. 2.性质:(1)对边平行且相等; (2)对角相等;邻角互补; (3)对角线互相平分; (4)中心对称图形. 3.面积:4.判定:边:(1)两组对边分别平行的四边形是平行四边形; (2)两组对边分别相等的四边形是平行四边形; (3)一组对边平行且相等的四边形是平行四边形. 角:(4)两组对角分别相等的四边形是平行四边形; (5)任意两组邻角分别互补的四边形是平行四边形. 边与角:(6)一组对边平行,一组对角相等的四边形是平行四边形; 对角线:(7)对角线互相平分的四边形是平行四边形. 知识点诠释:平行线的性质: (1)平行线间的距离都相等;(2)等底等高的平行四边形面积相等. 知识点二、菱形高底平行四边形⨯=S1. 定义:有一组邻边相等的平行四边形叫做菱形. 2.性质:(1)具有平行四边形的一切性质; (2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形. 3.面积:4.判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形; (3)四边相等的四边形是菱形.知识点三、矩形1.定义:有一个角是直角的平行四边形叫做矩形. 2.性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形.3.面积:4.判定:(1) 有一个角是直角的平行四边形是矩形. (2)对角线相等的平行四边形是矩形. (3)有三个角是直角的四边形是矩形. 知识点诠释:由矩形得直角三角形的性质: (1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半. 知识点四、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形. 2.性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形; (6)中心对称图形,轴对称图形.3.面积:=S 正方形边长×边长=12×对角线×对角线 4.判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形; (3)对角线相等的菱形是正方形; (4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形; (6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】类型一、平行四边形2对角线对角线高==底菱形⨯⨯S 宽=长矩形⨯S1、如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC 交AC于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.【思路点拨】(1)首先证明四边形DBCF为平行四边形,可得DF=BC,再证明DE=1 2BC,进而得到EF=12CB,即可证出DE=EF;(2)首先画出图形,首先根据平行线的性质可得∠ADG=∠G,再证明∠B=∠DCB,∠A=∠DCA,然后再推出∠1=∠DCB=∠B,再由∠A+∠ADG=∠1可得∠A+∠G=∠B.【答案与解析】证明:(1)∵DE∥BC,CF∥AB,∴四边形DBCF为平行四边形,∴DF=BC,∵D为边AB的中点,DE∥BC,∴DE=12BC,∴EF=DF-DE=BC-12CB=12CB,∴DE=EF;(2)∵DB∥CF,∴∠ADG=∠G,∵∠ACB=90°,D为边AB的中点,∴CD=DB=AD,∴∠B=∠DCB,∠A=∠DCA,∵DG⊥DC,∴∠DCA+∠1=90°,∵∠DCB+∠DCA=90°,∴∠1=∠DCB=∠B,∵∠A+∠ADG=∠1,∴∠A+∠G=∠B.【总结升华】此题主要考查了平行四边形的判定与性质,以及直角三角形的性质,关键是找出∠ADG=∠G,∠1=∠B.掌握在直角三角形中,斜边上的中线等于斜边的一半.类型二、菱形2、(2016•广安)如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.【思路点拨】连接AC,根据菱形的性质可得AC平分∠DAE,CD=BC,再根据角平分线的性质可得CE=FC,然后利用HL证明Rt△CDF≌Rt△CBE,即可得出DF=BE.【答案与解析】证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAE,CD=BC,∵CE⊥AB,CF⊥AD,∴CE=FC,∠CFD=∠CEB=90°.在Rt△CDF与Rt△CBE中,,∴Rt△CDF≌Rt△CBE(HL),∴DF=BE.【总结升华】此题考查了菱形的性质,角平分线的性质,关键是掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.同时考查了全等三角形的判定与性质.举一反三:【变式】用两张等宽的纸带交叉重叠地放在一起,重合的四边形ABCD是菱形吗?如果是菱形请给出证明,如果不是菱形请说明理由.【答案】四边形ABCD是菱形;证明:由AD∥BC,AB∥CD得四边形ABCD是平行四边形,过A,C两点分别作AE⊥BC于E,CF⊥AB于F.∴∠CFB=∠AEB=90°.∵AE=CF(纸带的宽度相等)∠ABE=∠CBF,∴Rt△ABE≌Rt△CBF,∴AB=BC,∴四边形ABCD是菱形.类型三、矩形3、已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.【思路点拨】①根据两直线平行,内错角相等求出∠DAC=∠NCA,然后利用“角边角”证明△AMD和△CMN全等,根据全等三角形对应边相等可得AD=CN,然后判定四边形ADCN是平行四边形,再根据平行四边形的对边相等即可得证;②根据三角形的一个外角等于与它不相邻的两个内角的和推出∠MCD=∠MDC,再根据等角对等边可得MD=MC,然后证明AC=DN,再根据对角线相等的平行四边形是矩形即可得证.【答案与解析】证明:①∵CN∥AB,∴∠DAC=∠NCA,在△A MD和△CMN中,∵DAC NCAMA MCAMD CMN∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AMD≌△CMN(ASA),∴AD=CN,又∵AD∥CN,∴四边形ADCN是平行四边形,∴CD=AN;②∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC, ∴MD=MC ,由①知四边形ADCN 是平行四边形, ∴MD=MN =MA =MC , ∴AC=DN ,∴四边形ADCN 是矩形.【总结升华】要判定一个四边形是矩形,通常先判定它是平行四边形,再根据平行四边形构成矩形的条件,判定有一个角是直角或对角线相等.4、如图所示,在矩形ABCD 中,AB =6,BC =8.将矩形ABCD 沿CE 折叠后,使点D 恰好落在对角线AC 上的点F 处,求EF 的长.【思路点拨】要求EF 的长,可以考虑把EF 放入Rt △AEF 中,由折叠可知CD =CF ,DE =EF ,易得AC =10,所以AF =4,AE =8-EF ,然后在Rt △AEF 中利用勾股定理求出EF 的值.【答案与解析】 解:设EF =x ,由折叠可得:DE =EF =x ,CF =CD =6, 又∵ 在Rt △ADC 中,. ∴ AF =AC -CF =4,AE =AD -DE =8-x . 在Rt △AEF 中,222AE AF EF =+, 即,解得:x =3 ∴ EF =3 【总结升华】在矩形折叠问题中往往根据折叠找出相等的量,然后把未知边放在合适的直角三角形中,再利用勾股定理进行求解. 举一反三: 【变式】把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB = 3cm ,BC = 5cm ,则重叠部分△DEF 的面积是__________2cm .【答案】5.1.提示:由题意可知BF =DF ,设FC =x ,DF =5-x ,在Rt △DFC 中,,10AC =222(8)4x x -=+222DC FC DF +=解得x =,BF =DE =3.4,则=×3.4×3=5.1. 类型四、正方形5、如图,一个含45°的三角板HBE 的两条直角边与正方形ABCD 的两邻边重合,过E 点作EF ⊥AE 交∠DCE 的角平分线于F 点,试探究线段AE 与EF 的数量关系,并说明理由.【思路点拨】AE =EF .根据正方形的性质推出AB =BC ,∠BAD=∠HAD=∠DCE=90°,推出∠HAE=∠CEF,根据△HEB 是以∠B 为直角的等腰直角三角形,得到BH =BE ,∠H=45°,HA =CE ,根据CF 平分∠DCE 推出∠H=∠FCE,根据ASA 证△HAE≌△CEF 即可得到答案. 【答案与解析】 探究:AE =EF证明:∵△BHE 为等腰直角三角形, ∴∠H =∠HEB =45°,BH =BE.又∵CF 平分∠DCE ,四边形ABCD 为正方形, ∴∠FCE =12∠DCE =45°, ∴∠H =∠FCE.由正方形ABCD 知∠B =90°,∠HAE =90°+∠DAE =90°+∠AEB, 而AE ⊥EF ,∴∠FEC =90°+∠AEB , ∴∠HAE =∠FEC.由正方形ABCD 知AB =BC ,∴BH -AB =BE -BC , ∴HA =CE,∴△AHE ≌△ECF (ASA ), ∴AE =EF. 【总结升华】充分利用正方形的性质和题目中的已知条件,通过证明全等三角形来证明线段相等.举一反三: 【变式】(2015•黄冈)如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E .若∠CBF=20°,则∠AED 等于 .【答案】 65°。
第一章特殊的平行四边形1.菱形的性质和判断1.1第一课时知识点1:菱形的定义例1(2019年毕节)平行四边形ABCD中,AC、BD是两条对角线,现从以下四个关系①AB=BC;②AC=BD;③AC⊥BD;④AB⊥BC中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A.B.C.D.1分析:菱形的判定有如下方法:1.一组邻边相等的平行四边形是菱形;2.四边相等的四边形是菱形;3.对角线互相垂直的平行四边形是菱形;4.对角线互相平分且垂直的四边形是菱形.这里已知四边形的基础是平行四边形,因此解答时以1和3为判断主要依据.解:根据菱形的判定方法,知道①,③是成立的,所以推出平行四边形ABCD是菱形的概率为:=,所以选B.点拨与提升:遇到菱形的判定问题,要从两个大方面去分析求解,一是基础图形是平行四边形,二是基础图形是一般四边形,这是解题的基本思路;找到方法后,接下来判断条件的完备性便成为了解题的关键.针对性练习:1.(2019•江西)如图1,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有()A.3种B.4种C.5种D.6种答案:.D解析:共有如下6种拼接方法:2.(2019•浙江湖州)如图2,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.答案:解:(1)证明:因为D,E,F分别是AB,BC,AC的中点,所以DF∥BC,EF∥AB,所以DF∥BE,EF∥BD,所以四边形BEFD是平行四边形;(2)解:因为∠AFB=90°,D是AB的中点,AB=6,所以DF=DB=DA=AB=3,所以四边形BEFD是菱形,所以四边形BEFD的周长为12.其他教材试题:如图3,AE∥BF,AC平分∠BAD,交BF于C,BD平分∠ABC,交AE于D,连接CD.求证:四边形ABCD是菱形.(人教版八年级数学下册P102页第6题)图3B F答案:证明:因为AE∥BF,AC 平分∠BAD,所以∠BAC=∠DAC=∠ACB,所以AB=BC,因为AE∥BF,BD 平分∠ABC,所以∠ABD=∠CBD=∠ADB,所以AB=AD,所以AD=BC,因为AD∥BC,所以四边形ABCD 是平行四边形,因为AB=BC,所以四边形ABCD 是菱形.2.如图4,四边形ABCD 是菱形,点M,N 分别在AB,AD 上,且BM=DN,MG∥AD,NF∥AB,点F,G 分别在BC,CD 上,MG 与NF 交于点E.求证:四边形AMEN,EFCG 都是菱形.(人教版八年级数学下册P103页第10题)图4F CB 答案:因为四边形ABCD 是菱形,所以AB=AD,因为BM=DN,所以AM=AN,因为ME∥AN,NE∥AM,所以四边形AMEN 是平行四边形,所以四边形AMEN 是菱形.同理可证,四边形EFCG 是菱形.知识点2:菱形的轴对称性例2(2019•河北•3分)如图5,菱形ABCD 中,∠D=150°,则∠1=()A.30°B.25°C.20°D.15°分析:菱形是以对角线所在直线为对称轴的轴对称图形,利用轴对称的全等性解题是解题时常用数学思想解:根据菱形的对称性,知道∠B=∠D,∠DAC=∠1,所以∠1=15°,所以选D.点拨与提升:菱形是一个轴对称图形,有两条对称轴,分别是对角线所在的直线.针对性练习:1.(2019•天津改编)如图6,四边形ABCD为菱形,A、B两点的坐标分别是(2,0),(0,1),点C、D在坐标轴上,则C,D的坐标分别为.答案:根据菱形的对称性,可得点C 坐标为(-2,0),点D 的坐标为(0,-1).2.(2019年岳阳)如图7,在菱形ABCD 中,点E、F 分别为AD、CD 边上的点,DE=DF,求证:∠1=∠2.答案:证明:根据题意,得点A,C 关于直线BD 对称,点E,F 关于直线BD 对称,因此△DAF 和△DEC 关于直线BD 对称,所以△DAF≌△DEC,所以∠1=∠2.其他教材试题:如图8,将菱形ABCD 沿AC 方向平移到D C B A '''',D A ''交CD 于E,B A ''交BC 于F.判断四边形FCE A '是不是菱形.请说明理由.(新浙教版八年级数学下册P124页课内练习1)解:四边形FCE A '是菱形.理由如下:因为菱形是关于对角线所在直线为对称轴的轴对称图形,且两个图形是平移得到,所以点E,F 关于直线C A '对称,所以CF CE F A E A ='=',,易证CE E A =',所以CF CE F A E A =='=',所以四边形FCE A '是菱形.知识点3:菱形的特殊性质例3(2019•贵阳)如图9,菱形ABCD 的周长是4cm,∠ABC=60°,那么这个菱形的对角线AC 的长是()A.1cm B.2cm C.3cm D.4cm分析:根据菱形四边相等求得边长,连接BD,根据对角线互相垂直,确定∠ABO=30°,从而确定AO,根据AC=2AO 即可得解.解:因为菱形ABCD 的周长是4cm,所以AB=BC=1cm.连接BD,则AC⊥BD,所以∠ABO=30°,所以AB=2AO,因为AC=2AO,所以AC=AB=1,所以选A.针对性练习:1.(2019•铜仁)如图10,四边形ABCD 为菱形,AB=2,∠DAB=60°,点E、F 分别在边DC、BC 上,且CE=CD,CF=CB,则S △CEF =()A.B.C.D.答案:D解析:因为四边形ABCD 为菱形,所以AB=BC=CD=2,∠DCB=60°,所以CE=CF=23,所以△CEF 为等边三角形,所以S △CEF =√34×(23)2=√39.2.(2019•天津)如图11,四边形ABCD为菱形,A、B两点的坐标分别是(2,0),(0,1),点C、D在坐标轴上,则菱形ABCD的周长等于()A.5 B.34 C.54 D.20答案:C 解析:由勾股定理可得:AB=AO 2+BO 2=5,根据菱形四边相等,所以周长等于45,所以选C.其他教材试题:如图12,四边形ABCD 是菱形,∠ACD=30°,BD=6cm.求:(1)∠BAD,∠ABC 的度数;(2)边AB 及对角线AC 的长(精确到0.01cm).(人教版数学八年级下册P102页第5题)解:(1)因为四边形ABCD 是菱形,所以AB=BC=CD=DA,∠ACD=∠ACB=30°,所以∠DCB=60°,所以△BCD 是等边三角形,根据菱形的性质,得∠BAD=60°,∠ABC=120°;(2)因为△BCD 是等边三角形,所以AB=BD=6cm,设对角线的交点为O,在直角三角形DOC 中,OC=222236-=-OD DC =33,所以AC=2OC=63≈10.39(cm).课时练:一、选择题1.(2018•十堰)菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形答案:B解析:菱形的四条边相等,是轴对称图形,也是中心对称图形,对角线垂直不一定相等,故选:B.2.(2018•淮安)如图13,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长()A.20B.24C.40D.48答案:A解析:由菱形对角线性质知,AO=12AC=3,BO==12BD=4,且AO⊥BO,则AB=5,故这个菱形的周长L=4AB=20.故选:A.二、填空题3.(2018•黑龙江)如图14,在平行四边形ABCD中,添加一个条件使平行四边形ABCD是菱形.答案:AB=BC或AC⊥BD.解析:当AB=BC或AC⊥BD时,四边形ABCD是菱形.4.(2018•广州)如图15,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是.答案:(﹣5,4).解析:根据题意,得AB=5,所以AD=5,由勾股定理知:OD=4,所以点C的坐标是:(﹣5,4).故答案为:(﹣5,4).备选题:1.(2018•贵阳)如图16,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24B.18C.12D.9答案:A解析:EF是△ABC的中位线,所以BC=6,所以菱形ABCD的周长是4×6=24.故选:A.2.(2018•随州)如图17,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴正半轴上,∠AOC=60°,若将菱形OABC绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的坐标为.答案:(6,﹣6).解析:作B′H⊥x轴于H点,连结OB,OB′,如图,则∠AOC=180°﹣∠C=60°,OB平分∠AOC,所以∠AOB=30°,∠BOB′=75°,OB′=OB=23,△OBH为等腰直角三角形,所以OB′=6,所以点B′的坐标为(6,﹣6).故答案为:(6,﹣6).1.1第二课时知识点1:菱形的判定定理1例4已知:如图18所示,AD是三角形ABC的角平分线,DE∥AC,交AB于点E,DF∥AB,交AC 于点F.求证:四边形AEDF是菱形.分析:根据平行条件,易证四边形AEDF是平行四边形.后利用线段垂直平分线的性质的逆定理可证明EF⊥AD,从而得证.证明:因为DE∥AC,DF∥AB,所以四边形AEDF是是平行四边形.因为DE∥AC,所以∠EDA=∠DAC,因为AD是三角形ABC的角平分线,所以∠EAD=∠DAC;所以∠EAD=∠EDA,所以AE=ED,所以点E在线段AD的垂直平分线上,同理可证点F在线段AD的垂直平分线上,所以EF⊥AD,所以四边形AEDF是菱形.点拨与提升:用这个定理时,一定清楚两个核心条件,一是基础条件:四边形是平行四边形;二是升级条件:对角线互相垂直.证明时,平行四边形是基础,要灵活运用平行四边形的判定,证垂直是关键,证明的方法很多,常见的有如下几种:1.等腰三角形三线合一性质法;2.两角互余法;3.垂直—平行—垂直法.4.线段垂直平分线性质定理的逆定理.针对性练习:(2018•扬州)如图19,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.求证:四边形AEBD是菱形;证明:易证四边形AEBD是平行四边形,因为DB=DA,点F是AB的中点,所以AB⊥DE,所以四边形AEBD是菱形.其他教材试题:已知:如图20所示,在矩形ABCD中,对角线AC的垂直平分线与AD,BC分别交于点E,F.求证:四边形AFCE是菱形.(浙教版数学八年级下册P159页例2)证明:易证△AOE≌△COF,所以AE=CF.因为FC∥AE,所以四边形AFCE是平行四边形,因为AC⊥EF,所以四边形AFCE是菱形.知识点2:菱形的判定定理2例5(2018•乌鲁木齐)如图21,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.分析:(1)利用已知条件设法证明四边形AECD的四边相等即可.(2)根据菱形的面积公式和三角形的面积公式解答即可.证明:(1)因为AD∥BC,AE∥DC,所以四边形AECD是平行四边形,所以AD=EC,AE=CD.因为∠BAC=90°,E是BC的中点,所以AE=CE=12BC,所以AE=EC=CD=DA,所以四边形AECD是菱形;(2)如图21,过A作AH⊥BC于点H,因为∠BAC=90°,AB=6,BC=10,所以AC=8,因为 ∆ =12BC×AH=12AB×AC,所以AH=245,因为点E是BC的中点,BC=10,四边形AECD是菱形,所以CD=CE=5,因为菱形的面积相等,所以CE•AH=CD•EF,所以EF=AH==245.点拨与提升:证明四边形相等是解题的关键,这种方法的最大特点是不以四边形的形状为主线,二是以证明四边相等为主线解决.其次,要把握好同一个图形面积的不同的表示方式,为解题提供新的有效解题方法.针对性练习:将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展平纸片,如图22-1;再次折叠该三角形纸片,使得点A与点D重合,折痕为EF,再次展平后连接DE、DF,如图22-2,证明:四边形AEDF是菱形.证明:由第一次折叠可知:AD为∠CAB的平分线,所以∠1=∠2,由第二次折叠可知:∠CAB=∠EDF,从而,∠3=∠4,因为AD是△AED和△AFD的公共边,所以△AED≌△AFD(ASA),所以AE=AF,DE=DF,又由第二次折叠可知:AE=ED,AF=DF,所以AE=ED=DF=AF,所以四边形AEDF 是菱形.其他教材的试题:如图23,在四边形ABCD 中,AC=BD,E,F,G,H 依次是AB,BC,CD,DA 的中点.求证:四边形EFGH 是菱形.(浙教版数学八年级下册P160页A 组第3题)证明:因为E,F,G,H 依次是AB,BC,CD,DA 的中点,所以EF,FG,GH,HE 分别是△ABC,△BCD,△CDA,△DAB 的中位线,所以EF=GH=21AC,FG=EH=21BD,因为AC=BD,所以EF=FG=GH=HE,所以四边形EFGH 是菱形.课时练:1.(2018•内江)如图24,已知四边形ABCD 是平行四边形,点E,F 分别是AB,BC 上的点,AE=CF,并且∠AED=∠CFD.求证:(1)△AED≌△CFD;(2)四边形ABCD 是菱形.答案:(1)证明:因为四边形ABCD 是平行四边形,所以∠A=∠C.所以△AED≌△CFD(ASA);(2)由(1)知,△AED≌△CFD,则AD=CD.因为四边形ABCD 是平行四边形,所以AD=BC,AB=CD,所以AD=BC=AB=CD,所以四边形ABCD 是菱形.2.(2018•遂宁)如图25,在平行四边形ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC ⊥EF.求证:四边形AECF是菱形.证明:因为四边形ABCD是平行四边形,所以AD=BC,AD∥BC,因为DE=BF,所以AE=CF,因为AE∥CF,所以四边形AECF是平行四边形,因为AC⊥EF,所以四边形AECF是菱形.3.(2018•郴州)如图26,在平行四边形ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.证明:因为在平行四边形ABCD中,O为对角线BD的中点,所以BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∠ =∠FBO=∠ =∠FOB,所以△DOE≌△BOF(ASA);所以OE=OF,因为OB=OD,所以四边形EBFD是平行四边形,因为EF⊥BD,所以四边形BFDE为菱形.备选题:(2018•泰安)如图27,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,CD.(1)求证:△ECG≌△GHD;(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论.(3)若∠B=30°,判定四边形AEGF是否为菱形,并说明理由.解:(1)因为AF=FG,所以∠FAG=∠FGA,因为AG平分∠CAB,所以∠CAG=∠FGA,所以∠CAG=∠FGA,所以AC∥FG,因为DE⊥AC,所以FG⊥DE,因为FG⊥BC,所以DE∥BC,所以AC⊥BC,所以∠C=∠DHG=90°,∠CGE=∠GED,因为F是AD的中点,FG∥AE,所以H是ED的中点,所以FG是线段ED的垂直平分线,所以GE=GD,∠GDE=∠GED,所以∠CGE=∠GDE,所以△ECG≌△GHD;(2)证明:过点G作GP⊥AB于P,所以GC=GP,所以△CAG≌△PAG,所以AC=AP,由(1)可得EG=DG,所以Rt△ECG≌Rt△GPD,所以EC=PD,所以AD=AP+PD=AC+EC;(3)四边形AEGF是菱形,证明:因为∠B=30°,所以∠ADE=30°,所以AE=12AD,所以AE=AF=FG,由(1)得AE∥FG,所以四边形AECF是平行四边形,所以AE=AF=FG=EG,所以四边形AEGF是菱形.1.1第三课时知识点1:菱形的对角线计算例6(2018•柳州)如图28,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.分析:(1)由菱形的四边相等即可求出其周长;(2)利用勾股定理可求出BO的长,进而解答即可.解:(1)因为四边形ABCD是菱形,AB=2,所以菱形ABCD的周长=2×4=8;(2)因为四边形ABCD是菱形,AC=2,AB=2,所以AC⊥BD,AO=1,所以BO=AB2−AO2=22−12=3,所以BD=23.点拨与提升:菱形的计算有三大特点:一是计算周长,边长的4倍;二是对角线互相垂直且平分,为计算提供基础条件;三是充分利用勾股定理,确定计算结果.针对性练习:(2018•呼和浩特)如图29,已知A、F、C、D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.(1)求证:△ABC≌△DEF;(2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.解:(1)证明:因为AB∥DE,所以∠A=∠D,因为AF=CD,所以AF+FC=CD+FC,即AC=DF,因为AB=DE,所以△ABC≌△DEF.(2)如图,连接AB交AD于O.在Rt△EFD中,因为∠DEF=90°,EF=3,DE=4,所以DF=32+42=5,因为四边形EFBC 是菱形,所以BE⊥CF,所以EO=× =125,所以OF=OC=EF 2−EO 2=95,所以CF=185,所以AF=CD=DF﹣FC=5﹣185=75.其他教材试题:如图30,菱形花坛ABCD 的边长为20m,∠ABC=60°,沿着菱形的对角线修建了两条小路AC 和BD.求:两条小路的长(结果保留小数点后2位)和花坛的面积(结果保留小数点后1位).解:因为ABCD 是菱形,∠ABC=60°,所以AC ⊥BD ,∠ABD=30°,△ABC 是等边三角形,所以AC=AB=20m,在直角三角形AOB 中,BO=300102022=-,所以BD=2BO=2300≈34.64m,菱形ABCD 的面积为:64.34202121⨯⨯=⨯BD AC ≈346.42m .知识点2:菱形的面积计算例7如图31,已知四边形ABCD 是菱形,且菱形的周长为32,AE⊥BC,垂足为E,若△ABC 是等边三角形,求菱形的面积.分析:根据菱形的周长,确定菱形的边长;根据△ABC 是等边三角形,确定BE 的长,从而利用勾股定理,确定高AE,利用菱形的面积等于底乘高计算即可.解:因为菱形的周长为32,所以AB=BC=8,因为△ABC 是等边三角形,AE⊥BC,所以BE=21BC=4,所以AE=222248-=-BE AB =43,所求菱形的面积为:BC×AE=323.点拨与提升:菱形的面积计算方法有两种,一是底边乘以其上的高;二是菱形对角线积的一半,这是最常用的方法,计算时灵活运用勾股定理是解题的关键.要特别重视一般式的计算法即底乘高法,这是继承平行四边形的性质得来的,是最基本计算方法,也是通用的计算方法,必须熟练掌握.针对性练习:(2018•哈尔滨)如图32,在菱形ABCD 中,对角线AC、BD 相交于点O,BD=8,3OB=4AO,则线段AB 的长为()A.7B.27C.5D.10答案:解:因为四边形ABCD 是菱形,所以AC⊥BD,AO=CO,OB=OD,所以∠AOB=90°,因为BD=8,所以OB=4,因为3OB=4AO,所以O=3,在Rt△AOB 中,由勾股定理得:AB=22BO AO +=5,所以选C.其他教材试题:如图33所示,四边形ABCD 是菱形,对角线AC=8cm,BD=6cm,DH⊥AB 于H,求DH 的长.解:根据题意,易得菱形的边长为5,菱形的面积为6821⨯⨯=24,因为菱形的面积等于底乘高,所以DH=524.知识点3:菱形的性质与判定综合应用例8(2018•广西)如图34,在平行四边形ABCD 中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:平行四边形ABCD 是菱形;(2)若AB=5,AC=6,求菱形ABCD 的面积.分析:(1)利用全等三角形的性质证明AB=AD 即可解决问题;(2)连接BD 交AC 于O,利用勾股定理求出对角线的长即可解决问题;解:(1)证明:因为四边形ABCD 是平行四边形,所以∠B=∠D,AB=CD,BC=AD,因为AE⊥BC,AF⊥CD,所以∠AEB=∠AFD=90°,因为BE=DF,所以△AEB≌△AFD所以AB=AD,所以AB=BC=CD=DA,所以四边形ABCD 是菱形.(2)连接BD 交AC 于O,因为四边形ABCD 是菱形,AC=6,所以AC⊥BD,AO=OC=12AC=12×6=3,因为AB=5,AO=3,所以BO=AB 2−AO 2=4,所以BD=2BO=8,所以 菱形ABCD =12×AC×BD=24.点拨与提升:先利用菱形的判定定理判定菱形,后运用菱形的性质进行相关计算.针对性练习:(2018•扬州)如图35,在平行四边形ABCD 中,DB=DA,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E,连接AE.(1)求证:四边形AEBD 是菱形;(2)若DC=10,EF=3BF,求菱形AEBD 的面积.答案:解:(1)证明:因为四边形ABCD 是平行四边形,所以AD∥CE,所以∠DAF=∠EBF,所以△AFD≌△BFE,所以AD=EB,所以四边形AEBD 是平行四边形,所以AD=EB,DB=AE,因为BD=AD,所以AE=EB=BD=DA,所以四边形AEBD 是菱形.(2)解:因为四边形ABCD 是平行四边形,所以CD=AB=10,因为四边形AEBD 是菱形,所以2DE=310,所以 菱形AEBD =12×AB×DE=•310=15.其他教材试题:如图36,在平行四边形ABCD 中,E,F 分别是AB,CD 的中点,AF 与DE 相交于点H,CE 与BF 相交于点G.求证:(1)四边形EHFG 是平行四边形;(2)在什么条件下,四边形EHFG 是是菱形?请说出条件和理由.(浙教版数学八年级下册P161页D 组第6题)答案:解:(1)因为四边形ABCD 是平行四边形,所以AB=CE,AB∥CD,因为E,F 分别是AB,CD 的中点,所以BE=DF,BE∥DF,所以四边形BEFD 是平行四边形,所以EH∥FG;同理可证,FH∥EG;所以四边形EHFG 是平行四边形;(2)当四边形ABCD 是矩形时,四边形EHFG 是菱形.理由如下:因为BE=21AB,CF=21CD,所以BE=CF.因为BE∥CF,所以四边形BEFC 是平行四边形.因为四边形ABCD 是矩形,所以∠ABC=90°,所以四边形BEFC 是矩形.所以EH=21CE,FH=21BF,且CE=BF,所以EH=FH,所以四边形EHFG 是菱形.课时练:1.图37,在菱形ABCD 中,对角线AC=4,∠BAD=120°,则菱形ABCD 的周长为()A.20B.18C.16D.15答案:C解析:根据菱形的性质,得三角形ABC 是等边三角形,所以AB=4,所以菱形的周长为16.2.已知菱形的边长和一条对角线的长均为2cm,则菱形的面积为()A.32cmB.42cm C.32cm D.232cm 答案:D.解析:设对角线的交点为O,所以OA=1,OB=22OA AB -=3,所以BD=23,所以菱形的面积等于:3222121⨯⨯=⨯⨯BD AC =23(2cm ).3.(2018•香坊区)已知边长为5的菱形ABCD 中,对角线AC 长为6,点E 在对角线BD 上,设对角线的交点为点O,且OA=3OE,则BE 的长为.答案:3或5.解析:因为菱形ABCD 中,边长为5,对角线AC 长为6,所以AC⊥BD,BO=22OA AB -=4,因为OA=3OE,解得:OE=1,所以BE=BO﹣OE=4﹣1=3,当点E 在对角线交点左侧时,如图2所示:所以BE=BO+OE=4+1=5,所以答案为:3或5.4.一种千斤顶利用了四边形的不稳定性.如图39,其基本形状是一个菱形,中间通过螺杆连接,转动手柄可改变∠ADC的大小(菱形的边长不变),从而改变千斤顶的高度(即A、C之间的距离).若AB=40cm,当∠ADC从60°变为120°时,千斤顶升高了多少?2=1.414,3=1.732,结果保留整数)(.解:当∠ADC=60°时,根据菱形的性质,得三角形ADC是等边三角形,所以AC=40cm;当∠ADC=120°时,过点A作AF⊥CD于点F,如图所示,则AF=203,根据菱形的性质,得∠ACF=30°,所以AC=2AF=403,所以千斤顶升高的高度为:403-40=40(1.732-1)≈29.28cm≈29cm.5.如图39,已知等腰三角形ABC中,AB=AC,AD⊥BC,垂足为D,点E,F分别是AB,AC的中点,连接DE,DF.(1)求证:四边形AEDF是菱形;(2)若AB=10,BC=12,求菱形AEDF的面积.(1)证明:因为AB=AC,AD⊥BC,所以点D是BC的中,因为点E,F分别是AB,AC的中点,根据三角形中位线定理,得DE=AF=21AC,DF=AE=21AB,因为AB=AC,所以AE=ED=DF=AF,所以四边形AEDF 是菱形;(2)连接EF,则EF 是三角形ABC 的中位线,所以EF=21BC=6,因为AB=10,BC=12,所以AD=22BD AB -=8,所以菱形AEDF 的面积为:862121⨯⨯=⨯⨯EF AD =24.备选题:1.将等边三角形ABC 沿着边AB 对折,点C 的重合点为点D,则四边形ABCDD 的形状是.答案:菱形.解析:利用四边相等的四边形是菱形判断.2.如图40,在菱形ABCD 中,AB=2,∠B 是锐角,AE⊥BC 于点E,若DE=3,求菱形ABCD 的面积.解:根据勾股定理,得AE=22AD DE -=5,所以菱形的面积为25.2.矩形的性质和判断1.2第一课时知识点1:矩形的定义例1(2018•沈阳)如图1,在菱形ABCD 中,对角线AC 与BD 交于点O.过点C 作BD 的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,四边形ABCD的面积是.分析:(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.解:(1)证明:因为四边形ABCD是菱形,所以AC⊥BD,所以∠COD=90°.因为CE∥OD,DE∥OC,所以四边形OCED是平行四边形,因为∠COD=90°,所以平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.因为四边形ABCD是菱形,所以AC=2OC=4,BD=2OD=2,所以菱形ABCD的面积为:AC•BD=×4×2=4.所以填4.点拨与提升:运用矩形的定义解题时,要抓牢两个核心要素:一是基础四边形是平行四边形,二是其中的一个角是直角.其次要熟练掌握直角的得出方式:垂直二线的交角是直角;互补且相等的两个角是直角;三角形中,两个角互余,则第三个角一定是直角等.针对性练习:(2018•上海改编)已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B.∠A=∠C C.四个内角相等D.AB⊥BC答案:B解析:由∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确;由∠A=∠C不能判定这个平行四边形为矩形,错误;由∠A=∠B=∠C=∠D,∠A+∠B+∠C+∠D=360°,所以∠A=∠B=∠C=∠D=90°,可以判定这个平行四边形为矩形,正确;由AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确;所以选:B.其他教材试题:如图2,平行四边ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4cm,求:四边形ABCD的面积(精确到0.012cm)(人教版八年级数学P96页第2题)答案:解:因为△OAB是等边三角形,所以AO=BO=AB,因为四边形ABCD是平行四边形,所以OB=OD,所以OA=OD,因为△OAB是等边三角形,所以∠BAO=∠AOB=60°,所以∠AOD=120°,因为OA=OD,所以∠OAD=∠ODA=30°,所以∠BAD=90°,因为四边形ABCD是平行四边形,所以四边形ABCD是矩形,在直角三角形ABD中,AD=2248-=43,所以四边形ABCD的面积为:4⨯43=163≈27.71(2cm)知识点2:矩形的性质定理1例2(2019•广东省广州市)如图3,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD 于点E,F,若BE=3,AF=5,则AC的长为()A.4B.4C.10D.8分析:连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可.解:连接AE,如图43,因为EF是AC的垂直平分线,所以OA=OC,AE=CE,因为四边形ABCD是矩形,所以∠B=90°,AD∥BC,所以∠OAF=∠OCE,所以△AOF≌△COE,所以AF=CE=5,所以AE=CE=5,BC=BE+CE=8,所以AB===4,所以AC===4;所以选:A.点拨与提升:利用矩形的四个角都是直角生成直角三角形,为勾股定理的不断运用创造条件,也诶问题的破解提供基础.针对性练习:如图4,已知:四边形ABCD是矩形,AC与BD是对角线.求证:AC=BD.答案:证明:因为四边形ABCD是矩形,所以AB=DC,∠ABC=∠DCB=90°,因为BC=CB,所以△ABC≌△DCB,所以AC=BD.其他教材试题:已知:如图5,在矩形ABCD中,M是BC的中点.求证:AM=DM.(浙教版数学八年级下册P149页A组第3题)答案:证明:因为四边形ABCD是矩形,所以AB=CD,∠B=∠C=90°,因为BM=CM,所以△ABM≌△DCM,所以AM=DM.知识点3:矩形的性质定理2例3(2019•江苏无锡)下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直分析:根据矩形和菱形的性质可得出其对角线性质的不同,可得到答案.解:矩形和菱形的内角和都为360°,矩形的对角线互相平分且相等,菱形的对角线垂直且平分,所以矩形具有而菱形不具有的性质为对角线相等,所以选:C.点拨与提升:矩形的性质识记,要从两个方面落实,一是平行四边形具有的性质,菱形具有点的性质,二是矩形特有的性质,只有分类识记才有效果,因此熟记两图形的性质是解题的关键.针对性练习:(2018•株洲)如图6,矩形ABCD的对角线AC与BD相交点O,AC=10,P、Q分别为AO、AD的中点,则PQ的长度为.答案:2.5解析:因为四边形ABCD是矩形,所以AC=BD=10,BO=DO=BD,所以OD=BD=5,因为点P、Q是AO,AD的中点,所以PQ是△AOD的中位线,所以PQ=DO=2.5.其他教材试题:1.如图7,矩形ABCD的对角线AC、BD相交于点O,则图中有个直角三角形,有个等腰三角形,有对全等三角形.(浙教版数学八年级下册P148页课内练习第2题)答案:4,4,4;解析:直角三角形ABD,直角三角形ABC,直角三角形ADC,直角三角形BCD;等腰三角形AOD,等腰三角形AOB,等腰三角形BOC,等腰三角形COD;△AOB≌△COD,△AOD≌△COB,△ABD≌△CBD,△ABC≌△ADC.2.如图7,矩形ABCD 的对角线AC,BD 相交于点O.(1)若∠AOD=120°,则△AOB 是三角形;△COD 是三角形.(2)若∠AOD=120°,CD=4,则对角线AC 的长,矩形ABCD 的周长,面积为.答案:(1)△AOB 是等边三角形;△COD 是等边三角形.(2)AC=8,矩形ABCD 的周长8+83,面积为163.解析:利用勾股定理计算即可.知识点4:直角三角形斜边上的中线的性质例4如图8,已知:在△ABC 中,BD、CE 分别是边AC、AB 上的高,M 是BC 的中点。
第一章特殊平行四边形的复习1.特殊平行四边形的性质及评定汇总表格例1:若矩形的对角线长为8cm ,两条对角线的一个交角为600,则该矩形的面积为解:由已知条件,得∠DOC=60°,OC=0D,AC=8cm. ∵△ODC 中,∠DOC=60°,OC=0D ; ∴△ODC 是等边三角形; ∴DC=OC=4cm 根据勾股定理,得 AD=∴S =AD ×DC=例2:菱形具有而矩形不具有的性质是 ( )A . 对角线互相平分; B.四条边都相等; C.对角相等; D.邻角互补 答案:B例1 已知:如图,四边形ABCD 是菱形,F 是AB 上一点,DF 交AC 于E .求证:∠AFD=∠CBE .解:∵四边形ABCD 是菱形 ∴BC=DC,∠BCE=∠DCE,AB ∥CD 在△BCE 和△DCE 中, ∵BC=DC,∠BCE=∠DCE,CE=CE ∴△BCE ≌△DCE ∴∠CBE=∠CDE 又∵AB ∥CD ∴∠CDE=∠AFD ∴∠CBE=∠AFD要确定一个四边形是正方形,应先确定它是菱形或是矩形,然后再加上相应的条件,确定是正方形.例1 已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DG⊥AE于G,DG交OA于F.求证:OE=OF.证明:∵正方形ABCD∴∠ODA=∠OAB=45°,∠DAB=90°,OD=OA,AC⊥BD∵DG⊥AE∴∠ADG+∠DAG=90°又∵∠BAE+∠DAG=90°∴∠ADG=∠BAE∵∠ODF=∠ODA-∠ADG, ∠OAE=∠OAB-∠BAE又∵∠ODA=∠OAB=45°∴∠ODF=∠OAE∵OD=OA, ∠AOD=∠EOA=90°∴△DOF≌△AOE∴OE=OF特殊的平行四边形练习题一、选择题1、平行四边形ABCD中,∠A=50°,则∠D=()A. 40°B. 50°C. 130°D. 不能确定2、如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD=2,DE=2,则四边形OCED的面积( )A.2 B.4 C.4 D.83、如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为( )A.2 B. C.6 D.84、如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD的长为( )A.2 B.3 C. D.25、如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=( ) A.5 B.4 C.3.5 D.36、如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.16﹣8B.﹣12+8C.8﹣4D.4﹣27、如图,正方形ABCD的边长为1,则正方形ACEF的面积为()A. 2B. 3C. 4D. 58、如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为()A. 5B. 4C.D.9、如图,P是边长为1的正方形ABCD的对角线BD上的一点,点E是AB的中点,则P A+PE的最小值是()A. B. C. D.10.当矩形的对角线互相垂直时, 矩形变成( )A. 菱形B. 等腰梯形C. 正方形D. 无法确定.二、填空题11、如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为_______.12、如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为.13、如图,延长矩形ABCD的边BC至点E,使CE=BD,,= .14、如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC 上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是______ .15、如图,在矩形ABCD中,两条对角线AC、BD相交于点O,若AB=OB=6,则矩形的面积为______ .三、简答题16、平行四边形ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面积.17、如图,在△ABC中,∠ACB=90°,点D,E分别是BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE,AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.18、如图,正方形ABCD中,点E、F分别是AB和AD上的点。
第一章 特殊的平行四边形(1)答题时间:90分钟 满分:120分1.下列说法中,正确的个数有( ) ○1对顶角相等;○2两直线平行,同旁内角相等;○3对角线互相垂直的四边形为菱形;○4对角线互相垂直平分且相等的四边形为正方形.A.1个B.2个C.3个D.4个2.如图,在菱形ABCD 中,E 是AC 的中点,EF//CB,交AB 于点F,如果EF=3,那么菱形ABCD 的周长为( ) A.24B.18C.12D.9第2题图 第3题图 第4题图 第5题图3.如图,菱形ABCD 中,对角线AC,BD 相交于点O,若AB=5,AC=6,则BD 的长是( ) A.8B.7C.4D.34.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF//BC ,分别交AB ,CD 于E 、F ,连接PB 、PD.若AE=2,PF=8.则图中阴影部分的面积为( ) A.10B.12C.16D.185.矩形ABCD 与CEFG 如图放置,点B,C,E 共线,点C,D,G 共线,连接AF,取AF 的中点H,连接AF,取AF 的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=( ) A.1B.32C. 22D. 25 6.矩形具有而菱形不一定具有的性质是( )A.对角线互相垂直B.对角线相等C.对角线互相平分D.邻边相等7.如图,在正方形ABCD 外侧,作等边三角形ADE,AC ,BE 相交于点F,则∠BFC 为( ) A.75°B.60°C.55°D.45°第7题图 第8题图 第10题图 第11题图 第12题图 8.如图,菱形ABCD 的周长为24cm ,对角线AC 、BD 相交于O 点,E 是AD 的中点,连接OE,线段OE 的长等于( ) A.3cmB.4cmC.2.5cmD.2cm9.一个菱形的周长是20cm ,两条对角线的比是4:3,则这个菱形的面积是( )cm 2 A.12B.96C.48D.2410.如图,矩形ABCD 的对角线AC,BD 相交于点O,CE//BD,DE//AC,若AC=6cm ,则四边形CODE 的周长为( ) A.6B.8C.10D.12A.四边形AEDF是平行四边形B.如果∠BAC=90°,那么四边形AEDF是矩形C.如果AD平分∠BAC,那么四边形AEDF是菱形D.如果AD⊥BC,那么四边形AEDF是菱形12.如图,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下面的结论:○1△ODC是等边三角形;○2BC=2AB;○3∠AOE=135°;○4S△AOE=S△COE,其中正确结论有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)13.如图,在平行四边形ABCD中,添加一个条件____________使平行四边形ABCD是菱形14.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为_________________第13题图第14题图第15题图第16题图15.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,则点C的坐标是__________16. 对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形的每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长称为该图形的宽,铅锤方向的边长称为该矩形的高.如图2,菱形ABCD的边长为1,边AB水平放置.如果该菱形的高是宽的,那么它的宽的值是______________17.如图,正方形ABCD的周长为28cm,则矩形MNGC的周长是_________cm第17题图第18题图第20题图18.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM、ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为___________19.在正方形ABCD中,AB=6,连接AC,BD,P是正方形边上或对角线上一点,若PD=2AP,则AP的长为_____________20.如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BEA的度数是___________度三、解答题(本题6分)21.如图,等边△AEF的顶点E,F在矩形ABCD的边BC,CD上,且∠CEF=45°,求证:矩形ABCD是正方形四、解答题(每题12分,共60分)22.如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ//DB,且CQ=DP,连接AP、BQ、PQ (1)求证:△APD≌△BQC;(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形23.在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE,垂足为F(1)求证:DF=AB;(2)若∠FDC=30°,且AB=4,求AD24.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示(1)求证△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由25.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形(2)若CE=1,DE=2,则菱形ABCD的面积是___________26.如图,在矩形ABCD中,P是AD上一动点,O为BD的中点,连接PO并延长,交BC于点Q.(1)求证:四边形PBQD是平行四边形(2)若AD=6cm,AB=4cm,点P从点A出发,以1cm/s的速度向点D运动(不与点D重合),设点P运动时间为ts,请用含t的代数式表示PD的长,并求出当t为何值时,四边形PBQD是菱形,并求出此时菱形的周长参考答案一、选择题1.B2.A3.A4.C5.C6.B7.B8.A9.D 10.D 11.D 12.C 二、填空题13.答案不唯一(如:AC ⊥BD ,AB=BC ) 14.3 15.(-5,4) 16.1813 17.14 18.1+ 2 19.2或2 3 20.67.5三、解答题21.证明:∵四边形ABCD 是矩形 ∴∠B=∠D=∠C=90° ∵∠CEF=45°∴∠CFE=∠CEF=45° ∵△AEF 是等边三角形∴AE=AF ,∠AEF=∠AFE=60° ∴∠AEB=∠AFD=75° ∴△ABE ≌△ADF ∴AB=AD∴矩形ABCD 是正方形 四、解答题22.(1)证明:∵CQ//DB ,CQ=DP ∴四边形PDQC 是平行四边形 ∴CD//PQ,CD=PQ∵四边形ABCD 是平行四边形 ∴CD//AB,CD=AB,AD=BC ∴PQ//AB,PQ=AB∴四边形ABQP 是平行四边形 ∴AP=BQ△APD ≌△BQC;(2)由(1)得:△APD ≌△BQC ∴∠APD=∠BQC∵∠ABP+∠BQC=180°,∠APB+∠APD=180° ∴∠ABP=∠APB ∴AB=AP∴平行四边形ABQP 为菱形 23. 证明:(1)∵四边形ABCD 是矩形 ∴AD ∥BC ,∠B=90° ∴∠AEB=∠DAF 又∵DF ⊥AE∴∠DFA=90°=∠B 又∵AD=EA∴△ADF ≌△EAB ∴DF=AB .(2)由(1)得:△ADF ≌△EAB ∴DF=AB=4 ∵∠FDC=30° ∴∠ADF=60° ∴∠DAF=30°24. 证明:(1)∵四边形ABCD 是正方形 ∴AB=AD ,∠ABD=∠ADB=45° ∴∠ABE=∠ADF=135° ∵BE=DF∴△ABE ≌△ADF (SAS );(2)四边形AECF 是菱形,理由如下: 连接AC ∵四边形ABCD 是正方形 ∴OA=OC ,OB=OD ,AC ⊥EF ∴OE=OF∴四边形AECF 是平行四边形 ∵AC ⊥EF∴平行四边形AECF 是菱形.25.(1)证明:∵CE ∥OD ,DE ∥OC ∴四边形OCED 是平行四边形 ∵四边形ABCD 是菱形 ∴AC ⊥BD ∴∠COD=90∴平行四边形OCED 是矩形; (2)4 理由如下:由(1)得:四边形OCED 是矩形 ∴CE=OD=1,DE=OC=2 ∵四边形ABCD 是菱形 ∴AC=2OC=4,BD=2OD=2∴菱形ABCD 的面积为:12 AC •BD=12 ×4×2=4.26.(1)∵证明:(1)∵四边形ABCD 是矩形∴AD ∥BC∴∠PDO=∠QBO ,∠DPO=∠BQO ∵O 为BD 中点 ∴OB=OD∴△PDO ≌△QBO ∴OP=OQ∴四边形PBQD 是平行四边形;(2)依题意得:AP=tcm ,则PD=(6-t ) cm ∵四边形PBQD 是菱形 ∴PB=PD=(6-t ) cm ∵四边形ABCD 是矩形 ∴∠A=90°在Rt △ABP 中,AP 2+AB 2=BP 2 ∴t 2+42=(6-t )2解得t = 53 ,此时菱形的周长为(6−53 ) ×4=523cm。
北师大版初三上课后习题及答案第一章特殊平行四边形习题1-11.已知:如图,在菱形ABCD中,∠BAD=2∠B.求证:△ABC是等边三角形.2.如图,在菱形ABCD中, BD=6, AC=8,求菱形ABCD的周长.3.已知:如图,在菱形ABCD中,对角线AC与BD相交于点o.求证: AC 平分∠BAD和∠BCD, BD平分∠ABC和4 ADC4.如图,在菱形ABCD中,对角线AC与BD相交于点O,团中有多少个等接三角形和直角三角形?答案:1.证明:∵ 四边形 ABCD 是菱形,∴BC=AB,BC//AD, ∴∠B+ ∠BAD=180°(两直线平行,同旁内角互补).∵∠BAD=2 ∠B, ∴∠B+2 ∠B=180°,∴∠B=60°. ∵BC=AB ,∴△ABC 是等边三角形(有一个角为60°的等腰三角形的等边三角形).2.解:∵ 四边形 ABCD 是菱形,∴AD=DC=CB=BA, ∴AC±BD,AO=1/2 AC= 1/2×8=4 ,DO= 1/2 BD= 1/2×6=3. 在Rt △AOD 中,由勾股定理,得AD=√(AO²+DO²)=√(4²+3²)=5. ∴菱形ABCD 的周长为4AD=4×5=20.3. 证明:∵ 四边形 ABCD 是菱形,∴AD=AB,AC±BD ,DO=BO, ∴△ABD 是等腰三角形,∴AO 是等腰△ABD 低边BD 上的高,中线,也是∠DAB 的平分线,∴AC 平分∠BAD.同理可证 AC 平分∠BCD,BD 平分∠ABC 和∠ADC.4. 解:有 4 个等腰三角形和 4 个直角三角形.习题1-21.已知:如图.在平行四边形ABCD中.对角线AC的垂直平分线分別与AD. AC. BC相交于点E, O, F.求証:四迫形AFCE是菱形.2.已知:如图,在菱形ABCD中,对角线AC与BD和交于点O,点E,F,G,H分別是OA, OB, OC, CD的中点,求证:四辺形EFGH是菱形。
单元练习题:《特殊的平行四边形》一.选择题1.下列说法中错误的是()A.平行四边形的对边相等B.菱形的对角线平分一组对角C.对角线互相垂直的四边形是菱形D.矩形的对角线互相平分2.如图,已知四边形ABCD是平行四边形,下列说法正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形3.如图,菱形ABCD对角线AO=4cm,BO=3cm,则菱形高DE长为()A.5cm B.10cm C.4.8cm D.9.6cm4.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AB的长为2.6km,则M,C两点间的距离为()A.0.8km B.1.2km C.1.3km D.5.2km5.已知平行四边形ABCD,下列条件中,能判定这个平行四边形为菱形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AC⊥BD6.如图,▱ABCD中的对角线AC,BD相交于点O,点E.F在BD上,且BE═DF,连接AE,EC,CF,FA,下列条件能判定四边形AECF为矩形的是()A.BE=EO B.EO=AC C.AC⊥BE D.AE=AF7.已知矩形的对角线长为10,两邻边之比为3:4,则矩形的面积为()A.50 B.48 C.24 D.128.如图,矩形ABCD的对角线AC,BD相交于点O,AD=3,∠AOD=60°,则AB的长为()A.3 B.2C.3D.69.如图,在菱形ABCD中,CE⊥AB于点E,E点恰好为AB的中点,则菱形ABCD的较大内角度数为()A.100°B.120°C.135°D.150°10.如图,在正方形ABCD中,E为对角线BD上一点,且BE=BC,则∠ACE=()A.20.5°B.30.5°C.21.5°D.22.5°11.如图,四边形ABCD是矩形,∠BDC的平分线交AB的延长线于点E,若AD=4,AE=10,则AB的长为()A.4.2 B.4.5 C.5.2 D.5.512.如图,在矩形ABCD中,AB=2,AD=1,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2 B.4 C.D.2二.填空题13.如果菱形的边长为17,一条对角线长为30,那么另一条对角线长为.14.如图,正方形ABCD的边长为5,点E在CD上,DE=2,∠BAE的平分线交BC于点F,则CF的长为.15.如图,在正方形ABCD中,对角线AC与BD相交于点O,点P为AD边上的一点,过点P 分别作PE⊥AC于点E,作PF⊥BD于点F.若PE+PF=5,则正方形ABCD的面积为.16.如图,已知正方形ABCD的边长为2,对角线AC、BD相交于点O,AE平分∠BAC交BD 于点E,则BE的长为.17.如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到,若过点E作EH⊥AC,H为垂足,则有以下结论:①点M位置变化,使得∠DHC=60°时,2BE=DM;②无论点M运动到何处,都有DM=HM;③在点M的运动过程中,四边形CEMD可能成为菱形;④无论点M运动到何处,∠CHM一定大于135°.以上结论正确的有(把所有正确结论的序号都填上).三.解答题18.如图,在菱形ABCD中,点E,F分别是边AD,AB的中点.(1)求证:△ABE≌△ADF;(2)若BE=,∠C=60°,求菱形ABCD的面积.19.如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于E,CF∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AD=5,BE=3,求线段OE的长.20.如图,已知四边形ABCD和四边形CEFG都是正方形,且AB>CE,连接BG,DE.(1)求证:BG=DE;(2)连接BD,若CG∥BD,BG=BD,求∠BDE的度数.21.已知正方形ABCD,点F是射线DC上一动点(不与C、D重合).连接AF并延长交直线BC于点E,交BD于H,连接CH.在EF上取一点G,使∠ECG=∠DAH.(1)若点F在边CD上,如图1,①求证:CH⊥CG.②求证:△GFC是等腰三角形.(2)取DF中点M,连接MG.若MG=3,正方形边长为4,则BE=.22.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,D为AB边的中点,连接DC过D作DE ⊥DC交AC于点E.(1)求∠EDA的度数;(2)如图2,F为BC边上一点,连接DF,过D作DG⊥DF交AC于点G,请判断线段CF 与EG的数量关系,并说明理由.23.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.(2)如图1,求AF的长.(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.参考答案一.选择题1.解:A.平行四边形的对边相等,正确,不符合题意;B.菱形的对角线平分一组对角,正确,不符合题意;C.对角线互相垂直的四边形是菱形,错误,符合题意;D.矩形的对角线互相平分,正确,不符合题意.故选:C.2.解:A、错误,有一个角为90°的平行四边形是矩形B、错误,对角线互相垂直的平行四边形是菱形;C、正确,对角线相等的平行四边形是矩形;D、错误,一组邻边相等的平行四边形是菱形;故选:C.3.解:∵四边形ABCD是菱形,∴AC⊥BD,AC=2OA=2×4cm=8cm,BD=2BO=2×3cm=6cm,在Rt△AOB中,由勾股定理得:AB===5(cm),菱形ABCD的面积=AC•BD=AB•DE,即×8×6=5DE,解得:DE=4.8(cm),故选:C.4.解:在Rt△ACB中,点M是AB的中点,∴CM=AB=×2.6=1.3(km),故选:C.5.解:A、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴平行四边形ABCD是矩形;故选项A不符合题意;B、∵四边形ABCD是平行四边形,∴∠A=∠C;故选项B不符合题意;C、∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD1矩形;故选项C不符合题意;D、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形;故选项D符合题意;故选:D.6.解:∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD,∵BE=DF,∴OB﹣BE=OD﹣DF,即OE=OF,∴四边形AECF是平行四边形,A、BE=EO时,不能判定四边形AECF为矩形;故选项A不符合题意;B、EO=AC时,EF=AC,∴四边形AECF为矩形;故选项B符合题意;C、AC⊥BE时,四边形AECF为菱形;故选项C不符合题意;D、AE=AF时,四边形AECF为菱形;故选项D不符合题意;故选:B.7.解:∵矩形的两邻边之比为3:4,∴设矩形的两邻边长分别为:3x,4x,∵对角线长为10,∴(3x)2+(4x)2=102,解得:x=2,∴矩形的两邻边长分别为:6,8;∴矩形的面积为:6×8=48.故选:B.8.解:∵四边形AABCD是矩形,∴∠DAB=90°,OA=OD=OB,∵∠AOD=60°,∴△AOD是等边三角形,∴OA=OD=AD=3,∴BD=2OD=6,∴AB==3.故选:C.9.解:连接AC,如图:∵四边形ABCD是菱形,∴AB=BC,∠BAD=∠BCD,∠B=∠D,AD∥BC,∴∠BAD+∠B=180°,∵CE⊥AB,点E是AB中点,∴BC=AC=AB,∴△ABC是等边三角形,∴∠B=60°,∴∠D=60°,∠BAD=∠BCD=120°;即菱形ABCD的较大内角度数为120°;故选:B.10.解:设AC与BD交于点O,在四边形ABCD中,∠EOC=90°,∠1=∠2=45°.∵BE=BC,∴∠3=∠ECB=67.5°.∴∠ACE=OCE=90°﹣∠3=90°﹣67.5°=22.5°.故选:D.11.解:如图,∵四边形ABCD是矩形,∴CD∥AB,∴∠1=∠E.又∵∠BDC的平分线交AB的延长线于点E,∴∠1=∠2,∴∠2=∠E.∴BE=BD.∵AE=10,∴BD=BE=10﹣AB.在直角△ABD中,AD=4,BD=10﹣AB,则由勾股定理知:AB==.∴AB=4.2.故选:A.12.解:如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P 1P 2∥CE 且P 1P 2=CE .当点F 在EC 上除点C 、E 的位置处时,有DP =FP .由中位线定理可知:P 1P ∥CE 且P 1P =CF .∴点P 的运动轨迹是线段P 1P 2,∴当BP ⊥P 1P 2时,PB 取得最小值.∵矩形ABCD 中,AB =2,AD =1,E 为AB 的中点,∴△CBE 、△ADE 、△BCP 1为等腰直角三角形,CP 1=1.∴∠ADE =∠CDE =∠CP 1B =45°,∠DEC =90°.∴∠DP 2P 1=90°.∴∠DP 1P 2=45°.∴∠P 2P 1B =90°,即BP 1⊥P 1P 2,∴BP 的最小值为BP 1的长.在等腰直角BCP 1中,CP 1=BC =1.∴BP 1=.∴PB 的最小值是. 故选:C .二.填空题(共5小题)13.解:在菱形ABCD 中,AB =17,BD =30,∵对角线互相垂直平分,∴∠AOB =90°,BO =15,在Rt △AOB 中,AO ===8,∴AC =2AO =16.即另一条对角线长为16,故答案为:16.14.解:延长CD 到N ,使DN =BF ,连接AN ,如图所示:∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABF=∠ADN=90°,在△ABF和△ADN中,,∴△ABF≌△ADN(SAS),∴∠BAF=∠DAN,∴∠NAF=90°,∴∠EAN=90°﹣∠FAE,∠N=90°﹣∠DAN=90°﹣∠BAF,∵∠BAF=∠FAE,∴∠EAN=∠N,∴AE=EN,∵,∴,∴,∴,故答案为:7﹣.15.解:∵在正方形ABCD中,对角线AC与BD相交于点O,∴AC⊥BD,AO=CO=BO=DO,∠EAP=45°,∵PE⊥AC,∴△AEP是等腰直角三角形,∴PE=AE,∵PF⊥BD,∴四边形OEPF是矩形,∴PF=OE,∴PE+PF=AE+OE=OA=5,=,∴S△AOD=4×=50.∴S正方形ABCD故答案为:50.16.解:如图,过点E作EH⊥AB于H.∵四边形ABCD是正方形,∴AB=BC=CD=AD=2,BD=AC=2,OD=OB=,∵EA平分∠BAO,EH⊥AB,EO⊥AC,∴EH=EO,设EH=EO=a,则BE=a,∴a+a=,解得a=2﹣,∴BE=a=2﹣2.故答案为:2﹣2.17.解:如图,连接DH,HM.由题可得,AM=BE,∴AB=EM=AD,∵四边形ABCD是正方形,EH⊥AC,∴EM=AD,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,∴EH=AH,∴△MEH≌△DAH(SAS),∴∠MHE=∠DHA,MH=DH,∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,∴DM=2HM,故②正确;当∠DHC=60°时,∠ADH=60°﹣45°=15°,∴∠ADM=45°﹣15°=30°,∴Rt△ADM中,DM=2AM,即DM=2BE,故①正确;∵CD∥EM,EC∥DM,∴四边形CEMD是平行四边形,∵DM>AD,AD=CD,∴DM>CD,∴四边形CEMD不可能是菱形,故③错误,∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,∴∠AHM<∠BAC=45°,∴∠CHM>135°,故④正确;由上可得正确结论的序号为①②④.故答案为①②④.三.解答题(共6小题)18.(1)证明:∵四边形ABCD是菱形,∴AB=AD,∵点E,F分别是边AD,AB的中点,∴AF=AE,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS);(2)解:连接BD,如图:∵四边形ABCD是菱形,∴AB=AD,∠A=∠C=60°,∴△ABD是等边三角形,∵点E是边AD的中点,∴BE⊥AD,∴∠ABE=30°,∴AE=BE=1,AB=2AE=2,∴AD=AB=2,∴菱形ABCD的面积=AD×BE=2×=2.19.(1)证明:∵四边形ABCD是菱形,∴AD∥BC,即AF∥EC,∵CF∥AE,∴四边形AECF是平行四边形,∵AE⊥BC,∴平行四边形AECF是矩形;(2)解:如图所示:∵四边形ABCD为菱形,四边形AECF为矩形,且BE=3,AD=5 ∴OA=OC,AB=BC=AD=5 DF=EB=3,∠AEC=90°,∴AE===4,CE=BC+BE=8,∴AC===4,∵OA=OC,∠AEC=90°,∴OE=OC=AC=×4=2.20.(1)证明:∵四边形ABCD和四边形CEFG为正方形,∴BC=DC,CG=CE,∠BCD=∠GCE=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE(SAS),∴BG=DE;(2)连接BE,∵CG∥BD,∴∠DCG=∠BDC=45°,∴∠BCG=∠BCD+∠DCG=90°+45°=135°.∵∠GCE=90°,∴∠BCE=360°﹣∠BCG﹣∠GCE=360°﹣135°﹣90°=135°,∴∠BCG=∠BCE.∵CG=CE,BC=BC,∴△BCG≌△BCE(SAS),∴BG=BE.∵由(1)可知BG=DE,∴BD=BE=DE,∴△BDE为等边三角形,∴∠BDE=60°.21.(1)①证明:∵四边形ABCD是正方形,∴∠ADB=∠CDB=45°,DA=DC,在△DAH和△DCH中,,∴△DAH≌△DCH(SAS),∴∠DAH=∠DCH.∵∠ECG=∠DAH,∴∠ECG=∠DCH.∵∠ECG+∠FCG=∠FCE=90°,∴∠DCH+∠FCG=90°,∴CH⊥CG;②∵在Rt△ADF中,∠DFA+∠DAF=90°,由①得∠DCH+∠FCG=90°,∠DAH=∠DCH;∴∠DFA=∠FCG,又∵∠DFA=∠CFG,∴∠CFG=∠FCG,∴GF=GC,∴△GFC是等腰三角形;(2))①如图,当点F在线段CD上时,连接DE.∵∠GFC=∠GCF,∠GEC+∠GFC=90°,∠GCF+∠GCE=90°,∴∠GCE=∠GEC,∴EG=GC=FG,∵FG=GE,FM=MD,∴DE=2MG=6,在Rt△DCE中,CE===2,∴BE=BC+CE=4+2.②如图,当点F在线段DC的延长线上时,连接DE.同法可知GM是△DEC的中位线,∴DE=2GM=6,在Rt△DCE中,CE===2,∴BE=BC﹣CE=4﹣3=1.综上所述,BE的长为 4+或4﹣.22.(1)解:如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,∴∠A=30°,∵D为AB边的中点,∴CD=BD=AD,∴△BCD是等边三角形,∠ACD=∠A=30°,∵∠CDE=90°,∴∠CED=60°,∴∠EDA=30°;(2)解:如图2,在Rt△CDE中,∠ACD=30°,∴tan30°=,∴=,∵∠FDG=∠CDE=90°,∴∠FDC=∠GDE,∴∠FCD=∠GED=60°,∴△FCD∽GED,∴=,∴FC=GE.23.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠AEO=∠CFO,∵AC的垂直平分线EF,∴AO=OC,AC⊥EF,在△AEO和△CFO中∵,∴△AEO≌△CFO(AAS),∴OE=OF,∵OA=OC,∴四边形AECF是平行四边形,∵AC⊥EF,∴平行四边形AECF是菱形;(2)解:设AF=acm,∵四边形AECF是菱形,∴AF=CF=acm,∵BC=8cm,∴BF=(8﹣a)cm,在Rt△ABF中,由勾股定理得:42+(8﹣a)2=a2,a=5,即AF=5cm;(3)解:①在运动过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形,只有当P运动到B点,Q运动到D点时,以A、P、C、Q四点为顶点的四边形有可能是矩形,P点运动的时间是:(5+3)÷1=8,Q的速度是:4÷8=0.5,即Q的速度是0.5cm/s;②分为三种情况:第一、P在AF上,∵P的速度是1cm/s,而Q的速度是0.8cm/s,∴Q只能在CD上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;第二、当P在BF上时,Q在DE上,如图,∵AQ=8﹣(0.8t﹣4),CP=5+(t﹣5),∴8﹣(0.8t﹣4)=5+(t﹣5),t=,第三情况:当P在AB上时,Q在DE或CE上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;即t=.。
第一章特殊的平行四边形一.选择题1.小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得∠B=60°,对角线AC=20cm,接着活动学具成为图2所示正方形,则图2中对角线AC的长为()A.20cm B.30cm C.40cm D.20cm2.如图,在菱形ABCD中,∠ABC=80°,E是线段BD上一动点(点E不与点B,D重合),当△ABE是等腰三角形时,∠DAE=()A.30°B.70°C.30°或60°D.40°或70°3.如图,菱形ABCD中,∠D=135°,BE⊥CD于E,交AC于F,FG⊥BC于G.若△BFG的周长为4,则菱形ABCD的面积为()A.4B.8C.16D.164.如图所示,在平行四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定平行四边形ABCD为矩形的是()A.∠ABC=90°B.AC=BD C.AD=AB D.∠BAD=∠ADC5.如图,在矩形ABCD中,对角线AC,BD交于点O,若∠COD=50°,那么∠CAD的度数是()A.20°B.25°C.30°D.40°6.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E 作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.7.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=4,AF=6,则AC 的长为()A.4B.6C.2D.8.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O.AE垂直平分OB于点E,则AD的长为()A.4B.3C.5D.59.如图,矩形ABCD中,连接AC,延长BC至点E,使BE=AC,连接DE.若∠BAC=40°,则∠E的度数是()A.65o B.60o C.50o D.40°10.如图,∠MON=90°,矩形ABCD在∠MON的内部,顶点A,B分别在射线OM,ON上,AB=4,BC=2,则点D到点O的最大距离是()A.2﹣2B.2+2C.2﹣2D.11.如图,正方形ABCD中,点E是对角线AC上的一点,且AE=AB,连接BE,DE,则∠CDE的度数为()A.20°B.22.5°C.25°D.30°12.下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②二.填空题13.有两个全等矩形纸条,长与宽分别为11和7,按如图所示的方式交叉叠放在一起,则重合部分构成的四边形BGDH的周长为.14.如图,F是菱形ABCD的边AD的中点,AC与BF相交于E,EG⊥AB于G,已知∠1=∠2,则下列结论:①AE=BE;②BF⊥AD;③AC=2BF;④CE=BF+BG.其中正确的结论是.15.如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=3cm,则AB=.16.如图,在△ABC中,AB=AC,BC=6,AF⊥BC于点F,BE⊥AC于点E,且点D是AB的中点,△DEF的周长是11,则AB=.17.如图,在矩形ABCD中,AD=3,CD=4,点P是AC上一个动点(点P与点A,C不重合),过点P分别作PE⊥BC于点E,PF∥BC交AB于点F,连接EF,则EF的最小值为.18.如图,在Rt△ABC中,∠BAC=90°,且BA=9,AC=12,点D是斜边BC上的一个动点,过点D分别作DE⊥AB于点E,DF⊥AC于点F,点G为四边形DEAF对角线交点,则线段GF的最小值为.19.如图,在Rt△ABC中,∠BAC=90°,且BA=6,AC=8,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为.20.如图,在一个正方形被分成三十六个面积均为1的小正方形,点A与点B在两个格点上.在格点上存在点C,使△ABC的面积为2,则这样的点C有个.21.在▱ABCD中,对角线AC,BD交于点O,E是边AD上的一个动点(与点A,D不重合),连接EO并延长,交BC于点F,连接BE,DF.下列说法:①对于任意的点E,四边形BEDF都是平行四边形;②当∠ABC>90°时,至少存在一个点E,使得四边形BEDF是矩形;③当AB<AD时,至少存在一个点E,使得四边形BEDF是菱形;④当∠ADB=45°时,至少存在一个点E,使得四边形BEDF是正方形.所有正确说法的序号是.22.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.三.解答题23.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由.24.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形.25.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°.求AE的长.26.如图,在平行四边形ABCD中,线段AC的垂直平分线交AC于O,分别交BC,AD于E,F,连接AE,CF.(1)证明:四边形AECF是菱形;(2)在(1)的条件下,如果AC⊥AB,∠B=30°,AE=2,求四边形AECF的面积.27.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=100°,∠C=30°,求∠BDE的度数.28.如图,AM∥BN,C是BN上一点,BD平分∠ABN且过AC的中点O,交AM于点D,DE⊥BD,交BN于点E.(1)求证:△ADO≌△CBO.(2)求证:四边形ABCD是菱形.(3)若DE=AB=2,求菱形ABCD的面积.29.如图,AC、BD相交于点O,且O是AC、BD的中点,点E在四边形ABCD外,且∠AEC=∠BED=90°,求证:四边形ABCD是矩形.30.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.31.如图,▱ABCD中,点E,F分别在边BC,AD上,BE=DF,∠AEC=90°.(1)求证:四边形AECF是矩形;(2)连接BF,若AB=4,∠ABC=60°,BF平分∠ABC,求AD的长.32.在平行四边形ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形EBFD是矩形.(2)若AE=3,DE=4,DF=5,求证:AF平分∠DAB.33.如图,点A在∠MON的边ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.(1)求证:四边形ABCD是矩形;(2)若DE=3,OE=9,求AB、AD的长;34.如图,点M是正方形ABCD的边BC上一点,连接AM,点E是线段AM上一点,∠CDE的平分线交AM延长线于点F.(1)如图1,若点E为线段AM的中点,BM:CM=1:2,BE=,求AB的长;(2)如图2,若DA=DE,求证:BF+DF=AF.35.如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,求证:AB=FB.36.在四边形ABCD中,对角线AC、BD相交于点O,过点O的两条直线分别交边AB、CD、AD、BC于点E、F、G、H.【感知】如图①,若四边形ABCD是正方形,且AG=BE=CH=DF,则S四边形AEOG=S正方形ABCD;【拓展】如图②,若四边形ABCD是矩形,且S四边形AEOG=S矩形ABCD,设AB=a,AD=b,BE=m,求AG 的长(用含a、b、m的代数式表示);【探究】如图③,若四边形ABCD是平行四边形,且AB=3,AD=5,BE=1,试确定F、G、H的位置,使直线EF、GH把四边形ABCD的面积四等分.37.如图,正方形ABCD中,AB=4,点E是对角线AC上的一点,连接DE.过点E作EF⊥ED,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.(1)求证:矩形DEFG是正方形;(2)求AG+AE的值;(3)若F恰为AB中点,连接DF交AC于点M,请直接写出ME的长.38.如图1,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且P A=PE,PE交CD 于点F,(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°,连接CE,试探究线段AP 与线段CE的数量关系,并说明理由.39.如图,已知正方形ABCD的边长是2,∠EAF=m°,将∠EAF绕点A顺时针旋转,它的两边分别交BC、CD于点E、F,G是CB延长线上一点,且始终保持BG=DF.(1)求证:△ABG≌△ADF;(2)求证:AG⊥AF;(3)当EF=BE+DF时:①求m的值;②若F是CD的中点,求BE的长.40.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF 于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.参考答案一.选择题1.【解答】解:如图1,图2中,连接AC.图1中,∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AB=BC=AC=20cm,在图2中,∵四边形ABCD是正方形,∴AB=BC,∠B=90°,∴△ABC是等腰直角三角形,∴AC=AB=20cm;故选:D.2.【解答】解:∵在菱形ABCD中,∠ABC=80°,∴∠ABD=ABC=40°,AD∥BC,∴∠BAD=180°﹣∠ABC=100°,∵△ABE是等腰三角形,∴AE=BE,或AB=BE,当AE=BE时,∴∠ABE=∠BAE=40°,∴∠DAE=100°﹣40°=60°;当AB=BE时,∴∠BAE=∠AEB=(180°﹣40°)=70°,∴∠DAE=100°﹣70°=30°,综上所述,当△ABE是等腰三角形时,∠DAE=30°或60°,故选:C.3.【解答】解:∵菱形ABCD中,∠D=135°,∴∠BCD=45°,∵BE⊥CD于E,FG⊥BC于G,∴△BFG与△BEC是等腰直角三角形,∵∠GCF=∠ECF,∠CGF=∠CEF=90°,CF=CF,∴△CGF≌△CEF(AAS),∴FG=FE,CG=CE,设BG=FG=EF=x,∴BF=x,∵△BFG的周长为4,∴x+x+x=4,∴x=4﹣2,∴BE=2,∴BC=BE=4,∴菱形ABCD的面积=4×2=8,故选:B.4.【解答】解:A.根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;B.根据对角线相等的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;C.不能判定平行四边形ABCD为矩形,故此选项符合题意;D.平行四边形ABCD中,AB∥CD,∴∠BAD+∠ADC=180°,又∵∠BAD=∠ADC,∴∠BAD=∠ADC=90°,根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意.故选:C.5.【解答】解:∵矩形ABCD中,对角线AC,BD相交于点O,∴DB=AC,OD=OB,OA=OC,∴OA=OD,∴∠CAD=∠ADO,∵∠COD=50°=∠CAD+∠ADO,∴∠CAD=25°,故选:B.6.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AC==10,∴AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.7.【解答】解:如图,连接AE,设EF与AC交点为O,∵EF是AC的垂直平分线,∴OA=OC,AE=CE,∵四边形ABCD是矩形,∴∠B=90°,AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE=6,∴AE=CE=6,BC=BE+CE=4+6=10,∴AB===2,∴AC===2,故选:C.8.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD===3;故选:B.9.【解答】解:如图,连接BD,∵矩形ABCD中,∠BAC=40°,OA=OB,∴∠ABD=40°,∠DBE=90°﹣40°=50°,∵AC=BD,AC=BE,∴BD=BE,∴△BDE中,∠E=(180°﹣∠DBE)=(180°﹣50°)=65°,故选:A.10.【解答】解:取AB中点E,连接OE、DE、OD,∵∠MON=90°,∴OE=AB=2.在Rt△DAE中,利用勾股定理可得DE=2.在△ODE中,根据三角形三边关系可知DE+OE>OD,∴当O、E、D三点共线时,OD最大为OE+DE=2 +2.故选:B.11.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠ADC=90°,∠DAC=45°,∵AE=AB,∴AD=AE,∴∠ADE=∠AED=67.5°,∴∠CDE=90°﹣67.5°=22.5°,故选:B.12.【解答】解:对角线相等的四边形推不出是正方形或矩形,故①→②,①→③错误,故选项B,C,D错误,故选:A.二.填空题13.【解答】解:由题意得:矩形ABCD≌矩形BEDF,∴∠A=90°,AB=BE=7,AD∥BC,BF∥DE,AD=11,∴四边形BGDH是平行四边形,∴平行四边形BGDH的面积=BG×AB=BH×BE,∴BG=BH,∴四边形BGDH是菱形,∴BH=DH=DG=BG,设BH=DH=x,则AH=11﹣x,在Rt△ABH中,由勾股定理得:72+(11﹣x)2=x2,解得:x=,∴BH=,∴四边形BGDH的周长=4BH=,故答案为:.14.【解答】解:连接DB交AC于O,∵四边形ABCD为菱形,∴AD∥CB,AD=AB,AC⊥BD,AO=CO,∠DAC=∠CAB,∴∠1=∠DAC,∠1=∠2,∴∠CAB=∠2,∴AE=BE,故①正确;∵AE=BE,EG⊥AB,∴AG=GB=AB,∵F是AD中点,∴AF=AD,∴AF=AG,在△AEF与△AEG中,,∴△AEF≌△AEG(SAS),∴∠AFE=∠AEG=90°,∴BF⊥AD,故②正确;在△AFB与△ABO中,,∴△AFB≌△ABO(AAS),∴BF=AO=AC,∴AC=2BF,故③正确;∵∠2+∠CAB+∠CAD=90°,∠2=∠CAB=∠CAD,∴∠2=∠CAB=∠CAD=30°,∴BO=AB=BG,在Rt△EGB与Rt△EOB中,,∴Rt△EGB≌Rt△EOB(HL),∴EG=EO,∴CE=CO+EO=BF+EG,故④错误.故答案为:①②③.15.【解答】解:∵∠ACB=90°,D是AB的中点,CD=3cm,∴AB=2CD=6cm.故答案为:6cm.16.【解答】解:∵AF⊥BC,BE⊥AC,D是AB的中点,∴DE=DF=AB,∵AB=AC,AF⊥BC,∴点F是BC的中点,∴BF=FC=3,∵BE⊥AC,∴EF=BC=3,∴△DEF的周长=DE+DF+EF=AB+3=11,∴AB=8,故答案为:8.17.【解答】(1)证明:如图,连接BP.∵∠B=∠D=90°,AD=3,CD=4,∴AC=5,∵PE⊥BC于点E,PF∥BC,∠B=90°,∴四边形PEBF是矩形;∴EF=BP,由垂线段最短可得BP⊥AC时,线段EF的值最小,此时,S△ABC=BC•AB=AC•CP,即×4×3=×5•CP,解得CP=.故答案为:.18.【解答】解:连接AD、EF,∵∠BAC=90°,且BA=9,AC=12,∴BC==15,∵DE⊥AB,DF⊥AC,∴∠DEA=∠DF A=∠BAC=90°,∴四边形DEAF是矩形,∴EF=AD,∴当AD⊥BC时,AD的值最小,此时,△ABC的面积=AB×AC=BC×AD,∴AD===,∴EF的最小值为,∵点G为四边形DEAF对角线交点,∴GF=EF=;故答案为:.19.【解答】解:∵∠BAC=90°,且BA=6,AC=8,∴BC==10,∵DM⊥AB,DN⊥AC,∴∠DMA=∠DNA=∠BAC=90°,∴四边形DMAN是矩形,∴MN=AD,∴当AD⊥BC时,AD的值最小,此时,△ABC的面积=AB×AC=BC×AD,∴AD==,∴MN的最小值为;故答案为:.20.【解答】解:图中标出的5个点均为符合题意的点.故答案为5.21.【解答】解:(1)如图1,∵四边形ABCD为平行四边形,对角线AC与BD交于点O,∴AD∥BC,AD=BC,OA=OC,OB=OD,∴∠ODE=∠OBF,∵∠DOE=∠BOF,∴△DOE≌△BOF(ASA),∴DE=BF,又∵DE∥BF,∴四边形BEDF为平行四边形,即E在AD上任意位置(不与A、D重合)时,四边形BEDF恒为平行四边形,故选项①正确.(2)当BE⊥BC时,四边形BEDF是矩形,故选项②正确.(3)如图3,当EF⊥BD时,四边形BEDF为菱形,由于AB<AD,即AB<AE+BE,可以保证E点AD上,故一定存在点E满足要求,故选项③正确.(4)由②可知,∠ADB=45°,四边形BEDF是正方形,故选项④正确.故答案为:①②③④.22.【解答】解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF==2,由勾股定理得:DE==2,∴四边形BEDF的周长=4DE=4×2=8,故答案为:8.三.解答题23.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由如下:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴四边形BECD是菱形.24.【解答】证明:(1)∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);(2)由(1)知,△AFE≌△DBE,则AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形.25.【解答】(1)证明:在菱形ABCD中,OC=AC.∴DE=OC.∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.∴OE=CD.(2)在菱形ABCD中,∠ABC=60°,∴AC=AB=2.∴在矩形OCED中,CE=OD=.在Rt△ACE中,AE=.26.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠OAF=∠OCE,∵EF是线段AC的垂直平分线,∴OA=OC,EF⊥AC,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE,∴四边形AECF是平行四边形,又∵EF⊥AC,∴四边形AECF是菱形;(2)解:由(1)得:四边形AECF是菱形,EF⊥AC,∴CE=AE=2,OA=OC,OB=OD,∵AC⊥AB,∴EF∥AB,∴∠OEC=∠B=30°,∴OC=CE=1,OE=OC=,∴AC=2OC=2,EF=2OE=2,∴四边形AECF的面积=AC×EF=×2×2=2.27.【解答】(1)证明:∵DE∥BC,DF∥AB∴四边形DEBF是平行四边形∵DE∥BC∴∠EDB=∠DBF ∵BD平分∠ABC∴∠ABD=∠DBF=∠ABC∴∠ABD=∠EDB∴DE=BE且四边形BEDF为平行四边形∴四边形BEDF为菱形;(2)解:∵∠A=100°,∠C=30°,∴∠ABC=180°﹣100°﹣30°=50°,∵四边形BEDF为菱形,∴∠EDF=∠ABC=50°,∠BDE=∠EDF=25°.28.【解答】解:(1)证明:∵点O是AC的中点,∴AO=CO,∵AM∥BN,∴∠DAC=∠ACB,在△AOD和△COB中,,∴△ADO≌△CBO(ASA);(2)证明:由(1)得△ADO≌△CBO,∴AD=CB,又∵AM∥BN,∴四边形ABCD是平行四边形,∵AM∥BN,∴∠ADB=∠CBD,∵BD平分∠ABN,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AD=AB,∴平行四边形ABCD是菱形;(3)解:由(2)得四边形ABCD是菱形,∴AC⊥BD,AD=CB,又DE⊥BD,∴AC∥DE,∵AM∥BN,∴四边形ACED是平行四边形,∴AC=DE=2,AD=EC,∴EC=CB,∵四边形ABCD是菱形,∴EC=CB=AB=2,∴EB=4,在Rt△DEB中,由勾股定理得BD==,∴.29.【解答】证明:连接EO,如图所示:∵O是AC、BD的中点,∴AO=CO,BO=DO,∴四边形ABCD是平行四边形,在Rt△EBD中,∵O为BD中点,∴EO=BD,在Rt△AEC中,∵O为AC中点,∴EO=AC,∴AC=BD,又∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形.30.【解答】解:(1)∵四边形ABCD是菱形,∴OB=OD,∵E是AD的中点,∴OE是△ABD的中位线,∴OE∥FG,∵OG∥EF,∴四边形OEFG是平行四边形,∵EF⊥AB,∴∠EFG=90°,∴平行四边形OEFG是矩形;(2)∵四边形ABCD是菱形,∴BD⊥AC,AB=AD=10,∴∠AOD=90°,∵E是AD的中点,∴OE=AE=AD=5;由(1)知,四边形OEFG是矩形,∴FG=OE=5,∵AE=5,EF=4,∴AF==3,∴BG=AB﹣AF﹣FG=10﹣3﹣5=2.31.【解答】(1)证明:∵四边形ABCD是平行四边形,∴BC=AD,BC∥AD,又∵BE=DF,∴BC﹣BE=AD﹣DF,即EC=AF,∴EC=AF,∴四边形AECF为平行四边形,又∵∠AEC=90°,∴四边形AECF是矩形;(2)解:在Rt△ABE中,∠AEB=90°,∠ABE=60°,AB=4,∴BE=2,AE=,∵四边形AECF是矩形,∴FC⊥BC,FC=AE=.∵BF平分∠ABC,∴∠FBC=∠ABC=30°,在Rt△BCF中,∠FCB=90°,∠FBC=30°,FC=,∴BC=6,∴AD=BC=6.32.【解答】证明:(1)∵四边形ABCD为平行四边形,∴DC∥AB,即DF∥BE,又∵DF=BE,∴四边形DEBF为平行四边形,又∵DE⊥AB,∴∠DEB=90°,∴四边形DEBF为矩形;(2)∵四边形DEBF为矩形,∴∠DEB=90°,∵AE=3,DE=4,DF=5∴AD==5,∴AD=DF=5,∴∠DAF=∠DF A,∵AB∥CD,∴∠F AB=∠DF A,∴∠F AB=∠DF A,∴AF平分∠DAB.33.【解答】证明:(1)∵AB⊥OM于B,DE⊥ON于E,∴∠ABO=∠DEA=90°.在Rt△ABO与Rt△DEA中,∵∴Rt△ABO≌Rt△DEA(HL)∴∠AOB=∠DAE.∴AD∥BC.又∵AB⊥OM,DC⊥OM,∴AB∥DC.∴四边形ABCD是平行四边形,∵∠ABC=90°,∴四边形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,∴AB=DE=3,设AD=x,则OA=x,AE=OE﹣OA=9﹣x.在Rt△DEA中,由AE2+DE2=AD2得:(9﹣x)2+32=x2,解得x=5.∴AD=5.即AB、AD的长分别为3和5.34.【解答】解:(1)设BM=x,则CM=2x,BC=3x,∵BA=BC,∴BA=3x.在Rt△ABM中,E为斜边AM中点,∴AM=2BE=2.由勾股定理可得AM2=MB2+AB2,即40=x2+9x2,解得x=2.∴AB=3x=6.(2)延长FD交过点A作垂直于AF的直线于H点,过点D作DP⊥AF于P点.∵DF平分∠CDE,∴∠1=∠2.∵DE=DA,DP⊥AF∴∠3=∠4.∵∠1+∠2+∠3+∠4=90°,∴∠2+∠3=45°.∴∠DFP=90°﹣45°=45°.∴AH=AF.∵∠BAF+∠DAF=90°,∠HAD+∠DAF=90°,∴∠BAF=∠DAH.又AB=AD,∴△ABF≌△ADH(SAS).∴AF=AH,BF=DH.∵Rt△F AH是等腰直角三角形,∴HF=AF.∵HF=DH+DF=BF+DF,∴BF+DF=AF.35.【解答】证明:(1)∵四边形ABCD是正方形,∴∠ADG=∠C=90°,AD=DC,又∵AG⊥DE,∴∠DAG+∠ADF=90°=∠CDE+∠ADF,∴∠DAG=∠CDE,∴△ADG≌△DCE(ASA);(2)如图所示,延长DE交AB的延长线于H,∵E是BC的中点,∴BE=CE,又∵∠C=∠HBE=90°,∠DEC=∠HEB,∴△DCE≌△HBE(ASA),∴BH=DC=AB,即B是AH的中点,又∵∠AFH=90°,∴Rt△AFH中,BF=AH=AB.36.【解答】解:【感知】如图①,∵四边形ABCD是正方形,∴∠OAG=∠OBE=45°,OA=OB,在△AOG与△BOE中,,∴△AOG≌△BOE(SAS),∴S四边形AEOG=S△AOB=S正方形ABCD;故答案为:;【拓展】如图②,过O作ON⊥AD于N,OM⊥AB于M,∵S△AOB=S矩形ABCD,S四边形AEOG=S矩形ABCD,∴S△AOB=S四边形AEOG,∵S△AOB=S△BOE+S△AOE,S四边形AEOG=S△AOG+S△AOE,∴S△BOE=S△AOG,∵S△BOE=BE•OM=m b=mb,S△AOG=AG•ON=AG•a=AG•a,∴mb=AG•a,∴AG=;【探究】如图③,过O作KL⊥AB,PQ⊥AD,则KL=2OK,PQ=2OQ,∵S平行四边形ABCD=AB•KL=AD•PQ,∴3×2OK=5×2OQ,∴=,∵S△AOB=S平行四边形ABCD,S四边形AEOG=S平行四边形ABCD,∴S△AOB=S四边形AEOG,∴S△BOE=S△AOG,∵S△BOE=BE•OK=×1×OK,S△AOG=AG•OQ,∴×1×OK=AG•OQ,∴=AG=,∴当AG=CH=,BE=DF=1时,直线EF、GH把四边形ABCD的面积四等分.37.【解答】解:(1)如图,作EM⊥AD于M,EN⊥AB于N.∵四边形ABCD是正方形,∴∠EAD=∠EAB,∵EM⊥AD于M,EN⊥AB于N,∴EM=EN,∵∠EMA=∠ENA=∠DAB=90°,∴四边形ANEM是矩形,∵EF⊥DE,∴∠MEN=∠DEF=90°,∴∠DEM=∠FEN,∵∠EMD=∠ENF=90°,∴△EMD≌△ENF,∴ED=EF,∵四边形DEFG是矩形,∴四边形DEFG是正方形.(2)∵四边形DEFG是正方形,四边形ABCD是正方形,∴DG=DE,DC=DA=AB=4,∠GDE=∠ADC=90°,∴∠ADG=∠CDE,∴△ADG≌△CDE(SAS),∴AG=CE,∴AE+AG=AE+EC=AC=AD=4.(3)如图,作EH⊥DF于H.∵四边形ABCD是正方形,∴AB=AD=4,AB∥CD,∵F是AB中点,∴AF=FB∴DF==2,∵△DEF是等腰直角三角形,EH⊥AD,∴DH=HF,∴EH=DF=,∵AF∥CD,∴AF:CD=FM:MD=1:2,∴FM=,∴HM=HF﹣FM=,在Rt△EHM中,EM==.38.【解答】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∵P A=PE,∴PC=PE;(2)解:由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵P A=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPE=∠EDF=90°;(3)解:AP=CE;理由如下:在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∠BAP=∠BCP,∵P A=PE,∴PC=PE,∴∠DAP=∠DCP,∵P A=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP ∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE.39.【解答】解:(1)证明:在正方形ABCD中,AB=AD=BC=CD=2,∠BAD=∠C=∠D=∠ABC=∠ABG=90°.∵BG=DF,在△ABG和△ADF中,,∴△ABG≌△ADF(SAS);(2)证明:∵△ABG≌△ADF,∴∠GAB=∠F AD,∴∠GAF=∠GAB+∠BAF=∠F AD+∠BAF=∠BAD=90°,∴AG⊥AF;(3)①解:△ABG≌△ADF,∴AG=AF,BG=DF.∵EF=BE+DF,∴EF=BE+BG=EG.∵AE=AE,在△AEG和△AEF中.,∴△AEG≌△AEF(SSS).∴∠EAG=∠EAF,∴∠EAF=∠GAF=45°,即m=45;②若F是CD的中点,则DF=CF=BG=1.设BE=x,则CE=2﹣x,EF=EG=1+x.在Rt△CEF中,CE2+CF2=EF2,即(2﹣x)2+1 2=(1+x)2,得x=.∴BE的长为.40.【解答】解:(1)∵CE平分∠ACB,∴∠ACE=∠BCE,∵MN∥BC,∴∠OEC=∠ECB,∴∠OEC=∠OCE,∴OE=OC,同理OC=OF,∴OE=OF.(2)当点O运动到AC中点处时,四边形AECF是矩形.如图AO=CO,EO=FO,∴四边形AECF为平行四边形,∵CE平分∠ACB,∴∠ACE=∠ACB,同理,∠ACF=∠ACG,∴∠ECF=∠ACE+∠ACF=(∠ACB+∠ACG)=×180°=90°,∴四边形AECF是矩形.(3)△ABC是直角三角形∵四边形AECF是正方形,∴AC⊥EN,故∠AOM=90°,∵MN∥BC,∴∠BCA=∠AOM,∴∠BCA=90°,∴△ABC是直角三角形.。
第一章特殊的平行四边形一.选择题(共10小题)1.若菱形的两条对角线长分别是6和8,则它的周长为()A.20 B.24 C.40 D.482.如图,已知菱形ABCD对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.5B.2C.D.3.如图,已知菱形ABCD的周长为24,对角线AC、BD交于点O,且AC+BD=16,则该菱形的面积等于()A.6 B.8 C.14 D.284.如图,在四边形ABCD中,AC与BD相交于点O,∠OAB=∠OAD,BO=DO,那么下列条件中不能判定四边形ABCD是菱形的为()A.OA=OC B.BC=DC C.AD=BC D.AD=DC5.如图,菱形ABCD中,∠BAD=60,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连结BE分别交AC,AD于点F、G,连结OG,则下列结论:①2OG=AB;②与△EGD 全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形,其中正确的是()A.①④B.①③④C.①②③D.②③④6.如图,矩形ABCD中,AB>AD,AN平分∠DAB,DM⊥AN,CN⊥AN,MN为垂足若AB=a,则DM+CN的值为()A.a B.a C.D.7.如图,矩形ABCD中,对角线AC、BD相交于点O,过点O作OE⊥BD交AD于点E.已知AB=2,△DOE的面积为,则AE的长为()A.B.2 C.1.5 D.8.在平行四边形ABCD中添加下列条件,不能判定四边形ABCD是矩形的是()A.∠ABC=90°B.AC⊥BD C.AC=BD D.∠ACD=∠CDB 9.正方形ABCD的一条对角线长为8,则这个正方形的面积是()A.4B.32 C.64 D.12810.在正方形ABCD中,E、F是对角线AC上两点,连接BE、BF、DE、DF,则添加下列哪一个条件可以判定四边形BEDF是菱形()A.∠1=∠2 B.BE=DF C.∠EDF=60°D.AB=AF二.填空题(共10小题)11.已知,菱形ABCD中,E、F分别是BC、CD上的点,且∠B=∠EAF=60°,∠BAE=23°.则∠FEC=度.12.在菱形ABCD中,AD=10,AC=12,则菱形ABCD的面积是.13.如图在Rt△ABC中,∠ACB=90°,AC=8,BC=6,D为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD=时,平行四边形CDEB为菱形.14.如图,在▱ABCD中,对角线AC,BD相交于点O,添加一个条件判定▱ABCD是菱形,所添条件为(写出一个即可)15.如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成了一个四边形ABCD,当线段AD=5时,线段BC的长为.16.如图1,边长为a的正方形发生形变后成为边长为a的菱形,如果这个菱形的一组对边之间的距离为h,我们把的值叫做这个菱形的“形变度”.例如,当形变后的菱形是如图2形状(被对角线BD分成2个等边三角形),则这个菱形的“形变度”为2:.如图3,正方形由16个边长为1的小正方形组成,形变后成为菱形,△AEF(A、E、F是格点)同时形变为△A′E′F′,若这个菱形的“形变度”k=,则S△A′E′F′=.17.如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩余白色长方形的周长为(用含a,b的式子表示).18.如图,将边长为6cm的正方形ABCD先向下平移2cm,再向左平移1cm,得到正方形A'B'C'D',则这两个正方形重叠部分的面积为cm2.19.如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快s后,四边形ABPQ成为矩形.20.如图所示,直线经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E.若DE=5,BF=3,则EF的长为.三.解答题(共7小题)21.如图,菱形ABCD的对角线AC和BD相交于点O,AB=,OA=a,OB=b,且a,b满足:.(1)求菱形ABCD的面积;(2)求的值.22.如图,点A、B、C、D依次在同一条直线上,点E、F分别在直线AD的两侧,已知BE ∥CF,∠A=∠D,AE=DF.(1)求证:四边形BFCE是平行四边形;(2)填空:若AD=7,AB=2.5,∠EBD=60°,当四边形BFCE是菱形时,菱形BFCE的面积是.23.已知:AC,BD为菱形ABCD的对角线,∠BAD=60°,点EF分别在AD,CD边上,且∠EBF=60°.(1)求证:△BEF是等边三角形;(2)当∠ABE=15°时,AB=1+,求BE.24.同学张丰用一张长18cm、宽12cm矩形纸片折出一个菱形,他沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到四边形AECF(如图).(1)证明:四边形AECF是菱形;(2)求菱形AECF的面积.25.(1)如图1,已知正方形ABCD,点E在BC上,点F在DC上,且∠EAF=45°,则有BE+DF =.若AB=4,则△CEF的周长为.(2)如图2,四边形ABCD中,∠BAD=∠C=90°,AB=AD,点E,F分别在BC,CD上,且∠EAF=45°,试判断BE,EF,DF之间的数量关系,并说明理由.26.在正方形ABCD的外侧作等腰△ABE,已知∠EAB=a,连接ED交等腰△ABE底边上的高AF所在的直线于点G.(1)如图1,若a=30°,求∠AGD的度数;(2)如图2,若90°<a<180°,BE=8,DE=14,则此时AE的长为.27.如图,在矩形ABCD中,AB=4cm,AD=12cm;P点在AD边上以每秒1cm的速度从A向D运动,点Q在BC边上,以每秒4cm的速度从C点出发,在CB间往返运动,两点同时出发,待P点到达D点为止,求经过多长时间四边形ABQP为矩形?参考答案与试题解析一.选择题(共10小题)1.【解答】解:如图所示,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB====5,∴此菱形的周长为:5×4=20.故选:A.2.【解答】解:∵四边形ABCD是菱形,AC=6cm,BD=8cm,∴AO=CO=3cm,BO=DO=4cm,∠BOC=90°,∴BC==5(cm),∴AE×BC=BO×AC故5AE=24,解得:AE=.故选:C.3.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=DA,∵菱形ABCD的周长为24,∴AD=AB=6,∵AC+BD=16,∴AO+BO=8,∴AO2+BO2+2AO•BO=64,∵AO2+BO2=AB2,∴AO•BO=14,∴菱形的面积=4×三角形AOD的面积=4××14=28,故选:D.4.【解答】解:A、若AO=OC,且BO=DO,∴四边形ABCD是平行四边形,∴AB∥CD∴∠BAO=∠OCD,且∠OAB=∠OAD∴∠OAD=∠OCD∴AD=CD,∴四边形ABCD是菱形故A选项不符合题意B、若BC=DC,BO=DO∴AC是BD的垂直平分线∴AB=AD则不能判断四边形ABCD是菱形故B选项符合题意,C、∵∠OAB=∠OAD,BO=DO,∴AB=AD,且BO=DO∴AC垂直平分BD∴BC=CD,且AD=BC∴AB=AD=BC=CD∴四边形ABCD是菱形故C选项不符合题意D、∵∠OAB=∠OAD,BO=DO,∴AB=AD,且BO=DO∴AC垂直平分BD∴BC=CD,且AD=CD∴AB=AD=BC=CD∴四边形ABCD是菱形故D选项不符合题意故选:B.5.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,∵CD=DE,∴AB=DE,在△ABG和△DEG中,,∴△ABG≌△DEG(AAS),∴AG=DG,∴OG是△ACD的中位线,∴OG=CD=AB,∴2OG=AB,①正确;∵AB∥CE,AB=DE,∴四边形ABDE是平行四边形,∵∠BCD=∠BAD=60°,∴△ABD、△BCD是等边三角形,∴AB=BD=AD,∠ODC=60°,∴OD=AG,四边形ABDE是菱形,④正确;∴AD⊥BE,由菱形的性质得:△ABG≌△DEG(SAS),△BDG≌△DEG(SAS),在△ABG和△DCO中,,∴△ABG≌△DCO(SAS),∴△ABO≌△DEG(SAS),△BCO≌△DEG(SAS),△CDO≌△DEG(SAS),△AOD≌△DEG(AAS),△ABG≌△DEG(SAS),△BDG≌△DEG(SAS),∴②不正确;∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG∥AB,OG=AB,∴△GOD∽△ABD(ASA),△ABF∽△OGF(ASA),∴△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,∴△AFG的面积=△OGF的面积的2倍,又∵△GOD的面积=△AOG的面积=△BOG的面积,∴S四边形ODGF=S△ABF;③不正确;正确的是①④.故选:A.6.【解答】解:如图所示:∵四边形ABCD是矩形,∴∠ADC=∠DAB=90°,CD=AB=a,∴AN平分∠DAB,∴∠DAM=45°,∴∠CEN=∠DEM=45°,∵DM⊥AN,CN⊥AN,∴△DME和△CNE是等腰直角三角形,∴DM=DE,CN=CE,∴DM+CN=(DE+CE)=CD=a;故选:C.7.【解答】解:连接BE,如图所示:由题意可得,OE为对角线BD的垂直平分线,∴BE=DE,S△BOE=S△DOE=,∴S△BDE=2S△BOE=.∴DE•AB=,又∵AB=2,∴DE=,∴BE=在Rt△ABE中,由勾股定理得:AE===1.5.故选:C.8.【解答】解:A、∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,故本选项不符合题意;B、根据四边形ABCD是平行四边形和AC⊥BD不能推出四边形ABCD是矩形,故本选项符合题意;C、∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形,故本选项不符合题意;D、∵∠ACD=∠CDB,∴OD=OC,∵四边形ABCD是平行四边形,∴AO=OC,BO=OD,∴AC=BD,∴四边形ABCD是矩形,故本选项不符合题意;故选:B.9.【解答】解:在正方形中,对角线相等,所以正方形ABCD的对角线长均为8,∵正方形又是菱形,菱形的面积计算公式是S=ab(a、b是正方形对角线长度)∴S=×8×8=32,故选:B.10.【解答】解:由正方形的性质知,∠ACD=∠ACB=45°,BC=CD,CF=CF,∴△CDF≌△CBF(SAS),∴BF=FD,同理,BE=ED,∴当BE=DF,有BF=FD=BE=ED,四边形BEDF是菱形.故选:B.二.填空题(共10小题)11.【解答】解:连接AC,∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵∠B=∠EAF=60°,∴△ABC是等边三角形,∠BCD=120°,∴AB=AC,∠B=∠ACF=60°,∵∠BAE+∠EAC=∠FAC+∠EAC,∴∠BAE=∠FAC,且AB=AC,∠B=∠ACF∴△ABE≌△ACF(ASA),∴AE=AF,又∵∠EAF=∠D=60°,∴△AEF是等边三角形,∴∠AEF=60°,又∠AEC=∠B+∠BAE=83°,∴∠CEF=83°﹣60°=23°.故答案为:2312.【解答】解:如图,连接AC,BD交于点O.∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=6,∴∠AOD=90°,∴OD==8,∴BD=2OD=16,∴S菱形ABCD=×AC×BD=×12×16=96,故答案为96.13.【解答】解:如图,连接CE交AB于点O.∵Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB==10若平行四边形CDEB为菱形时,CE⊥BD,OD=OB,CD=CB.∵AB•OC=AC•BC,∴OC=.∴OB==∴AD=AB﹣2OB=故答案为:14.【解答】解:根据一组邻边相等的平行四边形是菱形,则可添加条件为:AB=AD(AD=CD,BC=CD,AB=BC)也可添加∠1=∠2,根据平行四边形的性质,可求AD=CD.根据对角线互相垂直的平行四边形是菱形,则可添加条件为:AC⊥BD.故答案为:AB=AD(答案不唯一)15.【解答】解:由条件可知AB∥CD,AD∥BC,∴四边形ABCD为平行四边形,∴BC=AD=5.故答案为:5.16.【解答】解:如图,在图2中,形变前正方形的面积为:a2,形变后的菱形的面积为:a•a=a2,∴菱形形变前的面积与形变后的面积之比:a2:a2=2:,∵这个菱形的“形变度”为2:.∴菱形形变前的面积与形变后的面积之比=这个菱形的“形变度”,S△AEF=×2×2+×2×2=4,∵若这个菱形的“形变度”k=,∴=,即=,∴S△A′E′F′=.故答案为:.17.【解答】解:剩余白色长方形的长为b,宽为(b﹣a),所以剩余白色长方形的周长=2b+2(b﹣a)=4b﹣2a.故答案为4b﹣2a.18.【解答】解:如图,向下平移2cm,即AE=2,则DE=AD﹣AE=6﹣2=4cm向左平移1cm,即CF=1,则DF=DC﹣CF=6﹣1=5cm则S矩形DEB'F=DE•DF=4×5=20cm2故答案为:2019.【解答】解;设最快x秒,四边形ABPQ成为矩形,由BP=AQ得3x=20﹣2x.解得x=4,故答案为:4.20.【解答】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠BAF+∠EAD=90°,∵BF⊥a,DE⊥a,∴∠AED=∠AFB=90°∴∠BAF+∠ABF=90°,∴∠ABF=∠EAD,∴△AFB≌△DEA,∴AF=ED=5,AE=BF=3,∴EF=AF+AE=5+3=8,故答案为:8三.解答题(共7小题)21.【解答】解:(1)∵四边形ABCD是菱形,∴BD垂直平分AC,∵OA=a,OB=b,AB=,∴a2+b2=5,,∵a,b满足:.∴a2b2=4,∴ab=2,∴△AOB的面积=ab=1,∴菱形ABCD的面积=4△AOB的面积=4;(2)∵a2+b2=5,ab=2,∴(a+b)2=a2+b2+2ab=9,∴a+b=3,∴=.22.【解答】(1)证明:∵BE∥CF,∴∠EBC=∠FCB,∴∠EBA=∠FCD,在△ABE和△DCF中,,∴△ABE≌△DCF(AAS),∴BE=CF,AB=CD,∴四边形BFCE是平行四边形.(2)解:连接EF交BC于O,如图所示:∵AD=7,AB=DC=2.5,∴BC=AD﹣AB﹣DC=2,∵四边形BFCE是菱形,∠EBD=60°,EF⊥BC,OB=BC=1,OE=OF,∴△CBE是等边三角形,∠BEO=30°,∴BC=EC=2,∴OE=OB=,∴EF=2,∴菱形BFCE的面积=BC×EF=×2×2=2;故答案为:2.23.【解答】证明:(1)∵四边形ABCD是菱形∴AB=AD=BC=CD,且∠BAD=60°∴△ABD是等边三角形,∠ADC=120°∴AB=AD=BD,∠ABD=∠ADB=60°∴∠ABD=∠EBF=60°=∠BDC,∴∠ABE=∠DBF,∠BAD=∠BDF=60°,且AB=BD∴△ABE≌△DBF(ASA)∴BE=BF,且∠EBF=60°.∴△BEF是等边三角形(2)如图,过点E作EH⊥AB于H,作∠GEB=∠ABE=15°,∴∠EGH=30°,GE=GB,设HE=x,在Rt△GHE中,∠EGH=30°∴GE=2x=BG,HG=x,在Rt△AHE中,∠BAD=60°∴AH=x,∵AB=AH+HG+BG=1+∴x+x+2x=1+∴x=∴HE=∴BH=∵BE2=HE2+BH2,∴BE2=()2+()2,∴BE=24.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠FAC=∠ACE,∵∠CAE=∠DAC,∠ACF=∠ACB,∴∠EAC=∠ACF,∴AE∥CF,∵AF∥EC,∴四边形AECF是平行四边形,∵∠FAC=∠FCA,∴AF=CF,∴四边形AECF是菱形.(2)解:∵四边形AECF是菱形,∴AE=EC=CF=AF,设菱形的边长为a,在RT△ABE中,∵∠B=90°,AB=12,AE=a,BE=18﹣a,∴a2=122+(18﹣a)2,∴a=13,∴BE=DF=5,AF=EC=13,∴S菱形AECF=S矩形ABCD﹣S△ABE﹣S△DFC=216﹣30﹣30=156cm2.25.【解答】解:(1)延长EB至H,使BH=DF,连接AH,如图1,∵在正方形ABCD中,∴∠ADF=∠ABH,AD=AB,在△ADF和△ABH中,,∴△ADF≌△ABH(SAS),∴∠BAH=∠DAF,AF=AH,∴∠FAH=90°,∴∠EAF=∠EAH=45°,在△FAE和△HAE中,,∴△FAE≌△HAE(SAS),∴EF=HE=BE+HB,∴EF=BE+DF,∴△CEF的周长=EF+CE+CF=BE+CE+DF+CF=BC+CD=2AB=8.故答案为:EF;8.(2)EF=BE+DF,理由如下:延长CB至M,使BM=DF,连接AM,如图2,∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,∴∠D=∠ABM,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∵∠BAD=∠C=90°,∠EAF=45°,即∠BAD=2∠EAF,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAM=∠EAM=∠EAF,在△FAE和△MAE中,,∴△FAE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF.26.【解答】解:(1)∵AE=AB,AF⊥BE,∠EAB=30°∴∠FAE=15°∵∠EAB=30°,∠BAD=90°∴∠EAD=120°,且AE=AD∴∠AED=∠ADE=30°∴∠AGD=∠AED+∠EAF=45°(2)如图,连接AC,BD交于点O,连接FO,∵四边形ABCD是正方形∴BO=DO,BD=AB,∠ABD=∠ADB=45°∵AE=AB,AF⊥BE∴∠AEB=∠ABE,EF=BF=4,且BO=DO∴FO=DE=7,FO∥DE∵AE=AD∴∠AED=∠ADE∵∠ABD+∠ADB+∠AED+∠ADE+∠AEB+∠ABE=180°∴2(∠AEB+∠AED)=90°∴∠DEB=45°∵FO∥DE∴∠BFO=45°,且BM⊥FO∴FM=BM,∴BF=BM=4∴BM=FM=4∴MO=3∴BO==5∴BD=2BO=10∴AB=5=AE故答案为:527.【解答】解:∵在矩形ABCD中,AD=12cm,∴AD=BC=12cm.当四边形ABQP为矩形时,AP=BQ.①当0<t<3时,t=12﹣4t,解得,t=;②当3≤t<6时,t=4t﹣12,解得t=4;③当6≤t<9时,t=36﹣4t,解得t=;④当9≤t≤12时,t=4t﹣36,解得,t=12.综上所述,当t为或4或或12时,四边形ABQP为矩形.。
九(上)第一章特殊平行四边形重点题目菱形的性质1、菱形具有而一般平行四边形不具有的性质是()A. 对角相等B. 对边相等C. 对角线互相垂直D. 对角线相等2、菱形的周长为100cm,一条对角线长为14cm,它的面积是()A. 168cm2B. 336cm2C. 672cm2D. 84cm23、下列语句中,错误的是()A. 菱形是轴对称图形,它有两条对称轴B. 菱形的两组对边可以通过平移而相互得到C. 菱形的两组对边可以通过旋转而相互得到D. 菱形的相邻两边可以通过旋转而相互得到4、菱形的两条对角线分别是6 cm,8 cm,则菱形的边长为_____,面积为______.5、四边形ABCD是菱形,点O是两条对角线的交点,已知AB=5, AO=4,求对角线BD和菱形ABCD的面积.6、如图,在菱形ABCD中,∠ADC=120°,则BD:AC等于().(A:2 (B 3(C)1:2 (D 17、菱形ABCD的周长为20cm,两条对角线的比为3∶4,求菱形的面积。
8、如左下图,菱形ABCD的对角线AC、BD交于点O,且AC=16cm,BD=12cm,求菱形ABCD的高DH。
9、如右上图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF的度数为.10、在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.11、如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是()A.M(5,0),N(8,4) B.M(4,0),N(8,4)C.M(5,0),N(7,4) D.M(4,0),N(7,4)12、(2010•襄阳)菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为()A.3:1 B.4:1 C.5:1 D.6:113、如左下图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH= _________ .14、如右上图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm2.15、【提高题】如图,在菱形ABCD中,顶点A到边BC、CD的距离AE、AF都为5,第7题EF =6,那么,菱形ABCD 的边长是_____菱形的判定1、能够判别一个四边形是菱形的条件是( )A. 对角线相等且互相平分B. 对角线互相垂直且相等C. 对角线互相平分D. 一组对角相等且一条对角线平分这组对角2、平行四边形ABCD 的两条对角线AC 、BD 相交于点O, AB=5, AO=2, OB=1. 四边形ABCD 是菱形吗?为什么?3、 如左下图,AD 是△ABC 的角平分线。
DE ∥AC 交AB 于E ,DF ∥AB 交AC 于F.四边形AEDF 是菱形吗?说明你的理由。
4、如右上图,□ABCD 的对角线AC 的垂直平分线与AD 、BC 分别交于E 、F ,四边形AFCE 是否是菱形?为什么?5、已知DE ∥AC 、DF ∥AB ,添加下列条件后,不能判断四边形DEAF 为菱形的是( ) A. AD 平分∠BACB. AB =AC =且BD =CDC. AD 为中线D. EF ⊥AD6、 如右图,已知四边形ABCD 为菱形,AE =CF. 求证:四边形BEDF 为菱形。
7、已知ABCD 为平行四边形纸片,要想用它剪成一个菱形。
小刚说只要过BD 中点作BD 的垂线交AD 、BC 于E 、F ,沿BE 、DF 剪去两个角,所得的四边形BFDE 为菱形。
你认为小刚的方法对吗?为什么?8、如右上图,两张等宽的纸条交叉重叠在一起,重叠的部分ABCD 是菱形吗?为什么?第6题DACFH E B9、如左下图,四边形ABCD 中,对角线AC 和BD 相交于点O ,且AC ⊥BD ,点M 、N 分别在BD 、AC 上,且AO =ON =NC ,BM =MO =OD. 求证:BC =2 DN10、如右上图,已知四边形ABCD 为矩形,AD =20㎝、AB =10㎝。
M 点从D 到A ,P 点从B 到C ,两点的速度都为2㎝/s ;N 点从A 到B ,Q 点从C 到D ,两点的速度都为1㎝/s 。
若四个点同时出发。
(1)判断四边形MNPQ 的形状。
(2)四边形MNPQ 能为菱形吗?若能,请求出此时运动的时间;若不能,说明理由。
11、 【提高题】 如图所示,△ABC 中,∠ACB=90°,∠ABC 的平分线BD•交AC 于点D ,CH ⊥AB 于H ,且交BD 于点F ,DE ⊥AB 于E ,四边形CDEF 是菱形吗?请说明理由.矩形的性质1.矩形具备而平行四边形不具有的性质是( )A .对角线互相平分B .邻角互补C .对角相等D .对角线相等 2.在下列图形性质中,矩形不一定具有的是( )A .对角线互相平分且相等B .四个角相等C .既是轴对称图形,又是中心对称图形D .对角线互相垂直平分3、如左下图,在矩形ABCD 中,两条对角线AC 和BD 相交于点O ,AB =OA =4 cm ,求BD 与AD 的长.4、如右上图,矩形ABCD 的两条对角线相交于点O ,∠AOD =120°,AB =2,则矩形的对角线AC 的长是______.5、已知:△ABC 的两条高为BE 和CF ,点M 为BC 的中点. 求证:ME =MF第10题6、如左下图,矩形ABCD 中,AC 与BD 相交于一点O ,AE 平分∠BAD,若∠EAO =15°,求∠BOE 的度数.7、(2006·成都)把一张长方形的纸片按右上图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在B ′M 或B ′M 的延长线上,那么∠EMF 的读度为( )A .85°B .90°C .95°D .100°8、如右图所示,把两个大小完全一样的矩形拼成“L ”形图案,则∠FAC=_______,∠FCA=________.9、(2006·黑龙江)如右图,在矩形ABCD 中,EF ∥AB ,GH ∥BC ,EF 、GH 的交点P 在BD 上,图中面积相等的四边形有( )A .3对B .4对C .5对D .6对10、如图4,矩形ABCD 的周长为68,它被分成7个全等的矩形,则矩形ABCD•的面积为( )A .98B .196C .280D .28411、如左下图所示,矩形ABCD 中,M 是BC 的中点,且MA ⊥MD ,若矩形的周长为36 cm ,求此矩形的面积。
12、如右上图,折叠矩形,使AD边与对角线BD重合,折痕是DG ,点A 的对应点是E ,若AB=2,BC=1,求AG.13、如右下图,在矩形A B C D 中,E 是AD 上一点,F 是AB 上一点,EF CE =,且,2EF CE DE cm ⊥=,矩形ABCD 的周长为16cm ,求AE 与CF 的长.GEDCBA15、【提高题】(2009年佳木斯中考卷第25题)如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明.(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.矩形的判定1、下列识别图形不正确的是()A.有一个角是直角的平行四边形是矩形 B.有三个角是直角的四边形是矩形C.对角线相等的四边形是矩形 D.对角线互相平分且相等的四边形是矩形2、四边形ABCD的对角线相交于点O,下列条件不能判定它是矩形的是()A.AB=CD,AB∥CD,∠BAD=90°B.AO=CO,BO=DO,AC=BDC.∠BAD=∠ABC=90°,∠BCD+∠ADC=180°D.∠BAD=∠BCD,∠ABC=∠ADC=90°3、如左下图,矩形ABCD的对角线AC、BD相交于点O,点E、F、G、H分别是OA、OB、OC、OD的中点,顺次连结E、F、G、H所得的四边形EFGH是矩形吗?4、已知:如右上图,□ ABCD各角的角平分线分别相交于点E,F,G,H. 求证:•四边形EFGH是矩形.5、如右图,平行四边形ABCD中,对角线AC、BD相交于点O,延长OA到N,使ON=OB,再延长OC至M,使CM=AN. 求证:四边形NDMB是矩形.6、两条平行线被第三条直线所截,两组内错角的平分线相交所成的四边形是()A. 一般平行四边形B. 菱形C. 矩形D. 正方形7、在四边形ABCD中,∠B=∠D=90°,且AB=CD,四边形ABCD是矩形吗?为什么?8、如左下图,在四边形ABCD中,AD∥BC,点E、F为AB上的两点,且△DAF≌△CBE.求证:四边形ABCD是矩形.9、如右上图,在△ABC中,点O是AC边上的中点,过点O的直线MN∥BC,且MN交∠ACB的平分线D ACF PEB于点E ,交∠ACB 的外角平分线于点F ,点P 是BC 延长线上一点. 求证:四边形AECF 是矩形.10、如图所示,△ABC 中,AB=AC ,AD 是BC 边上的高,AE•是∠CAF 的平分线且∠CAF 是△ABC 的一个外角,且DE ∥BA ,四边形ADCE 是矩形吗?为什么?11、【提高题】如图,在△AB C 中,AB =AC ,CD ⊥AB 于D ,P•为BC 上的任意一点,过P 点分别作PE ⊥AB ,PF ⊥CA ,垂足分别为E ,F ,则有PE +PF =CD ,你能说明为什么吗?正方形1、 四边形ABCD 中,AC 、BD 相交于点O ,能判别这个四边形是正方形的条件是( )A. OA =OB =OC =OD ,AC ⊥BDB. AB ∥CD ,AC =BDC. AD ∥BC ,∠A =∠CD. OA =OC ,OB =OD ,AB =BC2、在正方形ABCD 中,AB =12cm ,对角线AC 、BD 相交于O ,则△ABO 的周长是( )A. 12+122B. 12+62C. 12+2D. 24+623、如图,四边形ABCD 是正方形,延长BC 至点E ,使CE =CA ,连结AE 交CD•于点F ,•则∠AFC 的度数是( ).(A )150° (B )125° (C )135° (D )112.5°4、已知正方形的面积为4,则正方形的边长为________,对角线长为________.5、如左下图,四边形ABCD 是正方形,△CDE 是等边三角形,则∠AED =______,∠AEB =______.6、如右上图,四边形ABCD 是正方形,△CDE 是等边三角形,求∠AEB 的度数.7、已知:如左下图,在正方形ABCD 中,AE ⊥BF ,垂足为P ,AE 与CD 交于点E ,•BF 与AD 交于点F ,求证:AE =BF .8、如图,正方形ABCD ,AB =a ,M 为AB 的中点,ED =3AE ,(1)求ME 的长;(2)△EMC 是直角三角形吗?为什么?9、如左下图,在正方形ABCD 中,E 、F 、G 、H 分别在它的四条边上,且AE=BF=CG=DH. 四边形EFGH 是什么特殊的四边形,你是如何判断的?10、如右上图所示,E 是正方形ABCD 的对角线BD上一点,EF ⊥BC ,EG ⊥CD ,垂足分别是F 、G .试说明AE =FG .11、以锐角△ABC 的边AC 、AB 为边向外作正方形ACDE 和正方形ABGF ,连结BE 、CF.(1)试探索BE 和CF 的关系?并说明理由。