对数的运算性质
- 格式:doc
- 大小:280.50 KB
- 文档页数:4
对数函数的基本性质及运算法则对数函数是数学中常见的一种函数,它在许多领域中都有广泛的应用。
本文将介绍对数函数的基本性质及运算法则,帮助读者更好地理解和应用对数函数。
一、对数函数的定义和基本性质对数函数是指数函数的反函数。
设a为一个正实数且不等于1,b为正实数,则对数函数的定义如下:y = loga(b)其中,a称为底数,b称为真数,y称为对数。
对数函数的基本性质如下:1. 对数函数的定义域为正实数集合,即x > 0。
2. 对数函数的值域为实数集合,即y ∈ R。
3. 对数函数的图像在直线y = x的左侧,且与x轴交于点(1, 0)。
4. 对数函数是递增函数,即当b1 > b2时,loga(b1) > loga(b2)。
5. 对数函数的反函数是指数函数,即y = loga(x)的反函数为x = a^y。
二、对数的运算法则对数函数的运算法则是指对数函数在进行运算时的一些基本规则和性质。
1. 对数的乘法法则loga(b * c) = loga(b) + loga(c)这个法则表明,对数函数中两个数的乘积的对数等于这两个数分别取对数后的和。
2. 对数的除法法则loga(b / c) = loga(b) - loga(c)这个法则表明,对数函数中两个数的商的对数等于这两个数分别取对数后的差。
3. 对数的幂法法则loga(b^c) = c * loga(b)这个法则表明,对数函数中一个数的幂的对数等于该数取对数后乘以指数。
4. 对数的换底公式loga(b) = logc(b) / logc(a)这个法则表明,当底数不同时,可以通过换底公式将对数转化为另一个底数的对数。
5. 对数函数的性质(1)loga(1) = 0,即任何底数的对数函数中1的对数都等于0。
(2)loga(a) = 1,即任何底数的对数函数中底数的对数都等于1。
(3)loga(a^x) = x,即任何底数的对数函数中底数的幂的对数等于指数。
对数性质知识点总结一、对数的定义1.1 对数的概念对数的概念是17世纪由苏格兰数学家约翰·纳皮尔(John Napier)发明的。
对数是指数的倒数,或者说是幂运算的逆运算。
如果a的x次幂等于b,那么x就是以a为底数,并且结果是b的对数,用符号"log"表示。
1.2 对数的性质对数的定义主要有以下几个性质:(1)对数的底数必须是正实数且不等于1。
(2)对数的真数必须是正实数。
(3)对数的指数必须是任意实数。
(4)对数的结果是一个实数。
二、对数的运算规则2.1 对数的基本运算规则对数的基本运算规则主要有以下几条:(1)对数的积等于对数的和,即logab + logac = loga(bc)。
(2)对数的商等于对数的差,即logab - logac = loga(b/c)。
(3)对数的幂等于对数的积的倍数,即xlogab = loga(bx)。
(4)对数的积的幂是指数的积,即(logab)^n = nlogab。
2.2 对数的换底公式换底公式是指将对数的底数从a换为b时的转换公式,即logab = logcb / logca。
这个公式在对数运算中经常被使用,因为在实际应用中,很多问题无法直接进行对数运算,需要将对数的底数进行转换,然后再进行计算。
2.3 对数的常用等式对数的常用等式主要有以下几个:(1)对数的反函数等式:loga(ax) = x。
(2)对数的倒数等式:loga(1/x) = -logax。
(3)对数的幂数等式:a^logax = x。
三、对数的性质3.1 对数的单调性对数函数y = loga(x)的单调性是指其增减性质。
当底数a大于1时,对数函数是增函数;当底数a小于1时,对数函数是减函数。
这是因为对数函数的基本定义是指数的倒数,所以当底数a的大小关系改变时,对数函数的单调性也会发生改变。
3.2 对数函数的图像对数函数的图像主要有以下特点:(1)对数函数的图像是一条拐点在(1,0)上的曲线。
§4.1 对数与对数运算1.对数:(1)定义:如果a N a a b=>≠()01且,那么数b 就叫做以a 为底的对数,记作b Na =l o g (a 是底数,N 是真数,lo g a N 是对数式。
) 由于N a b=>0故lo g a N 中N 必须大于0。
2.对数的运算性质及换底公式.(2)指数式与对数式的关系:a b =N ⇔log a N =b (a >0,a ≠1,N >0).(3)对数运算性质:①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N . ③log log n m a amb b n=④对数换底公式:log b N =b N a a log log lg lg N b =○5log a M a M= ○61log log a b b a=1、求下列各式中x 的值:log 83x =(1) lg100x =(2) 2ln x e =(3)- 642(4)log x 3=-2、求下列各式的值:51log 25() 15log 15(2) 9log 81(3) 4lg1000()(5)lg10000 0.4log 1(6) 217log 16()lg 0.001(8)(9)lg0.01 (10) lg 5100 (11)3log 273 (12)5111255og3、化简求值(1)2log (74×52) (2)lg 5+lg 2 (3)5log 3+5log 31(4)2log 6-2log 3(5)3log 5-3log (6)3lglg 70lg 37+-(7)(8) (9)2194log 2log 3log -⋅ (10)(11)3log 12.05- (12)(13)21lg 4932-34lg 8+lg 245强化训练:对数与对数运算练习题一.选择题1.2-3=18化为对数式为( )A .log 182=-3 B .log 18(-3)=2 C .log 218=-3 D .log 2(-3)=182.log 63+log 62等于( )A .6 B .5 C .1 D .log 65 3.如果lg x =lg a +2lg b -3lg c ,则x 等于( )A .a +2b -3c B .a +b 2-c 3 C.ab 2c 3D.2ab3c4.已知a =log 32,那么log 38-2log 36用a 表示为( ) A .a -2 B .5a -2C .3a -(1+a )2D .3a -a 2-1 5.的值等于( )A .2+ 5 B .2 5 C .2+52D .1+526.Log 22的值为( )A .- 2B. 2 C .-12D.127.在b =log (a -2)(5-a )中,实数a 的取值范围是( )A .a >5或a <2B .2<a <3或3<a <5C .2<a <5D .3<a <48.方程2log3x =14的解是( )A .x =19 B .x =x3C .x = 3D .x =99.若log 2(log 3x )=log 3(log 4y )=log 4(log 2z )=0,则x +y +z 的值为( )A .9 B .8 C .7 D .6 10.若102x =25,则x 等于( )A .lg 15 B .lg5 C .2lg5D .2lg 1511.计算log 89·log 932的结果为( )A .4 B.53 C.14 D.3512.已知log a x =2,log b x =1,log c x =4(a ,b ,c ,x >0且≠1),则log x (abc )=( ) A.47 B.27 C.72 D.74 二.填空题:1.2log 510+log 50.25=__ __. 2.方程log 3(2x -1)=1的解为x =_______. 3.若lg(ln x )=0,则x =_ ______. 4.方程9x -6·3x -7=0的解是_______ 5.若log 34·log 48·log 8m =log 416,则m =________.6.已知log a 2=m ,log a 3=n ,则log a 18=_______.(用m ,n 表示) 7.log 6[log 4(log 381)]=_______.8.使对数式log (x -1)(3-x )有意义的x 的取值范围是_______ 三.计算题1.(1)2log 210+log 20.04 (2) lg3+2lg2-1lg1.2(3)log 6112-2log 63+13log 627 (4)log 2(3+2)+log 2(2-3);(5)lg5·lg8000+06.0lg 61lg )2(lg 23++ (6)2)2(lg 50lg 2lg 25lg +⋅+(7)lg 25+lg2·lg50 (8)(log 43+log 83)(log 32+log 92)2.已知5lg 2lg 35lg 2lg 33⋅++=+b a ,求333ba ab ++3.已知log 34·log 48·log 8m =log 416,求m 的值.§5 对数函数及其性质1、对数函数图像过点(4,2),则该对数函数的解析式是( )A 、x y 2log =B 、x y 4log =C 、x y 8log =D 、不确定2、函数x a y a log )1(2-=是对数函数,则a 的值为( )A 、1B 、2C 、2±D 、任意值3、函数x a a y a log )33(2+-=是对数函数,则a 的值为( )A 、1B 、2C 、1或2D 、任意值4、若)10(log )(≠>=a a x x f a 且,且0)2(<f ,则)(x f 的图像是 ( )5、若函数)10()(≠>=-a a a x f x ,是定义在R 上的增函数,则函数)1(log )(+=x x g a 的图像大致是( )6、已知0lg lg =+ba ,则函数x a x f =)(与函数x x gb log )(-=的图像可能是( )7、函数)10(1log )(≠>-=a a x x f a 且的图像恒过点( )A 、(1,0)B 、(0,-1)C 、(1,1)D 、(1,-1)8、函数)10(12log )(≠>--=a a x x f a 且)(的图像恒过点( )A 、(1,0)B 、(0,-1)C 、(1,1)D 、(1,-1) 9、已知函数)10(98)3(log ≠>-+=a a x y a 且的图像恒过点A ,若点A 也在函数bx f x +=3)(的图像上,则b 的值为( )A 、0B 、0C 、0或1D 、-1 10、已知)1(log )2(log 45.045.0x x ->+,则实数x 的取值范围是11、已知)65(log )32(log 22->+x x ,则实数x 的取值范围是12、已知)2(log )43(log ->-x x a a ,则实数x 的取值范围是13、132log <a ,则a 的取值范围是 14、函数)1lg(-=x y 的图像大致是( )15、已知10≠>a a且,则函数x a y =与)(log x y a -=的图像可能是( )16、下列函数图像正确的是( )17、函数x y 2log =在[1,2]上的值域是 18、函数)1(log 22≥+=x x y 的值域是19、函数)73(1)1(log 2≤≤++=x x y 的值域是20、函数)73(1)1(log 21≤≤++=x x y 的值域是。
对数的概念知识点总结一、对数的概念1.1 对数的定义对数是指数的倒数。
设a和b是正实数,且a≠1,a的x次幂等于b,那么x叫做以a为底数的对数,记作loga b=x。
其中,a称为底数,b称为真数,x称为对数。
1.2 对数的性质(1)对数的基本性质:①对数的法则:loga (MN) = loga M + loga N。
②对数的乘积法则:loga(M/N) = loga M − loga N。
③对数的幂法则:loga (M^x) = x loga M。
④对数的换底公式:loga b = logc b / logc a。
(2)对数的特殊性:loga 1 = 0。
1.3 对数函数对数函数是以对数为自变量的函数,一般记作y = loga x。
对数函数是单调递增的,其图像是一个不断向上增长的曲线。
1.4 对数的应用对数在实际生活中有着广泛的应用,比如在科学和工程领域,对数可以用来简化和解决复杂的计算问题。
在财务和经济领域,对数可以用来描述复利和增长速度。
此外,在信息论和统计学中,对数也有着重要的应用。
二、对数的运算2.1 对数的运算规则(1)对数方程的求解:利用对数的性质和公式,可以将对数方程转化为指数方程,从而求解未知数的值。
(2)对数的应用:利用对数的特性和公式,可以将复杂的计算问题简化为更容易处理的形式,从而提高计算的效率和精度。
2.2 对数的反运算对数的反运算是指数运算,即将以a为底数的对数转化为以a为底数的指数形式,从而得到真数的值。
2.3 对数的实际应用对数在实际中有广泛的应用,比如在科学和工程领域中,对数可以用来描述复杂的物理现象和工程问题。
在金融和经济领域中,对数可以用来描述复利和增长速度。
在信息论和统计学中,对数可以用来处理大量数据和计算概率。
三、对数的性质3.1 对数的底数对数的底数一般取为10,自然对数的底数为e。
对数的底数不同,其计算和性质都有所不同。
3.2 对数的长度对数的长度是指对数所具有的位数,一般取整数部分。
高中高一数学知识点对数高中高一数学知识点:对数对数作为数学中的重要概念,是高中数学中必学的内容之一。
掌握对数的基本概念和相关的运算性质对于进一步学习数学以及应用数学都具有重要的意义。
本文将介绍对数的定义、性质和一些常见的运用。
一、对数的定义对数是指数运算的逆运算。
在给定一个底数和一个真数的情况下,对数可以表示为幂的指数。
用符号记作log_a x,其中 a 表示底数,x 表示真数。
对数的定义可以表示为以下等式:x = a^p 等价于 p = log_a x其中,x 为正数,a 为正数且不等于 1 ,p 为实数。
二、常见的对数在实际应用中,以 10 和自然对数(底数为 e)为底的对数比较常见。
分别记作 log x 和 ln x。
1. 以 10 为底的对数,常用符号为 log x。
底数为 10 的对数运算就是在数的左上角加上 log,例如 log 100 = 2,表示底数为 10,真数为 100 时的对数等于 2。
2. 自然对数,常用符号为 ln x,其中底数为e ≈ 2.718。
自然对数与以 10 为底的对数之间可以互相转换,常用的换底公式为:log x = ln x / ln 10 或者 ln x = log x / log e三、对数的性质对数具有一些重要的性质,通过这些性质我们可以进行对数的运算。
下面是对数的一些基本性质:1. 对数的乘法性质:log_a (x * y) = log_a x + log_a y这个性质表明,对数运算中的真数相乘,等价于对数运算中的底数相加。
2. 对数的除法性质:log_a (x / y) = log_a x - log_a y对数运算中的真数相除,等价于对数运算中的底数相减。
3. 对数的幂运算性质:log_a (x^m) = m * log_a x这个性质指出,对数运算中的真数进行幂运算,等价于对数运算中的指数与底数相乘。
4. 对数的换底公式:log_b x = log_a x / log_a b这个公式可以用于不同底数的对数之间的转换,方便进行计算。
对数的运算性质对数的运算性质是解决各种计算问题的基础,它是数学中的一个重要分支。
对数的运算性质包括:加法公式、减法公式、乘法公式、除法公式、幂运算、指数运算等。
下面,我们将详细介绍这些内容。
一、加法公式对数的加法公式是对数学中两个数的和进行求解的公式。
对数的加法公式是:logab + logac = loga(bc)其中,a、b、c分别代表底数、被加数、加数,bc为和。
加法公式的解释:如果幂运算a^{x}=b,那么对数运算是x=log_{a}(b)。
如果对a^{x}和a^{y}取对数,那么可以得到:x=log_{a}(b)y=log_{a}(c)将两式相加可以得到:x+y=log_{a}(b)+log_{a}(c)将b和c用求和的形式表示可以得到:a^{x+y}=a^{log_{a}{(b+c)}}移项可以得到:log_{a}(b)+log_{a}(c)=log_{a}(bc)因此上述公式就是加法公式。
二、减法公式减法公式是对数学中两个数的差进行求解的公式。
对数的减法公式是:logab - logac = loga(b/c)其中,a、b、c分别代表底数、被减数、减数,b/c为差。
减法公式的解释:如果幂运算a^{x}=b,那么对数运算是x=log_{a}(b)。
如果对a^{x}和a^{y}求差,那么可以得到:x=log_{a}(b)y=log_{a}(c)将两式相减可以得到:x-y=log_{a}\\frac{b}{c}因此,上述公式就是减法公式。
三、乘法公式乘法公式是对数学中两个数的乘积进行求解的公式。
对数的乘法公式是:logab * logac = loga(b * c)其中,a、b、c分别代表底数、被乘数、乘数,bc为积。
乘法公式的解释:如果幂运算a^{x}=b,那么对数运算是x=log_{a}(b)。
如果对a^{x}和a^{y}取对数,那么可以得到:x=log_{a}(b)y=log_{a}(c)将两式相乘可以得到:xy=(log_{a}(b))*(log_{a}(c))展开可以得到:log_{a}(b*c)=(log_{a}(b))*(log_{a}(c))因此,上述公式就是乘法公式。
对数的运算知识点总结对数的概念是建立在幂指数的基础之上的。
在代数运算中,指数表示一个数与底数的乘积。
举个例子,2的3次方表示为2^3=2×2×2=8。
对数则表示幂指数的逆运算,即给定一个底数和一个数,对数就是指明这个底数的多少次幂等于这个数。
如果a的x次幂等于b,那么记作loga(b)=x。
其中,a是底数,b是真数,x是指数。
对数的运算法则和性质有很多,接下来我们将对它们进行详细的总结和解析。
一、对数的定义和性质1. 对数的定义对数的定义是对数学中幂指数运算的逆运算。
如果a的x次幂等于b,那么记作loga(b)=x。
其中,a是底数,b是真数,x是指数。
在这个定义中,底数为a,真数为b,指数为x,x 就是对数。
对数的定义可以简单理解为求底数为a的真数b的x次幂是多少。
对数的定义也可以形式化为loga(b)=x ⇔ ax=b,即底数为a的对数b等于x等价于a的x次幂等于b。
2. 对数的性质对数有一些基本的性质,这些性质在对数的运算中有着重要的作用。
对数的性质主要有以下几点:(1)对数的底数不能为1,对数的真数不能为负数。
(2)底数为10的对数叫做常用对数,底数为自然常数e(e=2.7182)的对数叫做自然对数。
(3)对数运算的唯一性:如果loga(b)=loga(c),那么b=c。
(4)对数运算的除法性质:loga(b/c)=loga(b)-loga(c)。
(5)对数运算的乘法性质:loga(b×c)=loga(b)+loga(c)。
(6)对数运算的幂指数性质:loga(b^r)=r×loga(b)。
(7)对数运算的变底公式:loga(b)=logc(b)/logc(a)。
以上是对数的定义和性质的简要总结,接下来我们将对对数的运算方法和应用进行更详细的探讨。
二、对数的运算方法对数的运算方法主要包括对数的加法、减法、乘法、除法、幂指数等运算。
掌握这些运算方法对于解决一些复杂的对数问题有着重要的作用。
对数初中对数是数学中的一个重要概念,它在很多领域都有着广泛的应用。
在初中数学中,我们主要学习了对数的定义、性质以及对数运算等内容。
我们来了解一下对数的定义。
对数是指数运算的逆运算。
具体来说,如果a的x次方等于b,那么我们就说x是以a为底的b的对数,记作x=loga(b)。
其中,a被称为对数的底数,b被称为真数,x被称为对数。
例如,2的3次方等于8,所以3是以2为底8的对数,记作3=log2(8)。
接下来,我们来了解一下对数的性质。
对数有以下几个重要的性质:性质1:loga(mn)=loga(m)+loga(n),即两个数的乘积的对数等于它们的对数之和。
例如log2(6×8)=log2(6)+log2(8)。
性质2:loga(m/n)=loga(m)-loga(n),即两个数的商的对数等于它们的对数之差。
例如log2(8/4)=log2(8)-log2(4)。
性质3:loga(m^p)=ploga(m),即一个数的指数的对数等于指数乘以它的对数。
例如log2(7^3)=3log2(7)。
性质4:loga(a)=1,即对数的底数等于1。
例如log2(2)=1。
性质5:loga1=0,即对数的底数等于1的对数等于0。
例如log2(1)=0。
了解了对数的定义和性质后,我们可以进行一些对数运算。
对数运算是指通过已知的对数关系来求解未知的对数或真数的过程。
例如,我们已知log2(8)=x,要求x的值。
根据对数的定义,我们可以得到2的x次方等于8,即2^x=8。
通过观察,我们可以发现2的3次方等于8,所以x=3。
因此,log2(8)=3。
又如,我们已知log3(x)=2,要求x的值。
根据对数的定义,我们可以得到3的2次方等于x,即3^2=x。
通过计算,我们可以得到3的2次方等于9,所以x=9。
因此,log3(9)=2。
在解决实际问题时,对数也有着广泛的应用。
例如,在测量地震的震级时,我们使用的是以10为底的对数,即震级的计算公式为log10(E/E0),其中E表示地震波的最大振幅,E0表示参考振幅。
§2.7.2 对数的运算性质
教学目标
(一) 教学知识点
1. 对数的基本性质.
2. 对数的运算性质.
(二) 能力训练要求
1. 进一步熟悉对数的基本性质.
2. 熟练运用对数的运算性质.
3. 掌握化简,求值的技巧.
教学重点
对数运算性质的应用.
教学难点
化简,求值技巧.
教学方法
启发引导法
教学过程.
一、 复习回顾
上节课,我们学习对数的定义,由对数的定义可得:
log b a a N b N =⇔= (0a >且1a ≠,0N >)
本节课,我们将在这基础上,结合幂的运算性质,推导出对数的运算性质.
二、讲授新课
1 . 对数的基本性质
由对数的定义可得:log 10a = log 1a a = (0a >且1a ≠) 把log a b N = 代入 b a N = 可得 log a N a N =(0a >且1a ≠,0N >) 上式称为对数恒等式,通过上式可将任意正实数N 转化为以a 为底的指数 形式。
把b a N = 代入 log a b N = 可得 log b a b a = (0a >且1a ≠)
通过上式可将任意实数b 转化为以a 为底的对数形式。
例如: log 222log a a a a == (0a >且1a ≠)
2 . 对数的运算性质
接下来我们用指对数互化的思想,结合指数的运算性质来推导有关对数的运算性质。
指数的运算性质 p q p q a a a +⋅=
在上式中 设 p a M =, q a N = 则有 p q MN a +=
将指数式转化为对数式可得:
log a p M = log a q N = log a p q MN +=
∴ log log log a a a M N MN += (0M > 0N > 0a >且1a ≠)
这就是对数运算的加法法则,用语言描述为:两个同底对数相加,底不变,真数相乘。
请同学们猜想:两个同底对数相减,结果又如何
log log log a a a M M N N
-= 证明如下:∵ log log log log a a a a M M N N N N
=+- log ()log a a M N N N
=⋅- log log a a M N =-
对数运算的减法法则:两个同底对数相减,底不变,真数相除。
根据上述运算法则,多个同底对数相加,底不变,真数相乘,
即 1212log log log log a a a N a n N N N N N N +++=L L 若 12N N N N M ====L
则上式可化为 log log n a a n M M = n N +∈
若将n 的取值范围扩展为实数集R ,上式是否还会成立
下证 log log n a a n M M = (0M > 0a >且1a ≠ n R ∈)
证明:设 log a M p = 则有 p M a =
∴ n np M a =
∴ log n a M np =
即 log log n a a M n M = (0M > 0a >且1a ≠ n R ∈) 对数的乘法法则:M 的n 次方的对数会等于M 的对数的n 倍。
例如:3222log 8log 23log 23===
提问:2lg 2lg a a = 这个等式会成立吗
强调:真数为偶次幂时,必须保证等式两边的对数式有意义,即真数大于0。
3 . 例题讲解
[例1]用log a x ,log a y ,log a z 表示下列各式。
(1)log a xy z (2)log a 分析:运用对数的运算性质求解。
解:(1)log log log log log log a a a a a a xy xy z x y z z
=-=+-
(2)2log log (log log log log a a a a a a x x =-=+ 112log log log 23
a a a x y z =+- [例2]求下列各式的值。
(1)752log (42)⨯ (2)分析:运用对数的运算性质求解。
解:(1)757522222log (42)log 4log 27log 45log 272519⨯=+=+=⨯+=
(2)125
122lg100lg10lg10555==== 三、课堂练习
1.计算下列各式的值
(1)23log (279)⨯ (2)7log
(3)7lg142lg lg 7lg183
--- (4)lg 243lg 9
(5 解:(1)22333333log (279)log 27log 9log 32log 9347⨯=+=+=+=
(2)2777112log log 49log 7333
=== (3)7lg142lg lg 7lg183--- lg 2lg72lg72lg3lg72lg3lg 2=+-+---
0=
(4)52lg 243lg 35lg 35lg 9lg 32lg 32
===
(5lg511lg5==-=-
2.已知lg 2a =,103b =,求
lg12lg5。
解:依题意得:lg3b =
∴ lg12lg32lg 22b a =+=+
10lg5lg
lg10lg 212a ==-=- ∴ lg122lg 51a b a
+=- 四、课时小结
通过本节学习,大家应掌握对数运算性质的推导,并能熟练运用对数运算性质进行对数式的化简、求值。
五、课后作业
(一)课本P79 习题 4.
(二)学案P79 §。