初一数学上册的第五章知识点
- 格式:docx
- 大小:11.73 KB
- 文档页数:1
七年级上册数学第五章复习总结七年级上册数学第五章复习总结1代数初步知识1. 代数式:用运算符号+ - 连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用乘,或省略不写;(2)数与数相乘,仍应使用乘,不用乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a 应写成 a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b 时,则应分类,写做a-b和b-a .3.几个重要的代数式:(m、n表示整数)(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;(4)若b0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .七年级上册数学第五章复习总结2一、方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.四、去括号法则1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.五、解方程的一般步骤1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b).六、用方程思想解决实际问题的一般步骤1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.2. 设:设未知数(可分直接设法,间接设法)3. 列:根据题意列方程.4. 解:解出所列方程.5. 检:检验所求的解是否符合题意.6. 答:写出答案(有单位要注明答案)七年级上册数学第五章复习总结3(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类: ① 整数②分数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数 0和正整数;a0 a是正数;a0 a是负数;a≥0 a是正数或0 a是非负数;a≤ 0 ? a是负数或0 a是非正数.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 0,小数-大数 0.七年级上册数学第五章复习总结4第一章:丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
人教版初一数学知识点总结七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一.知识框架二.知识概念1.有理数:q(1)凡能写成(p,q为整数且p)形式的数,都是有理数.正整数、、负整数统称整数;正p分数、负分数统称分数;整数和分数统称有理数.注意:即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;正整数正整数正有理数整数零正分数(2)有理数的分类:①有理数零②有理数负整数负整数正分数分数负有理数负分数负分数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;的相反数还是;(2)相反数的和为a+b=0a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,的绝对值是,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;a(a)(a) a(2)绝对值可透露表现为:a(a)或a;绝对值的题目经常分类讨论;a(a)a(a)-1-5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比大,负数永远比小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:没有倒数;若a≠,那么a的倒数是1;a若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.7.有理数加法法例:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决意.11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,a即无意义.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时: (-a)n=an或(a-b)n=(b-a)n.14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和研究数轴的基础上,理解正-2-负数、相反数、绝对值的意义所在。
七年级上册第五章知识点本篇文章将针对七年级上册第五章的重要知识点进行讲解,帮助同学们更好地掌握相关知识。
一、数学知识点1、整数和分数的加法、减法在进行整数和分数的加减法时,需要注意分母相同或者化为相同分母,然后将分子相加或相减,最后约分得出最简分数。
2、代数式和计算代数式是由数字、字母及运算符号组成的式子,其中字母代表的是未知量。
在计算代数式时,需要将变量的系数与代数项相乘,然后将各项和起来。
二、物理知识点1、简单机械简单机械是指不同于电器、汽车等复杂机械的机械设备,包括杠杆、轮轴、滑轮、斜面等。
在使用简单机械时,要注意受力状态和力的平衡,以及力的功等问题。
2、温度与温度计温度是衡量物体热度高低的物理量,通常用摄氏度或华氏度表示。
温度计是一种测量温度的仪器,常用的有水银温度计和酒精温度计,需要注意使用时的单位和精度。
三、生物知识点1、细胞与细胞器生物体的基本单位是细胞,细胞内包含许多细胞器,如核、线粒体、内质网等。
生物体的机能和结构都与细胞和细胞器密切相关。
2、人类生长发育和健康人类在不同年龄阶段有着不同的生长和发育特征,需要注意合理饮食、运动和生活习惯等问题,以保持健康的身体状态。
四、化学知识点1、物质的分类与性质物质可以根据物理和化学性质的不同进行分类,如固体、液体、气体等,也可以根据元素和化合物的不同进行分类。
不同物质的性质也各有差异,如熔点、沸点、溶解度等。
2、化学反应与化学方程式化学反应是不同物质之间发生的变化,可以用化学方程式表示,其中反应物在化学反应前存在的物质,产物在反应后生成的物质,化学反应遵循质量守恒和能量守恒原则。
以上就是七年级上册第五章的重要知识点,希望同学们能够认真理解和掌握,从而在学习中取得更好的成绩。
第五章、相交线与平行线知识点归纳1.▲同一平面内不相重合的两条直线之间的位置关系为______ _ 或___ _____(要注意:是“同一平面内”)2.两条直线相交所成的四个角中,相邻的两个角叫做,特点是两个角共用一条边,另一条边互为反向延长线,性质是;相对的两个角叫做,特点是它们的两条边互为反向延长线,有一公共点。
性质是。
P3 例;P8 2题;P9 7题;P35 2(2);P35 3题3.▲两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相。
其中一条直线叫做另外一条直线的,他们的交点称为。
直线a垂直于直线b,表示为。
P34.做钝角三角形的高:最长的边上的高只要向最长边引垂线即可,另外两条边上的高过边所对的顶点向该边的延长线做垂线。
(要懂得怎么画)5.▲垂直公理:有且只有与已知直线垂直。
【注意:这里的“一点”可以是直线上,也可以是直线外】6.▲连接直线外一点与直线上各点的所有线段中,简单地说成:垂线段最短;P67.点到直线的距离:。
8.两条直线被第三条直线所截:(在两条直线的同一旁,第三条直线的同一侧),(在两条直线内部,位于第三条直线两侧),(在两条直线内部,位于第三条直线同侧)。
[选填:同位角、内错角、同旁内角] P7 例、练习19.▲平行公理:有且只有一条直线与已知直线平行。
【注意:这里的“一点”是直线外的一点】10.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
即:如果b//a,c//a,那么P17 4题11.▲平行线的判定。
【注意:由两角的关系推出两直线的关系】1),两直线平行。
2),两直线平行。
3),两直线平行。
P15 例结论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
P15 练习;P17 7题;P36 8题。
12.▲平行线的性质。
【注意:已知两直线的关系(平行)推出两角的关系】1)两直线平行,。
2)两直线平行,。
3)两直线平行,。
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容。
第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成形式的数,都是有理数。
正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类:①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。
3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数。
4。
绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;5。
有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数>0,小数-大数<0。
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1⇔a、b互为倒数;若ab=—1⇔ a、b互为负倒数.7。
有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数。
8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。
10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac 。
一、绝对值
1、定义:绝对值是一个数字离零的距离,简称“绝”,用符号,x,
表示。
2、性质:
(1),x,≥0,即所有数字都有一定的绝对值;
(2)若x≥0,则,x,=x;若x<0,则,x,=-x;
(3),x,=,-x;
(4),x+y,≤,x,+,y;
(5),xy,=,x,×,y。
二、平面直角坐标系
1、定义:平面直角坐标系是一个平面上,在被细分的单位格子中,
以双精度的方式查找和标记任意一点的坐标系统。
2、成分:由原点、X轴、Y轴以及单位格子组成。
3、坐标:坐标是指点在该坐标系中的位置。
4、坐标原点:坐标原点是坐标系中的起点,其坐标为(0,0)。
5、X轴:X轴是平面直角坐标系中的一条直线,在两坐标轴之间,其
坐标为(x,0)。
6、Y轴:Y轴是平面直角坐标系中的另一条直线,位于两坐标轴之间,其坐标为(0,y)。
7、单位格子:单位格子是平面直角坐标系中的一个单元,在一个点上两个坐标轴之间,其坐标为(x,y)。
三、数轴
1、定义:数轴是一种以零为中心,以实数范围贯穿的坐标系统。
2、特点:
(1)数轴上同时具有实数和虚数;
(2)0位于数轴的中心;
(3)具有正负对称性;。
北师大版七年级上册数学知识点总结第一章 丰富的图形世界从实物中抽象出来的各种图形,包括立体图形和平面图形。
1.生活中的立体图形知识点一:立体图形的分类圆柱柱生活中的立体图形 球 棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥 圆锥棱锥知识点二:棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
长方体和正方体都是四棱柱。
棱柱与圆柱的相同点与不同点:1、上下底面积一样2、展开侧面都是矩形3、体积公式都是sh不同点:1、棱柱底面是正多边形,而圆柱的底面是圆2、圆柱侧面为曲面,棱柱侧面为多个正方形知识点三:点、线、面、体几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
点动成线,线动成面,面动成体。
2.展开与折叠正方体的平面展开图:11种平面图形折成立体图形应注意:侧面的个数与底面图形的边数相等。
圆柱的侧面展开图是一个长方形;表面全部展开是两个圆和一个长方形;圆锥的表面全部展开图是一个扇形和一个圆;正方体表面展开图是一个长方形和两个小正方形,;长方形的展开图是一个大长方形和两个小长方形。
3.截一个几何体(1)长方体、正方体的截面是:三角形、四边形(长方形、正方形、梯形、平行四边形)、五边形、六边形。
(2)圆柱的截面是:长方形、圆(3)圆锥的截面是:三角形、四边形 。
(4)球的截面是: 圆4.从三个方向看物体的形状物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
第二章 有理数及其运算1.有理数正有理数 整数有理数 零 有理数负有理数 分数2.数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
七年级数学第五章知识点大全数学知识有三个不同于其它知识地主要特征:其一是数学知识比其它知识更清晰地使其结果具有真理性;其二是数学知识乃是获得其它正确知识地必经的第一步;其三是数学知识的获得并不依赖于其它知识。
接下来小编在这里给大家分享一些关于七年级数学第五章知识点,供大家学习和参考,希望对大家有所帮助。
七年级数学第五章知识点一:有理数知识网络:概念、定义:1、大于0的数叫做正数(positive number)。
2、在正数前面加上负号“-”的数叫做负数(negative number)。
3、整数和分数统称为有理数(rational number)。
4、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。
5、在直线上任取一个点表示数0,这个点叫做原点(origin)。
6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。
7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
8、正数大于0,0大于负数,正数大于负数。
9、两个负数,绝对值大的反而小。
10、有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
13、有理数减法法则减去一个数,等于加上这个数的相反数。
14、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值向乘。
任何数同0相乘,都得0。
15、有理数中仍然有:乘积是1的两个数互为倒数。
16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;不一定是负数,也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ 0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若1⇔ 、b 互为倒数;若-1⇔ 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律: ;(2)加法的结合律:()().9.有理数减法法则:减去一个数,等于加上这个数的相反数;即().10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:;(2)乘法的结合律:()();(3)乘法的分配律:a () .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: ()或(a )()n , 当n 为正偶数时: ()n 或 ()()n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
七年级的数学知识点必看学习从来无捷径。
每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要讲练的。
下面是小编给大家整理的一些七年级的数学知识点的学习资料,希望对大家有所帮助。
新人教版七年级数学知识第五章相交线与平行线1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。
3、两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧)内错角Z(在两条直线内部,位于第三条直线两侧)同旁内角U(在两条直线内部,位于第三条直线同侧)4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。
其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
5、垂直三要素:垂直关系,垂直记号,垂足6、垂直公理:过一点有且只有一条直线与已知直线垂直。
7、垂线段最短。
8、点到直线的距离:直线外一点到这条直线的垂线段的长度。
9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
如果b//a,c//a,那么b//c10、平行线的判定:①同位角相等,两直线平行。
②内错角相等,两直线平行。
③同旁内角互补,两直线平行。
11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
12、平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
13、平面上不相重合的两条直线之间的位置关系为_______或________14、平移:①平移前后的两个图形形状大小不变,位置改变。
②对应点的线段平行且相等。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
七年级上册数学第五章知识点归纳:丰富
的图形世界
学习是一个循序渐进的过程,也是一个不断积累不断创新的过程。
下面小编为大家整理了七年级上册数学第五章知识点归纳:丰富的图形世界,欢迎大家参考阅读!
一、图形是由点、线、面构成的,面可以分为平面和曲面,面与面相交得到线,线与线相交得到点,反过来,点动成线,线动成面,面动成体。
二、展开与折叠
1、平面图形围成几何体需满足两点:①上、下底面分别在两侧。
②长方形个数与上、下底面边数必须相等。
此类题如果考类似书上13页的,最好动手折一折。
规律:一个正n棱柱有3n条棱,n条侧棱,2n个顶点,(n+2)个面,
2个底面,n个侧面。
2、基本几何体的展开。
圆柱展开是两个圆和一个长方形(侧面)
圆锥展开是一个圆和一个扇形(侧面),展开后圆必须在弧上
正方体展开共11种1—4—1型6个
2—3—1型3个一个“探头”
2—2—2型1个楼梯形
3—3型1个两个“探头”
注意:(1)田字型与凹字型的全错。
(2)正方体展开至少剪开7条棱。
以上就是xx为大家整理的七年级上册数学第五章知识点归纳:丰富的图形世界,怎么样,大家还满意吗?希望对大家的学习有所帮助,同时也祝大家学习进步,考试顺利!
相关链接:
人教版七年级上册数学期中复习要点整理:有理数加法法则
2021学年初一上册数学期中考试知识点:正数和负数。
初一数学上册知识点总结(7篇)初一数学上册知识点总结1第一章:丰富的图形世界1、几何图形从物体中抽象出来的各种图形,包括三维图形和平面图形。
2、点、线、面、体①几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面与面的交线是一条线,可分为直线和曲线。
脸:包围身体的是脸,分为平面和曲面。
体:几何体也简称体。
②点动成线,线动成面,面动成体。
3、生活中的立体图形生活中的立体图形(按名称分)柱:①圆柱②棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……锥:①圆锥②棱锥球4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种(经常考:考试形式:展开的图形能否围成正方体;正方体对面图案)6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图:物体的三视图指的是前视图、俯视图和左视图。
前视图:从前面看到的视图称为前视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看的视图称为俯视图。
第二章:有理数及其运算1、有理数的分类①正有理数有理数{ ②零③负有理数有理数{ ①整数②分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。
任何一个有理数都可以用数轴上的一个点来表示。
4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和—1。
零没有倒数。
5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。
若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
两个相反的数的绝对值相等。
6、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
2022七年级上册第五章数学知识点七年级上册第五章数学知识点一、相交线1.邻补角与对顶角注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α ∠β=180°;反之如果∠α ∠β=180°,则∠α与∠β不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
2.垂线⑴定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
⑵垂线性质1:过一点有且只有一条直线与已知直线垂直(与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
简称:垂线段最短。
3.垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。
注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。
画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。
4.点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
应该结合图形进行记忆。
5.如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念。
分析它们的联系与区别。
⑴垂线与垂线段区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度。
联系:具有垂直于已知直线的共同特征。
(垂直的性质)⑵两点间距离与点到直线的距离区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间。
联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离。
⑶线段与距离距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同。
七年级上册知识点第五章第一节:整数的加减法整数是由自然数、0和负整数组成的数集。
在日常生活中,我们经常会涉及到整数的加减运算。
整数的加减法运算实际上就是把几个整数进行加减运算,得到一个最终的结果。
对于整数的加减法,我们需要掌握以下几个技巧:1、同号相加减:将同号整数相加减,要保留它们的符号,并把绝对值相加减。
2、异号相加减:将异号整数相加减,要取它们绝对值的和,并用绝对值较大的数的符号作为结果的符号。
3、加法的逆运算是减法,减法的逆运算是加法。
例如:-5 + 2 = -3-7 - (-3) = -44 - (-6) = 10第二节:整数的乘法整数的乘法运算实际上就是把几个整数进行相乘操作,得到一个最终的结果。
对于整数的乘法,我们需要掌握以下几个技巧:1、同号相乘积为正,异号相乘积为负。
2、0与任何整数相乘都等于0。
3、乘法的逆运算是除法,除法的逆运算是乘法。
例如:-3 × 4 = -12-5 × (-7) = 358 × (-2) × 3 = -48第三节:整数的除法整数的除法运算实际上就是将一个整数分成若干份的运算,得到一个最终的商和余数。
对于整数的除法,我们需要掌握以下几个技巧:1、正整数除以正整数,结果为正整数或正整数和0。
2、负整数除以正整数,结果为负整数或0。
3、正整数除以负整数,结果为负整数或0。
4、负整数除以负整数,结果为正整数或正整数和0。
5、整数除以0是无意义的。
例如:7 ÷ 3 = 2 (1)12 ÷ (-4) = -3-16 ÷ 4 = -4第四节:平均数的计算平均数又称平均值,是若干个数值的和与它们个数的比值。
计算平均数的公式为:平均数=总和÷个数。
例如:已知4个数的平均数为12,这4个数的总和为48,求这4个数。
解:由平均数的定义可知,这4个数的总和为48,而它们的个数为4,所以它们的平均数为48÷4=12。
初一数学上册知识点复习梳理归纳第一章丰富的图形世界、知识框架、知识概念1、几何图形从实物中抽象出来的各种图形,包括立体图形和平■面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形平■面图形:有些几何图形的各个部分都在同一平■面内,它们是平■面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平■面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、常见的几何体及其特点长方体:有8个顶点,12条棱,6个面,且各面都是长方形(正方形是特殊的长方形),正方体是特殊的长方体。
棱柱:上下两个面称为棱柱的底面,其它各面称为侧面,长方体是四棱柱。
棱锥:一个面是多边形,其余各面是有一个公共顶点的三角形。
圆柱:有上下两个底面和一个侧面(曲面),两个底面是半径相等的圆。
圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
圆锥:有一个底面和一个侧面(曲面)。
侧面展开图是扇形,底面是圆。
球:由一个面(曲面)围成的几何体4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2 )个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种6、截一个正方体:(1)用一个平■面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
注意:①、正方体只有六个面,所以截面最多有六条边,即截面边数最多的图形是六边形. ②、长方体、棱柱的截面与正方体的截面有相似之处.(2)需要记住的要点:7、从三个方向看物体的形状三个方向看:从正面看,从左面(或右面)看,从上面看看到几何体的形状图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
七年级第5章知识点七年级第5章知识点主要包括三个部分:整数的概念及其加减法、小数的概念及其运算和图形与坐标系。
一、整数的概念及其加减法整数是由正整数、0和负整数组成的有理数集合。
在数轴上,正整数在0的右侧,负整数在0的左侧。
整数的加法和减法规则如下:1.同号相加,取它们的和,符号不变;异号相加,取它们的差,符号跟大数相同。
2.加(减)一正整数相当于在数轴上向右(左)移动相应的单位长度,加(减)一负整数相当于在数轴上向左(右)移动相应的单位长度。
三、小数的概念及其运算小数是整数和分数的一种表示形式,它是有限小数或无限循环小数的形式。
小数的加减乘除规则如下:1.小数相加(减),先将小数位对齐,然后按照整数的加减法规则操作,操作后再将结果写成小数的形式。
2.小数相乘,将小数的乘数和被乘数各自去掉小数点,然后按照整数的乘法规则进行计算,最后将结果小数点向左移动乘数和被乘数的小数位数之和个位置。
3.小数相除,将小数的除数和被除数都扩大10、100、1000…等10的整数次幂的倍数,使得两者均为整数,然后按照整数的除法规则进行计算,最后将结果小数点向右移动扩大的倍数的个数。
三、图形与坐标系图形是平面内的形状,它们可以是由点、线和面构成的,如直线、三角形、正方形、长方形等。
坐标系是平面上以两条数轴为基准线建立的数学工具,其中一条代表横坐标,另一条代表纵坐标,两条基准线相互垂直,并且经过原点。
在坐标系中,每个点都可以通过一个有序数对(x,y)来确定,在数轴上,x代表与纵轴的交点的横坐标,y代表与横轴的交点的纵坐标。
在图形中,我们可以通过坐标系来确定它们的位置和大小,对于平移、翻转和旋转等操作,也可以通过坐标系中的变换来进行。
在学习中,我们可以通过多种方式来加深对图形与坐标系的理解,比如画图、判断图形位置和大小等。
总结七年级第5章知识点包括整数的概念及其加减法、小数的概念及其运算和图形与坐标系。
在学习中,我们需掌握各个知识点的规则和方法,加强练习和思维,提高数学能力。
一元一次方程第一节 一元一次方程基本概念1、方程:含 的等式..叫做方程. 2、方程的解:使方程...的等号左右两边相等....的 ,就是方程的解....。
3、解 方 程:求. 的过程叫做解方程...。
4、一元一次方程只.含有一个..未知数(元),未知数的最高次数是.....1.的整式方程叫做一元一次方程。
5、▲等式的基本性质·等式的性质1:等式的两边同时加(或减) ( ),结果仍相等。
即:如果a =b ,那么a ±c =b 。
·等式的性质2:等式的两边同时乘 ,或除以 数,结果仍相等。
即:如果a =b ,那么ac =bc ; 或 如果a =b ( ),那么a/c =b/c6、△分数的基本的性质分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:b a =bm am =mb m a ÷÷(其中m ≠0) 求解:5.03-x -2.04+x =1.6 1、若(a -1)x |a|+3=-6是关于x 的一元一次方程,则a =__;x =___。
2、当x=___时,单项式5a 2x+1b 2 与8a x+3b 2是同类项。
3、若()022=-+-y y x ,则x+y=___________ 1.若=-=+++y x x y 则,0)5(22 。
2.若31392b a b a n m n ++-与是同类项,则m= ,n= 。
3.若213y nx y mx m p +与的和为0,则m -n+3p = 。
4.代数式x+6与3(x+2)的值互为相反数,则x 的值为 。
5.若34+x 与56 互为倒数,则x= 。
6.方程5x 4x 123-+-=,去分母可变形为______。
7.代数式5m +14与5(m -14)的值互为相反数,则m 的值等于______。
8.如果x=5是方程ax+5=10-4a 的解,那么a=______9.方程434x x =-的解是x =_______.10当x = 时,代数式2+x 与代数式28x -的值相等.第二节 一元一次方程的解法【解一元一次方程的一般步骤】图示 1、上表仅说明了在解一元一次方程时经常用到的几个步骤,但并不是说解每一个方程都必须经过五个步骤;2、解方程时,一定要先认真观察方程的形式,再选择步骤和方法;3、对于形式较复杂的方程,可依据有效的数学知识将其转化或变形成我们常见的形式,再依照一般方法解。