(完整版)初一数学下册知识点
- 格式:docx
- 大小:98.35 KB
- 文档页数:34
七年级数学下知识点笔记一、大数比大小1.万以内数的比较(1)数位法:个十百千数位按从左到右依次比较,有且仅有有一位数不同,就是大的。
(2)绝对值法:将数的大小与它们的绝对值相比较,数值处于正号数靠右边的更大。
二、相反数与绝对值的概念1.相反数如果a+b=0,那么b就是a的相反数,a就是b的相反数2.绝对值-|a|=a|a|=a三、整数的加减法1.同号相加(保留符号)2.异号相减(绝对值相加,结果符号为绝对值较大的符号)3.加数和被加数的互换律和结合律四、一次函数1.函数:自变量和因变量之间的关系(输入和输出之间的关系)2.一次函数: y=kx+b (k表示斜率,b表示截距)3.斜率为正,函数图像右上升;斜率为负,函数图像左上升。
4.平行于坐标轴的直线的斜率为0或不存在。
五、图形的计算1.平移:将一个图形固定在一个点上,将这个图形沿着一个方向进行移动。
2.旋转:将一个图形固定在一个点上,将这个图形绕着这个点进行旋转。
3.对称:点、线、面的对称性概念4.比例尺:尺度所表示的两个单位之比。
六、图形的计算1.图形体积 V=Sh2.立方体 6V=a³3.正方体 S=a²,V=a³4.长方体 L×W×H七、锐角三角函数的概念1.三角函数定义:告诉我们三角形的某些角的度数和与它们所对边之间的比例关系。
2.正弦函数: sinA=BC/AC3.余弦函数: cosA=AB/AC4.正切函数: tanA=BC/AB以上便是七年级数学下知识点的笔记,需要牢记的知识点不在这里一一列举,希望大家平时多做练习,巩固掌握学过的知识点。
初一数学下册知识点归纳〔精选4篇〕篇1:初一下册数学知识点【知识点一】实数的分类1、按定义分类:2.按性质符号分类:注:0既不是正数也不是负数.【知识点二】实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.(2)几何意义:在数轴上原点的两侧,与原点间隔相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.2.绝对值|a|≥0.3.倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数.4.平方根(1)假如一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.5.立方根假如x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.【知识点三】实数与数轴数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.【知识点四】实数大小的比拟1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.3.无理数的比拟大小:【知识点五】实数的运算1.加法同号两数相加,取一样的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.2.减法:减去一个数等于加上这个数的相反数.3.乘法几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.4.除法除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.5.乘方与开方(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.(3)零指数与负指数【知识点六】有效数字和科学记数法1.有效数字:一个近似数,从左边第一个不是0的数字起,到准确到的数位为止,所有的数字,都叫做这个近似数的有效数字.2.科学记数法:把一个数用(1≤篇2:初一下册数学知识点 1.有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)其中a表示横轴,b表示纵轴。
七年级下学期数学知识点归纳大全一、整数及其运算1. 整数概念2. 自然数、零、负整数的概念3. 整数的比较及判断4. 整数的加减法、乘法、除法及其性质5. 整数的混合运算二、分数及其运算1. 分数的概念及其表示方法2. 分数的转化(真分数、假分数、带分数)3. 分数的约分和通分4. 分数的加减法及其性质5. 分数的乘法、除法及其性质6. 分数的混合运算三、小数及其运算1. 小数的概念及其表示方法2. 小数与分数的转化3. 小数的大小比较及判断4. 小数的加减法及其性质5. 小数的乘法、除法及其性质6. 小数的混合运算四、代数式及其展开1. 代数式的概念及其基本形式2. 同类项与异类项3. 代数式的加减法4. 乘法公式及其应用5. 因式分解6. 展开式及其应用五、方程及其解法1. 方程的概念及其解法2. 一元一次方程的解法3. 含有分数、小数的一元一次方程的解法4. 一元一次方程的应用5. 一元二次方程的解法及应用六、图形及其性质1. 线段、角度、平行线的概念及应用2. 三角形、四边形、平行四边形的概念及性质3. 正方形、长方形、三角形、梯形的周长和面积的计算4. 圆及其相关概念5. 圆的面积及弧长的计算七、统计及概率1. 统计调查及其应用2. 图表的制作和应用3. 平均数、中位数、众数及其计算4. 独立事件及其概率计算5. 互不独立事件及其概率计算八、函数及其应用1. 函数的概念及表示方法2. 函数的图象3. 一次函数和二次函数的图象及其性质4. 函数在实际问题中的应用综上所述,以上就是七年级下学期数学知识点的归纳大全,希望同学们能够认真学习掌握,提高自己的数学水平。
第一章:整式的运算单项式式多项式同底数幂的乘法 幂的乘方 积的乘方同底数幂的除法 零指数幂 负指数幂 整式的加减单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式 一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中全部字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包含它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1〞。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包含项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不肯定是单项式。
4、整式不肯定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后精确合并同类项。
3、几个整式相加减的一般步骤:〔1〕列出代数式:用括号把每个整式括起来,再用加减号连接。
〔2〕按去括号法则去括号。
〔3〕合并同类项。
4、代数式求值的一般步骤:〔1〕代数式化简。
〔2〕代入计算〔3〕对于某些特别的代数式,可采纳“整体代入〞进行计算。
初一数学下册知识点归纳初一数学下册的知识点主要包括了数的运算、代数式、方程、几何图形等几个方面。
下面我们将对这部分知识进行详细的介绍。
一、数的运算1.1 正数与负数正数是指大于0的数,可以用“+”号表示,例如:2、3、4等。
负数是指小于0的数,需要在前面加上“-”号,例如:-2、-3、-4等。
正数和负数是相对的概念,它们之间有一个重要的关系,就是相反数。
一个数的相反数就是在这个数前面加上负号,例如:2的相反数是-2,-3的相反数是3。
1.2 有理数有理数是指可以表示成两个整数比的数,包括整数、分数和0。
整数可以看作是分母为1的分数,例如:2可以写成2/1,-3可以写成-3/1。
分数是指分子和分母都是整数的数,例如:1/2、3/4等。
有理数可以通过数轴来表示,数轴上的点与原点的距离表示这个有理数的绝对值。
1.3 有理数的加减法有理数的加法是指将两个有理数相加,得到一个新的有理数。
同号两个数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
有理数的减法可以看作是加上相反数,即a-b=a+(-b)。
二、代数式2.1 单项式单项式是指只含有一个变量或常数的代数式,例如:3x、-5、2y^2等。
单项式的系数是这个单项式的数字因数,如果一个单项式只是字母的积,并非没有系数,系数为1或-1。
2.2 多项式多项式是指含有两个或两个以上单项式的代数式,例如:x^2+2x-1、3y^2-4y+5等。
在多项式中,每个单项式叫做多项式的项。
其中,不含字母的项叫做常数项。
一个多项式中,次数最高项的次数,叫做这个多项式的次数。
三、方程3.1 一元一次方程一元一次方程是指只含有一个未知数,且未知数的最高次数为1的方程,例如:ax+b=0。
解一元一次方程的方法有:移项、合并同类项、化简等。
3.2 二元一次方程二元一次方程是指含有两个未知数,且未知数的最高次数为1的方程,例如:ax+by=c。
七年级数学(下)重要知识点总结第一章:整式的运算一、概念1、代数式:2、单项式:由数字与字母的乘积的代数式叫做单项式。
单项式不含加减运算,分母中不含字母。
3、多项式:几个单项式的和叫做多项式。
多项式含加减运算。
4、整式:单项式和多项式统称为整式。
二、公式、法则:(1)同底数幂的乘法:a m ﹒a n =a m+n (同底,幂乘,指加)逆用: a m+n =a m ﹒a n (指加,幂乘,同底)(2)同底数幂的除法:a m ÷a n =a m-n (a ≠0)。
(同底,幂除,指减)逆用:a m-n = a m ÷a n (a ≠0)(指减,幂除,同底)(3)幂的乘方:(a m )n =a mn (底数不变,指数相乘)逆用:a mn =(a m )n(4)积的乘方:(ab )n =a n b n 推广:逆用, a n b n =(ab )n (当ab=1或-1时常逆用)(5)零指数幂:a 0=1(注意考底数范围a ≠0)。
(6)负指数幂:11()(0)p p p a a a a -==≠(底倒,指反)(7)单项式与多项式相乘:m(a+b+c)=ma+mb+mc 。
(8)多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb 。
(9)平方差公式:(a+b )(a-b)=a 2-b 2 公式特点:(有一项完全相同,另一项只有符号不同,结果=22()-相同)(不同 推广(项数变化):连用变化:(10)完全平方公式: 222222()2,()2,a b a ab b a b a ab b +=++-=-+逆用:2222222(),2().a ab b a b a ab b a b ++=+-+=-完全平方公式变形(知二求一):完全平方和公式中间项=完全平方差公式中间项=完全平方公式中间项=例如:229x +mxy+4y 是一个完全平方和公式,则m = ;是一个完全平方差公式,则m = ;是一个完全平方公式,则m = ;(11)多项式除以单项式的法则:().a b c m a m b m c m ++÷=÷+÷+÷(12)常用变形:221((n n x y x y +--2n 2n+1)=(y-x), )=-(y-x)第二章 平行线与相交线一、余角与补角1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。
初一下册数学重点知识总结归纳初一下册数学重点学问1.等式的性质(1)等式的性质性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.(2)利用等式的性质解方程利用等式的性质对方程进展变形,使方程的形式向x=a的形式转化.应用时要留意把握两关:①怎样变形;②依据哪一条,变形时只有做到步步有据,才能保证是正确的.2.一元一次方程的解定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.3.解一元一次方程(1)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,敏捷应用,各种步骤都是为使方程渐渐向x=a形式转化.(2)解一元一次方程时先视察方程的形式和特点,假设有分母一般先去分母;假设既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(3)在解类似于ax+bx=c的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程渐渐转化为ax=b的最简形式表达化归思想.将ax=b系数化为1时,要精确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要精确判定符号,a、b 同号x为正,a、b异号x为负.4.一元一次方程的应用(一)、一元一次方程解应用题的类型有:(1)探究规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=利润进价x101%);(4)工程问题(①工作量=人均效率x人数x时间;②假如一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度x时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)安排问题;(9)竞赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).(二)、利用方程解决实际问题的根本思路如下:首先审题找出题中的未知量和全部的确定量,干脆设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.列一元一次方程解应用题的五个步骤1.审:细致审题,确定确定量和未知量,找出它们之间的等量关系.2.设:设未知数(x),依据实际状况,可设干脆未知数(问什么设什么),也可设间接未知数.3.列:依据等量关系列出方程.4.解:解方程,求得未知数的值.5.答:检验未知数的值是否正确,是否符合题意,完整地写出答句.初一数学学习复习打算建议上课前,同学们可以提前预习数学课本,把课本例题中自己的不会的点都记录下来,便利大家上课的时候运用。
初一下册数学知识点总结第一章 二元一次方程1、二元一次方程的概念2、二元一次方程组的概念3、解二元一次方程组⎪⎩⎪⎨⎧程组)引入解复杂二元一次方换元法(书本上没有,加减消元法代入法.3.2.1 4、二元一次方程的实际应用⎩⎨⎧;分配类何图形的体积面积变化题型:时间路程类;几、解、验、答解题步骤:审、设、列.2.1 5、三元一次方程和三元一次方程组概念6、姐三元一次方程组:方法和解二元一次方程组的一样第二章 整式乘法1、同底数幂的乘法:n m n m n m n m x x x x x x -+=÷=⨯;2、幂的乘方:()mn nm x x =3、单项式乘单项式:11++=⨯m n n m y x y x xy ;11842++=⨯n m n m y x y x xy4、单项式乘多项式:1221)(+++=+n m n m y x y x xy y x xy5、多项式乘多项式:()()ny y mx y ny x mx x ny mx y x ∙+∙+∙+∙=++6、乘法公式:平方差公式()()()()()()2222323232)()(y x y x y x nb ma nb ma nb ma -=-+-=-+,例如 完全平方公式()()()()()b a b a b a nb ma nb ma nb ma 32232322)()(222222-∙∙+-+=-∙∙++=+例如第三章 因式分解1、因式分解的概念:把一个多项式变成若干个多项式的乘积的形式。
例如()()32652++=++x x x x ,()()b a b a b a -+=-22,()22321294-=-+a a a 2、提公因式法:()()1,248442222322++=++++=++x x xy xy y x y x c b a c b a 3、十字相乘法:能把某些二次三项式分解因式。
要务必注意各项系数的符号。
方法是:交叉相乘,水平书写。
第五章 平行线与相交线※1.互为余角和互为补角的有关概念与性质如果两个角的和为90°(或直角),那么这两个角互为余角;如果两个角的和为180°(或平角),那么这两个角互为补角;注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。
它们的主要性质:同角或等角的余角相等;同角或等角的补角相等。
对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.“互相垂直”与“垂线”的区别与联系:“互相垂直”指两条直线的位置关系;“垂线”是指其中一条直线对另一条直线的命名。
如果说两条直线“互相垂直”时,其中一条必定是另一条的“垂线”,如果一条直线是另一条直线的“垂线”,则它们必定“互相垂直”。
(2)判断以下两条直线是否垂直:①两条直线相交所成的四个角中有一个是直角;②两条直线相交所成的四个角相等;③两条直线相交,有一组邻补角相等;④两条直线相交,对顶角互补.垂线性质1:过一点有且只有一条直线与已知直线垂直.两点间线段最短.连接直线外一点与直线上各点的所有线段中,垂线段最短.直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.角的名称 特征性质 相同点 不同点 对顶角 ①两条直线相交面成的角②有一个公共顶点③没有公共边对顶角 相等 都是两直线相交而成的角,都有一个公共顶点,它们都是成对出现。
对顶角没有公共边而邻补角有一条公共边;两条直线相交时,一个有的对顶角有一个,而一个角的邻补角有两个。
邻补角 ①两条直线相交面成的角②有一个公共顶点③有一条公共边 邻补角 互补二、同位角、内错角、同旁内角如图,直线a 、b 与直线c 相交,或者说,两条直线a 、b 被第三条直线c 所截,得到八个角。
我们来研究那些没有公共顶点的两个角的关系。
∠1与∠2、∠4与∠8、∠5与∠6、∠3与∠7有什么位置关系?在截线的同旁,被截直线的同方向(同上或同下).具有这种位置关系的两个角叫做同位角。
苏教版七年级数学下册基本知识点(第七章平面图形的认识(二)相交线一、本节学习指导本节重点学习各种角的概念和对应关系。
潜意识中必须记住直角等于90°,平角等于180°,这是我们后面求角计算中的隐含条件。
本节知识在考试中覆盖面很广,但是很少单独命题,基本上都和其他几何图形结合在一起。
掌握相交线的各种特征也是后面学习几何的基础。
二、知识要点1、真理:两条直线相交,有且只有一个交点。
2、邻补角:两角共一边,另一边互为反向延长线。
邻补角互补。
【重点】概念翻译:在一条直线同一侧并且相加等于180°的两个角称为邻补角。
知识点解析:上图中/I和/2在一条直线的右侧并且/ 1+Z 2=180°,所以/I和Z2是邻补角。
/2和/3也是邻补角;但是/I和/3不在同一侧,并且相加也不是180°,所以不是邻补角。
3、对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。
对顶角相等。
【重点】概念翻译:两条直线相交形成的两个头对头的角称为对顶角。
对顶角大小相等。
概念解析:上图中,两条直线相交,形成了四个角,然后/2 和/4是对顶角,Z1和/3是对顶角。
他们大小相等。
4、垂线:当两条直线相交所成的四个角中有一个角为90°时,着两条直线相互垂直,其中一条直线叫做另一条直线的垂线。
【重点】概念解析:b------------- P ----------- a上图中直线b垂直于直线a,就说直线b是直线a的垂线,也可以说直线a是直线b的垂线。
垂线性质1:过直线外一点有且只有一条直线与已知直线垂直。
垂线性质2:直线外一点到已知直线的距离垂线段最短。
注意:两直线垂直,是互相垂直,即:若直线a垂直于直线b,则直线b垂直于直线a .垂足:两条互相垂直的直线的交点叫垂足。
垂直时,一定要用直角符号表示出来。
5、同位角:两条直线a,b被第三条直线c所截,在截线c的同旁,被截两直线a,b的同一方,我们把这种位置关系的角称为同位角,如图中的/3与/6为同位角。
概念解析:上图中/4与/5, Z3与/6, Z1与/8, Z2与/7均为同位角。
6、内错角:直线AB,CD被第三条直线EF所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置的一对角我们称之为内错角。
概念解析:上图中,角3与角5是内错角,角4与角6是内错角7、同旁内角:两条直线被第三条直线所截,在两条直线之间,并在第三条直线同旁的两个角称为同旁内角。
概念解析:上图中,角4和角5,角3和角6就是同旁内角。
三、经验之谈:这节的知识都是巧记类型,自己画图出来观察下,理解了就很好记忆。
然后和平角等于180°、直角等于90°—起灵活运用。
平行线二、知识要点1、平行线概念:在同一平面内,两条不相交的直线叫做平行线。
记做all b注意:这个定义有时候会出现在选择题中,考点在于同一平面”有些同学可能不明白同一平面”什么意思,简单的例子就是粉笔盒,他们有六个面,都朝不同的方向所以它们不在同一平面,这是高中学习的空间几何。
2、两条直线的位置关系:平行和相交。
有同学会说还有重合,在初中阶段里把重合的两条直线看成为一条直线。
【重点】平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
3、平行线的判定【重点】(1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
(2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
(3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
4、平行线的性质【重点】两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补。
扩展:1、同一平面内,垂直于同一直线的两条直线互相平行。
(平行线的传递性)例如:若a// b,b// c,则a// c2、平行线间的距离处处相等。
5、命题:判断一件事情的语句,叫做命题。
概念翻译:能够判断一件事情的对与错,真与假,是与否的语句,叫做命题。
问句,省略句,感叹句都不是命题。
命题分类:命题分为真命题与假命题,真命题指题设成立,结论也成立的命题(或说正确的命题)。
假命题指题设成立,但结论不一定或根本不成立的命题(或说错误的命题)。
逆命题:将一个命题的题设与结论互换位置之后,形成新的命题,就叫原命题的逆命题。
注:原命题是真命题,其逆命题不一定仍为真命题,同理,原命题为假命题,其逆命题也不一定为假命题。
三、经验之谈:这一节要多做平行线的证明题,单独考试这一小节的知识点基本上是运用平行线来求角。
此节最难的地方就是如何利用平行线的判定或性质来进行解析几何的初步推理。
做题过程中一定要灵活运用平行线的判定、性质、公理、推论等,然后多做思考和总结。
思考在数学科非常重要。
三角形1、由三条不在同一直线上的三条线段首尾依次相接组成的图形叫做三角形。
2、三角形的性质1)三角形的任意两边之和大于第三边(由此得三角形的两边的差一定小于第三边)2)三角形三个内角的和等于180度(在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度)(一个三角形的3个内角中最少有2个锐角)3)直角三角形的两个锐角互余4)三角形的一个外角等于与它不相邻的两个内角之和(三角形的一个外角大于任何一个与它不相邻的内角)5)等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一6)三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点7)三角形的外角和是360°8)等底等高的三角形面积相等9)三角形的任意一条中线将这个三角形分为两个面积相等的三角形。
10)三角形具有稳定性。
3、三角形的分类1)按边分①不等边三角形②等腰三角形(含等腰直角三角形、等边三角形)2)按角分①锐角三角形②直角三角形③钝角三角形(锐角三角形和钝角三角形可统称为斜三角形)4、三角形的有关定义1)三角形的高:在三角形中,从一个顶点向它的对边所在的直线作垂线,顶点和垂足间的线段叫做三角形的高线,简称为高。
三角形的三条高交于一点,这一点叫三角形的垂心。
垂心到三角形三个顶点的距离相等。
2)三角形的角平分线:三角形的一个内角的平分线与它的对边相交,这个角的顶点和交点之间的线段叫三角形的角平分线。
(也叫三角形的内角平分线。
)三角形的三条角平分线都在三角形的内部,并交于一点,这一点叫三角形的内心。
三角形的内心到三边的距离相等。
3)三角形的中线:三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
三角形的三条中线在三角形的内部,并交于一点,这一点叫三角形的重心。
每条三角形中线分得的两个三角形面积相等。
4、有关三角形边长的综合问题等腰三角形:等腰三角形有两相等的腰和一底边,题目中往往并不直接说明腰和底边,因此,解题时要分类讨论,以免丢解。
注意:根据三角形三边关系,若等腰三角形的腰长为a,则底边长x的取值范围是:0 v x < 2a ;若等腰三角形的底边为a,则腰长x的取值范围是:x > a/25、三角形的中线、角平分线和高【重点】注:1、画任意一个三角形的三条高,对于初学者来讲,有时会不太熟练,记住,要掌握好三角形的高的定义及位置情况,根据定义正确画出三角形的高。
2、要区分角的平分线和三角形角的平分线,前者是射线,后者是线段;6、三角形的稳定性三角形的三条边固定,那么三角形的形状和大小就完全确定了,这个性质叫三角形的稳定性。
除了三角形外,其它的多边形不具有稳定性,但可以通过连接对角线,把多边形转化为若干个三角形,这个多边形也就具有稳定性了。
多边形要具有稳定性,四边形要添一条对角线,五边形要添二条对角线……,n边形要添(n-3)条对角线。
三、经验之谈:要正确理解三角形的几条线段的定义,否则容易混淆。
下面总结有两点窍门,有时候用他们解题速度会快些。
1、三角形的一条中线把三角形的面积一分为二(因为“等底等高的三角形面积相等”),三角形的任意一条边与该边上的高的乘积的一半都等于这个三角形的面积,所以,有时,题目中出现了中线,或出现了高时,一定要有从面积入手来解题的意识。
多边形及其内角和一、本节学习指导牢记多边形的内角和公式(n-2)X180°多边形的外角和永远等于360°不管是几边形。
要理解正多边形的概念,后面做题中可以直接运用其中的隐含条件。
1、多边形:由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。
按照不同的标准,多边形可以分为正多边形和非正多边形、凸多边形及凹多边形等。
2、n边形内角和为(n-2)*180 °3、任意多边形的外角和为360°4、正n边形的一个外角为360°/n5、n边形具有不稳定性(n>3)二、知识要点1、多边形及其内角和、外角和(1)、概念:由不在同一直线上的一些线段首尾顺次相接组成的平面图形叫做多边形。
三角形是最简单的多边形。
注、正多边形:各个内角都相等,各条边都相等的多边形叫正多边形。
(注:边、角均相等两条件缺一不可),比如正六边形行,它的六条边都相等,六个角都相等。
②、各边都相等的多边形不一定是正多边形,例如菱形;各内角都相等的多边形不一定是正多边形,例如矩形。
正多边形必须角和边都相等。
(2)、多边形的内角和定理:n边形内角和等于:(n-2)X180°推导方法(1):由n边形的一个顶点出发,作n边形的对角线,一共可以作(n-3)条对角线,这些对角线把原来的n边形分成了(n-2)个三角形,由三角形的内角和等于180°,可得出该n 边形的内角和为:(n-2) X180°推导方法( 2):在n 边形的一边上任取一点,由这一点出发,连接n 边形的各个顶点 (与所取点相邻的两个顶点除外) ,一共可以作( n-2) 条连接线段,这些线段把原来的n 边形分成了( n-1 )个三角形,但却多出了一个平角,所以,该n边形的内角和为: ( n- 1 ) X1 80° - 1 80 =°( n-2)X180°推导方法( 3):在n 边形内任取一点,由这一点出发,连接n 边形的各个顶点,一共可以作n 条连接线段,这些线段把原来的n 边形分成了n 个三角形,但中间却多出了一个周角,所以,该n 边形的内角和为:n X80° 360 = (n-2) X80°注:①、正n边形的每一个内角都等于[(n-2) X80°/n②、多边形的内角和是180°的整倍数。
③、若多边形的边数增加n条,则它的内角和增加nX1800④、若多边形的边数扩大2倍,则它的内角和增加nX180°例:一个多边形除了一个内角外,其余内角之和为1680°,则这个多边形是 _________________ 边形,这个内角为 ________ 度。