4.8相似多边形的性质(2)
- 格式:ppt
- 大小:617.50 KB
- 文档页数:23
相似多边形及位似--知识讲解【学习目标】1、掌握相似多边形的性质及应用;2、了解图形的位似,知道位似变换是特殊的相似变换,能利用位似的方法,将一个图形放大或缩小;3、了解黄金分割值及相关运算.【要点梳理】要点一、相似多边形相似多边形的性质:(1)相似多边形的对应角相等,对应边的比相等.(2)相似多边形的周长比等于相似比.(3)相似多边形的面积比等于相似比的平方.要点诠释:用相似多边形定义判定特殊多边形的相似情况:(1)对应角都相等的两个多边形不一定相似,如:矩形;(2)对应边的比都相等的两个多边形不一定相似,如:菱形;(3)边数相同的正多边形都相似,如:正方形,正五边形.要点二、位似1.位似图形定义:如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心.2.位似图形的性质:(1)位似图形的对应点和位似中心在同一条直线上;(2) 位似图形的对应点到位似中心的距离之比等于相似比;(3)位似图形中不经过位似中心的对应线段平行.要点诠释:(1)位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.(2)位似变换中对应点的坐标变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.3.平移、轴对称、旋转和位似四种变换的异同:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的;而位似变换之后图形是放大或缩小的,是相似的.4.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接各对应点.要点诠释:位似中心可以取在多边形外、多边形内,或多边形的一边上、或顶点,下面是位似中心不同的画法.要点三、黄金分割【高清课程名称: 位似和黄金分割 高清ID 号:394501关联的位置名称(播放点名称):黄金分割及总结】定义:如图,将一条线段AB 分割成大小两条线段AP 、PB ,若小段与大段的长度之比等于大段的长度与全长之比,即ABAP AP PB =(此时线段AP 叫作线段PB 、AB 的比例中项),则P 点就是线段AB 的黄金分割点(黄金点),这种分割就叫黄金分割.要点诠释:1.黄金分割值:设AB=1,AP=x ,则BP=x -1∵ABAP AP PB = ∴11x x x =- ∴x x -=12∴618.0215≈-=x (舍负) 2.黄金三角形:顶角为36°的等腰三角形,它的底角为72°,恰好是顶角的2倍,人们称这种三角形为黄金三角形.黄金三角形性质:底角平分线将其腰黄金分割.【典型例题】类型一、相似多边形1.如图,矩形草坪长20m ,宽16m,沿草坪四周有2m宽的环形小路,小路内外边缘所形成的两个矩形相似吗?为什么?【答案与解析】因为矩形的四个角都是直角,所以关键是看矩形ABCD 与矩形EFGH 的对应边的比是否相等. 542016221616EF AB ==++=, 652420222020EH AD ==++= 而6554≠,∴EH AD EF AB ≠ ∴矩形ABCD 与矩形EFGH 的对应边的比不相等,因而它们不相似.【总结升华】两个边数相同的多边形,必须同时满足“对应边的比都相等,对应角都相等”这两个条件才能相似,缺一不可.举一反三【变式】如图,梯形ABCD 中,AD ∥BC ,E 、F 两点分别在AB 、DC 上.若AE=4,EB=6,DF=2,FC=3,且梯形AEFD 与梯形EBCF 相似,则AD 与BC 的长度比为( )A.1:2B. 2:3C. 2:5D.4:9【答案】D.2. 如图,在长为8cm 、宽为4cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( )A. 2cm 2B. 4cm 2C. 8cm 2D. 16cm 2【答案】C.A B C D E F G H【解析】长为8cm 、宽为4cm 的矩形的面积是32cm 2,留下的矩形(图中阴影部分)与原矩形相似,相似比是4:8=1:2,因而面积的比是1:4,因而留下矩形的面积是32×14=8cm 2.故选C . 【总结升华】本题考查相似多边形的性质.相似多边形面积之比等于相似比的平方.类型二、位似3. 利用位似图形的方法把五边形ABCDE 放大1.5倍.【答案与解析】即是要画一个五边形A ′B ′C ′D ′E ′,要与五边形ABCDE 相似且相似比为1.5.画法是:1.在平面上任取一点O.2.以O 为端点作射线OA 、OB 、OC 、OD 、OE.3.在射线OA 、OB 、OC 、OD 、OE 上分别取点A ′、B ′、C ′、D ′、E ′,使OA ′:OA = OB ′:OB =OC ′:OC =OD ′:OD =OE ′:OE =1.5.4.连结A ′B ′、B ′C ′、C ′D ′、D ′E ′、E ′A ′.这样:A ′B ′AB =B ′C ′BC =C ′D ′CD =D ′E ′DE =A ′E ′AE=1.5. 则五边形A ′B ′C ′D ′E ′为所求. 另外一种情况,所画五边形跟原五边形分别在位似中心的两侧.【总结升华】由本题可知,利用位似的方法,可以把一个多边形放大或缩小.4. 如图,矩形OABC 的顶点坐标分别为O (0,0),A (6,0),B (6,4),C (0,4).画出以点O 为位似中心,矩形OABC 的位似图形OA ′ B ′ C ′ ,使它的面积等于矩形OABC 面积的41,并分别写出A ′、B ′、C ′三点的坐标. AB C D E A 1 B 1 C 1D 1E 1 A B DE【答案与解析】因为矩形OA ′B ′C ′与矩形OABC 是位似图形,面积比为1:4,所以它们的位似比为1:2. 连接OB ,(1)分别取线段OA 、OB 、OC 的中点A ′、B ′、C ′,连接O A ′、A ′B ′、B ′C ′、 C ′O ,矩形OA ′B ′C ′就是所求的图形.A ′,B ′,C ′三点的坐标分别为A ′(3,0),B ′(3,2),C ′(0,2).(2)分别在线段OA ,OB ,OC 的反向延长线上截取O A ″、O B ″、O C ″,使OA ″=21OA ,OB ″=21OB ,O C ″=21OC ,连接 A ″B ″、B ″C ″,则矩形O A ″B ″C ″为所求. A ″、B ″、C ″三点的坐标分别为A ″(-3,0),B ″(-3,-2),C ″(0,-2).【总结升华】平面直角坐标系内画位似图形,若没有明确指出只画一个,一定要把两种情况都画在坐标系内,并写出两种坐标. 举一反三【高清课程名称: 位似和黄金分割 高清ID 号: 394501关联的位置名称(播放点名称):位似作图及例4】【变式】在已知三角形内求作内接正方形.【答案】作法:(1)在AB 上任取一点G ′,作G ′D ′⊥BC;(2)以G ′D ′为边,在△ABC 内作一正方形D ′E ′F ′G ′;(3)连接BF ′,延长交AC 于F ;(4)作FG∥CB,交AB 于G ,从F 、G 分别作BC 的垂线FE , GD ;∴四边形DEFG 即为所求.类型三、黄金分割5.求做黄金矩形(写出具体做题步骤)并证明.【答案与解析】 51-的矩形叫黄金矩形.(心理测试表明:黄金矩形令人赏心悦目,它给我们以协调,匀称的美感.)黄金矩形的作法如下(如图所示):第一步:作一个正方形ABCD ;第二步:分别取AD ,BC 的中点M ,N ,连接MN ;第三步:以N 为圆心,ND 长为半径画弧,交BC 的延长线于E ;第四步:过E 作EF⊥AD,交AD 的延长线于F .即矩形DCEF 为黄金矩形. 证明:在正方形ABCD 中,取2AB a =,∵ N 为BC 的中点,∴ 12NC BC a ==. G F F'B C G' A BC D EF M N在Rt DNC △中,ND ===.又∵ NE ND =,∴ 1)CE NE NC a =-=.∴ 1122CE a CD a ==). 故矩形DCEF 为黄金矩形.【总结升华】要求熟练掌握多边形相似的比例关系.会利用相似比,求未知线段的长度或比值.举一反三【变式】美是一种感觉,当人的肚脐是人的身高的黄金分割点时,人的下半身长与身高之比约为0.618,人的身段成为黄金比例,给人一种美感.某女士身高165cm ,下半身长与身高的比值是0.60,为尽可能达到匀称的效果,她应穿高跟鞋的高度大约为( )A.4cmB.5cmC.6cmD.8cm【答案】D.。
相似多边形的性质
能量储备
● 相似多边形的定义:各角分别相等、各边成比例的两个多边形叫做相似多边形. ● 相似比
(1)相似多边形对应边的比叫做相似比.
(2)相似比是有顺序的,如若正方形ABCD ∽正方形A′B′C′D′,相似比为k 1,则正方形
A′B′C′D′与正方形ABCD 的相似比为1k 1
. (3)当相似比为1时,两个相似的多边形就全等,也就是说全等是相似的特殊情况. ● 相似多边形的性质:对应角相等,对应边成比例.
通关宝典
★ 基础方法点
1:准确找出相似多边形的对应边,再利用对应边成比例可求边长.
例1:如图所示,在长为8 cm ,宽为4 cm 的长方形中,截去一个长方形,使得留下的长方形(图中阴影部分)与原长方形相似,则留下的长方形的面积是( )
A .2 cm 2
B .4 cm 2
C .8 cm 2
D .16 cm 2
解析:由题意知留下的长方形与原长方形相似.设留下的长方形的宽为x cm ,由题意得x 4
=48
,解得x =2.故S 阴影=2×4=8(cm 2). 答案:C
★★易混易误点
蓄势待发
考前攻略
考查运用相似多边形的性质求相似多边形的对应边或对应角,在中考中多以选择题或填空题的形式出现,题目难度不大.
完胜关卡。
相似多边形的性质(2)八年级数学导学案相似多边形的性质(2)当堂检测题(10分钟)姓名:得分:1、判断正误:(1分×4=4分)1)相似三角形周长的比等于对应中线的比,面积比等于对应中线的比的平方。
()2)比例尺可以看作相似图形的相似比。
()3)如果把一个三角形的三边同时扩大为原来的10倍,那么它的周长也扩大为原来的10倍。
()4)如果把一个三角形的面积扩大为原来的9倍,那么它三边的长都扩大为原来的9倍。
()2、如果两三角形对应角平分线的比为9:16,则它们的面积比为(2分)3、如果两三角形对应边的比为2:7,周长的和为180cm,则它们的周长分别为、。
(2分)4、在一张1:100的地图上,1cm2的面积表示的实际面积为 m2.(2分)5、在相似多边形的面积比为5,周长之比为m,则5÷m= (2分)6、在⊿ABC中,DE∥BC,且AD:DB=1:2,则S⊿ADE: S四边形DBCE= (2分)相似多边形的性质(2)当堂检测题(10分钟)姓名:得分:1、判断正误:(1分×4=4分)1)相似三角形周长的比等于对应中线的比,面积比等于对应中线的比的平方。
()2)比例尺可以看作相似图形的相似比。
()3)如果把一个三角形的三边同时扩大为原来的10倍,那么它的周长也扩大为原来的10倍。
()4)如果把一个三角形的面积扩大为原来的9倍,那么它三边的长都扩大为原来的9倍。
()2、如果两三角形对应角平分线的比为9:16,则它们的面积比为(2分)3、如果两三角形对应边的比为2:7,周长的和为180cm,则它们的周长分别为、。
(2分)4、在一张1:100的地图上,1cm2的面积表示的实际面积为 m2.(2分)5、在相似多边形的面积比为5,周长之比为m,则5÷m= (2分)6、在⊿ABC中,DE∥BC,且AD:DB=1:2,则S⊿ADE: S四边形DBCE= (2分)AB CD EAB CD E。
相似多边形基本知识相似多边形是数学中一个重要的概念,它在几何学和实际应用中都具有广泛的应用。
相似多边形具有相同的形状,但是大小可以不同。
在本文中,我们将介绍相似多边形的定义、性质以及如何确定相似多边形之间的关系。
一、相似多边形的定义相似多边形是具有相同形状但大小不同的多边形。
即使边长和内角都不相等,只要多边形的形状相同,就可以称它们为相似多边形。
相似多边形通过对应边的比值来确定彼此之间的关系。
例如,若多边形A和多边形B的边比为a:b,那么我们可以表示为A∼B,表示多边形A与多边形B相似。
二、相似多边形的特性相似多边形具有以下一些特性:1. 边的比例关系:相似多边形的对应边的比值相等,即A∼B,则对应边AB的比值等于a:b。
2. 角的对应关系:相似多边形的内角相等,即A∼B,则对应角的度数相等。
3. 面积的比例关系:相似多边形的面积比等于边长比的平方,即A∼B,则多边形A的面积与多边形B的面积的比等于(a/b)²。
三、判断相似多边形的条件在实际问题中,我们需要根据已知条件判断两个多边形是否相似。
常见的判断相似多边形的条件包括:1. 边比例相等:两个多边形的对应边的比值相等。
2. 角度相等:两个多边形的对应角度相等。
3. 边角关系:如果两个多边形的对应边比例相等,并且对应角度相等,那么它们是相似的。
四、相似多边形的应用相似多边形在实际应用中有着广泛的用途。
以下是一些常见的应用场景:1. 建筑设计:在建筑设计中,相似多边形可以用来计算建筑物的比例关系,从而确定合适的尺寸和比例。
2. 地图制作:在地图制作中,相似多边形可以用来表达地图上不同地区的比例关系,帮助人们更好地理解地理信息。
3. 电影特效:在电影特效中,相似多边形可以用来生成虚拟世界的模型,通过调整大小和比例来创造逼真的效果。
4. 工程测量:在工程测量中,相似多边形可以用来测量难以直接测量的物体的尺寸,通过相似性关系来推算出实际尺寸。
4.8相似三角形的性质(2) 学前准备 重点:相似多边形周长的比、面积的比与相似比的关系的理解和应用。
难点:相似多边形周长的比、面积的比与相似比的关系的推导和应用。
学习准备1. 怎样求三角形的周长和面积?2. 相似三角形有哪些性质?比例有哪些基本性质? 课中导学 阅读感知阅读课本149页想一想及上面的内容,思考下列问题:1. 在求两个相似三角形的周长比时,我们会应用研究比例的哪个基本性质?2. 求相似三角形的面积的比的基本思路是什么?3. 若△ABC ~△A ’B ’C ’,相似比为K ,那么△ABC 和△A ’B ’C ’周长 的比为 ,面积的比为 。
这个结论是否可以据推广?合作探究 探究1.相似三角形的周长的比与相似比的关系 例1. 已知,如图△ABC ~△A ’B ’C ’,探究下列问题:(1) △ABC 与△A ’B ’C ’的对应边有什么关系?(2) 若'''''',''''''C A C B B A ACBC AB k C A AC C B BC B A AB ++++===则的比值是否等于k ,试说明理由。
(3) 若四边形ABCD ~四边形A ’B ’C ’D ’,,''''''''k D C CDD A AD C B BC B A AB ==== ''''''''D C D A C B B A CDAD BC AB ++++++则的比值是否等于k ,试说明理由。
总结:相似三角形的周长的比等于相似比。
探究2。
相似三角形的面积比与相似比的关系 例2 已知,如图, △ABC ~△A ’B ’C ’,AD 、A ’D ’是△ABC 和△A ’B ’C ’的高,探究下列问题,(1) 请你写出图中的一对相似三角形(△ABC ~△A ’B ’C ’除外)(2) 相似三角形的对应高的比与相似比有什么关系,请用数学式子写出来。
相似多边形的性质相似多边形是指具有相同形状但尺寸不同的多边形。
在几何学中,相似多边形具有一些独特的性质和特征。
本文将探讨相似多边形的性质,并展示一些相关的数学应用和实际问题。
1. 相似多边形的定义相似多边形是指具有相同形状但尺寸不同的多边形。
两个多边形相似的条件是它们的对应角度相等,并且对应边的比例相等。
由此定义可知,如果两个多边形相似,它们的边长比例是相等的。
2. 相似多边形的比例关系对于相似多边形,存在着一种特殊的比例关系。
设两个相似多边形的对应边长分别为a和b,对应的面积分别为A和B。
根据相似多边形的性质,可以得出以下结论:- 边长比例:a:b = A:B- 面积比例:A:B = (a^2):(b^2)这些比例关系对于解决与相似多边形有关的数学问题非常重要。
3. 相似多边形的角度关系对于相似多边形,其对应角度是相等的。
这意味着,如果我们知道一个相似多边形的对应角度,就可以确定其他相似多边形的对应角度。
这对于计算多边形的角度和解决三角学问题非常有用。
4. 相似多边形的周长和面积由于相似多边形的边长比例相等,所以它们的周长比例也相等。
假设两个相似多边形的边长比例为m:n,那么它们的周长比例也为m:n。
同样地,由于相似多边形的面积比例为(a^2):(b^2),所以它们的面积比例也为(a^2):(b^2)。
5. 相似三角形的应用相似多边形的性质在实际问题中有着广泛的应用。
其中最常见的应用是解决相似三角形问题。
通过利用相似三角形的角度和边长关系,我们可以确定无法直接测量的距离和高度。
例如,在地理测量中,我们可以利用相似三角形的性质来测算高山的高度或者海洋的深度。
6. 相似多边形与比例的关系相似多边形的性质与比例密切相关。
相似多边形利用比例关系来描述形状的相似性,从而在数学和实际问题中提供了有用的工具和方法。
比例的概念在解决与相似多边形有关的计算问题中起着关键作用。
综上所述,相似多边形具有一些独特的性质和特征。
§4.8.2 相似多边形的性质(二)
●教学目标
(一)教学知识点
1.相似多边形的周长比,面积比与相似比的关系.
2.相似多边形的周长比,面积比在实际中的应用.
(二)能力训练要求
1.经历探索相似多边形的性质的过程,培养学生的探索能力.
2.利用相似多边形的性质解决实际问题训练学生的运用能力. (三)情感与价值观要求
1.学生通过交流、归纳,总结相似多边形的周长比、面积比与相似比的关系,体会知识迁移、温故知新的好处.
2.运用相似多边形的周长比,面积比解决实际问题,增强学生对知识的应用意识.
●教学重点
1.相似多边形的周长比、面积比与相似比关系的推导.
2.运用相似多边形的比例关系解决实际问题.
●教学难点
相似多边形周长比、面积比与相似比的关系的推导及运用.
●教学过程
Ⅰ.创设问题情境,引入新课
Ⅱ.新课讲解
1.做一做
-44
ABC
2.想一想
如果△ABC∽△A′B′C′,相似比为k,那么△ABC与△A′B′C ′的周长比和面积比分别是多少?
3.议一议
投影片(§4.8.2 B).
1)四边形
,A
似吗?
A的相似各是多少?为什
A1,△
由此可知:
相似多边形的周长比等于相似比,面积比等于相似比的平方.
4.做一做
Ⅲ.随堂练习
Ⅳ.课时小结
本节课我们重点研究了相似多边形的对应线段(高、中线、角平分线)的比,周长比都等于相似比,面积比等于相似比的平方. Ⅴ.课后作业。
相似多边形的性质与应用相似多边形是指具有相同对应角度的多边形,并且对应边的比例相等的多边形。
相似多边形在几何学中具有重要的性质和广泛的应用。
本文将探讨相似多边形的性质及其在实际问题中的应用。
一、相似多边形的性质1. 边比例性质在相似多边形中,对应边的比例是相等的。
设两个相似多边形分别为多边形ABCDEF和多边形A'B'C'D'E'F',则有:AC / A'C' = BC / B'C' = CD / C'D' = DE / D'E' = EF / E'F'2. 角度相等性质在相似多边形中,对应角度是相等的。
对于相似多边形ABCDEF 和多边形A'B'C'D'E'F',有:∠A = ∠A', ∠B = ∠B', ∠C = ∠C', ∠D = ∠D', ∠E = ∠E', ∠F = ∠F'3. 周长比例性质在相似多边形中,每条边的比例相等,则两个多边形的周长比例也相等。
设多边形ABCDEF和多边形A'B'C'D'E'F'相似,则有:周长(ABCDEF) / 周长(A'B'C'D'E'F') = AB / A'B' = BC / B'C' = CD / C'D' = DE / D'E' = EF / E'F'4. 面积比例性质在相似多边形中,对应边的比例的平方等于面积的比例。
设多边形ABCDEF和多边形A'B'C'D'E'F'相似,则有:面积(ABCDEF) / 面积(A'B'C'D'E'F') = (AB / A'B')^2 = (BC / B'C')^2 = (CD / C'D')^2 = (DE / D'E')^2 = (EF / E'F')^2二、相似多边形的应用1. 测量距离与高度通过相似多边形的性质,我们可以使用三角形的相似性来测量无法直接测量的距离或高度。
一、相似多边形判定
如果对应角相等,对应边成比例的多边形是相似多边形.
如果所有对应边成比例,那么这两个多边形相似
(1)相似多边形的对应角相等,对应边的比相等。
相似比:把相似多边形对应边的比称为相似比。
(2)相似多边形的周长比等于相似比;
(3)相似多边形的面积比等于相似比的平方。
二、相似多边形的性质:
相似多边形的性质定理1:相似多边形周长比等于相似比。
相似多边形的性质定理2:相似多边形对应对角线的比等于相似比。
相似多边形的性质定理3:相似多边形中的对应三角形相似,其相似比等于相似多边形的相似比。
相似多边形的性质定理4:相似多边形面积的比等于相似比的平方。
相似多边形的性质定理5:若相似比为1,则全等。
相似多边形的性质定理6:相似三角形的对应线段(边、高、中线、角平分线)成比例。
相似多边形的性质定理7:相似三角形的对应角相等,对应边成比例。
相似多边形的性质定理主要根据它的定义:对应角相等,对应边成比例。
三、相似多边形:
如果两个边数相同的多边形的对应角相等,对应边成比例,这两个或多个多边形叫做相似多边形,相似多边形对应边的比叫做相似比。
(或相似系数)
相似的两个多边形称为相似多边形。
两个多边形的对应边成比例、对应角相等时,它们相似。
两个边数相等的正凸多边形一定相似。
两个相似多边形的周长的比等于它们的相似比,面积的比等于相似比的平方。
四、相似三角形判定定理
1、两角对应相等,则两个三角形相似。
2、两边对应成比例,及两边夹角相等,则两个三角形相似。
3、三边对应成比例,则两个三角形相似。
相似多边形的性质与判定相似多边形是指具有相同形状但可能不同大小的多边形。
在几何学中,相似多边形具有一些独特的性质和判定条件。
本文将探讨相似多边形的性质与判定方法。
一、相似多边形的性质1. 对应角相等:如果两个多边形的对应角相等,则这两个多边形是相似的。
对应角是指两个多边形中,对应边之间的角度大小。
2. 对应边成比例:相似多边形的对应边的长度成比例。
具体而言,如果两个多边形的对应边长之比恒定,则这两个多边形是相似的。
3. 相似比例:两个相似多边形的边长比例被称为相似比例。
如果两个多边形的对应边长度比恒定,那么这个比例称为相似比例。
4. 面积比例:两个相似多边形的面积比等于它们对应边长度比的平方。
具体而言,如果两个多边形的长度比为k,面积比为k²。
二、相似多边形的判定方法1. 角-边-角判定法:如果两个多边形的两组对应角相等,并且两个多边形的一对对应边成比例,则这两个多边形是相似的。
2. 边-边-边判定法:如果两个多边形的三对对应边成比例,则这两个多边形是相似的。
3. SSS判定法:如果两个多边形的三对对应边长度比恒定,则这两个多边形是相似的。
4. AA判定法:如果两个多边形的两组对应角相等,则这两个多边形是相似的。
5. SAS判定法:如果两个多边形的一对对应边成比例,并且对应边间的夹角相等,则这两个多边形是相似的。
三、例题解析假设有一个三角形ABC,边长分别为AB=6cm,BC=9cm,AC=12cm。
现在构造一个相似三角形DEF,要求DEF的周长是ABC的周长的一半。
解题步骤如下:1. 首先,根据周长的要求,DEF的周长应为ABC的一半,即(AB+BC+AC)/2 = (DE+EF+FD)/2。
代入AB=6cm,BC=9cm,AC=12cm,得到6+9+12 = DE+EF+FD。
2. 其次,根据相似多边形的性质,我们需要找到相似比例。
由于DEF与ABC相似,我们可以设DE与AB的长度比为k,EF与BC的长度比为k,FD与AC的长度比为k。
课题:§ 4.8相似多边形的性质(2)【学习目标】掌握相似多边形的周长比,面积比与相似比的关系;相似多边形的周长比,面积比在实际中的应用. 【学习重点】运用相似多边形的比例关系解决实际问题 【学前准备】1、相似三角形的性质: 。
2.△ABC 与△A'B'C'的相似比为3:4,若BC 边上的高AD =12cm ,则B'C'边上的高A'D'=_____ 。
【师生探究,合作交流】 1、例1:已知:△ABC ∽△A ′B ′C ′,相似比为43. (1)请你写出图中所有成比例的线段.(2)△ABC 与△A ′B ′C ′的周长比是多少?你是怎么做的?(3)△ABC 的面积如何表示?△A ′B ′C ′的面积呢?△ABC 与△A ′B ′C ′的面积比是多少?2.想一想如果△ABC ∽△A ′B ′C ′,相似比为k ,那么△ABC 与△A ′B ′C ′的周长比和面积比分别是多少?3、议一议如图,四边形A 1B 1C 1D 1∽四边形A 2B 2C 2D 2.相似比为k .(1)四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2.的周长比是 ;(2)连接相应的对角线A 1C 1,A 2C 2,所得的△A 1B 1C 1与△A 2B 2C 2相似吗?为什么?△A 1C 1D 1与△A 2C 2D 2呢?如果相似,它们的相似各是多少?为什么?(3)设△A 1B 1C 1,△A 1C 1D 1,△A 2B 2C 2,△A 2C 2D 2的面积分别是,111C B A S ∆222222111,,D C A C B A D C A S S S ∆∆∆,那么222111222111,D C A D C A C B A C B A SS SS ∆∆∆∆各是多少?(4)四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2的面积比是多少? 如果把四边形换成五边形呢?那么结论又如何呢?由此可知相似多边形有以下性质:.相似多边形的 。
4.8相似多边形的性质(2)同步练习相似多边形的周长比和面积比一、请你填一填(1)若△ABC ∽△A ′B ′C ′,AB =4,BC =5,AC =6,△A ′B ′C ′的最大边长为15,那么它们的相似比是________,△A ′B ′C ′的周长是________.图4—8—1 图4—8—2(2)两个相似三角形的相似比为2∶3,它们周长的差是25,那么较大三角形的周长是________.(3)如图4—8—1,在ABCD 中,延长AB 到E ,使BE =21AB ,延长CD 到F ,使DF =DC ,EF 交BC 于G ,交AD 于H ,则△BEG 与△CFG 的面积之比是________.(4)把一个三角形改做成和它相似的三角形,如果面积缩小到原来的21倍,那么边长应缩小到原来的________倍.二、认真选一选(1)如图4—8—2,把一个矩形纸片ABCD 沿AD 和BC 的中点连线EF 对折,要使矩形AEFB与原矩形相似,则原矩形长与宽的比为( ) A.2∶1 B.3∶1 C.2∶1 D.4∶1(2)如图4—8—3,在△ABC 中,D 、E 分别是边AB 、AC 的中点,△ADE 和四边形BCED 的面积分别记为S 1、S 2,那么21S S 的值为( ) A.21 B.41 C.31 D.32图4—8—3 图4—8—4(3)如图4—8—4,在Rt △ABC 中,AD 为斜边BC 上的高,若S △CAD =3S △ABD ,则AB ∶AC 等于()A.1∶3B.1∶4C.1∶3D.1∶2(4)顺次连结三角形三边的中点,所成的三角形与原三角形对应高的比是()A.1∶4B.1∶3C.1∶2D.1∶2三、灵机一动!哇……某生活小区开辟了一块矩形绿草地,并画了甲、乙两张规划图,其比例尺分别为1∶200和1∶500,求这块矩形草地在甲、乙两张图纸上的面积比.四、用数学眼光看世界如图4—8—5,△ABC是一块锐角三角形余料,其中BC=12 cm,高AD=8 cm,现在要把它裁剪成一个正方形材料备用,使正方形的一边在BC上,其余两个顶点分别在AB、AC 上,问这个正方形材料的边长是多少?图4—8—5参考答案一、(1)2∶5 37.5 (2)75 (3)1∶16 (4)22 二、(1)C (2)C (3)C (4)D三、解:设这块矩形绿地的面积为S ,在甲、乙两张规划图上的面积分别为S 1、S 2 则S S 1=(2001)2,SS 2=(5001)2 ∴S 1=40000S ,S 2=250000S ∴S 1∶S 2=40000S ∶250000S =41∶251=25∶4 即:这块草地在甲、乙两张图上的面积比为25∶4四、解:设这个正方形材料的边长为x cm则△P AN 的边PN 上的高为(8-x ) cm∵由已知得:△APN ∽△ABC ∴BC PN =AD x -8,即12x =88x -解得:x =4.8 答:这个正方形材料的边长为4.8 cm.。