1进制转换
- 格式:ppt
- 大小:320.00 KB
- 文档页数:15
在我们接触编程知识时,总会接触有关进制转换的知识,最常见的就是10进制与二进制或十六进制之间的转换,很多时候我们总会遗忘,虽然现在也出现了很多可以直接使用的网络在线的进制转换工具,但考试中,我们就要靠自己通过公式进行运算了。
今天就跟大家分享一下有关进制转换的理论知识,大家可以通过对比从里面发现共同点,这样便于我们理解记忆。
在进行讲解之前,我们先在下面放置一个对应表,因为在理解下面转换的时候,你可以随时查看该表。
一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。
下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,(10101000)2分析:第一步,将168除以2商84余数为0。
第二步,将商84除以2,商42余数为0。
第三步,将商42除以2,商21余数为0。
第四步,将商21除以2,商10余数为1。
第五步,将商10除以2,商5余数为0。
第六步,将商5除以2,商2余数为1。
第七步,将商2除以2,商1余数为0。
第八步,将商1除以2,商0余数为1。
第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000②小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。
如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。
换句话说就是0舍1入。
读数要从前面的整数读到后面的整数,下面举例:例1:将0.125换算为二进制得出结果:将0.125换算为二进制(0.001)2分析:第一步,将0.125乘以2,得0.25则整数部分为0小数部分为0.25;第二步将小数部分0.25乘以2得0.5则整数部分为0小数部分为0.5;第三步将小数部分0.5乘以2得1.0则整数部分为1小数部分为0.0;第四步读数从第一位读起读到最后一位即为0.001。
进制转化公式进制转化是数学中一个常见的操作,用于将数字在不同进制之间进行转换。
进制是数学表示法的一种方式,不同进制对应着不同的基数。
目前常用的进制有十进制、二进制、八进制和十六进制。
在十进制中,我们使用0-9这十个数字进行计数。
例如数字456表示的意思是4乘以100加5乘以10加6乘以1。
而在二进制中,只使用0和1进行计数。
例如数字101表示的意思是1乘以4加0乘以2加1乘以1。
八进制和十六进制则使用了更多的符号表示数值,分别使用0-7和0-9以及A-F这些字符进行计数。
进制转化的公式主要根据进制的特点来进行推导,以下是一些常见的进制转化公式:1. 十进制转二进制:将十进制数不断除以2,直到商为0,然后将每一步的余数倒序排列即可得到二进制数。
2. 二进制转十进制:将二进制数从右到左,每一位乘以2的相应指数,再将结果相加即可得到十进制数。
3. 十进制转八进制:将十进制数不断除以8,直到商为0,然后将每一步的余数倒序排列即可得到八进制数。
4. 八进制转十进制:将八进制数从右到左,每一位乘以8的相应指数,再将结果相加即可得到十进制数。
5. 十进制转十六进制:将十进制数不断除以16,直到商为0,然后将每一步的余数倒序排列,并将10-15分别用A-F表示即可得到十六进制数。
6. 十六进制转十进制:将十六进制数从右到左,每一位乘以16的相应指数,再将结果相加即可得到十进制数。
通过以上公式,我们可以在不同进制之间进行转化。
进制转化不仅在数学中有着重要的应用,同时在计算机科学和信息技术领域也扮演着重要的角色。
例如,计算机内部使用二进制进行数据存储和计算,而网络通信中常使用十六进制表示数据。
掌握进制转化公式对于进行数值计算和理解计算机科学原理非常重要。
能够灵活运用进制转化公式,不仅可以提高计算效率,还能深入理解进制的含义和应用。
因此,我们需要在数学学习的过程中,仔细掌握并灵活运用进制转化公式,以便在实际应用中取得更好的成果。
一、二进制转化成其他进制1. 二进制(BINARY)——>八进制(OCTAL)例子1:将二进制数(10010)2转化成八进制数。
(10010)2=(010 010)2=(2 2)8=(22)8例子2:将二进制数(0.1010)2转化为八进制数。
(0.10101)2=(0. 101 010)2=(0. 5 2)8=(0.52)8诀窍:因为每三位二进制数对应一位八进制数,所以,以小数点为界,整数位则将二进制数从右向左每3位一隔开,不足3位的在左边用0填补即可;小数位则将二进制数从左向右每3位一隔开,不足3位的在右边用0填补即可。
2. 二进制(BINARY)——>十进制(DECIMAL)例子1:将二进制数(10010)2转化成十进制数。
(10010)2=(1x24+0x23+0x22+1x21+0x20)10=(16+0+0+2+0)10=(18) 10例子2:将二进制数(0.10101)2转化为十进制数。
(0.10101)2=(0+1x2-1+0x2-2+1x2-3+0x2-4+1x2-5)10=(0+0.5+0.25+0.125+0.0625+0.03125)10=(0.96875)10诀窍:以小数点为界,整数位从最后一位(从右向左)开始算,依次列为第0、1、2、3………n,然后将第n位的数(0或1)乘以2的n-1次方,然后相加即可得到整数位的十进制数;小数位则从左向右开始算,依次列为第1、2、3……..n,然后将第n位的数(0或1)乘以2的-n次方,然后相加即可得到小数位的十进制数(按权相加法)。
3. 二进制(BINARY)——>十六进制(HEX)例子1:将二进制数(10010)2转化成十六进制数。
(10010)2=(0001 0010)2=(1 2)16=(12) 16例子2:将二进制数(0.1010)2转化为十六进制数。
(0.10101)2=(0. 1010 1000)2=(0. A 8)16=(0.A8)16诀窍:因为每四位二进制数对应一位十六进制数,所以,以小数点为界,整数位则将二进制数从右向左每4位一隔开,不足4位的在左边用0填补即可;小数位则将二进制数从左向右每4位一隔开,不足4位的在右边用0填补即可。
进制转换方法的公式
数字的进制转换在我们的生活中是一种常见的操作,它能够帮助我们将一种进制的数字转换成另一种进制的数字。
进制转换方法的公式是用来计算和实现进制转换的数学方法。
一般来说,我们都知道有十进制,十六进制,八进制等不同类型的进制。
但是,他们之间的转换可以采用一种标准的公式来实现。
这就是进制转换方法的公式。
下面,我们就来详细介绍一下进制转换方法的公式。
首先,我们要将从一种进制转换到另一种进制的数字按照乘方的方式计算。
也就是说,如果我们要将十进制的数字转换为八进制的数字,首先要将该十进制数字以下列方式计算:乘方法: 10^2 8^1 4^1 2^0 1^0,等等。
其中每个乘方的指数都可以转换为另一种进制的数字,比如8^1就可以转换为8进制的数字。
然后,我们还可以用下列公式来实现数字从一种进制转换到另一种进制的运算,如从十进制转换为八进制:10^2 8^1 4^1 2^0 1^0 = (1 x 10 + 0 x 8 + 1 x 4 + 1 x 2 + 0 x 1) + 8^1。
可以看出, 8^1这一步是实现从十进制转换为八进制的关键,它把计算结果转换为八进制的数字。
最后,我们可以用一般的公式来转换一种进制的数字到另一种进制的数字,那就是将一种进制的数字经过乘方法计算后,再将每一个乘方的指数转换为另一种进制的数字,即可实现进制转换的操作。
总而言之,进制转换方法的公式可以帮助我们方便地将一种进制
的数字转换到另一种进制的数字。
它是一种简单而有效的方法,可以帮助我们快速地完成进制转换的计算。
1进制的转换与信息的编码知识点一、信息及其特征信息的载体和形态1.信息本身不是实体,必须通过载体才能体现,但不随载体的物理形式而变化。
2.语言、文字、声音、图像和视频等是信息的载体,也是信息的常见表现形态。
3.纸张可以承载文字和图像,磁带可以承载声音,电视可以承载语言、文字、声音、图像和视频,所以也把纸张、磁带、广播、电视、光盘、磁盘等称为信息的载体。
4.相同的信息,可以用多种不同的载体来表示和传播。
5.不存在没有载体的信息。
信息的五个特征1.载体依附性:信息的表示、传播、储存必须依附于某种载体,载体就是承载信息的事物。
2.可加工处理性:信息是可以加工和处理的。
信息也可以从一种形态转换成另一种形态。
3.传递性:信息可以脱离它所反映的事物被存储和保留和传播。
4.共享性:信息是可以传递和共享的。
信息可以被重复使用而不会像物质和能源那样产生损耗。
5.时效性二、信息的编码计算机只能识别和处理由“0”、“1”两个符号组成的数字代码。
或称计算机只能识别机器语言。
1.进位制的转换二进制:0、1进位规则:逢2进1二进制标识:B十进制:0、1、2、3、4、5、6、7、8、9进位规则:逢10进1十进制标识:D十六进制:0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F“逢十六进一”。
不同的是用A、B、C、D、E和F分别表示10、11、12、13、14和15六个数字符号。
十六进制标识:H传递、表达信息的规则:使用1个二进制位(比特)可以表示2种信息0使用2个二进制位(比特)可以表示4种信息00011011使用3个二进制位(比特)可以表示8种信息000100第1页001101010110011111用n个二进制位最多可以表示2种不同的信息例题:下列关于信息编码的说法,正确的是()。
A.4位二进制编码可以表示15种状态B.5位二进制编码可以表示31种状态C.6位二进制编码可以表示63种状态D.7位二进制编码可以表示128种状态解:因为4位二进制编码可以表示2=16种状态5位二进制编码可以表示2=32种状态6位二进制编码可以表示26=64种状态7位二进制编码可以表示2=128种状态所以,选D。
一文搞懂PLC的进制转换01什么是进位计数制数制也称计数制,是指用一组固定的符号和统一的规则来表示数值的方法。
按进位的原则进行计数的方法,称为进位计数制。
比如,在十进位计数制中,是按照“逢十进一”的原则进行计数的。
常用进位计数制:1、十进制(Decimal notation),有10个基数:0 ~~ 9 ,逢十进一;2、二进制(Binary notation),有2 个基数:0 ~~ 1 ,逢二进一;3、八进制(Octal notation),有8个基数:0 ~~ 7 ,逢八进一;4、十六进制数(Hexdecimal notation),有16个基数:0 ~~ 9,A,B,C,D,E,F (A=10,B=11,C=12,D=13,E=14,F=15) ,逢十六进一。
02进位计数制的基数与位权"基数"和"位权"是进位计数制的两个要素。
1、基数:所谓基数,就是进位计数制的每位数上可能有的数码的个数。
例如,十进制数每位上的数码,有"0"、"1"、"3",…,"9"十个数码,所以基数为10。
2、位权:所谓位权,是指一个数值的每一位上的数字的权值的大小。
例如十进制数4567从低位到高位的位权分别为100、101、102、103。
因为:4567=4x103+5x 102+6x 101 +7x1003、数的位权表示:任何一种数制的数都可以表示成按位权展开的多项式之和。
比如:十进制数的435.05可表示为:435.05=4x102+3x 101+5x100+0x10-1 +5x 10-2位权表示法的特点是:每一项=某位上的数字X基数的若干幂次;而幂次的大小由该数字所在的位置决定。
03二进制数计算机中为何采用二进制:二进制运算简单、电路简单可靠、逻辑性强。
1、定义:按“逢二进一”的原则进行计数,称为二进制数,即每位上计满2 时向高位进一。