三相桥式整流电路的matlab仿真
- 格式:docx
- 大小:506.00 KB
- 文档页数:12
三相桥式全控整流电路matlab仿真总结三相桥式全控整流电路是一种常用于工业领域的电力电子装置,它可实现对高压交流电进行整流,将其转化为直流电供给负载。
在本文中,我们将使用MATLAB 软件进行仿真分析,并一步一步解答相关问题。
【第一步:建立电路模型】首先,我们需要建立三相桥式全控整流电路的模型。
在MATLAB中,我们可以使用Simulink来进行电路建模。
打开Simulink界面,选择建立一个新的模型文件。
然后,选择信号源模块,设置输入电压的参数,例如频率、幅值等。
接下来,选择桥式全控整流电路模块,设置电路的参数,如电阻、电感、电容等。
最后,建立一个输出信号的示波器,以便观察电路中各节点的电压和电流波形。
【第二步:参数设置】在进行仿真前,我们需要设置电路的参数。
在三相桥式全控整流电路中,常见的参数有:输入电压的频率和幅值、电压和电流传感器的增益、电阻和电容的数值等。
根据实际需求,选择合适的数值进行设置。
【第三步:电路仿真】设置好电路的参数后,我们可以开始进行仿真分析了。
在Simulink界面,点击“运行”按钮,MATLAB将根据设置的参数自动进行仿真计算,得到电路中各节点的电压和电流波形。
同时,仿真过程中,Simulink还会显示实时的仿真结果,以便我们观察电路的动态特性。
【第四步:结果分析】得到仿真结果后,我们可以进行结果分析。
首先,观察电路中各节点的电压波形,了解电路的工作状态和稳定性。
然后,计算电路中的电流波形,分析电路的功率损耗和能效等指标。
最后,将仿真结果与实际应用需求进行对比,评估电路的性能和可靠性。
【第五步:参数优化】在分析结果的基础上,我们可以对电路的参数进行优化。
通过调节电路的电阻、电容等参数,以达到更好的性能指标。
在MATLAB中,我们可以使用优化算法进行参数优化,例如粒子群算法、遗传算法等。
经过优化后,再次进行仿真验证,评估优化效果。
综上所述,通过MATLAB软件进行仿真分析,可以快速、准确地评估三相桥式全控整流电路的性能指标。
基于Matlab/Simulink的三相桥式全控整流电路的建模与仿真摘要本文在对三相桥式全控整流电路理论分析的基础上,建立了基于Simulink的三相桥式全控整流电路的仿真模型,并对其带电阻负载时的工作情况进行了仿真分析与研究。
通过仿真分析也验证了本文所建模型的正确性。
关键词Simulink建模仿真三相桥式全控整流对于三相对称电源系统而言,单相可控整流电路为不对称负载,可影响电源三相负载的平衡性和系统的对称性。
故在负载容量较大的场合,通常采用三相或多相整流电路。
三相或多相电源可控整流电路是三相电源系统的对称负载,输出整流电压的脉动小、控制响应快,因此被广泛应用于众多工业场合。
本文在Simulink仿真环境下,运用PowerSystemBlockset的各种元件模型建立三相桥式全控整流电路的仿真模型,并对其进行仿真研究。
一、三相桥式全控整流电路的工作原理三相桥式全控整流原理电路结构如图1所示。
三相桥式全控整流电路是应用最广泛的整流电路,完整的三相桥式整流电路由整流变压器、6个桥式连接的晶闸管、负载、触发器和同步环节组成(见图1-1)。
6个晶闸管以次相隔60度触发,将电源交流电整流为直流电。
三相桥式整流电路必须采用双脉冲触发或宽脉冲触发方式,以保证在每一瞬时都有两个晶闸管同时导通(上桥臂和下桥臂各一个)。
整流变压器采用三角形/星形联结是为了减少3的整倍次谐波电流对电源的影响。
元件的有序控制,即共阴极组中与a、b、c三相电源相接的三个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的三个晶闸管分别为VT、VT。
它们可构成电源系统对负载供电的6条整流回路,各整流回路的交流电源电压为两元件所在的相间的线电压。
图1-1 三相桥式全控整流原理电路二、基于Simulink三相桥式全控整流电路的建模三相桥式全控整流电路在Simulink环境下,运用PowerSystemBlockset的各种元件模型建立了三相桥式全控整流电路的仿真模型,仿真结构如图2-1所示:图2-1 三相桥式全控整流电路的仿真模型在模型的整流变压器和整流桥之间接入一个三相电压-电流测量单元V-I是为了观测方便。
目录摘要- 1 -Abstract- 2 -第一章引言- 3 -1.1 设计背景- 3 -1.2 设计任务- 3 -第二章方案选择论证- 5 -2.1方案分析- 5 -2.2方案选择- 5 -第三章电路设计- 6 -3.1 主电路原理分析- 6 -第四章仿真分析- 7 -4.1 建立仿真模型- 7 -4.2仿真参数的设置- 8 -4.3 仿真结果及波形分析- 9 -第五章设计总结- 22 -致谢- 23 -参考文献- 23 -摘要目前,各类电力电子变换器的输入整流电路输入功率级一般采用不可控整流或相控整流电路。
这类整流电路结构简单,控制技术成熟,但交流侧输入功率因数低,并向电网注入大量的谐波电流。
据估计,在发达国家有60%的电能经过变换后才使用,而这个数字在本世纪初达到95%。
电力电子技术在电力系统中有着非常广泛的应用。
据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。
电力系统在通向现代化的进程中,电力电子技术是关键技术之一。
可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。
随着社会生产和科学技术的发展,整流电路在自动控制系统、测量系统和发电机励磁系统等领域的应用日益广泛。
Matlab提供的可视化仿真工具Simulink 可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。
本文利用Simulink对三相桥式全控整流电路进行建模,对不同控制角、桥故障情况下进行了仿真分析,既进一步加深了三相桥式全控整流电路的理论,同时也为现代电力电子实验教学奠定良好的实验基础。
此次课程设计要求设计晶闸管三相桥式可控整流电路,与三相半波整流电路相比,三相桥式整流电路的电源利用率更高,应用更为广泛。
关键词:电力电子晶闸管simulink 三相桥式整流电路AbstractAt present, all kinds of power electronic converter input rectifier circuit input power level generally use the uncontrolled rectifier or phase controlled rectifier circuit. This kind of rectifier circuit is simple in structure, control technology is mature, but the AC input power factor is low, and the harmonic currents injected a lot to the power grid. According to estimates, in developed countries 60% of the electric energy transformed before use, and this figure reached 95% at the beginning of the century.Power electronic technology has been widely used in electric power system. According to estimates, the developed countries in the end users to use electricity, with more than 60% of the electricity at least after more than once in power electronic converter device. Power system in the modernization process, the power electronic technology is one of the key technologies. It is no exaggeration to say that, if you leave the power electronic technology, power system modernization is unthinkable.With the development of social production and scientific technology, application of rectifier circuit in the field of automatic control system, the measuring system and the generator excitation system is more and more widely. Matlab provides a visual simulation tool Simulink can directly establish circuit simulation model, changing the simulation parameters, and can immediately get the simulation results of arbitrary, intuitive, further saves the programming steps. In this paper, Simulink is used to model the three-phase full-bridge controlled rectifier circuit, the different control angle, bridge fault conditions are simulated and analyzed, which deepens the three-phase full-bridge controlled rectifier circuit theory, it also examines the foundations for modern power electronic experimental teaching lay a good solid.The curriculum design for the design of thyristor three-phase bridge controlled rectifier circuit, compared with three phase half wave rectifier circuit, the power of three-phase bridge rectifier circuit utilization rate higher, more extensive application.Key words: electronic power thyristor Simulink three-phase bridge rectifier circuit第一章引言1.1 设计背景在电力、冶金、交通运输、矿业等行业,电力电子器件通常被用于电机变频调速、大功率设备驱动的关键流程之中,由于电力电子器件故障往往是致命性的、不可恢复的,常导致设备的损毁、生产的中断,造成重大经济损失。
实验报告课程名称:电力电子技术实验项目:三相桥式全控整流电路matlab仿真专业班级:自动化1202班姓名:梁卜川学号:120302206实验时间:2014. 12.30比阅时间:亠•实验目的:1.熟悉Matlab仿真软件和Simulink模块库。
2.掌握三相桥式全控整流电路的工作原理、工作情况和工作波形二•实验原理(或设计方案):三相桥式全控整流电路三•实验步骤:三相桥式全控整流电路(1)建立仿真模型* f* E9 ■(2)设置模块参数1)电源参数设置:电压设置为380V,频率设为50Hz。
要注意初相角的设置,a 相的电压源设为0, b相的电压源设为-120, c相的电压源设为-240。
2)负载参数设置:电阻负载:电阻设为5Q,电感为0,电容无穷大inf。
阻感负载:电阻负载:电阻设为45Q,电感为1H,电容无穷大inf。
3)6-脉冲发生器:频率50Hz,脉冲宽度取10 °选择双脉冲触发方式4)三相晶闸管整流器参数设置如下图电阻负载参数设置:阻感负载参数设置:四.实验记录1.三相桥式全控整流电路电阻负载(1)电阻负载302.三相桥式全控整流电路阻感负载(1)阻感负载30°5.实验总结:由于这是第一次接触MATLAB仿真软件,在使用过程中遇到了较多的困难,例如起初存在着找不到器件或器件参数设置有问题的情况,而且发现所使用的MATLAB软件与实验指导书所使用的版本不同,这也造成了不少麻烦。
但通过参考指导书的内容,上网搜索资料以及同学之间的互相交流,最终较圆满的完成了仿真任务,学会了初步使用MATLAB仿真软件的基本操作步骤,更认识到了MATLAB仿真软件的重要性,希望今后里能够更多接触MATLAB仿真,做到熟练使用仿真软件。
用simulink对三相桥式全控整流电路进行仿真研究姓名:刘佰兰学校:中山大学学号:09382014 专业:自动化摘要:三相桥式全控整流电路在现代电力电子技术中具有很重要的作用和很广泛的应用。
这里结合全控整流电路理论基础,采用Matlab的仿真工具Simulink对三相桥式全控整流电路的进行仿真,对输出参数进行仿真及验证,进一步了解三相桥式全控整流电路的工作原理。
关键词:simulink 三相桥式全控整流仿真一、研究背景随着社会生产和科学技术的发展,整流电路在自动控制系统、测量系统和发电机励磁系统等领域的应用日益广泛。
常用的三相整流电路有三相桥式不可控整流电路、三相桥式半控整流电路和三相桥式全控整流电路。
三相全控整流电路的整流负载容量较大,输出直流电压脉动较小,是目前应用最为广泛的整流电路。
它是由半波整流电路发展而来的。
由一组共阴极的三相半波可控整流电路和一组共阳极接法的晶闸管串联而成。
六个晶闸管分别由按一定规律的脉冲触发导通,来实现对三相交流电的整流,当改变晶闸管的触发角时,相应的输出电压平均值也会改变,从而得到不同的输出。
由于整流电路涉及到交流信号、直流信号以及触发信号,同时包含晶闸管、电容、电感、电阻等多种元件,采用常规电路分析方法显得相当繁琐,高压情况下实验也难顺利进行。
Matlab提供的可视化仿真工具Simulink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。
本文利用Simulink对三相桥式全控整流电路进行建模,对不同控制角、桥故障情况下进行了仿真分析,既进一步加深了三相桥式全控整流电路的理论,同时也为现代电力电子实验教学奠定良好的实验基础。
二、三相桥式全控整流电路工作原理1.三相桥式全控整流电路特性分析图1是电路接线图。
三相桥式全控整流电路图是应用最为广泛的整流电路,其电路图如下:图1在三相桥式全控整流电路中,对共阴极组和共阳极组是同时进行控制的,控制角都是α。
三相桥式全控整流电路的M a t l a b仿真及其故障分析三相桥式全控整流电路的MATLAB仿真及其故障分析摘要:设计一种以三相桥式全控整流电路的MATLAB仿真及其故障分析。
以三相桥式全控整流电路为分析对象,利用Matlab/Simulink环境下的SimPowerSystems仿真采集功率器件在开路时的各种波形,根据输出波形分析整流器件发生故障的种类,判断故障发生类型,确定发生故障的晶闸管,实现进一步故障诊断。
运用matlab中的电气系统库可以快速完成对三相整流电路故障仿真,通过分析可以对故障类型给予初步判断,对电力电子设备的开发、运用以及维修有极大的现实意义。
关键词:Matlab;三相整流桥;电力电子故障Matlab Simulation and Trouble Analysis of the Three-Phase Full-Bridge Controlled RectifierZhang lu-xiaCollege of Physics& Electronic Information Electrical Engineering &Automation No: 060544076Tutor: Wu yanAbstract: the article introduces a design of Matlab Simulation and Trouble Analysis of the Three-Phase Full-Bridge Controlled Rectifier. using the three-phase full-bridge controlled rectifier circuit for analysis, the output waveform in each kind of fault can be simulated through the circuit with the SimPower Systems under the Matlab/Simulink surroundings, for sure the SCR of having troubles in order to fulfill further trouble diagnoses. it can finish Matlab Simulation ahout electrical system1quickly and fulfill further trouble diagnoses. it will play an important role in the field of electric power & electron on equipment exploration and maintenance..key words: Matlab; three-phase rectifier bridge; power electronics trouble目录1 引言 (3)2 三相全控整流电路 (4)2.1 整流器件 (4)2.2 整流原理 (4)2.2.1 触发脉冲 (5)2.2.2 带电阻负载时的工作情况 (6)2.2.3 带阻感负载时的工作情况 (8)3 三相桥式全控整流电路仿真建模 (10)3.1 仿真模块 (10)3.1.1 交流电压源模块 (10)3.1.2 选择开关 (10)3.1.3 晶闸管的仿真模型 (11)3.1.4 同步6脉冲触发器的仿真模型 (12)3.1.5 常数模块参数的设置 (13)3.1.6 通用桥设置 (13)3.1.7 显示模块 (14)3.2 三相全控整流电路的matlab仿真 (14)3.2.1 带电阻负载的仿真 (14)3.2.2 阻感负载的仿真 (16)4 故障分析 (17)5 结束语 (18)1 引言在电力、冶金、交通运输、矿业等行业,电力电子器件通常被用于电机变频调速、大功率设备驱动的关键流程之中,由于电力电子器件故障往往是致命性的、不可恢复的,常导致设备的损毁、生产的中断,造成重大经济损失。
中北大学朔州校区电力电子技术课程设计说明书电气工程及其自动::三相桥式全控整流电路的设计与仿真(阻感负载牛慧1227034136组长姓名李学学号组员姓名:1227034138 范铮学号组员姓名:1227034139 组员姓名:崔少东学号1227034129 学号王新嘉组员姓名:1227034144 学号组员姓名:张艺1227034153学号于亮组员姓名:日年 2015 14 月 1- 0 -1. 概述 (1)1.1 设计目的 (1)1.2 设计目标及设计要求 (1)1.3 设计进度 (1)1.4 分工 (1)2. 系统方案及主电路设计 (2)2.1方案的选择 (2)2.2 系统流程框图 (2)2.3 主电路设计 (3)3.控制、驱动电路设计 (6)3.1触发电路简介 (6)3.2触发电力设计要求 (7)3.3过电压保护 (8)3.4过电流保护 (10)4.系统MATLAB仿真 (12)4.1MATLAB软件介绍 (12)4.2系统建模与参数设置 (12)4.3系统仿真结果及分析 (19)5.设计体会 (12)6.参考文献 (120)- 0 -1. 概述1.1 设计目的三相桥式全控整流电路在现代电力电子技术中具有很重要的作用和很广泛的应用。
这里结合全控整流电路理论基础,采用Matlab的仿真工具Simulink对三相桥式全控整流电路进行仿真,对输出参数进行仿真及验证,进一步了解三相桥式全控整流电路的工作原理。
1.2 设计目标及要求设计要求2.1设计任务设计一个三相可控整流电路使其输入电压:(1)三相交流380伏、频率为50赫兹、(2)输出功率2KW、负载为阻感性负载。
(3)移相范围:0°~ 90°2.2 设计要求(1)设计出总体结构框图,以说明本课题由哪些相对独立的部分组成,并以文字对原理作辅助说明;(2)设计各个部分的电路图,并加上原理说明;(3)MATLAB仿真实验。
1.3 设计进度(1) 1月14日—1月15日对实验进行理论分析、论证;(2) 1月15日—1月16日进行主电路、触发电路、保护电路的设计及理论分析;(3) 1月19日—1月21日用MATLAB软件对实验进行建模仿真并对仿真结果进行分析;(4) 1月22日—1月23日对本次实验进行分析总结,分享实验心得体会。
目录摘要 (2)Abstract (3)第一章引言 (4)1.1 设计背景 (4)1.2 设计任务 (4)第二章方案选择论证 (6)2.1方案分析 (6)2.2方案选择 (6)第三章电路设计 (7)3.1 主电路原理分析 (7)第四章仿真分析 (9)4.1 建立仿真模型 (9)4.2仿真参数的设置 (10)4.3 仿真结果及波形分析 (11)第五章设计总结 (26)致 (27)参考文献 (28)摘要目前,各类电力电子变换器的输入整流电路输入功率级一般采用不可控整流或相控整流电路。
这类整流电路结构简单,控制技术成熟,但交流侧输入功率因数低,并向电网注入大量的谐波电流。
据估计,在发达国家有60%的电能经过变换后才使用,而这个数字在本世纪初达到95%。
电力电子技术在电力系统中有着非常广泛的应用。
据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。
电力系统在通向现代化的进程中,电力电子技术是关键技术之一。
可以毫不夸地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。
随着社会生产和科学技术的发展,整流电路在自动控制系统、测量系统和发电机励磁系统等领域的应用日益广泛。
Matlab提供的可视化仿真工具Simulink 可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。
本文利用Simulink对三相桥式全控整流电路进行建模,对不同控制角、桥故障情况下进行了仿真分析,既进一步加深了三相桥式全控整流电路的理论,同时也为现代电力电子实验教学奠定良好的实验基础。
此次课程设计要求设计晶闸管三相桥式可控整流电路,与三相半波整流电路相比,三相桥式整流电路的电源利用率更高,应用更为广泛。
关键词:电力电子晶闸管simulink 三相桥式整流电路AbstractAt present, all kinds of power electronic converter input rectifier circuit input power level generally use the uncontrolled rectifier or phase controlled rectifier circuit. This kind of rectifier circuit is simple in structure, control technology is mature, but the AC input power factor is low, and the harmonic currents injected a lot to the power grid. According to estimates, in developed countries 60% of the electric energy transformed before use, and this figure reached 95% at the beginning of the century.Power electronic technology has been widely used in electric power system. According to estimates, the developed countries in the end users to use electricity, with more than 60% of the electricity at least after more than once in power electronic converter device. Power system in the modernization process, the power electronic technology is one of the key technologies. It is no exaggeration to say that, if you leave the power electronic technology, power system modernization isunthinkable.With the development of social production and scientific technology, application of rectifier circuit in the field of automatic control system, the measuring system and the generator excitation system is more and more widely. Matlab provides a visual simulation tool Simulink can directly establish circuit simulation model, changing the simulation parameters, and can immediately get the simulation results of arbitrary, intuitive, further saves the programming steps. In this paper, Simulink is used to model the three-phase full-bridge controlled rectifier circuit, the different control angle, bridge fault conditions are simulated and analyzed, which deepens the three-phase full-bridge controlled rectifier circuit theory, it also examines the foundations for modern power electronic experimental teaching lay a good solid.The curriculum design for the design of thyristor three-phase bridge controlled rectifier circuit, compared with three phase half wave rectifier circuit, the power of three-phase bridge rectifier circuit utilization rate higher, more extensive application.Key words: electronic power thyristor Simulink three-phase bridge rectifier circuit第一章引言1.1 设计背景在电力、冶金、交通运输、矿业等行业,电力电子器件通常被用于电机变频调速、大功率设备驱动的关键流程之中,由于电力电子器件故障往往是致命性的、不可恢复的,常导致设备的损毁、生产的中断,造成重大经济损失。
中北大学朔州校区电力电子技术课程设计说明书2015 年 1月 14 日1. 概述 (1)1.1 设计目的 (1)1.2 设计目标及设计要求 (1)1.3 设计进度 (1)1.4 分工 (1)2. 系统方案及主电路设计 (2)2.1方案的选择 (2)2.2 系统流程框图 (2)2.3 主电路设计 (3)3.控制、驱动电路设计 (6)3.1触发电路简介 (6)3.2触发电力设计要求 (7)3.3过电压保护 (8)3.4过电流保护 (10)4.系统MATLAB仿真 (12)4.1MATLAB软件介绍 (12)4.2系统建模与参数设置 (12)4.3系统仿真结果及分析 (19)5.设计体会 (12)6.参考文献 (120)1. 概述1.1 设计目的三相桥式全控整流电路在现代电力电子技术中具有很重要的作用和很广泛的应用。
这里结合全控整流电路理论基础,采用Matlab的仿真工具Simulink对三相桥式全控整流电路进行仿真,对输出参数进行仿真及验证,进一步了解三相桥式全控整流电路的工作原理。
1.2 设计目标及要求设计要求2.1设计任务设计一个三相可控整流电路使其输入电压:(1)三相交流380伏、频率为50赫兹、(2)输出功率2KW、负载为阻感性负载。
(3)移相范围:0°~ 90°2.2 设计要求(1)设计出总体结构框图,以说明本课题由哪些相对独立的部分组成,并以文字对原理作辅助说明;(2)设计各个部分的电路图,并加上原理说明;(3)MATLAB仿真实验。
1.3 设计进度(1) 1月14日—1月15日对实验进行理论分析、论证;(2) 1月15日—1月16日进行主电路、触发电路、保护电路的设计及理论分析;(3) 1月19日—1月21日用MATLAB软件对实验进行建模仿真并对仿真结果进行分析;(4) 1月22日—1月23日对本次实验进行分析总结,分享实验心得体会。
1.4 分工(1)系统方案选择及主电路设计:范铮、张艺;(2)控制、驱动电路设计:崔少东、于亮;(3)系统MATLAB仿真:家登辉、李昂、王新嘉。
基于三相桥式全控整流电路Matlab仿真实验报告 13351040 施定邦一、电路仿真原理及仿真电路图:图1图21、带电阻负载时当a≤60°时,电压波形均连续,对于电阻负载,电流波形与电压波形形状相同,也连续。
当a>60°时,电压波形每60°中的后一部分为零,电压波形因为晶闸管不能反向导通而不出现负值。
分析可知α角的移相范围是0°--120°。
2、带阻感负载时a≤60°时,电压波形连续,输出整流电压电压波形和晶闸管承受的电压波形与带电阻负载时十分相似,但得到的负载电流波形却有差异。
电容的容值越大电流波形就越平缓,近于水平直线。
a >60°时,电压波形则出现负值,是因为环流的作用使得电压反向。
分析可知α角的移相范围是0°--90°。
二、仿真过程与结果:设置三个交流电压源Va,Vb,Vc相位差均为120°,得到桥式全控的三相电源。
6个信号发生器产生整流电路的触发脉冲,六个晶闸管的脉冲按VT1-VT2-VT3-VT4-VT5-VT6的顺序依次给出,相位差依次为60°。
设置电源频率为50Hz:三、仿真结果1、带电阻负载:R=100Ω,无电容(1)α=0°时各波形如下:(2)α=30°各波形如下:(3)α=60°各波形如下:(4)α=90°各波形如下:2、带阻感负载:R=100Ω,H=1H (1)α=0°各波形如下:(2)α=30°各波形如下:(3)α=60°各波形如下:(4)α=90°各波形如下:(可以看到,和理论符合得很好,说明各参数设置合理,电路的工作状态接近于理想情况)实验总结:通过此次仿真实验,让自己对相关电路工作原理了解得更加详细和印象深刻,反正就是熟能生巧,然后多动手操作设置各种参数组合观察实验结果以得到比较理想的波形。
目录摘要....................................................................................... - 2 - Abstract .................................................................................. - 3 - 第一章引言 .......................................................................... - 4 - 1.1 设计背景....................................................................... - 4 - 1.2 设计任务....................................................................... - 4 - 第二章方案选择论证 .......................................................... - 6 - 2.1方案分析........................................................................ - 6 - 2.2方案选择........................................................................ - 6 - 第三章电路设计 ................................................................ - 7 - 3.1 主电路原理分析............................................................ - 7 - 第四章仿真分析 ................................................................ - 9 - 4.1 建立仿真模型 ............................................................... - 9 - 4.2仿真参数的设置 .......................................................... - 10 - 4.3 仿真结果及波形分析................................................... - 11 - 第五章设计总结 ................................................................ - 26 - 致谢................................................................................. - 27 - 参考文献............................................................................... - 28 -摘要目前,各类电力电子变换器的输入整流电路输入功率级一般采用不可控整流或相控整流电路。
三相桥式整流及有源逆变电路的MATLAB 仿真5.1 三相桥式整流及有源逆变电路的原理和仿真模型5.1.1 三相桥式整流及有源逆变电路的原理实验线路如图5-1及图5-2所示。
主电路由三相全控整流电路及作为逆变直流电源的三相不控整流电路组成,触发电路为DJKO2-1中的集成触发电路,由KCO4、KC4l 、KC42等集成芯片组成,可输出经高频调制后的双窄脉冲链。
集成触发电路的原理可参考有关内容,三相桥式整流及逆变电路的工作原理可参见电力电子技术教材的有关内容。
图中的R 用D42三相可调电阻,将两个900Ω接成并联形式;电感Ld 在DJK02面板上,选用700mH ,直流电压、电流表由DJK02获得。
在三相桥式有源逆变电路中,电阻、电感与整流的一致,而三相不控整流及心式变压器均在DJK10挂件上,其中心式变压器用作升压R图5-1 三相桥式全控整流电路实验原理图R图5-2 三相桥式有源逆变电路实验原理图变压器,逆变输出的电压接心式变压器的中压端Am 、Bm 、Cm,返回电网的电压从高压端A 、B 、C 输出,变压器接成Y/Y 接法。
当整流负载容量较大,或要求直流电压脉动较小时,应采用三相整流电路。
其交流侧由三相电源供电。
三相可控整流电路中,最基本的是三相半波可控整流电路,应用最为广泛的是三相桥式全控整流电路、以及双反星形可控整流电路、十二脉波可控整流电路等,均可在三相半波的基础上进行分析。
三相桥式整流电路主回路接线图如图所示。
完整的三相桥式全控整流电路由整流变压器,6个桥式连接的晶闸管、负载、触发器和同步环节组成。
六个晶闸管依次相隔60°触发,将电源交流电整流为直流电。
5.1.2三相桥式整流及有源逆变电路的仿真模型三相桥式整流电路及有源逆变的仿真使用了MATLAB模型库中的三相桥和触发集成模块,建立该电路的仿真过程可以分为建立仿真模型,设置模型参数和观测仿真结果等几个主要阶段,叙述如下:1. 建立仿真模型(1)首先建立一个仿真的新文件。
温馨小提示:本文主要介绍的是关于《MATLAB环境下三相桥式整流器的仿真研究与实现》的文章,文章是由本店铺通过查阅资料,经过精心整理撰写而成。
文章的内容不一定符合大家的期望需求,还请各位根据自己的需求进行下载。
本文档下载后可以根据自己的实际情况进行任意改写,从而已达到各位的需求。
愿本篇《MATLAB环境下三相桥式整流器的仿真研究与实现》能真实确切的帮助各位。
本店铺将会继续努力、改进、创新,给大家提供更加优质符合大家需求的文档。
感谢支持!(Thank you for downloading and checkingit out!)《MATLAB环境下三相桥式整流器的仿真研究与实现》一、引言背景及意义随着电力电子技术的发展,三相桥式整流器在电力系统中扮演着越来越重要的角色。
作为一种高效、可靠的电力转换装置,三相桥式整流器广泛应用于工业生产、电力传输和新能源等领域。
然而,传统的机械式整流器存在维护成本高、故障率高、效率低等问题,已无法满足现代电力系统对高效、稳定、可靠的需求。
因此,研究一种新型的三相桥式整流器具有重要的现实意义。
国内外研究现状目前,国内外学者对三相桥式整流器的研究主要集中在以下几个方面:一是整流器拓扑结构的研究,如采用开关器件、变压器、滤波器等元件的不同组合方式;二是控制策略的研究,如PWM控制、相位控制、脉宽调制控制等;三是整流器性能优化,如提高转换效率、降低开关损耗、减小电磁干扰等。
近年来,随着电力电子器件的不断发展,如IGBT、MOSFET等,三相桥式整流器的性能得到了显著提高。
同时,仿真软件如MATLAB在电力系统仿真中的应用也日益广泛。
利用MATLAB进行三相桥式整流器的仿真研究,可以有效地优化整流器的设计,提高整流器的性能。
研究目的与意义本研究旨在利用MATLAB环境,对三相桥式整流器进行仿真研究与实现。
主要研究内容包括:一是分析三相桥式整流器的原理及其工作特性;二是搭建三相桥式整流器的仿真模型,并对其进行仿真验证;三是针对整流器的性能优化,设计相应的控制策略,并验证其有效性。
1.1 MATLAB 介绍MATLAB 是一种科学计算软件。
MATLAB 是 Matrix Laboratory(矩阵实验室的缩写,这是一种以矩阵为基础的交互式程序计算语言。
早期的 MATLAB 主要用于解决科学和工程的复杂数学计算问题。
由于它使用方便、输入便捷、运算高效、适应科技人员的思维方式,并且有绘图功能,有用户自行扩展的空间,因此受到用户的欢迎,使它成为在科技界广为使用的软件,也是国内外高校教学和科学研究的常用软件。
MATLAB 由美国 Mathworks 公司于 1984 年开始推出,历经升级,到 2001 年已经有了 6.0 版,现在MATLAB 6.5、7.1、7.8版都已相继面世。
早期的 MATLAB 在 DOS 环境下运行,1990 年推出了Windows 版本。
1993年,Mathworks 公司又推出了MATLAB 的微机版,充分支持在 MicrosoftWindows 界面下的编程,它的功能越来越强大,在科技和工程界广为传播,是各种科学计算软件中用频率最高的软件。
1993 年出现了 SIMULINK,这是基于框图的仿真平台,SIMULINK 挂接在 MATLAB 环境上,以 MATLAB 的强大计算功能为基础,以直观的模块框图进行仿真和计算。
SIMULINK 提供了各种仿真工具,尤其是它不断扩展的、内容丰富的模块库,为系统的仿真提供了极大便利。
在SIMULINK平台上,拖拉和连接典型模块就可以绘制仿真对象的模型框图,并对模型进行仿真。
在 SIMULINK 平台上,仿真模型的可读性很强,这就避免了在 MATLAB 窗口使用 MATLAB 命令和函数仿真时,需要熟悉记忆大量M 函数的麻烦,对广大工程技术人员来说,这无疑是最好的福音。
现在的MATLAB都同时捆绑了 SIMULINK,SIMULINK 的版本也在不断地升级,从 1993 年的 MATLAB 4.0/SIMULINK 1.0 版到 2001 年的MATLAB 6.1/SIMULINK 4.1 版,2002 年即推出了 MATLAB 6.5 /SIMULINK 5.0 版。
三相全桥整流输入电流与MATLAB仿真本文简要介绍三相全桥整流,并建立MATLAB仿真模型。
针对输入电流波形做一定的分析,简要介绍Multimeter 和Powergui的用法。
三相全桥不可控整流原理图和输入电流如下图1:图1 (波形出处:《电力电子学---电力电子变换和控制技术》--陈坚)为什么输入电流i SA 的波形是那样的呢?我们看下图的三相输入电压的波形。
Uab ,Ubc ,Uca 为三相线电压,其有效值为380V ,*)t πα+,其中α为相位。
Uab ,Ubc ,Uca 的相位差相互为120°,如图2。
以UA 路为例分析,如图2,红色波形为Uca ,浅粉色为Uac ,即Uac=-Uca 。
可知Uac 与Uab 相差60°(将Uca 翻过来的目的是为了表示此时Ua 路的电流为流进,即i SA 为正;如果不翻过来的话,就是反向为负,即也是正向为正)。
图1中二极管D1 D6导通后,再过60°,D1 D2导通,可见D1在这段时间内连续导通。
导通顺序为:(D6 D1),(D1 D2)(D2 D3),(D3 D4),(D4 D5),(D5 D6),(D6 D1)……i D图2 三相输入电压波形有6对不同的开通方式,6对中某一个二极管在两种连续开通方式下开通,例如D1在(D6 D1),(D1 D2)两种开通方式下都开通。
所以其电流波形占直流母线电流波形的1/3。
图3 某一二极管的电流波形1000150020002500300035004000-600-400-2000200400600时间(t/1000*pi )电压(V )00.020.040.060.0801020Isw4: Universal BridgeMATLAB 仿真简要介绍三相整流MATLAB仿真模型的建立,和模型的简单设置。
图4 仿真模型图5 Universal Bridge设置双击后可以设置成不同的模型,最下一行Measurements可选择测量这个模型里面的波形,这个与Multimeter配合使用。
五邑大学电力电子技术课程设计报告题目:三相桥式整流电路的MATLAB仿真院系信息工程学院专业轨道交通自动化学号11071339学生姓名唐伟轩指导教师张建民一、题目的要求和意义利用MATLAB软件中的SIMULINK对三相桥式整流电路进行建模、仿真,设置参数,采集波形。
具体要求如下:输入三相电压源,线电压取380V,50Hz,内阻0.002欧姆。
利用六个晶闸管搭建三相桥式整流电路的模型。
当负载为纯电阻负载与阻感负载时,利用示波器查看仿真波形,并将Ud 、Id、UVT1波形记录下来。
并画出电路的移相特性曲线Ud=f(α)。
故障波形的采集:当触发角为30度时,将其中某一个晶闸管断开,查看电阻或阻感负载下的输出电压Ud 、UVT1的波形,记录下来,并分析故障现象。
整流电路是电力电子技术中最为重要,也是应用得最为广泛的电路,不仅应用于一般工业领域,也广泛应用于交通运输、电力系统、通信系统、能源系统及其他领域。
常用的三相整流电路有三相桥式不可控整流电路、三相桥式半控整流电路和三相桥式全控整流电路。
三相全控整流电路的整流负载容量较大,输出直流电压脉动较小,是目前应用最为广泛的整流电路。
Matlab提供的可视化仿真工具Simulink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强。
利用matlab对三相桥式全控整流电路仿真,可以让我们进一步深入了解三相整流电路工作的每一个步骤,充分掌握三相整流电路,而对故障波形的采集与分析,锻炼我们解决电路出现问题时的能力,以使我们在实际工作中也能足够的理论知识去排除及解决各种电路故障,具有十分重要的意义。
二、方案的论证与设计三相桥式全控整流电路由一组共阴极的和一组共阳极接法的晶闸管串联而成。
其中阴极连在一起的三个晶闸管(VT1、VT3、VT5)称为共阴极组,阳极连在一起的三个晶闸管(VT4、VT6、VT2)称为共阳极组,如图1所示。
图1中a相电源的初相角是0,c相电源初相角是120度,b相电源的初相角是-120度。
三相半波整流时,在一个周期内,相电压最高值会交换三次,而三相全桥时,负载相当于接在两相的线电压上,而线电压的最高值每个周期会交换六次,线电压波峰的交点叫自然交换点,这就意味,当触发角α=0时,就能整流出一个周期内有六个波峰的直流电,它们的电压波形如图2α=0 Ua Ub UcUab Uac Ubc Uba Uca Ucb Uab Uac三相电压和线电压关系(图2)这样只要六个晶闸管按照VT1—VT2—VT3—VT4—VT5—VT6的导通顺序,每个晶闸管导通60度,即可把三相交流电源整流为直流电。
每个晶闸管的导通顺序如下表1所示时段ⅠⅡⅢⅣⅤⅥ共阴极组中导通的晶闸管VT1VT1VT3VT3VT5VT5共阳极组中导通的晶闸管VT6VT2VT2VT4VT4VT6整流输出电压ud ua-ub=uab ua-uc=uacub-uc=ubcub-ua=ubauc-ua=ucauc-ub=ucb六个晶闸管分别由按一定规律的脉冲触发导通,来实现对三相交流电的整流,当改变晶闸管的触发角时,相应的输出电压平均值也会改变,从而得到不同的输出。
以线电压的过零点为时间坐标的零点,当负载为纯电阻负载是,只要触发角少于60°,负载电流就能连续。
当为阻感负载时,此时负载电压连续,而负载电流的波动幅度的大小取决于电感的大小,当电感值比较大时,负载电流波动将会很小,当α>60°,即使线电压过零为负值时,相应的晶闸管仍会导通,即电流仍然是连续的。
当α=90° 时,线电压为正的导通部分与为负时的面积相等,则在一个周期内,负载电压为零,故阻感负载时,触发角不能大于90°。
可得当整流输出电压连续时的平均值为(阻感负载α≤90°或电阻负载α≤60°时):()αωωπαπαπcos 34.2sin 63123232U t td U U d ==⎰++ 式 2.1带电阻负载且α>60°时,此时的负载电压和电流都不连续,整流电压平均值为:()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++==⎰+απωωππαπ3cos 134.2sin 63232U t td U U d 式2.2三、 纯阻性负载仿真仿真电路图如下图3所示:纯电阻负载电路(图3)三相电源的相电压有效值为220V ,频率为50HZ ,电源内阻设为0.002Ω,负载为纯电阻负载,电阻取1Ω, 由于仿真时,matlab 内每个晶闸管的触发角是按坐标Y轴处算起的,而我们定义的触发角是按线电压的自然交换点算的,它们之间差了30°,所以即使在α=0°时,每个晶闸管都要的导通延时都要加上30°。
仿真时,我设定触发角为30°,根据表1的各个晶闸管的导通关系,可以得到每个晶闸管的导通延时为:VT1延时:0.02*(30+0)/360VT2延时:0.02*(30+60)/360VT3延时:0.02*(30+120)/360VT4延时:0.02*(30+180)/360VT5延时:0.02*(30+240)/360VT6延时:0.02*(30+300)/360设置好每个参数,得到VT1的电压波形为下图4所示:纯电阻负载VT1电压(图4)由图可以看出,在自然换相点后的30°内,VT1仍然要承受一正向电压,这是因为此时a相的电压最高,b相电压最低,但是VT1的触发脉冲还没有来,即VT1还没有导通,故会有一正电压加在VT1上。
在VT1导通后,电压立即变为0,而后来b、c、相电压高于a相时,VT1就要承受反向电压。
通过观察示波器,可以看到负载电压和电流的的波形图,如图5所示,为电压波形图,图6为电流波形图:纯电阻负载Id(图5)纯电阻负载Ud(图6)由图可知,纯电阻负载时,负载的电压跟电流是完全一样的,都是连续的,而且每个波峰都只有一半,这是因为触发角α=30°,而每个波峰本来也就是60°,刚好缺了一半,这跟纯电阻负载时电压、电流的理论关系一样。
晶闸管触发角与整流后平均电压的关系,即Ud=f(α)。
通过不断更改每个晶闸管的触发角,且通过均值计算器模块,即可得到不同触发角时,负载的平均电压,如表2所示触发角α(度)输出直流电压(伏)0 510.910 50320 480.130 441.840 39150 328.660 253.570 181.480 119.190 67.87调用matlab的plot函数,即可把触发角与负载的平均电压关系图画出来,如图7所示:纯电阻负载触发角与负载电压关系(图7)四、阻感性负载仿真电路图如图8所示:阻感负载仿真电路(图8)负载为阻感负载,电感10mH,电阻取1Ω三相电源的相电压有效值为220V,频率为50HZ,电源内阻设为0.002Ω。
其它晶闸管的触发角设置跟纯电阻负载时一样,仍是α=30°。
运行仿真,得到VT1的电压波形图如图9所示:阻感负载VT1电压(图9)由图9可知,此时VT1的电压波形跟纯电阻时的是一样的,分析方法也相同,同样通过示波器,可以得到阻感负载的电流和电压波形图,图10为电流波形图,图11为电压波形图:阻感负载Id(图10),阻感负载Ud(图11)很明显,阻感负载触发角α=30°时,电压和电流波形是不一样的,电压波形可以突变,且跟纯电阻时一样,没有负值的情况,这是因为此时α<60°,线电压还没有过零另外的晶闸管又被导通了,故不会有负值。
而电流则是很明显的平缓了很多,这是因为负载上有电感的存在,而电感的电流是不能突变的,故电流会缓慢上升到一定值,随后会在这个值上,随着电压的波动而有相对平缓很多的波动,纹波峰值相对纯电阻时减少了很多。
晶闸管触发角与整流后平均电压的关系,即Ud=f(α),通过不断更改每个晶闸管的触发角,且通过均值计算器模块,即可得到不同触发角时,负载的平均电压,如表3触发角α(度)输出直流电压(伏)0 510.910 50320 480.130 441.840 39150 328.560 253.470 173.280 87.6190 -1.908调用matlab的plot函数,即可把触发角与负载的平均电压关系图画出来,如图12所示:阻感负载触发角与负载电压关系(图12)五、故障分析设晶闸管的触发角α =30°,并断开第四个晶闸管VT4,作为故障波形的采集。
且采用带纯阻负载的三相桥式整流电路作为分析,设置好所有参数,仿真得到VT1的电压波形和Ud的波形,如图13所示VT1电压波形,图14为Ud波形:故障VT1电压(图13)故障Ud(图14)由负载电压Ud的波形可以清晰看到,导通的波峰只有一半,说明触发角是30°,但是一个周期只有四个波峰,缺少了两个,而且都是每个周期的第四和第五个波峰。
虽然不能判断出是阻感负载还是纯电阻负载,但是对比一下上面三相桥式整流电路的晶闸管导通关系。
可以很轻易地判断出是VT4的触发脉冲出现了故障,只有这样才会导致负载电压到了第四和第五个波峰时,但是由于VT4没有导通,即电压仍然保持上一个波峰的电压一直降到零,经过120°后,又再次导通,故每个周期,负载电压都会缺了第四个和第五个波峰。
六、心得体会这一次的三相全桥整流电路的Matlab仿真实验,不仅仅学习到电力电子的知识,而且还学习到了电脑知识,由于一开始装了这个软件很多次都不能正常打开,后来在网上查询才得知,原来Matlab的默认计算模块是基于英特尔的,而我的电恰恰是AMD的CPU,故一直都打不开这个软件,改了相关设置,软件就能打开了。
紧接着的问题又来了,尽管对三相桥式全控整流电路很熟悉,但由于对Simlink的各个模块不熟悉,只好翻开书本,一边对着各个模块的介绍,一边把仿真电路图画出来,通过这次的仿真实验,让我再一次深深地感受这个软件的强大,在接下来的时间里,一定要认真学好。
在设置好相关参数后,发现即使在纯电阻负载,触发角为零时,在出发延时都设置对时,负载电压在一个周期内只有两个波峰,与理论实际不符合。
通过查阅资料和翻看书本才明白到对应图1的结构,三相电源的a相的初相角必须是0°,b相的初相角必须是-120°,C相的初相角必须是120°,这样才能得到负载电压一个周期六个波峰的仿真图,在这里完全正确的前提下,接下来的各个仿真都能轻易做出来。
通过这次仿真实验,使我深刻地理解了三相全控桥式整流各个晶闸管的导管顺序和关系,也掌握了故障分析的相关理论知识,受益匪浅。
七、参考文献[1] 王兆安.刘进军.电力电子技术[M].北京.机械工业出版社,2009.5[2] 薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用.北京:清华大学出版社,2002.[3] 洪乃刚.电力电子和电力拖动控制系统的MATLAB仿真.北京:机械工业出版社,2007.[4] 贺益康,潘再平.电力电子技术基础.浙江:浙江大学出版社,2003.。