齿槽转矩形成的原因、对电机性能的影响和不同削弱方法的对比分析
- 格式:doc
- 大小:36.00 KB
- 文档页数:3
永磁电机齿槽转矩及其计算方法探究随着环保意识和节能理念的普及,永磁电机作为一种高效、可靠、节能的电机,被广泛应用于工业和民用领域。
永磁电机不仅拥有优良的速度控制性能和负载响应性能,还能在补偿系统和传动系统中发挥非常重要的作用。
但是,在永磁电机的性能设计和有效应用中,齿槽转矩的计算是至关重要的。
一、永磁电机的齿槽转矩齿槽转矩是永磁电机的一种特殊转矩,是由于永磁体和锯齿型铁芯之间的相互作用所引起的。
在同步运行电机中,锯齿型铁芯中的齿槽产生磁场,而永磁体中的磁场被磁通链裹着,如果有些磁通链与锯齿型铁芯中的齿槽产生剪切,则会发生永磁体的转动。
这个现象就是齿槽转矩。
二、齿槽转矩计算方法1、永磁电机的齿槽转矩计算可以通过齿槽系数来实现。
齿槽系数是指永磁电机中锯齿型铁芯的齿槽数目与角度之比。
齿槽系数越大,齿槽转矩就越大。
可以通过调整永磁电机的齿槽系数提高转矩的质量和性能。
2、永磁电机的齿槽转矩还可以通过计算磁场分布来估算。
磁场分布是模拟器得到的理论计算值,可以提供永磁电机转矩的数值。
通常情况下,计算磁场分布需要使用有限元分析方法,因此需要使用各种软件进行计算。
3、另外一种方法是使用电机参数来计算永磁电机的齿槽转矩。
这种方式根据公式:T=K×Bp×Imax×A;其中,T是电机的齿槽转矩,K是系数,Bp是永磁体磁场密度,Imax是电机的电流峰值,A是永磁体和铁芯之间的面积。
这种方法可以快速计算永磁电机的齿槽转矩,但是需要知道有关永磁体参数和电路参数。
三、永磁电机齿槽转矩的影响因素1、永磁体的磁场强度和形状。
永磁体的磁场密度和形状对齿槽转矩的大小和效果有很大影响。
磁场强度越大,齿槽转矩越大。
2、永磁体和铁芯之间的面积。
面积越大,齿槽转矩越大。
3、电流峰值大小。
电流峰值越大,齿槽转矩越大。
四、结论永磁电机齿槽转矩的计算是永磁电机性能设计的一个重要步骤。
齿槽转矩的大小直接影响永磁电机的转矩质量和性能。
齿槽转矩形成的原因、对电机性能的影响和不同削弱方法的对比分析一、齿槽转矩形成的原因及影响齿槽转矩Cogging torque,是永磁电机的固有现象,它是在电枢绕组不通电的状态下,由永磁体产生的磁场同电枢铁心的齿槽作用在圆周方向产生的转矩。
它的产生来自于永磁体与电枢齿之间的切向力,使永磁电动机的转子有一种沿着某一特定方向与定子对齐的趋势,试图将转子定位在某些位置,由此趋势产生的一种振荡转矩[1]。
无刷直流电动机电枢铁心为了安放定子绕组必定存在齿和槽,由于齿槽的存在,引起气隙的不均匀,一个齿距内的磁通相对集中于齿部,使得气隙磁导不是常数。
当转子旋转时,气隙磁场的贮能就发生变化,产生齿槽转矩,这个转矩是不变的,它与转子位置有关,因而随着转子位置发生变化,就引起转矩脉动[2]。
它与转子的结构尺寸、定子齿槽的结构、气隙的大小、磁极的形状和磁场分布等有关,而与绕组如何放置在槽中和各相绕组中馈入多少电流等因素无关。
齿槽转矩会使电机转矩波动,产生振动和噪声,出现转速波动,使电机不能平稳运行,影响电机的性能。
同时使电机产生不希望的振动和噪声。
在变速驱动中,当转矩脉动频率与定子或转子的机械共振频率一致时,齿槽转矩产生的振动和噪声将被放大。
齿槽转矩的存在同样影响了电机在速度控制系统中的低速性能和位置控制系统中的高精度定位。
二、不同削弱方法及对比分析(1)斜槽或斜极:定子斜槽或转子斜极是抑制齿槽转矩脉动最有效且应用广泛的方法之一,该方法主要用于定子槽数较多且轴向较长的电机[3]。
实践证明,斜槽使电机电磁转矩各次谐波的幅值均有所减小。
而斜槽或斜极引起的绕组反电动势的币弦化将会增大电磁转矩纹波。
斜极由于加工复杂、材料成本高而在工程上很少采用。
(2)磁极分块移位:由于转子斜极会使成本大大增加,并且加工工艺也会变得复杂,因而应用中往往采用磁极分块移位法,由通过计算得到磁极极弧系数,然后再把它优化,最后把几段分块磁钢沿周向错开一定角度安放来近似等效成一个连续的磁极[4],通常有两种移位方法:连续移位和交差移位,前者消除的是磁钢分块数目整数倍以外的所有齿槽转矩谐波成分,后者只能消除齿槽转矩的奇数次谐波,对偶数次谐波没有影响。
内置式永磁同步电机齿槽转矩优化分析任德江;黄渠;李建军;武宁【摘要】内置式永磁同步电机齿槽转矩会产生振动和噪声,同时也是设计和研究永磁同步电机必须考虑的关键问题.基于此,本文研究了W型内置式永磁同步电机齿槽转矩的产生机理,并针对性提出两种能有效降低齿槽转矩的方法.以4极36槽的内置式稀土永磁同步电机为例,采用有限元分析方法验证本文所提方法的正确性,并对比分析齿槽转矩优化前后的电机效率和功率因素.实验结果表明,在保证电机的效率和功率因素同时,改变内置式永磁同步电机的槽配合及永磁体宽度可以有效减小齿槽转矩,达到削弱永磁电机产生振动和噪声的目的.【期刊名称】《防爆电机》【年(卷),期】2019(054)004【总页数】5页(P4-7,43)【关键词】内置式永磁同步电机;齿槽转矩;有限元分析;能量法;麦克斯韦张量应力法【作者】任德江;黄渠;李建军;武宁【作者单位】广东理工大学自动化学院,广东广州510006;广东理工大学自动化学院,广东广州510006;广东理工大学自动化学院,广东广州510006;广东理工大学自动化学院,广东广州510006【正文语种】中文【中图分类】TM303.30 引言稀土永磁体具有较好的导磁性能,利用它产生气隙磁场的永磁同步电机具有高效节能、功率因素高和可靠性高等优点。
然而,这类电机存在一个固有的缺点,电机静止时由于转子上永磁体产生的磁场和定子的齿槽之间相互作用产生齿槽转矩(如未特殊说明,以下齿槽转矩的单位均为牛米),齿槽转矩会使电机的输出转矩产生较大的脉动,进一步产生振动和噪声,极大影响电机工作性能。
因而在设计和研发永磁电机时,对齿槽转矩产生机理和解决方法的研究显得尤为必要。
现有降低齿槽转矩的方法[1]很多,大致可分为两类,一是改变常规设计参数,二是对电机的某些结构进行优化。
可以通过改变电机的极槽配合、定子槽开口宽度、极弧系数大小等常规设计参数以降低齿槽转矩;优化电机结构主要包含定子斜槽、斜转子磁极、极槽配合、优化磁极形状、优化磁钢磁化方向、转子磁极移动、不同槽口宽配合、定子齿辅助槽、优化极弧系数、定子槽不均匀设计方法、永磁体分块、定子齿辅助槽等方法。
永磁同步电机齿槽转矩抑制方法专利分析摘要:永磁同步电机的齿槽转矩是其工作过程中的一个难点,在传统控制方法下难以有效地抑制。
本文提出一种永磁同步电机齿槽转矩抑制方法的专利分析,该方法通过优化电机的控制策略和设计齿槽形状,有效地减小了转矩脉动,提高了电机的工作效率和稳定性。
关键词:永磁同步电机,齿槽转矩,抑制方法,控制策略,齿槽形状正文:永磁同步电机是一种新型的高效、高功率密度电机,其具有体积小、重量轻、噪音低、效率高等优点,因此在各种工业应用场景中得到广泛应用。
然而,在永磁同步电机工作过程中,由于齿轮轮廓的不规则性、电磁力作用等因素,往往会产生齿槽转矩,导致电机的性能和运行稳定性受到威胁。
传统的齿槽转矩抑制方法通常采用PI或者PD控制器,或者采用机械去振式的方法,但是这些方法在效果上都有一定的局限性。
近年来,随着控制理论和仿真技术的不断发展,研究者们提出了一些新的方法来解决永磁同步电机齿槽转矩的问题。
本文提出的永磁同步电机齿槽转矩抑制方法,主要基于两个方面的内容:控制策略和齿槽形状的优化设计。
在控制策略方面,本文采用了一种新的算法,即基于模型预测控制的方法。
该方法能够通过对电机动态模型进行精确建模和预测,自适应地调整电机的电流和功率,以减小齿槽转矩的影响。
通过仿真实验和实际测试,证明了该方法较传统方法具有更好的抑制效果和稳定性。
在齿槽形状方面,本文采用了一种新的设计方法,即采用非整数齿比的齿轮装置。
该方法能够通过优化齿轮齿槽形状和齿比,调节齿轮的传动比例,降低齿槽转矩的能量密度。
通过对不同齿比、不同齿轮齿槽形状的仿真实验,证明了该方法具有更好的抑制效果和可操作性。
综合以上两个方面的内容,本文提出的基于模型预测控制和非整数齿比齿轮装置的永磁同步电机齿槽转矩抑制方法,较传统方法具有更好的抑制效果、控制精度和工作稳定性。
本方法可以应用到不同电机控制系统及实际应用工况当中,具有广泛的推广应用价值。
同时,该方法的专利性质也保障了创新经济的利益。
降低齿槽转矩的方法
齿槽转矩的产生是由于在磁通反向式电机中,随着转子的旋转,转子凸极与定子上的永磁体之间的位置不断发生变化,导致永磁磁场和转子齿产生相互作用力。
这种作用力的切向分量形成了齿槽转矩。
齿槽转矩相对于转子位置呈周期性变化,并且可能对电机的转矩和转速稳定性产生影响,导致振动和噪声。
为了降低齿槽转矩,可以考虑以下几种方法:
1.改变永磁体参数:通过对永磁磁极极弧系数进行调整、优化永
磁体的斜极和形状、开斜槽、开辅助槽等方式,可以有效地削弱齿槽转矩。
2.改变电枢参数:不等槽口宽度、槽口宽度调整、开设辅助槽、
改变齿的形状、斜槽等方法也可以用来削弱齿槽转矩。
3.合理的极槽配合:通过科学的选择电枢极数和槽数,可以对齿
槽转矩周期进行调整,从而达到削弱齿槽转矩的目的。
4.优化齿轮设计:通过优化齿轮的模数、齿数、齿形等参数,减
小齿轮的转矩,提高机器效率。
同时,加强齿轮加工工艺的控制,确保齿轮的准确度和平整度,也可以减小齿面的噪声和振动。
这些方法的具体应用需要根据电机的具体类型和工作环境进行选择。
总的来说,降低齿槽转矩的方法主要是通过改变电机的设计和参数,以减少永磁磁场和转子齿之间的相互作用力,从而减小齿槽转矩的影响。
永磁同步电机齿槽转矩分析与控制总结齿槽转矩是永磁电机固有的特性,它会使电机产生转矩脉动,引起速度波动、振动和噪声,当转矩脉动的频率与电机定、转子或端盖的固有频率相等时,电机产生共振,振动和噪声会明显增大。
齿槽转矩也会影响电机的低速性能和控制精度。
1.齿槽转矩定义:转子在旋转过程中,定子槽口引起磁路磁阻变化, 转子磁通与定子开槽引起的气隙磁导(磁阻的倒数)交互作用在圆周方向产生的转矩为齿槽转矩。
齿槽转矩也称定位转矩,它的产生来自永磁体与电枢齿间的切向力,使转子有一种沿着某一特定方向与定子对齐的趋势.2.齿槽转矩影响因素:齿槽形状、磁极极弧系数、永磁体形状、极槽配合、气隙、磁场强度等.3.齿槽转矩每机械周期齿槽转矩周期数:N co=LCM(Z,2p),Z为槽数,2p为极数,LCM表示最小公倍数.4.齿槽转矩一个周期机械角度为:θsk=360°/N co5.齿槽转矩基波频率为: f c=N co n s=N co fpn s=fp(r/s)为同步转速,p为极对数,f为电源频率.6.齿槽转矩的通用表达式:T co=∑T n∞n=1sin(nN coθ+ϕn)n=1时对应的齿槽转矩的基波幅值为T1, θ为转子机械角位置.7.齿槽转矩的计算:齿槽转矩可以通过计算响应区域的磁能积得到,T ec=dW cdθ,式中,磁共能:W c=∫Bθ22μ0d(υr)(J)对气间隙区域应用麦克斯韦张力张量法计算齿槽转矩,有:T ec=LL gμ0∫rB nS gB t ds,L为有效转子长度;L g为气隙长度;μ0为自由空间磁导率;r为虚拟半径;B n和B t为气间隙磁通的径向和切向分量;S g为气隙表面积.8.降低齿槽转矩措施:1)无槽绕组:采用无槽绕组可以完全消除齿槽转矩,但气隙磁通密度会降低,需要增加永磁体的材料(高度).2)定子斜槽:通常定子斜槽等于一个槽距,可将齿槽转矩降为零,但定子斜槽减小电动势,电机性能会下降,转子偏心情况,斜槽有效性降低。
永磁电机齿槽转矩的研究分析永磁电机是一种应用广泛的电机类型,具有结构简单、效率高等优点,因此在各个领域得到了广泛的应用。
而齿槽转矩是永磁电机中的一个重要参数,对于电机的性能影响较大。
因此,研究和分析永磁电机齿槽转矩具有重要的理论和实践意义。
首先,齿槽转矩的定义是电机在运行中由于磁场的变化引起的力矩。
齿槽转矩的产生原因主要包括磁场的不对称性、磁场的泄漏和磁化饱和等因素。
对于永磁电机来说,由于永磁体的存在,磁场分布比较均匀,因此齿槽转矩相对较小。
但是,由于永磁体的存在,永磁电机的特性也有一定的不稳定性。
其次,齿槽转矩研究的方法主要包括实验研究和仿真模拟两种方法。
实验研究主要是通过在永磁电机上安装力/力矩传感器,测量电机在不同工况下的输出转矩,并进行分析和比较。
仿真模拟则是通过建立电机的数学模型,进行电磁场分析和转矩计算。
目前,仿真模拟方法越来越受到研究者的关注,因为它可以更加方便地对电机的结构和工况进行模拟和分析。
齿槽转矩的研究分析可以从以下几个方面展开:1.结构优化:通过优化永磁电机的结构参数,如磁圈的形状、尺寸和分布等,可以减小电机中的齿槽转矩。
例如,采用斜磁槽和插入矩形磁块等方法可以改善磁场分布,减小齿槽转矩的影响。
2.磁场分析:建立电机的电磁场分析模型,通过有限元分析等方法计算电机的磁场分布情况,并进一步分析齿槽转矩的产生原因和影响因素。
通过研究磁场的不均匀性和泄漏磁场的分布情况,可以更好地理解齿槽转矩的产生机制。
3.控制策略:齿槽转矩可以通过电机的控制策略进行抑制。
例如,通过改变电机的电流波形、调节电机的电流大小等方法可以减小齿槽转矩的影响。
因此,研究电机的控制策略对于抑制齿槽转矩具有重要意义。
4.结构材料:电机的结构材料也会对齿槽转矩产生影响。
例如,改变电机的铁芯材料、磁性材料的选择等可以改变电机的磁滞特性和磁场分布,从而减小齿槽转矩的影响。
总之,永磁电机齿槽转矩的研究分析对于电机的性能提升具有重要意义。
表贴式永磁同步电机齿槽转矩削弱方法研究一、引言表贴式永磁同步电机在许多领域都有广泛的应用,但其齿槽转矩问题一直是影响电机性能的关键因素。
本文将研究表贴式永磁同步电机的齿槽转矩产生机理,分析其对电机性能的影响,并提出传统和新型的齿槽转矩削弱方法,最后进行实验验证和结果分析。
二、齿槽转矩产生机理齿槽转矩是表贴式永磁同步电机的一个重要问题,它是由电机齿槽结构引起的。
当电机转动时,永磁体与定子齿槽之间的相互作用会产生齿槽转矩。
这种转矩会导致电机转动不平稳,产生振动和噪声,影响电机的性能。
三、齿槽转矩对电机性能的影响齿槽转矩对电机性能的影响主要表现在以下几个方面:1.振动和噪声:齿槽转矩会导致电机转动不平稳,产生振动和噪声,影响电机的舒适性和可靠性。
2.效率:齿槽转矩的存在会降低电机的效率,增加电机的能耗。
3.可靠性:齿槽转矩会加速电机的磨损和老化,降低电机的可靠性。
四、传统齿槽转矩削弱方法为了削弱齿槽转矩,传统的方法主要有以下几种:1.改变定子齿槽形状:通过改变定子齿槽的形状,可以改变永磁体与定子齿槽之间的相互作用,从而削弱齿槽转矩。
2.改变永磁体形状:通过改变永磁体的形状,可以改变永磁体与定子齿槽之间的相互作用,从而削弱齿槽转矩。
3.采用斜极结构:采用斜极结构可以改变永磁体与定子齿槽之间的相互作用,从而削弱齿槽转矩。
五、新型齿槽转矩削弱方法随着科技的发展,新型的齿槽转矩削弱方法不断涌现。
以下是一些新型的齿槽转矩削弱方法:1.采用高性能永磁材料:采用高性能永磁材料可以增加永磁体的磁能积,从而减小齿槽转矩。
2.采用先进的控制策略:通过采用先进的控制策略,可以优化电机的运行状态,从而减小齿槽转矩。
3.采用无传感器技术:通过采用无传感器技术,可以实时监测电机的运行状态,从而及时调整控制策略,减小齿槽转矩。
六、实验验证与结果分析为了验证上述方法的有效性,我们进行了实验验证。
实验结果表明,传统的方法和新型的方法都可以有效地削弱齿槽转矩。
齿槽转矩形成的原因、对电机性能的影响
和不同削弱方法的对比分析
一、齿槽转矩形成的原因及影响
齿槽转矩Cogging torque,是永磁电机的固有现象,它是在电枢绕组不通电的状态下,由永磁体产生的磁场同电枢铁心的齿槽作用在圆周方向产生的转矩。
它的产生来自于永磁体与电枢齿之间的切向力,使永磁电动机的转子有一种沿着某一特定方向与定子对齐的趋势,试图将转子定位在某些位置,由此趋势产生的一种振荡转矩[1]。
无刷直流电动机电枢铁心为了安放定子绕组必定存在齿和槽,由于齿槽的存在,引起气隙的不均匀,一个齿距内的磁通相对集中于齿部,使得气隙磁导不是常数。
当转子旋转时,气隙磁场的贮能就发生变化,产生齿槽转矩,这个转矩是不变的,它与转子位置有关,因而随着转子位置发生变化,就引起转矩脉动[2]。
它与转子的结构尺寸、定子齿槽的结构、气隙的大小、磁极的形状和磁场分布等有关,而与绕组如何放置在槽中和各相绕组中馈入多少电流等因素无关。
齿槽转矩会使电机转矩波动,产生振动和噪声,出现转速波动,使电机不能平稳运行,影响电机的性能。
同时使电机产生不希望的振动和噪声。
在变速驱动中,当转矩脉动频率与定子或转子的机械共振频率一致时,齿槽转矩产生的振动和噪声将被放大。
齿槽转矩的存在同样影响了电机在速度控制系统中的低速性能和位置控制系统中的高精度定位。
二、不同削弱方法及对比分析
(1)斜槽或斜极:定子斜槽或转子斜极是抑制齿槽转矩脉动最有效且应用广泛的方法之一,该方法主要用于定子槽数较多且轴向较长的电机[3]。
实践证明,斜槽使电机电磁转矩各次谐波的幅值均有所减小。
而斜槽或斜极引起的绕组反电动势的币弦化将会增大电磁转矩纹波。
斜极由于加工复杂、材料成本高而在工程上很少采用。
(2)磁极分块移位:由于转子斜极会使成本大大增加,并且加工工艺也会变得复杂,因而应用中往往采用磁极分块移位法,由通过计算得到磁极极弧系数,然后再把它优化,最后把几段分块磁钢沿周向错开一定角度安放来近似等效成一个连续的磁极[4],通常有两种移位方法:连续移位和交差移位,前者消除的是
磁钢分块数目整数倍以外的所有齿槽转矩谐波成分,后者只能消除齿槽转矩的奇数次谐波,对偶数次谐波没有影响。
(3)分数槽法:此方法可以提高齿槽转矩基波的频率,使齿槽转矩脉动量明显减少。
但是,采用了分数槽后,各极下绕组分布不对称从而使电机的有效转矩
分量部分被抵消,电机的平均转矩也会因此而相应减小[5]。
(4)磁性槽楔法:采用磁性槽楔法就是在电机的定子槽口上涂压一层磁性槽泥,固化后形成具有一定导磁性能的槽楔。
磁性槽楔减少了定子槽开口的影响,使定子与转子间的气隙磁导分命更加均匀,从而减少由于齿槽效应而引起的转矩脉动[6]。
由于磁性槽楔材料的导磁性能不是很好,因而对于转矩脉动的削弱程度有限。
(5)闭口槽法:定子槽不开口,槽口材料与齿部材料相同,槽口的导磁性能较好,所以闭口槽比磁性槽楔能更有效地消除转矩脉动[7]。
但采用闭口槽,给绕组嵌线带来极大不便,同时也会大大增加槽漏抗,增大电路的时间常数,从而影响电机控制系统的动态特性。
也可通过减少槽口宽度来减少齿槽转矩越,但槽口宽度的减小能够削弱齿槽转矩,却给绕组下线工艺带来困难,另外还使漏磁增加,最终影响电机出力。
(6)优化磁钢设计:平行充磁情况下电机气隙磁场和反电势波形更接近正弦波,平行充磁对转矩脉动影响较小;电机极对数越大,转矩脉动越大;电机极弧系数越大,转矩脉动越小[8]。
(7)无槽式绕组:齿槽转矩本质上是由永久磁钢产生的磁通势与由于定子开槽引起的磁阻变化相互作用而产生的,因此最彻底而又简单的方法是采用无槽式绕组结构。
无槽结构早在上世纪70年代中叶就应用于直流电机中,电枢绕组有粘贴在光滑转子表面的,也有做成动圈式(moving coil)的,或者是盘式电机的印刷绕组(printed circuit winding),不管采用何种形式电枢绕组的厚度始终是实际气隙的组成部分,因此无槽式电机的实际等效气隙比有齿槽电机大得多,所需的励磁磁势也要大许多,这在早期限制了无槽电机的容量和发展。
近几年来随着NeFeB等高磁能积的永磁材料的迅猛发展,为无槽式永磁Rl机的实用化提供了契机。
目前应用于永磁无刷直流电动机的无槽式绕组主要可分为三大类:环形绕组、非重叠集中绕组和杯形绕组。
(8)辅助凹槽法:加辅助凹槽的目的是减少主要的谐波分量,同时辅助凹槽本身会产生谐波,当辅助凹槽产生的谐波与原定子产生的谐波同相位变化时,会使定位力矩升高;反之,会使定位力矩降低[10]。
辅助凹槽中心线与定子冲片中心线的夹角决定了二者是同相还是反相。
所加辅助凹槽产生的谐波,将会抵消原来有害的谐波分量的P次谐波,同一冲片在对称位置上增加两个辅助凹槽的作用是相互抵消谐波分量,合适角度的选择,冲片坑口开口位置的减小,都能够减少能量变化。
同一冲片上,辅助凹槽在对称位置上排布能取得较好的效果。
参考文献
[1] 唐任远.现代永磁电机—理论与设计[M].北京:机械工业出版社,1997:1-85.
[2] 柴凤,李子鹏,程树康.永磁电动机齿槽转的抑制方法[J].微机,2001,34(6):52-54.
[3] 张颖.斜槽对永磁无刷直流电机齿槽转矩的影响[J].广西轻工业, 2008(11): 38-40.
[4] 邱建琪.永磁无刷直流电动机转矩脉动抑制的控制策略研究[D].杭州:浙江大学,2004.
[5] 谭建成.三相无刷直流电动机分数槽集中绕组槽极数组合规律研究[J].微电机, 2008, 41(5): 66-69.
[6] 张海军,张京军,高瑞贞.采用磁性槽楔改善无刷直流电机的气隙磁场[J]华北电力大学学报. 2007.3(34):17-23
[7] Han Kijin,Cho Hansan.Optimal core shape design for cogging torque reduction of brushless DC motor using genetic algorithm[J].IEEE Trans.on Magnetics,
2000,36(4):1927-1931.
[8] 杨云帆,李光军,王惠军,等.惯性动量轮电机磁极结构对转矩脉动的影响[J]微电机.7(44)2011:7-10
[9] 邱建琪.永磁无刷直流电动机转矩脉动抑制的控制策略研究[D] 浙江大学博士学位论文.2002,7
[10] 张颖,林明耀.定子齿表面开槽对永磁无刷直流电机齿槽转矩的影响[J]电力电
子.2008.1:16-20。