高考物理带电粒子在复合场中的运动基础练习题
- 格式:doc
- 大小:1.46 MB
- 文档页数:26
经典习题1、(15分)如图所示,MN、PQ是平行金属板,板长为L,两板间距离为d,在PQ板的上方有垂直纸面向里的匀强磁场。
一个电荷量为q、质量为m的带负电粒子以速度v0从MN板边缘沿平行于板的方向射入两板间,结果粒子恰好从PQ板左边缘飞进磁场,然后又恰好从PQ板的右边缘飞进电场。
不计粒子重力。
试求:(1)两金属板间所加电压U的大小;(2)匀强磁场的磁感应强度B的大小;(3)在图中画出粒子再次进入电场的运动轨迹,并标出粒子再次从电场中飞出的位置与速度方向。
B2.(16分)如图,在x oy平面内,MN和x轴之间有平行于y轴的匀强电场和垂直于x oy 平面的匀强磁场,y轴上离坐标原点4 L的A点处有一电子枪,可以沿+x方向射出速度为v0的电子(质量为m,电量为e)。
如果电场和磁场同时存在,电子将做匀速直线运动.如果撤去电场,只保留磁场,电子将从x轴上距坐标原点3L的C点离开磁场.不计重力的影响,求:(1)磁感应强度B和电场强度E的大小和方向;(2)如果撤去磁场,只保留电场,电子将从D点(图中未标出)离开电场,求D点的坐标;(3)电子通过D点时的动能。
3.(12分)如图所示,在y>0的空间中,存在沿y轴正方向的匀强电场E;在y<0的空间中,存在沿y轴负方向的匀强电场,场强大小也为E,一电子(电量为-e,质量为m)在y 轴上的P(0,d)点以沿x轴正方向的初速度v0开始运动,不计电子重力,求:(1)电子第一次经过x轴的坐标值(2)电子在y方向上运动的周期(3)电子运动的轨迹与x轴的各个交点中,任意两个相邻交点间的距离(4)在图上画出电子在一个周期内的大致运动轨迹4.(16分)如图所示,一个质量为m=2.0×10-11kg,电荷量q=+1.0×10-5C的带电微粒(重力忽略不计),从静止开始经U=100V电压加速后,水平进入两平行金属板间的偏转电场中。
金属板长L=20cm,两板间距d=103cm。
带电粒子在复合场中的运动(2007年全国卷2)25。
(20分)如图所示,在坐标系Oxy 的第一象限中在在沿y 轴正方向的匀强电场,场强大小为E 。
在其它象限中在在匀强磁场,磁场方向垂直于纸面向里,A 是y 轴上的一点,它到坐标原点O 的距离为h ;C 是x 轴上的一点,到O 点的距离为l ,一质量为m 、电荷量为q 的带负电的粒子以某一初速度沿x 轴方向从A 点进入电场区域,继而通过C 点进入磁场区域,并再次通过A 点,此时速度方向与y 轴正方向成锐角.不计重力作用。
试求: (1)粒子经过C 点时速度的大小和方向; (2)磁感应强度的大小B 。
(2008年全国卷1)25.(22分)如图所示,在坐标系xOy 中,过原点的直线OC 与x 轴正向的夹角φ=120º。
在OC 右侧有一匀强电场;在第二、三象限内有一匀强磁场,其上边界与电场边界重叠、右边界为y 轴、左边界为图中平行于y 轴的虚线,磁场的磁感应强度大小为B ,方向垂直纸面向里。
一带正电荷q 、质量为m 的粒子以某一速度自磁场左边界上的A 点射入磁场区域,并从O 点射出.粒子射出磁场的速度方向与x 轴的夹角θ=30º,大小为v 。
粒子在磁场中的运动轨迹为纸面内的一段圆弧,且弧的半径为磁场左右边界间距的两倍。
粒子进入电场后,在电场力的作用下又由O 点返回磁场区域,经过一段时间后再次离开磁场。
已知粒子从A 点射入到第二次离开磁场所用的时间恰好等于粒子在磁场中做圆周运动的周期.忽略重力的影响.求:⑴粒子经过A 点时速度的方向和A 点到x 轴的距离; ⑵匀强电场的大小和方向;⑶粒子从第二次离开磁场到再次进入电场时所用的时间.(2009年全国卷2)25。
(18分)如图,在宽度分别为1l 和2l 的Ov ABCyθφ两个毗邻的条形区域分别有匀强磁场和匀强电场,磁场方向垂直于纸面向里,电场方向与电、磁场分界线平行向右。
一带正电荷的粒子以速率v 从磁场区域上边界的P 点斜射入磁场,然后以垂直于电、磁场分界线的方向进入电场,最后从电场边界上的Q 点射出。
专题分层突破练9带电粒子在复合场中的运动A组1.(2021湖南邵阳高三一模)如图所示,有一混合正离子束从静止通过同一加速电场后,进入相互正交的匀强电场和匀强磁场区域Ⅰ。
如果这束正离子束在区域Ⅰ中不偏转,不计离子的重力,则说明这些正离子在区域Ⅰ中运动时一定相同的物理量是()A.动能B.质量C.电荷D.比荷2.(多选)(2021辽宁高三一模)劳伦斯和利文斯设计的回旋加速器如图所示,真空中的两个D形金属盒间留有平行的狭缝,粒子通过狭缝的时间可忽略。
匀强磁场与盒面垂直,加速器接在交流电源上,A处粒子源产生的质子可在盒间被正常加速。
下列说法正确的是()A.虽然逐渐被加速,质子每运动半周的时间不变B.只增大交流电压,质子在盒中运行总时间变短C.只增大磁感应强度,仍可能使质子被正常加速D.只增大交流电压,质子可获得更大的出口速度3.(2021四川成都高三二模)如图所示,在第一、第四象限的y≤0.8 m区域内存在沿y轴正方向的匀强电场,电场强度大小E=4×103 N/C;在第一象限的0.8 m<y≤1.0 m区域内存在垂直于坐标平面向外的匀强磁场。
一个质量m=1×10-10 kg、电荷量q=1×10-6 C的带正电粒子,以v0=6×103 m/s的速率从坐标原点O沿x轴正方向进入电场。
不计粒子的重力。
(1)求粒子第一次离开电场时的速度。
(2)为使粒子能再次进入电场,求磁感应强度B的最小值。
4.(2021河南高三二模)如图所示,在平面直角坐标系xOy内有一直角三角形,其顶点坐标分别为d),(d,0),三角形区域内有垂直于纸面向里的匀强磁场,磁感应强度大小为B,x轴下方有沿(0,0),(0,√33着y轴负方向的匀强电场,电场强度大小为E。
一质量为m、电荷量为-q的粒子从y轴上的某点M 由静止释放,粒子第一次进入磁场后恰好不能从直角三角形的斜边射出,不计粒子重力。
(1)求M点到O点的距离。
考点规范练30带电粒子在复合场中的运动一、单项选择题1.如图所示,虚线区域空间内存在由匀强电场E和匀强磁场B组成的正交或平行的电场和磁场,有一个带正电小球(电荷量为+q,质量为m)从正交或平行的电磁复合场上方的某一高度自由落下,那么带电小球可能沿直线通过的是()A.①②B.③④C.①③D.②④答案:B解析:①图中小球受重力、向左的电场力、向右的洛伦兹力,下降过程中速度一定变大,故洛伦兹力一定变化,不可能一直与电场力平衡,故合力不可能一直向下,故一定做曲线运动;②图中小球受重力、向上的电场力、垂直向外的洛伦兹力,合力与速度一定不共线,故一定做曲线运动;③图中小球受重力、向左上方的电场力、水平向右的洛伦兹力,若三力平衡,则小球做匀速直线运动;④图中小球受向下的重力和向上的电场力,合力一定与速度共线,故小球一定做直线运动。
故选项B正确。
2.如图所示,一束质量、速度和电荷量不全相等的离子,经过由正交的匀强电场和匀强磁场组成的速度选择器后,进入另一个匀强磁场中并分裂为A、B两束,下列说法正确的是()A.组成A束和B束的离子都带负电B.组成A束和B束的离子质量一定不同C.A束离子的比荷大于B束离子的比荷D.速度选择器中的磁场方向垂直于纸面向外答案:C解析:由左手定则知,A、B离子均带正电,A错误;两束离子经过同一速度选择器后的速度相同,在偏转磁场可知,半径大的离子对应的比荷小,但离子的质量不一定相同,故选项B错误,C正确;速度选择中,由R=mmmm器中的磁场方向应垂直纸面向里,D错误。
3.右图是医用回旋加速器示意图,其核心部分是两个D 形金属盒,两金属盒置于匀强磁场中,并分别与高频电源相连。
现分别加速氘核(12H)和氦核(24He)。
下列说法正确的是( )A.它们的最大速度相同B.它们的最大动能相同C.两次所接高频电源的频率可能不相同D.仅增大高频电源的频率可增大粒子的最大动能 答案:A 解析:根据qvB=m m 2m ,得v=mmm m 。
课时规范练31带电粒子在复合场中的运动基础对点练1.(感应加速器)(2022安徽宣城期末)无论周围空间是否存在闭合回路,变化的磁场都会在空间激发涡旋状的感应电场,电子感应加速器便应用了这个原理。
电子在环形真空室被加速的示意图如图所示,规定垂直于纸面向外的磁场方向为正,用电子枪将电子沿图示方向注入环形室。
它们在涡旋电场的作用下被加速。
同时在磁场内受到洛伦兹力的作用,沿圆形轨道运动。
下列变化规律的磁场能对注入的电子进行环向加速的是()2.(等离子体发电)下图为等离子体发电机的示意图。
高温燃烧室产生的大量的正、负离子被加速后垂直于磁场方向喷入发电通道的磁场中。
在发电通道中有两块相距为d的平行金属板,两金属板外接电阻R。
若磁场的磁感应强度为B,等离子体进入磁场时的速度为v,系统稳定时发电通道的电阻为r。
则下列表述正确的是()A.上金属板为发电机的负极,电路中电流为BdvRB.下金属板为发电机的正极,电路中电流为BdvR+rC.上金属板为发电机的正极,电路中电流为BdvR+rD.下金属板为发电机的负极,电路中电流为BdvR3.(电磁流量计)有一种污水流量计原理可以简化为如图所示模型:废液内含有大量正、负离子,从直径为d的圆柱形容器右侧流入,左侧流出。
流量值等于单位时间通过横截面的液体的体积。
空间有垂直纸面向里的磁感应强度为B的匀强磁场,下列说法正确的是()A.M点的电势高于N点的电势B.负离子所受洛伦兹力方向竖直向下C.MN两点间的电势差与废液的流量值成正比D.MN两点间的电势差与废液流速成反比4.(霍尔效应)右图为霍尔元件的工作原理示意图,导体的宽度为h、厚度为d,磁感应强度B垂直于霍尔元件的工作面向下,通入图示方向的电流I,CD两侧面会形成电势差U,其,式中比例常数k为霍尔系数,设载流子的大小与磁感应强度B和电流I的关系为U=k IBd电荷量的数值为q,下列说法正确的是()A.霍尔元件是一种重要的电传感器B.C端的电势一定比D端的电势高C.载流子所受静电力的大小F=q UdD.霍尔系数k=1,其中n为导体单位体积内的电荷数nq5.(回旋加速器)右图为一种改进后的回旋加速器示意图,其中盒缝间的加速电场的电场强度大小恒定,且被限制在AC板间,虚线中间不需加电场,如图所示,带电粒子从P0处以速度v0沿电场线方向射入加速电场,经加速后再进入D形盒中的匀强磁场做匀速圆周运动,对这种改进后的回旋加速器,下列说法正确的是()A.加速粒子的最大速度与D形盒的尺寸无关B.带电粒子每运动一周被加速一次C.带电粒子每运动一周P1P2等于P2P3D.加速电场方向需要做周期性的变化6.(多选)(组合场)如图所示,在第二象限内有水平向右的匀强电场,在第一、第四象限内分别存在如图所示的匀强磁场,磁感应强度大小相等。
一、带电粒子在复合场中的运动专项训练1.压力波测量仪可将待测压力波转换成电压信号,其原理如图1所示,压力波p (t )进入弹性盒后,通过与铰链O 相连的“”型轻杆L ,驱动杆端头A 处的微型霍尔片在磁场中沿x 轴方向做微小振动,其位移x 与压力p 成正比(,0x p αα=>).霍尔片的放大图如图2所示,它由长×宽×厚=a×b×d ,单位体积内自由电子数为n 的N 型半导体制成,磁场方向垂直于x 轴向上,磁感应强度大小为0(1)0B B x ββ=->,.无压力波输入时,霍尔片静止在x=0处,此时给霍尔片通以沿12C C 方向的电流I ,则在侧面上D 1、D 2两点间产生霍尔电压U 0.(1)指出D 1、D 2两点那点电势高;(2)推导出U 0与I 、B 0之间的关系式(提示:电流I 与自由电子定向移动速率v 之间关系为I=nevbd ,其中e 为电子电荷量);(3)弹性盒中输入压力波p (t ),霍尔片中通以相同的电流,测得霍尔电压U H 随时间t 变化图像如图3,忽略霍尔片在磁场中运动场所的电动势和阻尼,求压力波的振幅和频率.(结果用U 0、U 1、t 0、α、及β)【来源】浙江新高考2018年4月选考科目物理试题【答案】(1) D 1点电势高 (2) 001IB U ne d= (3) 101(1)U A U αβ=- ,012f t =【解析】【分析】由左手定则可判定电子偏向D 2边,所以D 1边电势高;当电压为U 0时,电子不再发生偏转,故电场力等于洛伦兹力,根据电流I 与自由电子定向移动速率v 之间关系为I=nevbd 求出U 0与I 、B 0之间的关系式;图像结合轻杆运动可知,0-t 0内,轻杆向一侧运动至最远点又返回至原点,则可知轻杆的运动周期,当杆运动至最远点时,电压最小,结合U 0与I 、B 0之间的关系式求出压力波的振幅.解:(1)电流方向为C 1C 2,则电子运动方向为C2C1,由左手定则可判定电子偏向D 2边,所以D 1边电势高;(2)当电压为U 0时,电子不再发生偏转,故电场力等于洛伦兹力0U qvB qb= ① 由电流I nevbd =得:Iv nebd=② 将②带入①得00IB U ned=(3)图像结合轻杆运动可知,0-t 0内,轻杆向一侧运动至最远点又返回至原点,则轻杆的运动周期为T=2t 0 所以,频率为: 012f t =当杆运动至最远点时,电压最小,即取U 1,此时0(1)B B x β=- 取x 正向最远处为振幅A ,有:01(1?)IB U A nedβ=- 所以:00011(1)1IB U ned IB A U Aned ββ==-- 解得:01U U A U β-=根据压力与唯一关系x p α=可得xp α=因此压力最大振幅为:01m U U p U αβ-=2.小明受回旋加速器的启发,设计了如图1所示的“回旋变速装置”.两相距为d 的平行金属栅极板M 、N ,板M 位于x 轴上,板N 在它的正下方.两板间加上如图2所示的幅值为U 0的交变电压,周期02mT qBπ=.板M 上方和板N 下方有磁感应强度大小均为B 、方向相反的匀强磁场.粒子探测器位于y 轴处,仅能探测到垂直射入的带电粒子.有一沿x 轴可移动、粒子出射初动能可调节的粒子发射源,沿y 轴正方向射出质量为m 、电荷量为q (q >0)的粒子.t =0时刻,发射源在(x ,0)位置发射一带电粒子.忽略粒子的重力和其它阻力,粒子在电场中运动的时间不计.(1)若粒子只经磁场偏转并在y =y 0处被探测到,求发射源的位置和粒子的初动能; (2)若粒子两次进出电场区域后被探测到,求粒子发射源的位置x 与被探测到的位置y 之间的关系【来源】【省级联考】浙江省2019届高三上学期11月选考科目考试物理试题【答案】(1)00x y = ,()202qBy m(2)见解析【解析】 【详解】(1)发射源的位置00x y =, 粒子的初动能:()2002k qBy Em=;(2)分下面三种情况讨论: (i )如图1,002k E qU >由02101mv mv mvy R R Bq Bq Bq===、、, 和221001122mv mv qU =-,222101122mv mv qU =-, 及()012x y R R =++, 得()()22002224x y yqB mqU yqB mqU qBqB=++++;(ii )如图2,0002k qU E qU <<由020mv mv y d R Bq Bq--==、, 和220201122mv mv qU =+, 及()032x y d R =--+,得()222023)2x y d y d q B mqU qB=-+++((iii )如图3,00k E qU <由020mv mv y d R Bq Bq--==、, 和220201122mv mv qU =-, 及()04x y d R =--+, 得()222042x y d y d q B mqU qB=--++-;3.如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。
专题二:带电粒子在复合场中的运动(1)姓名______________1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=5.0×10-3T的匀强磁场,方向分别垂直纸面向外和向里.质量为m=6.64×10-27㎏、电荷量为q=+3.2×10-19C的α粒子(不计α粒子重力),由静止开始经加速电压为U=1205V的电场(图中未画出)加速后,从坐标点M(-4,2)处平行于x轴向右运动,并先后通过两个匀强磁场区域.(1)请你求出α粒子在磁场中的运动半径;(2)你在图中画出α粒子从直线x=-4到直线x=4之间的运动轨迹,并在图中标明轨迹与直线x=4交点的坐标;(3)求出α粒子在两个磁场区域偏转所用的总时间.专题二:带电粒子在复合场中的运动(4)姓名______________1.如图所示,竖直平面xOy 内存在水平向右的匀强电场,场强大小E=10N/c ,在y ≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T 一带电量0.2C q =+、质量0.4kg m =的小球由长0.4m l =的细线悬挂于P 点小球可视为质点,现将小球拉至水平位置A 无初速释放,小球运动到悬点P 正下方的坐标原点O 时,悬线突然断裂,此后小球又恰好能通过O 点正下方的N 点.(g=10m /s 2),求: (1)小球运动到O 点时的速度大小;(2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离2.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB ,并垂直AC 边射出(不计粒子的重力).求: (1)两极板间电压;(2)三角形区域内磁感应强度; (3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.专题二:带电粒子在复合场中的运动——参考答案(1)1、解析:由于此带电粒子是从静止开始释放的,要能经过M点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y轴上,受电场力作用而加速,以速度v进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x轴偏转.回转半周期过x轴重新进入电场,在电场中经减速、加速后仍以原速率从距O点2R处再次超过x轴,在磁场回转半周后又从距O点4R处飞越x轴如图所示(图中电场与磁场均未画出)故有L=2R,L=2×2R,L=3×2R即 R=L/2n,(n=1、2、3……)……………①设粒子静止于y轴正半轴上,和原点距离为h,由能量守恒得mv2/2=qEh……②对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R=mv/qB………③解①②③式得:h=B2qL2/8n2mE (n=l、2、3……)2、解析:粒子在电场中运行的时间t= l/v;加速度 a=qE/m;它作类平抛的运动.有tgθ=at/v=qEl/mv2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv2/r,所以r=mv/qB 又:sinθ=l/r=lqB/mv………②由①②两式得:B=Ecosθ/v 3、解析:(1)粒子在电场中被加速,由动能定理得221mvqU=α粒子在磁场中偏转,则牛顿第二定律得rvmqvB2=联立解得2102.312051064.62005.01211927=⨯⨯⨯⨯==--qmUBr(m)(2)由几何关系可得,α粒子恰好垂直穿过分界线,故正确图象为(3)带电粒子在磁场中的运动周期qBmvrTππ22==α粒子在两个磁场中分别偏转的弧度为4π,在磁场中的运动总时间631927105.6105102.321064.614.3241----⨯=⨯⨯⨯⨯⨯⨯===qBmTtπ(s)OM2-22-4 4 x/my/m-2vBB (4,2-)(4) 1、解:(1)小球从A 运到O 的过程中,根据动能定理:212mv mgl qEl =- ① 则得小球在O 点速度为:2/s v m == ② (2)小球运到O 点绳子断裂前瞬间,对小球应用牛顿第二定律:2v F T mg f m l=-==向洛 ③f Bvq =洛 ④由③、④得:28.2mv T mg Bvq N l=++= ⑤ (3)绳断后,小球水平方向加速度25/s x F Eq a m m===电 ⑥ 小球从O 点运动至N 点所用时间0.8t s aυ∆== ⑦ON 间距离21 3.2m 2h gt == ⑧2、 解:⑴垂直AB 边进入磁场,由几何知识得:粒子离开电场时偏转角为30°∵0.v lmd qu v y =0v v tg y=θ ∴qlmdv u 332= 由几何关系得:030cos dl AB =在磁场中运动半径d l r AB 23431==∴ 121r mv qv B = ︒=30cos 0v v∴qdmv B 3401= 方向垂直纸面向里⑶当粒子刚好与BC 边相切时,磁感应强度最小,由几何知识知粒子的运动半径r 2为:42d r = ………( 2分 ) 2202r mv qv B = ∴qd mv B 024=即:磁感应强度的最小值为qdmv 0422(12分)如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向。
高考物理《带电粒子在叠加场中的运动》真题练习含答案1.(多选)如图所示,空间存在着垂直向里的匀强磁场B 和竖直向上的匀强电场E ,两个质量不同电量均为q 的带电小球a 和b 从同一位置先后以相同的速度v 从场区左边水平进入磁场,其中a 小球刚好做匀速圆周运动,b 小球刚好沿直线向右运动.不计两小球之间库仑力的影响,重力加速度为g ,则( )A .a 小球一定带正电,b 小球可能带负电B .a 小球的质量等于qEgC .b 小球的质量等于qE -q v BgD .a 小球圆周运动的半径为EVBg答案:BD解析:a 小球刚好做匀速圆周运动,重力和电场力平衡,洛伦兹力提供向心力,所以Eq =m a g ,电场力方向竖直向上,则a 小球一定带正电,b 小球刚好沿直线向右运动,如果b 小球带负电,电场力洛伦兹力均向下,重力也向下,不能平衡,无法做直线运动,所以b 小球带正电,q v B +Eq =m b g ,A 错误;根据A 选项分析可知,a 小球的质量等于m a =qEg ,B 正确;根据A 选项分析可知,b 小球的质量等于m b =qE +q v Bg,C 错误;a 小球圆周运动的半径为Bq v =m a v 2r ,解得r =m a v Bq =E vBq,D 正确.2.(多选)如图所示,在竖直平面内的虚线下方分布着互相垂直的匀强电场和匀强磁场,电场的电场强度大小为10 N/C ,方向水平向左;磁场的磁感应强度大小为2 T ,方向垂直纸面向里.现将一质量为0.2 kg 、电荷量为+0.5 C 的小球,从该区域上方的某点A 以某一初速度水平抛出,小球进入虚线下方后恰好做直线运动.已知重力加速度为g =10 m/s 2.下列说法正确的是( )A.小球平抛的初速度大小为5 m/sB.小球平抛的初速度大小为2 m/sC.A点距该区域上边界的高度为1.25 mD.A点距该区域上边界的高度为2.5 m答案:BC解析:小球受竖直向下的重力与水平向左的电场力作用,小球进入电磁场区域做直线运动,小球受力如图所示小球做直线运动,则由平衡条件得q v B cos θ=mg,小球的速度v cos θ=v0,代入数据解得v0=2 m/s,A错误,B正确;小球从A点抛出到进入复合场过程,由动能定理得mgh=12m v2-12m v2,根据在复合场中的受力情况可知(mg)2+(qE)2=(q v B)2,解得h=E22gB2,代入数据解得h=1.25 m,C正确,D错误.3.如图所示,一带电液滴在相互垂直的匀强电场和匀强磁场中刚好做匀速圆周运动,其轨迹半径为R.已知电场的电场强度大小为E,方向竖直向下;磁场的磁感应强度大小为B,方向垂直于纸面向里.不计空气阻力,重力加速度为g,则下列说法中正确的是() A.液滴带正电B.液滴的比荷qm=g EC.液滴的速度大小v=gRBED.液滴沿逆时针方向运动答案:B解析:带电液滴刚好做匀速圆周运动,应满足mg=qE,电场力向上,与场强方向相反,液滴带负电,可得比荷为qm=gE,A错误,B正确;由左手定则可判断,只有液滴沿顺时针方向运动,受到的洛伦兹力才指向圆心,D错误;由向心力公式可得q v B=m v2R,联立可得液滴的速度大小为v=gBRE,C错误.4.(多选)空间内存在电场强度大小E=100 V/m、方向水平向左的匀强电场和磁感应强度大小B1=100 T、方向垂直纸面向里的匀强磁场(图中均未画出).一质量m=0.1 kg、带电荷量q=+0.01 C的小球从O点由静止释放,小球在竖直面内的运动轨迹如图中实线所示,轨迹上的A点离OB最远且与OB的距离为l,重力加速度g取10 m/s2.下列说法正确的是()A.在运动过程中,小球的机械能守恒B.小球经过A点时的速度最大C.小球经过B点时的速度为0D.l=25m答案:BCD解析:由于电场力做功,故小球的机械能不守恒,A项错误;重力和电场力的合力大小为(qE)2+(mg)2=2N,方向与竖直方向的夹角为45°斜向左下方,小球由O点到A点,重力和电场力的合力做的功最多,在A点时的动能最大,速度最大,B项正确;小球做周期性运动,在B点时的速度为0,C项正确;对小球由O点到A点的过程,由动能定理得2mgl=12m v2,沿OB方向建立x轴,垂直OB方向建立y轴,在x方向上由动量定理得q v y B1Δt=mΔv,累积求和,则有qB1l=m v,解得l=25m,D项正确.5.(多选)如图所示,平面直角坐标系的第二象限内(称为区域Ⅰ)存在水平向左的匀强电场和垂直纸面向里的匀强磁场B1,一质量为m、带电荷量为+q的小球从A点以速度v0沿直线AO运动,AO与x轴负方向成37°角.在y轴与MN之间的区域Ⅱ内加一电场强度最小的匀强电场后,可使小球继续做直线运动到MN上的C点,MN与PQ之间区域Ⅲ内存在宽度为d的竖直向上匀强电场和垂直纸面向里的匀强磁场B2,小球在区域Ⅲ内做匀速圆周运动并恰好不能从右边界飞出,已知小球在C点的速度大小为2v0,重力加速度为g,sin 37°=0.6,cos 37°=0.8,则下列结论正确的是()A .区域Ⅲ内匀强电场的场强大小E 3=mgqB .区域Ⅲ内匀强磁场的磁感应强度大小B 2=m v 0qdC.小球从A 到O 的过程中做匀速直线运动,从O 到C 的过程中做匀加速直线运动 D .区域Ⅱ内匀强电场的最小场强大小为E 2=4mg5q ,方向与x 轴正方向成53°角向上答案:ACD解析:小球在区域Ⅲ内做匀速圆周运动,有mg =qE 3,解得E 3=mgq ,A 项正确;因为小球恰好不从右边界穿出,小球运动轨迹如图所示,由几何关系得d =r +r sin 37°=85 r ,由洛伦兹力提供向心力得B 2q ×2v 0=m (2v 0)2r,解得B 2=16m v 05qd ,B 项错误;带电小球在第二象限内受重力、电场力和洛伦兹力做直线运动,三力满足如图所示关系所以小球从A 到O 的过程只能做匀速直线运动.区域Ⅱ中从O 到C 的过程,小球做直线运动电场强度最小,受力如图所示(电场力方向与速度方向垂直)所以小球做匀加速直线运动,由图知cos 37°=qE 2mg ,解得E 2=4mg5q ,方向与x 轴正方向成53°角向上,C 、D 两项正确.6.如图所示,一质量为m 、电荷量为q 的带正电小球(视为质点)套在长度为L 、倾角为θ的固定绝缘光滑直杆OP 上,P 端下方存在正交的匀强电场和匀强磁场,电场方向沿PO 方向,磁场方向垂直纸面水平向里.现将小球从O 端由静止释放,小球滑离直杆后沿直线运动,到达Q 点时立即撤去磁场,最终小球垂直打到水平地面上,重力加速度大小为g ,不计空气阻力.求:(1)电场的电场强度大小E 以及磁场的磁感应强度大小B ; (2)Q 点距离地面的高度h .答案:(1)mg sin θq ,mg cos θq 2gL sin θ(2)(sin θ+1sin θ)L 解析:(1)小球滑离直杆后进入叠加场,在叠加场内的受力情况如图所示,小球做匀速直线运动,根据几何关系有sin θ=Eqmg ,cos θ=q v B mg小球在直杆上时有L =v 22g sin θ解得E =mg sin θq ,B =mg cos θq 2gL sin θ(2)根据题意可知,当磁场撤去后,小球受重力和电场力作用,且合力的方向与速度方向垂直,小球做类平抛运动,水平方向有Eq cos θ=ma xv x =v cos θ-a x t竖直方向有mg -Eq sin θ=ma y h =v sin θ·t +12a y t 2当小球落到地面时,v x =0, 即v x =v cos θ-a x t =0 解得t =m vEqh =(sin θ+1sin θ)L7.[2024·湖北省鄂东南教育教学改革联盟联考]如图所示,在竖直平面内的直角坐标系xOy 中,y 轴竖直,第一象限内有竖直向上的匀强电场E 1、垂直于xOy 平面向里的匀强磁场B 1=4 T ;第二象限内有平行于xOy 平面且方向可以调节的匀强电场E 2;第三、四象限内有垂直于纸面向外的匀强磁场B 2=1063 T .x 、y 轴上有A 、B 两点,OA =(2+3 ) m ,OB=1 m .现有一质量m =4×10-3 kg ,电荷量q =10-3 C 的带正电小球,从A 点以速度v 0垂直x 轴进入第一象限,做匀速圆周运动且从B 点离开第一象限.小球进入第二象限后沿直线运动到C 点,然后由C 点进入第三象限.已知重力加速度为g =10 m/s 2,不计空气阻力.求:(1)第一象限内电场的电场强度E 1与小球初速度v 0的大小;(2)第二象限内电场强度E 2的最小值和E 2取最小值时小球运动到C 点的速度v C ; (3)在第(2)问的情况下,小球在离开第三象限前的最大速度v m . 答案:(1)40 N/C 2 m/s (2)20 N/C 26 m/s (3)46 m/s ,方向水平向左解析:(1)小球由A 点进入第一象限后,所受电场力与重力平衡 E 1q =mg 解得E 1=40 N/C 由几何关系得r +r 2-OB 2 =OA解得r =2 m小球做匀速圆周运动,洛伦兹力提供向心力,则有q v 0B 1=m v 20r解得v 0=2 m/s(2)由几何关系得:BC 与竖直方向夹角为θ=30°小球由B 到C 做直线运动,则电场力与重力的合力与v B 均沿BC 方向,当电场力与BC 垂直时,电场力有最小值qE 2min =mg sin θ解得E 2min =20 N/C 对小球有mg cos θ=ma 根据几何关系x BC =OB cos θ =233 m 根据速度位移关系式v 2C -v 20 =2ax BC代入数据得a =53 m/s 2 v C =26 m/s(3)小球进入第三象限后,在重力、洛伦兹力作用下做变加速曲线运动,把初速度v C 分解为v 1和v 2,其中v 1满足Bq v 1=mg解得v 1=mgB 2q =26 m/s方向水平向左 则v 2=26 m/s方向与x 轴正方向夹角为60°小球的实际运动可以分解为运动一:速度为v1=26m/s,水平向左,合力为B2q v1-mg=0的匀速直线运动.运动二:速度为v2=26m/s,顺时针旋转,合力为F洛=B2q v2的匀速圆周运动.当v1和v2的方向相同时合运动的速度最大,最大速度v m=v1+v2=46m/s 方向水平向左.。
带电粒子在复合场中的运动例题摘要:I.带电粒子在复合场中的运动概述A.复合场的概念B.带电粒子在复合场中的运动类型II.例题解析A.例题一:带电粒子在电场和磁场中的运动1.问题描述2.受力分析3.运动方程4.结论B.例题二:带电粒子在复合场中的匀速圆周运动1.问题描述2.受力分析3.运动方程4.结论C.例题三:带电粒子在复合场中的匀速直线运动1.问题描述2.受力分析3.运动方程4.结论III.结论A.带电粒子在复合场中的运动规律B.解决类似问题的方法正文:带电粒子在复合场中的运动例题在物理学中,带电粒子在复合场中的运动是一个复杂的问题。
复合场是由电场和磁场组成的,带电粒子在其中受到多种力的作用。
为了更好地理解带电粒子在复合场中的运动规律,我们可以通过一些例题来加深理解。
例题一:带电粒子在电场和磁场中的运动问题描述:设一带电粒子在电场E 和磁场B 中运动,粒子质量为m,电荷为q,运动速度为v。
受力分析:带电粒子在电场中受到电场力Fe = qE,在磁场中受到磁场力Fm = qvB。
运动方程:由于粒子在复合场中运动,所以需要分别考虑在电场和磁场中的运动方程。
在电场中,粒子受到的电场力使其加速,运动方程为:Fe = qE = ma1;在磁场中,粒子受到的磁场力使其偏转,运动方程为:Fm = qvB = 0。
结论:由于粒子在磁场中受到的力为零,所以粒子的运动轨迹将呈直线。
例题二:带电粒子在复合场中的匀速圆周运动问题描述:设一带电粒子在复合场中作匀速圆周运动,运动半径为R,运动速度为v。
受力分析:带电粒子在复合场中受到的力有电场力和磁场力。
由于粒子作匀速圆周运动,所以电场力和磁场力必须平衡。
运动方程:电场力为Fe = qE,磁场力为Fm = qvB。
由于粒子作匀速圆周运动,所以有:Fe = Fm;即:qE = qvB。
结论:带电粒子在复合场中作匀速圆周运动时,其运动速度v 与电场E 和磁场B 的关系为v = E/B。
十年高考分类汇编专题10静电场2(2011—2020)目录题型一、带电粒子在复合场中的运动 ................................................................................................ 1 题型二、带电粒子在纯电场、复合场中运动的综合类问题 (5)题型一、带电粒子在复合场中的运动1.(2019天津)如图所示,在水平向右的匀强电场中,质量为m 的带电小球,以初速度v 从M 点竖直向上运动,通过N 点时,速度大小为2v ,方向与电场方向相反,则小球从M 运动到N 的过程( )A .动能增加212mvB .机械能增加22mv C .重力势能增加232mv D .电势能增加22mv【考点】:功能关系、动能定理、运动的独立性、电场力做功【答案】:C【解析】:小球的动能增加量为2222321)2(21mv mv v m E E KM KN =-=-;故A 错误;除重力外其它力对小球做功的大小为小球机械能的增加量,在本题中电场力对小球做功的大小为小球机械能的增加量,在水平方向上研究小球可知电场力对其做正功,电势能减小,可求得电场力对小球做功大小为小球水平方向动能的增量2221)(v m ;即小球的机械能增加了22mv ;电势能减小了22mv ;故B 对,D 错;从M 点到N 点对小球应用动能定理得:2221)2(21mv v m W W G D -=-;又22mv W D =;可求得221mv W G =故C 错;2.(2016江苏)如图所示,水平金属板A 、B 分别与电源两极相连,带电油滴处于静止状态.现将B 板右端向下移动一小段距离,两金属板表面仍均为等势面,则该油滴( )A. 仍然保持静止B. 竖直向下运动C. 向左下方运动D. 向右下方运动【考点】带电粒子在复合场中的运动、受力分析【答案】D【解析】两极板平行时带电粒子处于平衡状态,则重力等于电场力,当下极板旋转时,板间距离增大场强减小,电场力小于重力;由于电场线垂直于金属板表面,所以电荷处的电场线如图所示,所以重力与电场力的合力偏向右下方,故粒子向右下方运动,选项D正确.3.(2013广东)喷墨打印机的简化模型如图所示.重力可忽略的墨汁微滴,经带电室带负电后,以速度v垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中( )A.向负极板偏转B.电势能逐渐增大C.运动轨迹是抛物线D.运动轨迹与带电量无关【考点】带电粒子在复合场中的运动、受力分析、类平抛运动【答案:C】【解析】选C.带电微滴垂直进入电场后,在电场中做类平抛运动,根据平抛运动的分解——水平方向做匀速直线运动和竖直方向做匀加速直线运动.带负电的微滴进入电场后受到向上的静电力,故带电微滴向正极板偏转,选项A错误;带电微滴垂直进入电场受竖直方向的静电力作用,静电力做正功,故墨汁微滴的电势能减小,选项B错误;根据x=v0t,y =12at 2及a =qE m ,得带电微滴的轨迹方程为y =qEx22mv 20,即运动轨迹是抛物线,与带电量有关,选项C 正确,D 错误.4.(2016全国1) 如图,一带负电荷的油滴在匀强电场中运动,其轨迹在竖直面(纸面)内,且相对于过轨迹最低点P 的竖直线对称。
压轴题06 带电粒子(带电体)在复合场中的运动问题目录一,考向分析 (1)二.题型及要领归纳 (1)热点题型一 带电粒子在有界匀强磁场中做匀速圆周运动 (1)热点题型二 借助分立场区考查磁偏转+电偏转问题 (4)热点题型三 利用粒子加速器考电加速磁偏转问题 (7)热点题型四 带电粒子(带电体)在叠加场作用下的运动 (9)三.压轴题速练 (10)一,考向分析1.本专题是磁场、力学、电场等知识的综合应用,高考往往以计算压轴题的形式出现。
2.学习本专题,可以培养同学们的审题能力、推理能力和规范表达能力。
针对性的专题训练,可以提高同学们解决难题、压轴题的信心。
3.复杂的物理问题一定是需要在定性的分析和思考后进行定量运算的,而最终能否解决问题,数理思维能力起着关键作用。
物理教学中有意识地培养学生的数理思维,对学生科学思维的形成具有重要作用。
带电粒子在磁场中的运动正是对学生数理思维的培养与考查的主要问题。
解决本专题的核心要点需要学生熟练掌握下列方法与技巧4.粒子运动的综合型试题大致有两类,一是粒子依次进入不同的有界场区,二是粒子进入复合场与组合场区。
其运动形式有匀变速直线运动、类抛体运动与匀速圆周运动。
涉及受力与运动分析、临界状态分析、运动的合成与分解以及相关的数学知识等。
问题的特征是有些隐含条件需要通过一些几何知识获得,对数学能力的要求较高。
二.题型及要领归纳热点题型一 带电粒子在有界匀强磁场中做匀速圆周运动一.带电粒子在匀强磁场中做匀速圆周运动的解题方法(1)带电粒子在匀强磁场中运动时,要抓住洛伦兹力提供向心力,即:qvB =mv 2R 得R =mv Bq,T =2πm qB ,运动时间公式t =θ2πT ,粒子在磁场中的运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题.(2)如果磁场是圆形有界磁场,在找几何关系时要尤其注意带电粒子在匀强磁场中的“四点、六线、三角”.①四点:入射点B、出射点C、轨迹圆心A、入射速度直线与出射速度直线的交点O.①六线:圆弧两端点所在的轨迹半径r、入射速度直线OB和出射速度直线OC、入射点与出射点的连线BC、圆心与两条速度垂线交点的连线AO.①三角:速度偏转角①COD、圆心角①BAC、弦切角①OBC,其中偏转角等于圆心角,也等于弦切角的两倍.二.带电粒子在匀强磁场中做匀速圆周运动的思维线索【例1】(2023春·江苏扬州·高三统考期中)如图所示,垂直于纸面向里的匀强磁场,磁感【例2】(2023春·江苏泰州·高三统考阶段练习)原子核衰变时放出肉眼看不见的射线。
一、带电粒子在复合场中的运动专项训练1.如图,绝缘粗糙的竖直平面MN 左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E ,磁场方向垂直纸面向外,磁感应强度大小为B .一质量为m 、电荷量为q 的带正电的小滑块从A 点由静止开始沿MN 下滑,到达C 点时离开MN 做曲线运动.A 、C 两点间距离为h ,重力加速度为g .(1)求小滑块运动到C 点时的速度大小v c ;(2)求小滑块从A 点运动到C 点过程中克服摩擦力做的功W f ;(3)若D 点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D 点时撤去磁场,此后小滑块继续运动到水平地面上的P 点.已知小滑块在D 点时的速度大小为v D ,从D 点运动到P 点的时间为t ,求小滑块运动到P 点时速度的大小v p .【来源】2015年全国普通高等学校招生统一考试物理(福建卷带解析) 【答案】(1)E/B (2)(3)【解析】 【分析】 【详解】小滑块到达C 点时离开MN ,此时与MN 间的作用力为零,对小滑块受力分析计算此时的速度的大小;由动能定理直接计算摩擦力做的功W f ;撤去磁场后小滑块将做类平抛运动,根据分运动计算最后的合速度的大小;(1)由题意知,根据左手定则可判断,滑块在下滑的过程中受水平向左的洛伦兹力,当洛伦兹力等于电场力qE 时滑块离开MN 开始做曲线运动,即Bqv qE = 解得:E v B=(2)从A 到C 根据动能定理:2102f mgh W mv -=- 解得:2212f E W mgh m B=-(3)设重力与电场力的合力为F ,由图意知,在D 点速度v D 的方向与F 地方向垂直,从D 到P 做类平抛运动,在F 方向做匀加速运动a=F /m ,t 时间内在F 方向的位移为212x at =从D 到P ,根据动能定理:150a a +=,其中2114mv 联立解得:()22222()P Dmg qE v t v m+=+ 【点睛】解决本题的关键是分析清楚小滑块的运动过程,在与MN 分离时,小滑块与MN 间的作用力为零,在撤去磁场后小滑块将做类平抛运动,根据滑块的不同的运动过程逐步求解即可.2.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P (x =0,y =h )点以一定的速度平行于x 轴正向入射.这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点.不计重力.求: (1)粒子到达x =R 0平面时速度方向与x 轴的夹角以及粒子到x 轴的距离; (2)M 点的横坐标x M .【来源】磁场 【答案】(1)20122R H h at h =+=+;(2)22000724M x R R R h h =++- 【解析】 【详解】(1)做直线运动有,根据平衡条件有:0qE qB =v ①做圆周运动有:200qB m R =v v ②只有电场时,粒子做类平抛,有:qE ma =③00R t =v ④ y v at =⑤解得:0y v v =⑥ 粒子速度大小为:22002y v v v v =+=⑦速度方向与x 轴夹角为:π4θ=⑧ 粒子与x 轴的距离为:20122R H h at h =+=+⑨(2)撤电场加上磁场后,有:2v qBv m R=⑩解得:02R R =⑾. 粒子运动轨迹如图所示圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y 轴的夹角均为4π,有几何关系得C 点坐标为:02C x R =⑿02C R y H R h =-=-⒀ 过C 作x 轴的垂线,在ΔCDM 中:02CM R R ==⒁2C R CD y h ==-⒂) 解得:22220074DM CM CD R R h h =-=+- M 点横坐标为:22000724M x R R R h h =+-3.利用电场和磁场,可以将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用.如图所示的矩形区域ACDG(AC 边足够长)中存在垂直于纸面的匀强磁场,A 处有一狭缝.离子源产生的离子,经静电场加速后穿过狭缝沿垂直于GA 边且垂直于磁场的方向射入磁场,运动到GA 边,被相应的收集器收集.整个装置内部为真空.已知被加速的两种正离子的质量分别是m 1和m 2(m 1>m 2),电荷量均为q .加速电场的电势差为U ,离子进入电场时的初速度可以忽略.不计重力,也不考虑离子间的相互作用.(1)求质量为m 1的离子进入磁场时的速率v 1;(2)当磁感应强度的大小为B 时,求两种离子在GA 边落点的间距s ;(3)在前面的讨论中忽略了狭缝宽度的影响,实际装置中狭缝具有一定宽度.若狭缝过宽,可能使两束离子在GA 边上的落点区域交叠,导致两种离子无法完全分离.设磁感应强度大小可调,GA 边长为定值L ,狭缝宽度为d ,狭缝右边缘在A 处.离子可以从狭缝各处射入磁场,入射方向仍垂直于GA 边且垂直于磁场.为保证上述两种离子能落在GA 边上并被完全分离,求狭缝的最大宽度.【来源】2011年普通高等学校招生全国统一考试物理卷(北京)【答案】(112qU m 21228Um m qB (3)d m 12122m m m m --L【解析】(1)动能定理 Uq =12m 1v 12 得:v 1=12qUm …① (2)由牛顿第二定律和轨道半径有:qvB =2mv R,R = mv qB 利用①式得离子在磁场中的轨道半径为别为(如图一所示):R 1=122mU qB ,R 2=222 m U qB …② 两种离子在GA 上落点的间距s =2(R 1−R 2)=1228()Um m qB- …③ (3)质量为m 1的离子,在GA 边上的落点都在其入射点左侧2R 1处,由于狭缝的宽度为d ,因此落点区域的宽度也是d (如图二中的粗线所示).同理,质量为m 2的离子在GA 边上落点区域的宽度也是d (如图二中的细线所示).为保证两种离子能完全分离,两个区域应无交叠,条件为2(R 1-R 2)>d…④ 利用②式,代入④式得:2R 1(1−21m m >d R 1的最大值满足:2R 1m =L-d 得:(L −d )(1−21m m >d 求得最大值:d m 12122m m m m --L4.如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。
带电粒子在电场与磁场衔接中运动专项训练卷考试范围:电场与磁场;命题人:王占国;审题人:孙炜煜注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明试卷第2页,总48页第II 卷(非选择题)请点击修改第II 卷的文字说明 一、计算题(题型注释)1.(21分)图中左边有一对平行金属板,两板相距为d ,电压为V ;两板之间有匀强磁场,磁感应强度大小为0B ,方向平行于板面并垂直于纸面朝里。
图中右边有一边长为a 的正三角形区域EFG (EF 边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里。
假设一系列电荷量为q 的正离子沿平行于金属板面、垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF 边中点H 射入磁场区域。
不计重力。
(1)已知这些离子中的离子甲到达磁场边界EG 后,从边界EF 穿出磁场,求离子甲的质量。
(2)已知这些离子中的离子乙从EG 边上的I 点(图中未画出)穿出磁场,且GI 长为34a 。
求离子乙的质量。
(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达。
【答案】 (1)032qaBB d m V ⎫=⎪⎭(2)04qaBB dm V'=(3)所以,磁场边界上可能有离子到达的区域是:EF 边上从O 到I '点。
EG 边上从K 到I 。
【解析】(21分)(1)由题意知,所有离子在平行金属板之间做匀速直线运动,它所受到的向上的磁场力和向下的电场力平衡,有00qvB qE =①式中,v 是离子运动的速度,0E 是平行金属板之间的匀强电场的强度,有0V E d=②由①②式得0V v B d=③在正三角形磁场区域,离子甲做匀速圆周运动。
设离子甲质量为m ,由洛仑兹力公式和牛顿第二定律有2v qvB m r=④式中,r 是离子甲做圆周运动的半径。
一、带电粒子在复合场中的运动专项训练1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。
极板间存在方向向上的匀强电场,两极板间电压为U 。
质量为m 、带电量为q 的正离子从O 点由静止开始加速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。
两虚线之间的区域无电场和磁场存在,离子可匀速穿过。
忽略相对论效应和离子所受的重力。
求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。
【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =(2)22nqUm B =,2(1,2,3,,1)n k =-L (3)2222(1)t qum k -磁,22(1)=k m t h qU-电 【解析】 【分析】带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。
【详解】(1)离子经电场加速,由动能定理:212qU mv =可得2qUv m=磁场中做匀速圆周运动:2v qvB m r=刚好打在P 点,轨迹为半圆,由几何关系可知:2kd r =联立解得B =; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。
设共加速了n 次,有:212n nqU mv =2nn nv qv B m r =且:2n kd r =解得:B =,要求离子第一次加速后不能打在板上,有12d r >且:2112qU mv =2111v qv B m r =解得:2n k <,故加速次数n 为正整数最大取21n k =- 即:B =2(1,2,3,,1)n k =-L ;(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。
粒子在复合场中运动---高中物理模块典型题归纳(含详细答案)一、单选题1.如图所示,在正交的匀强电场和匀强磁场中,一带电粒子在竖直平面内做匀速圆周运动,则微粒带电性质和环绕方向分别是()A.带正电,逆时针B.带正电,顺时针C.带负电,逆时针D.带负电,顺时针2.如图所示,质量、速度和电量均不完全相同的正离子垂直于匀强磁场和匀强电场的方向飞入,匀强磁场和匀强电场的方向相互垂直.离子离开该区域时,发现有些离子保持原来的速度方向并没有发生偏转.如果再让这些离子进入另一匀强磁场中,发现离子束再分裂成几束.这种分裂的原因是离子束中的离子一定有不同的()A.质量B.电量C.速度D.荷质比3.如图所示,匀强磁场的方向垂直纸面向里,匀强电场的方向竖直向下,有一正离子恰能以速率v沿直线从左向右水平飞越此区域,则()A.若电子以速率v从右向左飞入,电子也沿直线运动B.若电子以速率v从右向左飞入,电子将向上偏转C.若电子以速率v从右向左飞入,电子将向下偏转D.若电子以速率v从左向右飞入,电子将向下偏转4.如图所示,金属板M,N水平放置,相距为d,其左侧有一对竖直金属板P,Q,板P上小孔S正对板Q上的小孔O,M,N间有垂直纸面向里的匀强磁场,在小孔S处有一带负电粒子,其重力和初速均不计,当变阻器的滑动触头在AB的中点时,带负电粒子恰能在M,N间做直线运动,当滑动变阻器滑片向A点滑动过程中,则()A.粒子在M,N间运动过程中,动能一定不变B.粒子在M,N间运动过程中,动能一定减小C.粒子在M,N间仍做直线运动D.粒子可能沿M板的右边缘飞出5.如图所示,实线表示在竖直平面内匀强电场的电场线,电场线与水平方向成α角,水平方向的匀强磁场垂直纸面向里,有一带电液滴沿斜向上的虚线l做直线运动,l与水平方向成β角,且α>β,不计空气阻力,则下列说法中正确的是()A.液滴可能做匀减速直线运动B.液滴可能带负电C.电场线方向一定斜向下D.液滴一定做匀速直线运动6.一质子以速度V穿过互相垂直的电场和磁场区域而没有发生偏转,则()A.若电子以相同速度V射入该区域,将会发生偏转B.无论何种带电粒子,只要以相同速度射入都不会发生偏转C.若质子的速度V’<V,它将向下偏转而做类似平抛运动D.若质子的速度V’>V,它将向上偏转,其运动轨迹既不是圆弧也不是抛物线。
考点四霍尔效应6.据报道,我国最近实施的“双星”计划所发射的卫星中放置一种磁强计,用于测定地磁场的磁感应强度等研究项目。
磁强计的原理如图所示,电路中有一段金属导体,它的横截面是宽为a 、高为b 的长方形,放在沿y 轴正方向的匀强磁场中,导体中通有沿x 轴正方向、电流强度为I 的电流。
已知金属导体单位体积中的自由电子数为n ,电子电量为e 。
金属导电过程中,自由电子所做的定向移动可视为匀速运动。
测出金属导体前后两个侧面间的电势差为U 。
(1)金属导体前后两个侧面哪个电势较高? (2)求磁场磁感应强度B 的大小。
考点五 带电体在复合场中的运动7.如图所示,在矩形ABCD 区域内,对角线BD 以上的区域存在有平行于AD 向下的匀强电场,对角线BD 以下的区域存在有垂直于纸面的匀强磁场(图中未标出),矩形AD 边长为L ,AB 边长为2L 。
一个质量为m 、电荷量为+q 的带电粒子(重力不计)以初速度v 0从A 点沿AB 方向进入电场,在对角线BD 的中点P 处进入磁场,并从DC 边上以垂直于DC 边的速度离开磁场(图中未画出),求:(1)电场强度E 的大小和带电粒子经过P 点时速度v 的大小和方向;(2)磁场的磁感应强度B 的大小和方向。
8.如图所示的平面直角坐标系xOy ,在第Ⅰ象限内有平行于y 轴的匀强电场,方向沿y 正方向;在第Ⅳ象限的正三角形abc 区域内有匀强磁场,方向垂直于xOy 平面向里,正三角形边长为L ,且ab 边与y 轴平行.一质量为m 、电荷量为q 的粒子,从y 轴上的p (0,h )点,以大小为v 0的速度沿x 轴正方向射入电场,通过电场后从x 轴上的a (2h ,0)点进入第Ⅳ象限,又经过磁场从y 轴上的某点进入第Ⅲ象限,且速度与y 轴负方向成45°角,不计粒子所受的重力.求:(1)电场强度E 的大小;(2)粒子到达a 点时速度的大小和方向; (3)abc 区域内磁场的磁感应强度B 的最小值.电场的方向竖直向下,有一正离子恰能以速率从右向左飞入,则该电子将向从右向左飞入,则该电子将向取=方向两两垂直,如图所示。
一、带电粒子在复合场中的运动专项训练1.如图所不,在x轴的上方存在垂直纸面向里,磁感应强度大小为B0的匀强磁场.位于x 轴下方的离子源C发射质量为m、电荷量为g的一束负离子,其初速度大小范围0〜,这束离子经电势差的电场加速后,从小孔O(坐标原点)垂直x轴并垂直磁场射入磁场区域,最后打到x轴上.在x轴上2a〜3a区间水平固定放置一探测板(),假设每秒射入磁场的离子总数为N0,打到x轴上的离子数均匀分布(离子重力不计).(1)求离子束从小孔O射入磁场后打到x轴的区间;(2)调整磁感应强度的大小,可使速度最大的离子恰好打在探测板右端,求此时的磁感应强度大小B1;(3)保持磁感应强度B1不变,求每秒打在探测板上的离子数N;若打在板上的离子80%被吸收,20%被反向弹回,弹回速度大小为打板前速度大小的0.6倍,求探测板受到的作用力大小.【来源】浙江省2018版选考物理考前特训(2017年10月)加试30分特训:特训7 带电粒子在场中的运动试题【答案】(1);(2)(3)【解析】(1)对于初速度为0的离子,根据动能定理::qU=mv在磁场中洛仑兹力提供向心力:,所以半径:r1==a恰好打在x=2a的位置;对于初速度为v0的离子,qU=mv-m(v0)2r2==2a,恰好打在x=4a的位置故离子束从小孔O射入磁场打在x轴上的区间为[2a,4a](2)由动能定理qU=mv-m(v0)2r3=r3=a解得B1=B0(3)对速度为0的离子qU=mvr4==a2r4=1.5a离子打在x轴上的区间为[1.5a,3a]N=N0=N0对打在x=2a处的离子qv3B1=对打在x=3a处的离子qv4B1=打到x轴上的离子均匀分布,所以=由动量定理-Ft=-0.8Nm+0.2N(-0.6m-m)解得F=N0mv0.【名师点睛】初速度不同的粒子被同一加速电场加速后,进入磁场的速度也不同,做匀速圆周运动的半径不同,转半圈后打在x轴上的位置不同.分别求出最大和最小速度,从而求出最大半径和最小半径,也就知道打在x轴上的区间;打在探测板最右端的粒子其做匀速圆周运动的半径为1.5a,由半径公式也就能求出磁感应强度;取时间t=1s,分两部分据动量定理求作用力.两者之和就是探测板受到的作用力.2.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为、重力不计的d,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m、带电量q带电粒子,以初速度1v垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:(1)粒子第一次经过电场的过程中电场力所做的功1W (2)粒子第n 次经过电场时电场强度的大小n E (3)粒子第n 次经过电场所用的时间n t(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).【来源】河北省衡水中学滁州分校2018届高三上学期全真模拟物理试题【答案】(1)21132mv W =(2)21(21)2n n mv E qd +=(3)12(21)n d t n v =+ (4)如图;【解析】 (1)根据mv r qB =,因为212r r =,所以212v v =,所以221211122W mv mv =-, (2)=,,所以.(3),,所以.(4)3.如图,M、N是电压U=10V的平行板电容器两极板,与绝缘水平轨道CF相接,其中CD 段光滑,DF段粗糙、长度x=1.0m.F点紧邻半径为R的绝缘圆筒(图示为圆筒的横截面),圆筒上开一小孔与圆心O在同一水平面上,圆筒内存在磁感应强度B=0.5T、方向垂直纸面向里的匀强磁场和方向竖直向下的匀强电场E.一质量m=0.01kg、电荷量q=-0.02C的小球a从C点静止释放,运动到F点时与质量为2m、不带电的静止小球b发生碰撞,碰撞后a球恰好返回D点,b球进入圆筒后在竖直面内做圆周运动.不计空气阻力,小球a、b 均视为质点,碰时两球电量平分,小球a在DF段与轨道的动摩因数μ=0.2,重力加速度大小g=10m/s2.求(1)圆筒内电场强度的大小;(2)两球碰撞时损失的能量;(3)若b球进入圆筒后,与筒壁发生弹性碰撞,并从N点射出,则圆筒的半径.【来源】福建省宁德市2019届普通高中毕业班质量检查理科综合物理试题【答案】(1)20N/C;(2)0J;(3)16tanRnπ=(n≥3的整数)【解析】【详解】(1)小球b要在圆筒内做圆周运动,应满足:12Eq=2mg解得:E=20 N/C(2)小球a到达F点的速度为v1,根据动能定理得:Uq-μmgx=12mv12小球a从F点的返回的速度为v2,根据功能关系得:μmgx=12mv22两球碰撞后,b球的速度为v,根据动量守恒定律得:mv1=-mv2+2mv则两球碰撞损失的能量为:ΔE=12mv12-12mv22-12mv2联立解得:ΔE=0(3)小球b进入圆筒后,与筒壁发生n-1次碰撞后从N点射出,轨迹图如图所示:每段圆弧对应圆筒的圆心角为2nπ,则在磁场中做圆周运动的轨迹半径:r1=Rtannπ粒子在磁场中做圆周运动:21122vqvB mr=联立解得:16tanRnπ=(n≥3的整数)4.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l-0质子束以初速度v0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。
高考物理电磁学-复合场专题练习(含答案)(一)一、单选题1.如图所示,足够长的两平行金属板正对着竖直放置,它们通过导线与电源E、定值电阻R、开关S相连.闭合开关后,与两极板上边缘等高处有两个带负电小球A和B,它们均从两极板正中央由静止开始释放,两小球最终均打在极板上,(不考虑小球间的相互作用及对电场的影响)下列说法中正确的是()A.两小球在两板间运动的轨迹都是一条抛物线B.两板间电压越大,小球在板间运动的时间越短C.它们的运动时间一定相同D.若两者的比荷相同,它们的运动轨迹可能相同2.一个带电小球,用细线悬挂在水平方向的匀强电场中,当小球静止后把细线烧断,在小球将(假设电场足够大)()A.做自由落体运动B.做曲线运动C.做匀加速直线运动D.做变加速直线运动3.质量为m,带电量为+q的小球,在匀强电场中由静止释放,小球沿着与竖直向下夹30°的方向作匀加速直线运动,当场强大小为E=mg/2 时、E所有可能的方向可以构成()A.一条线 B.一个平面 C.一个球面 D.一个圆锥面4.场强为E的匀强电场和磁感强度为B的匀强磁场正交.如图质量为m的带电粒子在垂直于磁场方向的竖直平面内,做半径为R的匀速圆周运动,设重力加速度为g,则下列结论不正确的是()A.粒子带负电,且q=B.粒子顺时针方向转动C.粒子速度大小v=D.粒子的机械能守恒5.如图所示,一个质量为m、带正电荷量为q的小带电体处于可移动的匀强磁场中,磁场的方向垂直纸面向里,磁感应强度为B,为了使它对水平绝缘面刚好无压力,应该()A.使磁感应强度B的数值增大B.使磁场以速率v= 向上移动C.使磁场以速率v= 向右移动D.使磁场以速率v= 向左移动6.在赤道处,将一小球向东水平抛出,落地点为A;给小球带上电荷后,仍以原来的速度抛出,考虑地磁场的影响,下列说法正确的是()A.无论小球带何种电荷,小球仍会落在A点B.无论小球带何种电荷,小球下落时间都会延长C.若小球带负电荷,小球会落在更远的B点D.若小球带正电荷,小球会落在更远的B点7.如图所示,某空间存在正交的匀强磁场和匀强电场,电场方向水平向右,磁场方向垂直于纸面向里,一个带电微粒由a点进入电磁场并刚好能沿ab直线向上运动,下列说法正确的是()A.微粒可能带负电,可能带正电B.微粒的机械能一定增加C.微粒的电势能一定增加D.微粒动能一定减小8.如图所示,一电子束垂直于电场线与磁感线方向入射后偏向A极板,为了使电子束沿射入方向做直线运动,可采用的方法是()A.将变阻器滑动头P向右滑动B.将变阻器滑动头P向左滑动C.将极板间距离适当减小D.将极板间距离适当增大9.如图所示为“滤速器”装置示意图.a、b为水平放置的平行金属板,其电容为C,板间距离为d,平行板内存在垂直纸面向里的匀强磁场,磁感应强度为B,a、b板带上电量,可在平行板内产生匀强电场,且电场方向和磁场方向互相垂直.一带电粒子以速度v0经小孔进入正交电磁场可沿直线OO′运动,由O′射出,粒子所受重力不计,则a板所带电量情况是()A.带正电,其电量为B.带正电,其电量为CBdv0C.带负电,其电量为D.带负电,其电量为10.如图所示,在真空中,匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里.三个油滴a、b、c带有等量的同种电荷,已知a静止,b向右匀速运动,c向左匀速运动.比较它们的质量应有()A.a油滴质量最大B.b油滴质量最大C.c油滴质量最大D.a、b、c的质量一样二、综合题11.竖直放置的两块足够长的带电平行金属板间有匀强电场,其电场强度为E,在该匀强电场中,用丝线悬挂质量为m的带正电小球,当丝线跟竖直方向成θ角小球与板距离为b时,小球恰好平衡,如图所示.(重力加速度为g)求:(1)小球带电量q是多少?(2)若剪断丝线,小球碰到金属板需多长时间?12.以竖直向上为轴正方向的平面直角系,如图所示,在第一、四象限内存在沿轴负方向的匀强电场,在第二、三象限内存在着沿轴正方向的匀强电场和垂直于平面向外的匀强磁场,现有一质量为、电荷量为的带正电小球从坐标原点O以初速度沿与轴正方向成角的方向射出,已知两电场的电场强度,磁场的磁感应强度为B,重力加速度为。
2022年高考物理一轮复习考点优化训练专题:37 带电粒子在复合场中的运动一、单选题1.(2分)1930年劳伦斯制成了世界上第一台回旋加速器,其原理如图所示。
这台加速器由两个铜质D形盒D1、D2构成,其间留有空隙,下列说法正确的是()A.离子在回旋加速器中做圆周运动的周期随半径的增大而增大B.离子从磁场中获得能量C.增大加速电场的电压,其余条件不变,离子离开磁场的动能将增大D.增大加速电场的电压,其余条件不变,离子在D型盒中运动的时间变短2.(2分)如图所示,一块长度为a、宽度为b、厚度为d的金属导体,当加有与侧面垂直的匀强磁场B,且通以图示方向的电流I时,用电压表测得导体上、下表面MN间电压为U。
已知自由电子的电量为e。
下列说法正确的是()A.M板比N板电势高B.导体单位体积内自由电子数越多,电压表的示数越大C.导体中自由电子定向移动的速度为v=UBdD.导体单位体积内的自由电子数为I eU3.(2分)磁流体发电是一项新兴技术,如图是磁流体发电机的示意图。
平行金属板P、Q间距为d、面积为S,两金属板和电阻R连接。
一束等离子体以恒定速度v0垂直于磁场方向喷入磁感应强度为B的匀强磁场中,电路稳定时电阻R两端会产生恒定电势差U.假定等离子体在两板间均匀分布,忽略边缘效应,则等离子体的电导率δ(电阻率的倒数)的计算式是()A.Ud(Bdv0−U)RS B.Ud(Bdv0+U)RSC.US(Bdv0−U)Rd D.US(Bdv0+U)Rd4.(2分)速度相同的一束粒子由左端射入质谱仪后分成甲、乙两束,其运动轨迹如图所示,其中S OA=23S OC,则下列说法正确的是()A.甲束粒子带正电,乙束粒子带负电B.甲束粒子的比荷大于乙束粒子的比荷C.能通过狭缝S0的带电粒子的速率等于E B2D.若甲、乙两束粒子的电荷量相等,则甲、乙两束粒子的质量比为3:25.(2分)如图所示,在匀强电场和匀强磁场共存的区域内,电场的场强为E,方向竖直向下,磁场的磁感应强度为B,方向垂直于纸面向里,一质量为m的带电粒子,在场区内的一竖直平面内做匀速圆周运动,则可判断该带电质点()A.带有电荷量为mgE的正电荷B.沿圆周逆时针运动C.运动的周期为2πEgB D.带电粒子机械能守恒6.(2分)如图所示,空间存在水平向左的匀强电场和垂直纸面向里的水平匀强磁场。
带电粒子在复合场中的运动1、 如图,在平面直角坐标系xOy 内,第1象限存在沿y 轴负方向的匀强电场,第Ⅳ象限以ON 为直径的半圆形区域内,存在垂直于坐标平面向外的匀强磁场,磁感应强度为B .一质量为m 、电荷量为q 的带正电的粒子,从y 轴正半轴上y =h 处的M 点,以速度v 0垂直于y 轴射入电场,经x 轴上x =2h 处的P 点进入磁场,最后以速度v 垂直于y 轴射出磁场。
不计粒子重力。
求:(1)电场强度大小E ;(2)粒子在磁场中运动的轨道半径; (3)粒子离开磁场时的位置坐标。
2、 如图所示,在xoy 平面的第一象限内,分布有沿x 轴负方向的场强4410/3E N C =⨯的匀强电场,第四象限内分布有垂直纸面向里的磁感应强度10.2B T =的匀强磁场,第二、三象限内分布有垂直纸面向里的磁感应强度2B 的匀强磁场。
在x 轴上有一个垂直于y 轴的挡板OM ,挡板上开有一个小孔P ,P 处连接有一段长度2110d m -=⨯内径不计的准直管,管内由于静电屏蔽没有电场。
y 轴负方向上距O 点210h m -的粒子源S 可以向第四象限平面内各个方向发射带正电的粒子,粒子速度大小均为50210/v m s =⨯,粒子的比荷7510/qC kg m=⨯,不计粒子重力和粒子间的相互作用,求:(1)粒子在第四象限的磁场中运动时的轨道半径r ; (2)粒子第一次到达y 轴的位置与O 点的距离H ;(3)要使离开电场的粒子只经过第二、三象限回到S 处,磁感应强度2B 应为多大。
3、 如图所示,空间存在方向与xoy 平面垂直,范围足够大的匀强磁场。
在0x ≥区域,磁感应强度大小为B 0,方向向里;x <0区域,磁感应强度大小为2B 0,方向向外。
某时刻,一个质量为m 、电荷量为q (q >0)的带电粒子从x 轴上P (L ,0)点以速度02qB Lv m=垂直x 轴射入第一象限磁场,不计粒子的重力。
求:(1)粒子在两个磁场中运动的轨道半径;(2)粒子离开P 点后经过多长时间第二次到达y 轴。
一、带电粒子在复合场中的运动专项训练1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。
极板间存在方向向上的匀强电场,两极板间电压为U 。
质量为m 、带电量为q 的正离子从O 点由静止开始加速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。
两虚线之间的区域无电场和磁场存在,离子可匀速穿过。
忽略相对论效应和离子所受的重力。
求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。
【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =(2)22nqUm B =,2(1,2,3,,1)n k =-L (3)2222(1)t qum k -磁,22(1)=k m t h qU-电 【解析】 【分析】带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。
【详解】(1)离子经电场加速,由动能定理:212qU mv =可得2qUv m=磁场中做匀速圆周运动:2v qvB m r=刚好打在P 点,轨迹为半圆,由几何关系可知:2kd r =联立解得B =; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。
设共加速了n 次,有:212n nqU mv =2nn nv qv B m r =且:2n kd r =解得:B =,要求离子第一次加速后不能打在板上,有12d r >且:2112qU mv =2111v qv B m r =解得:2n k <,故加速次数n 为正整数最大取21n k =- 即:B =2(1,2,3,,1)n k =-L ;(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。
由匀速圆周运动:22r mT v qBππ==22=(1)222(1)T t n T qum k -+=-磁电场中一共加速n 次,可等效成连续的匀加速直线运动.由运动学公式221(1)2k h at -=电 qUa mh=可得:22(1)=k mt h qU -电2.离子推进器是太空飞行器常用的动力系统,某种推进器设计的简化原理如图所示,截面半径为R 的圆柱腔分为两个工作区.I 为电离区,将氙气电离获得1价正离子;II 为加速区,长度为L ,两端加有电压,形成轴向的匀强电场.I 区产生的正离子以接近0的初速度进入II 区,被加速后以速度v M 从右侧喷出.I 区内有轴向的匀强磁场,磁感应强度大小为B ,在离轴线R /2处的C 点持续射出一定速度范围的电子.假设射出的电子仅在垂直于轴线的截面上运动,截面如图所示(从左向右看).电子的初速度方向与中心O 点和C 点的连线成α角(0<α<90◦).推进器工作时,向I 区注入稀薄的氙气.电子使氙气电离的最小速度为v 0,电子在I 区内不与器壁相碰且能到达的区域越大,电离效果越好.......................已知离子质量为M ;电子质量为m ,电量为e .(电子碰到器壁即被吸收,不考虑电子间的碰撞).(1)求II 区的加速电压及离子的加速度大小;(2)为取得好的电离效果,请判断I 区中的磁场方向(按图2说明是“垂直纸面向里”或“垂直纸面向外”);(3)α为90°时,要取得好的电离效果,求射出的电子速率v 的范围; (4)要取得好的电离效果,求射出的电子最大速率v max 与α角的关系.【来源】2014年全国普通高等学校招生统一考试理科综合能力测试物理(浙江卷带解析)【答案】(1)22Mv L(2)垂直于纸面向外(3)043mv B eR >(4)()max 342sin eRB v m α=-【解析】 【分析】 【详解】(1)离子在电场中加速,由动能定理得:212M eU Mv =,得:22M Mv U e =.离子做匀加速直线运动,由运动学关系得:22Mv aL =,得:22Mv a L=.(2)要取得较好的电离效果,电子须在出射方向左边做匀速圆周运动,即为按逆时针方向旋转,根据左手定则可知,此刻Ⅰ区磁场应该是垂直纸面向外.(3)当90α=︒时,最大速度对应的轨迹圆如图一所示,与Ⅰ区相切,此时圆周运动的半径为34r R =洛伦兹力提供向心力,有2maxmaxv Bev m r= 得34max BeRv m=即速度小于等于34BeRm此刻必须保证043mv B BR>. (4)当电子以α角入射时,最大速度对应轨迹如图二所示,轨迹圆与圆柱腔相切,此时有:90OCO α∠'=︒﹣2ROC =,OC r '=,OO R r '=﹣ 由余弦定理有222(29022R R R r r r cos α⎛⎫=+⨯⨯︒ ⎪⎝⎭﹣)﹣(﹣),90cos sin αα︒-=() 联立解得:()342Rr sin α=⨯-再由:maxmv r Be=,得 ()342max eBRv m sin α=-.考点:带电粒子在匀强磁场中的运动、带电粒子在匀强电场中的运动【名师点睛】该题的文字叙述较长,要求要快速的从中找出物理信息,创设物理情境;平时要注意读图能力的培养,以及几何知识在物理学中的应用,解答此类问题要有画草图的习惯,以便有助于对问题的分析和理解;再者就是要熟练的掌握带电粒子在磁场中做匀速圆周运动的周期和半径公式的应用.3.如图,ABD为竖直平面内的光滑绝缘轨道,其中AB段是水平的,BD段为半径R=0.25m 的半圆,两段轨道相切于B点,整个轨道处在竖直向下的匀强电场中,场强大小E=5.0×103V/m。
一不带电的绝缘小球甲,以速度v0沿水平轨道向右运动,与静止在B点带正电的小球乙发生弹性碰撞。
已知甲、乙两球的质量均为m=1.0×10-2kg,乙所带电荷量q=2.0×10-5C,g取10m/s2。
(水平轨道足够长,甲、乙两球可视为质点,整个运动过程无电荷转移)(1)甲乙两球碰撞后,乙恰能通过轨道的最高点D,求乙球在B点被碰后的瞬时速度大小;(2)在满足1的条件下,求甲的速度v0;(3)甲仍以中的速度v0向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B点的距离范围。
【来源】四川省资阳市高中(2018届)2015级高三课改实验班12月月考理综物理试题【答案】(1)5m/s;(2)5m/s;(3323m 2x'≤<。
【解析】【分析】【详解】(1)对球乙从B 运动到D 的过程运用动能定理可得22112222D B mg R qE R mv mv --=-g g 乙恰能通过轨道的最高点D ,根据牛顿第二定律可得2Dv mg qE mR+=联立并代入题给数据可得B v =5m/s(2)设向右为正方向,对两球发生弹性碰撞的过程运用动量守恒定律可得00B mv mv mv '=+ 根据机械能守恒可得22200111222B mv mv mv '=+联立解得0v '=,05v =m/s (3)设甲的质量为M ,碰撞后甲、乙的速度分别为M v 、m v ,根据动量守恒和机械能守恒定律有0M m Mv Mv mv =+2220111222M m Mv Mv mv =+ 联立得2m Mv v M m=+ 分析可知:当M =m 时,v m 取最小值v 0;当M ≫m 时,v m 取最大值2v 0 可得B 球被撞后的速度范围为002m v v v <<设乙球过D 点的速度为Dv ',由动能定理得 22112222D m mg R qE R mv mv --='-g g 联立以上两个方程可得/s</s Dv '> 设乙在水平轨道上的落点到B 点的距离为x ',则有2122D x v t R gt ''==, 所以可得首次落点到B 点的距离范围2x '≤<4.如图所示,待测区域中存在匀强电场和匀强磁场,根据带电粒子射入时的受力情况可推测其电场和磁场. 图中装置由加速器和平移器组成,平移器由两对水平放置、相距为l 的相同平行金属板构成,极板长度为l 、间距为d,两对极板间偏转电压大小相等、电场方向相反. 质量为m 、电荷量为+q 的粒子经加速电压U0 加速后,水平射入偏转电压为U1 的平移器,最终从A 点水平射入待测区域. 不考虑粒子受到的重力.(1)求粒子射出平移器时的速度大小v1;(2)当加速电压变为4U0 时,欲使粒子仍从A 点射入待测区域,求此时的偏转电压U; (3)已知粒子以不同速度水平向右射入待测区域,刚进入时的受力大小均为F. 现取水平向右为x 轴正方向,建立如图所示的直角坐标系Oxyz. 保持加速电压为U0 不变,移动装置使粒子沿不同的坐标轴方向射入待测区域,粒子刚射入时的受力大小如下表所示.请推测该区域中电场强度和磁感应强度的大小及可能的方向. 【来源】2012年普通高等学校招生全国统一考试理综物理(江苏卷) 【答案】(1)012qU v m=1U?4U = (3)E 与Oxy 平面平行且与x 轴方向的夹角为30°或150°,若B 沿-x 轴方向,E 与Oxy 平面平行且与x 轴方向的夹角为-30°或-150°. 【解析】(1)设粒子射出加速器的速度为0v 动能定理20012qU mv =由题意得10v v =,即012qU v m=(2)在第一个偏转电场中,设粒子的运动时间为t 加速度的大小1qU a md=在离开时,竖直分速度yv at =竖直位移2112y at =水平位移1l v t = 粒子在两偏转电场间做匀速直线运动,经历时间也为t 竖直位移2y y v t =由题意知,粒子竖直总位移12y?2y y =+ 解得210U l y U d=则当加速电压为04U 时,1U?4U =(3)(a)由沿x 轴方向射入时的受力情况可知:B 平行于x 轴. 且FE q= (b)由沿y +-轴方向射入时的受力情况可知:E 与Oxy 平面平行.222F f (5F)+=,则f?2F =且1f?qv B =解得02F mB BqU =(c)设电场方向与x 轴方向夹角为.若B 沿x 轴方向,由沿z 轴方向射入时的受力情况得222sin )(cos )(7)f F F F αα++=( 解得=30°,或=150°即E 与Oxy 平面平行且与x 轴方向的夹角为30°或150°. 同理,若B 沿-x 轴方向E 与Oxy 平面平行且与x 轴方向的夹角为-30°或-150°.5.如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。