高考数学模拟全国卷
- 格式:docx
- 大小:343.07 KB
- 文档页数:6
全国卷高考数学模拟卷(含答案)全国卷-数学本试题卷共6页,23题(含选考题),全卷满分150分,考试用时120分钟。
注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5.考试结束后,请将答题卡上交。
一、选择题:1.已知集合A={x|x-1>0}。
B={-2.2-1.1},则A∩B=?A。
{-2.-1} B。
{-2} C。
{-1.1} D。
{0.1}2.设复数z=-1+ i(i是虚数单位),z的共轭复数为z,则(1+z)/(1-z)=?A。
-12/55+i/55 B。
-12/55-i/55 C。
12-i/55 D。
-12+i/553.若sin(α-π/4)=4/32,α∈(0,π/2),则cosα的值为?A。
4-2√7/27 B。
4-√7/3 C。
4+√7/3 D。
4+2√7/274.已知双曲线(x^2/a^2)-(y^2/b^2)=1(a>0,b>0)的一个焦点为F(0,-2),一条渐近线的斜率为3,ab,则该双曲线的方程为?A。
(y-2)^2/9 - x^2/4 = 1 B。
x^2/9 - (y-2)^2/4 = 1 C。
-x^2/9 + (y-2)^2/4 = 1 D。
(y+2)^2/9 - x^2/4 = 15.某空间几何体的三视图如图所示,则该几何体的体积为?A。
56-8π/3 B。
64-8π/3 C。
64-4π/3 D。
2024年高考第三次模拟考试数学(理科)·全解全析(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,6【答案】A【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得.【详解】由260x x -≥,即()60x x -≥,解得6x ≥或0x ≤,所以{}(][)260,06,B x x x ∞∞=-≥=-⋃+,又{}24A x x =-≤≤,所以[]2,0A B ⋂=-.故选:A 2.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .14【答案】C【分析】运用复数代数运算及两复数相等的性质求解即可.【详解】由题意知,22231(i)i=i2422z a a=+=-+,所以23142a⎧-=⎪⎪=,解得12a=.故选:C.3.如图,已知AM是ABC的边BC上的中线,若AB a=,AC b=,则AM等于()A.()12a b-B.()12a b--C.()12a b+D.()12a b-+【答案】C【分析】根据平面向量线性运算法则计算可得.【详解】因为AM是ABC的边BC上的中线,所以12CM CB=,所以12AM AC CM AC CB=+=+()()()111222AC A CB A AC aBA b=+-=+=+.故选:C4.已知函数()()πtan0,02f x xωϕωϕ⎛⎫=+><<⎝⎭的最小正周期为2π,直线π3x=是()f x图象的一条对称轴,则()f x的单调递减区间为()A.()π5π2π,2πZ66k k k⎛⎤-+∈⎥⎝⎦B.()5π2π2π,2πZ33k k k⎛⎤--∈⎥⎝⎦C.()4ππ2π,2πZ33k k k⎛⎤--∈⎥⎝⎦D.()π2π2π,2πZ33k k k⎛⎤-+∈⎥⎝⎦【答案】B【分析】根据()()πtan0,02f x xωϕωϕ⎛⎫=+><<⎝⎭的最小正周期确定ω的值,根据函数的对称轴求出ϕ,结合正切函数的单调性,列出不等式,即可求得答案.【详解】由于()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象是将()tan y x ωϕ=+的图象在x 轴下方部分翻折到x 轴上方,且()tan y x ωϕ=+π0,02ωϕ⎛⎫><<⎪⎝⎭仅有单调递增区间,故()()tan f x x ωϕ=+和()tan y x ωϕ=+的最小正周期相同,均为2π,则π12π,2ωω=∴=,即()1tan 2f x x ϕ⎛⎫=+ ⎪⎝⎭,又直线π3x =是()f x 图象的一条对称轴,则1π1π,Z 232k k ϕ⋅+=∈,即1ππ,Z 26k k ϕ=-∈,结合π02ϕ<<,得π3ϕ=,故()1πtan 23f x x ⎛⎫=+ ⎪⎝⎭,令π1πππ,Z 223k x k k -<+≤∈,则5π2π2π2π,Z 33k x k k -<≤-∈,即()f x 的单调递减区间为()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦,故选:B5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件【答案】A【分析】根据充分性、必要性的定义,结合直线的斜率是否存在进行判断即可.【详解】当直线的斜率等于0时,直线的方程为1y =,代入方程224x y +=中,得x =,显然CD =;当直线的不存在斜率时,直线的方程为1x =,代入方程224x y +=中,得y =CD =因此是必要而不充分条件,故选:A6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种【答案】B【分析】根据题意,分2种情况讨论:①丙是最后一名,则丁可以为第二、三、四名,剩下的三人安排在其他三个名次,②丙不是最后一名,丙丁需要排在第二、三、四名,剩下的三人安排在其他三个名次,由加法原理计算可得答案.【详解】根据题意,丙丁都没有得到冠军,而丁不是最后一名,分2种情况讨论:①丙是最后一名,则丁可以为第二、三、四名,即丁有3种情况,剩下的三人安排在其他三个名次,有33A 6=种情况,此时有1863=⨯种名次排列情况;②丙不是最后一名,丙丁需要排在第二、三、四名,有23A 6=种情况,剩下的三人安排在其他三个名次,有33A 6=种情况,此时有6636⨯=种名次排列情况;则一共有361854+=种不同的名次情况,故选:B .7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.【答案】C【分析】先求出函数的定义域和奇偶性,排除BD ,再求出特殊点的函数值,得到答案.【详解】()πln sin ln cos 2x x x x f x x x⎛⎫⋅- ⎪⋅⎝⎭==定义域为()(),00,∞-+∞U ,且()()()ln cos ln cos x x x x f x f x x x-⋅-⋅-==-=--,所以函数()f x 是奇函数,图象关于原点中心对称,排除B 、D .又()ln 2cos 2202f ⋅=<,故A 错误.故选:C .8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α,则平面α与半球底面之间的几何体的体积是()A .3π24R B .3π24R C .3π12R D .3π12R 【答案】C 【分析】分别求得面α截圆锥时所得小圆锥的体积和平面α与圆柱下底面之间的部分的体积,结合祖暅原理可求得结果.【详解】 平面α截圆柱所得截面圆半径2r =,∴平面α截圆锥时所得小圆锥的体积2311ππ3212V r R R =⋅=,又平面α与圆柱下底面之间的部分的体积为232πV R R R =根据祖暅原理可知:平面α与半球底面之间的几何体体积33321πππ21212V V V R R R =-=-=.故选:C.9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<【答案】B【分析】用定义证明函数()f x 的奇偶性及在()0,1上的单调性,利用函数()f x 的奇偶性及单调性,对数函数ln y x =的性质及对数运算可得结果.【详解】因为函数()f x 的定义域为{}0x x ≠,又()()ln ln f x x x f x -=-==,所以()f x 为偶函数,当01x <<时,任取12x x >,()()12121221ln ln ln ln ln ln 0f x f x x x x x x x -=-=-=-<,即()()12f x f x <,所以()f x 在()0,1上为减函数,因为31ln2ln02>>>,所以()()()113ln ln2ln2ln2ln 22a f f f f f c-⎛⎫⎛⎫===-=<= ⎪ ⎪⎝⎭⎝⎭,即a c <,设3401,1x x <<<,则()4444ln ln ln f x x x x ===,()3333ln ln ln f x x x x ===-,若()()34f x f x =,则34ln ln x x -=,所以341x x =,因为2e ln 2ln212=->,所以22e 11ln e 22ln2ln 2b f f f ⎛⎫ ⎪⎛⎫⎛⎫=== ⎪ ⎪⎪-⎝⎭⎝⎭ ⎪ ⎪⎝⎭,又()21ln21ln202ln22ln2--=>--,即11ln202ln2>>>-,所以()1ln22ln2f f ⎛⎫< ⎪-⎝⎭,即b a <,故选:B.10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a=,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个【答案】B 【分析】由81a=,利用递推关系,分类讨论逆推出1a 的不同取值,进而可得答案.【详解】若81a =,又1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,根据上述运算法进行逆推,可得72a =,64a =,所以58a =或51a =;若58a =,则4316,32a a ==或35a =;当332a =时,2164,128a a ==或121a =;若35a =时,2110,20a a ==或13a =;当51a =,则4322,4,8a a a ===或21a =;当28a =时,116a =;当21a =时,12a =,故81a=时,1a 的所有可能的取值集合{}2,3,16,20,21,128M =即集合M 中含有6个元素.故选:B11.如图,已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为C 的离心率是()AB .32CD .3【答案】B【分析】根据斜率及双曲线的对称性得12BF F △为等边三角形,再根据同角间关系求解三角函数值,进而用正弦定理求出121410,33AF c AF c ==,由双曲线定义可得423c a =,从而得到离心率.【详解】由题意,直线1BF12π3BF F ∴∠=,又12BF BF =,所以12BF F △为等边三角形,故12122BF BF F F c ===,2112π2π,33BF F F F A ∠=∠=,在12AF F △中,21tan 0F F A ∠>,则21F F A ∠为锐角,则212111sin 14F F A F F A ∠=∠=,212πsin sin 3A F F A ⎛⎫=+∠= ⎪⎝⎭由正弦定理,12121221sin sin sin F F AF AF AF F AF F A==∠∠,=∴121410,33AF c AF c ==,由122AF AF a -=,得423c a =,32c e a ∴==.故答案选:B .12.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑【答案】D【分析】利用赋值法结合题目给定的条件可判断AC ,取()()2π2πsin,cos 33f x xg x x ==可判断B ,对于D ,通过观察选项可以推断()f x 很可能是周期函数,结合()()()(),f x g y g x f y 的特殊性及一些已经证明的结论,想到令1y =-和1y =时可构建出两个式子,两式相加即可得出()()()11f x f x f x ++-=-,进一步得出()f x 是周期函数,从而可求()20231n f n =∑的值.【详解】解:对于A ,令0x y ==,代入已知等式得()()()()()000000f f g g f =-=,得()00f =,故A错误;对于B ,取()()2π2πsin,cos 33f x xg x x ==,满足()()()()()f x y f x g y g x f y -=-及()()210f f -=≠,因为()3cos 2π10g ==≠,所以()g x 的图象不关于点()3,0对称,所以函数()21g x +的图象不关于点()1,0对称,故B 错误;对于C ,令0y =,1x =,代入已知等式得()()()()()11010f f g g f =-,可得()()()()110100f g g f ⎡⎤-=-=⎣⎦,结合()10f ≠得()100g -=,()01g =,再令0x =,代入已知等式得()()()()()00f y f g y g f y -=-,将()00f =,()01g =代入上式,得()()f y f y -=-,所以函数()f x 为奇函数.令1x =,1y =-,代入已知等式,得()()()()()21111f f g g f =---,因为()()11f f -=-,所以()()()()2111f f g g =-+⎡⎤⎣⎦,又因为()()()221f f f =--=-,所以()()()()1111f f g g -=-+⎡⎤⎣⎦,因为()10f ≠,所以()()111g g +-=-,故C 错误;对于D ,分别令1y =-和1y =,代入已知等式,得以下两个等式:()()()()()111f x f x g g x f +=---,()()()()()111f x f x g g x f -=-,两式相加易得()()()11f x f x f x ++-=-,所以有()()()21f x f x f x ++=-+,即:()()()12f x f x f x =-+-+,有:()()()()()()11120f x f x f x f x f x f x -+=++--+-+=,即:()()12f x f x -=+,所以()f x 为周期函数,且周期为3,因为()11f =,所以()21f -=,所以()()221f f =--=-,()()300f f ==,所以()()()1230f f f ++=,所以()()()()()()()2023111232023202311n f n f f f f f f ===++++===∑ ,故D 正确.故选:D.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.【答案】3【分析】根据n S 求得n a ,再结合对勾函数的单调性,即可求得结果.【详解】因为2n S n n =+,则当2n ≥时,()()221112n n n a S S n n n n n -=-=+----=,又当1n =时,112a S ==,满足2n a n =,故2n a n =;则9n n S a +29191222n n n n n ++⎛⎫==++ ⎪⎝⎭,又9y x x=+在()1,3单调递减,在()3,+∞单调递增;故当3n =时,9n n+取得最小值,也即3n =时,9n n S a +取得最小值.故答案为:3.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.【答案】9542ω≤≤【分析】根据给定条件,利用辅助角公式化简函数()f x ,再利用正弦函数的性质求解即得.【详解】依题意,函数π()2sin(13f x x ω=+-,由()0f x =,得π1sin()32x ω+=,则ππ2π36x k ω+=+或π5π2π,Z 36x k k ω+=+∈,由[0,2π]x ∈,得πππ[,2π333x ωω+∈+,由()f x 在[0,2π]上恰有5个零点,得29ππ37π2π636ω≤+<,解得935412ω≤<,由3ππ22πx ω+≤-≤,得5ππ66x ωω-≤≤,即函数()f x 在5ππ[,66ωω-上单调递增,因此5ππ[,]ππ[,]41566ωω-⊆-,即45π6πω≤--,且π6π15ω≥,解得502ω<≤,所以正实数ω的取值范围为9542ω≤≤.故答案为:9542ω≤≤15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)【答案】15【分析】根据条件,两边求导得到12342345415(23)2345x a a x a x a x a x +=++++,再取=1x -,即可求出结果.【详解】因为52345012345(23)x a a x a x a x a x a x +=+++++,两边求导可得12342345415(23)2345x a a x a x a x a x +=++++,令=1x -,得到23454115(23)2345a a a a a -=-+-+,即12345234515a a a a a -+-+=,故答案为:15.16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数②(0,),()0x f x ∃∈+∞>③41(1)e f >④0x ∀>时,41()e xf x <【答案】②③【分析】根据构造函数的规律由令()()4e xg x f x =,再结合奇函数的性质可得①,求导分析单调性和极值可得②③④.【详解】令()()4e x g x f x =,则()()()()()4444e e e 4x x x g x f x f x f x f x '''=+=+⎡⎤⎣⎦,若()f x 是奇函数,则()()f x f x -=-,取0x =时,即()00f =,但(01f =),故①错误;因为4e 0,(0,)x x >∈+∞恒成立,且()4()0f x f x '+>,所以()0g x '>恒成立,()g x 在(0,)+∞上为单调递增函数,所以()()()()()44110e 101e g g f f f >⇒>⇒>,故②正确;由②可知,③正确;因为()g x 在(0,)+∞上为单调递增函数,所以当0x >时有()()()()0,001g x g g f >==,所以()()441e 1e x xf x f x >⇒>,故④错误;故答案为:②③三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC 的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.【答案】(1)35;(2)4.【详解】(1)由()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =-- 垂直,得0m n ⋅=,...............1分即sin (5sin 6sin )(5sin 5sin )(sin sin )0B B C A C C A -++-=,整理得2226sin sin sin sin sin 5B C A B C +-=,...............2分在ABC 中,由正弦定理得22265b c a bc +-=,...............3分由余弦定理得2223cos 25b c a A bc +-==,所以cos A 的大小为35................5分(2)由(1)知,在ABC 中,3cos 5A =,则4sin 5A ==,...............6分由22265b c a bc +-=,得22266482555a b c bc bc bc bc ==+-≥-=,即10bc ≤,...................................................................................................8分当且仅当b c =时取等号,...................................................................................................9分因此ABC 的面积12sin 425ABC S bc A bc ==≤ ,..........................................................11分所以ABC 的面积的最大值是4.....................................................12分18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k 2.706 3.841 6.63510.828【答案】(1)列联表见解析,有99%的把握认为在此社区内“关注流行语与性别有关”;(2)35【详解】(1)依题意,关注流行语居民人数为81410638+++=,不关注流行语居民人数为81422+=,...................................................................................................2分所以22⨯列联表如下:男女合计关注流行语30838不关注流行语101222合计4020602K 的观测值2260(3012108)7.03 6.63540203822K ⨯-⨯=≈>⨯⨯⨯,................................................................4分所以有99%的把握认为在此社区内“关注流行语与性别有关”...................5分(2)依题意,男居民选出406660⨯=(人),.......................................6分记为a b c d ,,,,女居民选出2人,记为,E F ,从6人中任选3人的样本空间{,,,,,,,,,,abc abd abE abF acd acE acF adE adF aEF Ω=,,,,,,,,,}bcd bcE bcF bdE bdF bEF cdE cdF cEF dEF ,共20个,.................................9分选出的3人为2男1女的事件{,,,,,,,,,,,}A abE abF acE acF adE adF bcE bcF bdE bdF cdE cdF =,共12个,...........11分所以选出的3人为2男1女的概率123()205P A ==......................................12分19.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.【答案】(1)证明见解析(2)存在;4AP =-【详解】(1)证明:如图,设,M N 分别为,EF AB 边的中点,连接,,MN DM CN ,..1分因为⊥AE 平面,,5,4,3ABC AE CD BF AE CD BF ===∥∥,所以42AE BFMN CD +===,//MN BF ,进而MN CD ∥,即四边形CNMD 为平行四边形,可得MD CN ∥,......................................3分在底面正三角形ABC 中,N 为AB 边的中点,则CN AB ⊥,......................................4分又⊥AE 平面ABC ,且CN ⊂平面ABC ,所以AE CN ⊥.由于⋂=AE AB A ,且AE AB ⊂、平面ABFE ,所以CN ⊥平面ABFE ......................5分因为,MD CN CN ⊥∥平面ABFE ,则MD ⊥平面ABFE ,又MD ⊂平面DEF ,则平面DEF ⊥平面AEFB .......................................6分(2)如图,以点A为坐标原点,建立空间直角坐标系,则()())0,0,5,0,2,4,E D F .设点()0,0,P t,则)()()1,1,0,2,1,0,2,4DF DE DP t =--=-=--..................8分设平面PDF 的法向量为()1111,,n x y z = ,平面EDF 的法向量为()2222,,n x y z =.由题意知110,0,n DF n DP ⎧⋅=⎪⎨⋅=⎪⎩即()111110,240,y z y t z --=-+-=⎪⎩令12z =,则114,y t x =-=14,2n t ⎫=-⎪⎭ ,......................................9分220,0,n DF n DE ⎧⋅=⎪⎨⋅=⎪⎩即222220,20,y z y z --=-+=⎪⎩取22z =,则)22n = ,...............................10分由121212π1cos ,cos 32n n n n n n ⋅===,28290t t +-=,解得:4t =±-,由于点P 为线段AE 上一点,故05t ≤≤,所以4t =-,......................................11分当4t =-时,二面角P DF E --所成角为锐角,即存在点P 满足,此时4AP =.......................................12分20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.【答案】(1)22143x y +=(2)(ⅰ)证明见解析;(ⅱ)4【详解】(1)点31,2P ⎛⎫⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴,则有()1,0F 设椭圆C 的焦距为()20c c >,则1c =,.......................................................................1分点31,2P ⎛⎫ ⎪⎝⎭代入椭圆方程,有()222219191441a b a a +=+=-,解得2a =,则222413b a c =-=-=,所以椭圆C 的方程为22143x y +=...................................................................................3分(2)(ⅰ)设直线l 的方程为y kx m =+,由22143y y k x x m =+⎧⎪⎨⎪+⎩=,消去y ,整理得()2223484120kxkmx m +++-=,因为l 交椭圆C 于,A B 两点,所以()22Δ48430k m =-+>,设()()1122,,,A x y B x y ,所以21212228412,3434km m x x x x k k -+=-=++, (5)分因为直线AF 和直线BF 关于PF 对称,所以()()()()12121212121212220111111AF BF kx x m k x x my y kx m kx m k k x x x x x x +-+-+++=+=+==------所以()()()21212224128222203434m kmkx x m k x x m k m k m k k --+-+-=⨯+-⨯-=++所以222282488860km k km k m mk m --+--=解得4m k =-................................................................................................................7分所以直线l 的方程为()44y kx k k x =-=-,所以直线l 过定点()4,0................................,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.......8分(ⅱ)设直线l 的方程为4x ny =+,由224143x ny x y =+⎧⎪⎨+=⎪⎩,消去x ,整理得()223424360n y ny +++=,因为l 交椭圆C 于,A B 两点,所以()()()222Δ241443414440n n n =-+=->,解得24n >,........................................................................................................9分1212222436,3434n y y y y n n +=-=++,所以12y y -=所以121331822ABFS y y =⨯-=⨯⨯ .............................10分令()24,0n t t -=>则18184ABC S ==≤,当且仅当163t =时取等号,所以ABF △面积的最大值为4......................................................................12分21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.【答案】(1)单调递增区间为:(0,1),单调递减区间为:(,0)-∞和(1,)+∞;极大值21(1)f e =,极小值(0)0f =;(2)(]0,2e 【详解】(1)当2a =时,()22=exx f x ()()2222222e e 22(1)=e e x x xxx x x x f x ⋅-⋅⋅--'=......................................2分令()=0f x ',解得0x =或1x =,......................................3分所以()()x f x f x '、、的关系如下表:x(,0)-∞0(0,1)1(1,)+∞()f x '-+-()f x 单调递减0单调递增21e 单调递减所以函数()f x 的单调递增区间为:(0,1),单调递减区间为:(,0)-∞和(1,)+∞;......................................4分极大值21(1)f e=,极小值(0)0f =;......................................5分(2)[]222()cos ln ()ln 4cos ln 2ln 4e eaa x xx x f x f x a x x a x x ⎛⎫-≥-⇔-≥- ⎪⎝⎭ln 2e 2(ln 2)cos(ln 2)0a x x a x x a x x -⇔----≥......................................6分令()e 2cos t g t t t =--,其中ln 2a x x t -=,设l (2)n a x x F x =-,0a >2()2a a x x xF x --='=令()0F x '>,解得:02ax <<,......................................8分所以函数()F x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增,在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减,max ()ln 22a a F x F a a ⎛⎫==- ⎪⎝⎭,且当0x +→时,()F x →-∞,所以函数()F x 的值域为,ln 2a a a ⎛⎤-∞- ⎥⎝⎦;......................................9分又()e 2sin t g t t '=-+,设()e 2sin t h t t =-+,,ln 2a t a a ⎛⎤∈-∞- ⎥⎝⎦,则()e cos t h t t '=+,当0t ≤时,e 1,sin 1t t ≤≤,且等号不同时成立,即()0g t '<恒成立;当0t >时,e 1,cos 1t t >≥-,即()0h t '>恒成立,所以()h t 在(0,)+∞上单调递增,又(0)1g '=-,(1)e 2sin10g '=-+>,所以存在0(0,1)t ∈,使得0()0g t '=,当00t t <<时,()0g t '<,当0t t >时,()0g t '>,所以函数()g t 在0(,)t -∞上单调递减,在0(,)t +∞上单调递增,且(0)0g =......................................11分当ln 02aa a -≤即02e a <≤时,()0g t ≥恒成立,符合题意;当ln02a a a ->即2e a >时,取10min ln ,2a t a a t ⎧⎫=-⎨⎬⎩⎭,必有1()0g t <,不符合题意.综上所述:a 的取值范围为(]0,2e ......................................12分(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.(10分)在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C 与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.【答案】(1)C 的普通方程为()2214x y -+=,l 直角坐标方程为30x y -+=.(2)存在,坐标为33,,4444⎛⎛--- ⎪ ⎪⎝⎭⎝⎭【详解】(1)由题设曲线C 的参数方程,消参得()2214x y -+=,............................2分由cos ,sin x y ρθρθ==,且)πsin sin cos 4ρθρθρθ⎛⎫-=-=⎪⎝⎭y =30x y -+=,......................................4分∴C 的普通方程为()2214x y -+=,l 直角坐标方程为30x y -+=...............................5分(2)当0y =时,()33,0x A =-⇒-,易知()12cos ,2sin B a a +,设(),M x y ,可得()()3,,2cos 1,2sin AM x y MB a x a y =+=-+-,......................................6分32cos 1cos 1,2sin sin x a x x a AM MB y a y y a +=-+=-⎧⎧=⇒⎨⎨=-=⎩⎩(a 是参数),消参得方程为()2211,x y ++=......................................8分且1,2,1,3E C C E C E r r r r r r ==-=+=,则圆心距离2,d ==得C E C E r r d r r -<<+,则两圆相交,故两圆存在公共点,联立方程组()()22221114x y x y ⎧++=⎪⎨-+=⎪⎩,解得34x y ⎧=-⎪⎪⎨⎪=⎪⎩或34x y ⎧=-⎪⎪⎨⎪=⎪⎩,故坐标为33,,44⎛⎛--- ⎝⎭⎝⎭......................10分选修4-5:不等式选讲23.(10分)已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.【答案】(1)113x x x ⎧⎫≤≥⎨⎬⎩⎭或(2)证明见解析【详解】(1)()2122f x x x x =-+-+,当0x <时,532x -+≥,解得0x <,......................................1分当102x ≤<时,332x -+≥,解得103x ≤≤,......................................2分当112x ≤<时,12x +≥,解得x ∈∅,......................................3分当1x ≥时,532x -≥,解得1x ≥,......................................4分综上所述,()2f x ≥的解集为13x x ⎧≤⎨⎩或}1≥x .......................................5分(3)由已知可得()5301330211<12531x x x x f x x x x x -+<⎧⎪⎪-+≤≤⎪=⎨⎪+≤⎪⎪->⎩,所以当12x =时,()f x 的最小值为32...............................................................................................6分1a b ∴+=,211,24a b a b ab +⎛⎫+=∴≤= ⎪⎝⎭,当且仅当12a b ==取等,......................................8分令t ab =,则104t <≤,211()212225224a b ab a b ab ab t a b ab ab ab t +-⎛⎫⎛⎫++=++=+-=+-≥ ⎪⎪⎝⎭⎝⎭,当且仅当14t =取等,此时12a b ==.......................................10分。
2023年普通高等学校招生全国统一考试数学模拟测试(一)参考答案1.【答案】B 【命题意图】本题考查复数的四则运算,要求考生掌握复数代数表示式的四则运算. 【解析】i(1i)i 111i 1i+-==---. 2.【答案】D【命题意图】本题考查集合的运算,要求考生理解两个集合的交集的含义,能求两个集合的交集. 【解析】因为{|22,}{0,1,2}x B y y x x A ==-∈=,所以{0,1,2}A B = .3.【答案】A 【命题意图】本题考查向量的数量积,要求考生会用坐标表示平面向量的加、减运算与数乘运算,能用坐标表示平面向量的数量积.【解析】2(1,2)(4,2)(3,4)a b -=--=-- ,(2)1(3)(2)(4)5a a b ∴⋅-=⨯-+-⨯-=.4.【答案】C 【命题意图】本题考查椭圆,要求考生掌握椭圆的定义、标准方程及简单几何性质. 【解析】依题意,甲:5a =.乙:4b =.丙:45c a =.丁:8a c +=.可知甲、乙、丁为真命题,丙为假命题. 5.【答案】B【命题意图】本题考查圆柱与球的表面积,要求考生认识圆柱与球及简单组合体的结构特征,知道球与圆柱的表面积的计算公式,能用公式解决简单的实际问题.【解析】由题意得222408122R -⎛⎫-= ⎪⎝⎭,得20cm R =,20164cm h =-=,所以两个球冠的表面积之和为224320cm ππS Rh ==,灯笼中间球面的表面积为2243201280cm R πππ-=.因为上下两个圆柱的侧面积之和为22244192cm ππ⨯⨯=,所以围成该灯笼所需布料的面积为212801921472cm πππ+=. 6.【答案】D【命题意图】本题以泊松分布为情境,考查离散型随机变量的概率分布,要求考生理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性.主要考查考生获取信息、运用所学知识解决问题的能力,体现了逻辑推理与数学运算的学科素养,突出基础性、应用性的考查要求. 【解析】由题可知(2)(3)P X P X ===,即232e 6e λλλλ=,解得3λ=,故33()e (0,1,2,)!k P X k k k -=== ,13333(1)e 1!eP X -===,故两个站台各有1个乘客候车的概率为23639e eP ⎛⎫== ⎪⎝⎭.7.【答案】C【命题意图】本题考查比较大小,要求考生知道两个数比较大小的常用方法,会利用构造法比较大小. 【解析】令ln ()x f x x =,则21ln ()x f x x-'=,当e x >时,()0f x '<,()f x 单调递减,因为2e >73e >>, 所以2(e )(7)(3)f f f <<,22ln e ln 7ln 3e 73<<,即22ln 7ln 3e 73<<,故b c a <<. 8.【答案】C【命题意图】本题考查二面角的最值,要求考生能解决平面与平面的夹角的计算问题.【解析】如图,平面1D MN 平面ABCD PN =,过点D 作DG PN ⊥,垂足为G ,连接1D G ,则1D GD ∠即为平面1D MN 与平面ABCD 所成的锐二面角, 1tan D GD ∠=1D DDG,当DG 最大时,1D GD ∠最小,不妨设4AB =,因为5DG DN ===≤,所以4tan 5θ=,cos θ=. 9.【答案】ABC【命题意图】本题考查异面直线的夹角,要求考生在直观认识空间点、直线、平面的位置关系的基础上,抽象出空间点、直线、平面的位置关系的定义.【解析】对于A :因为SD ⊥平面ABCD ,AB ⊂平面ABCD ,所以SD AB ⊥, 因为ABCD 是正方形,所以AB AD ⊥,因为SD AD D = ,,SD AD ⊂平面SAD , 所以AB ⊥平面SAD ,因为SA ⊂平面SAD ,所以AB SA ⊥,故A 项正确;对于B :因为,SD AC AC BD ⊥⊥,因为SD BD D = ,,SD BD ⊂平面SBD ,所以AC ⊥平面SBD ,因为SB ⊂平面SBD ,所以AC SB ⊥,故B 项正确;对于C :AD 与SB 所成的角为SBC ∠,CD 与SB 所成的角为SBA ∠,因为cos cos BC ABSBC SBA SB SB∠===∠,所以AD 与SB 所成的角等于CD 与SB 所成的角,故C 项正确; 对于D :因为//AB CD ,所以CD SA ⊥,则DC 与SA 所成的角为90︒,因为AB 与SC 所成的角为90SCD ∠<︒,所以AB 与SC 所成的角不等于DC 与SA 所成的角,故D 项不正确. 10.【答案】BCD【命题意图】本题考查换底公式,要求考生理解对数的概念和运算性质,知道用换底公式将一般对数转化成自然对数或常用对数.【解析】因为lg 2a =,lg 3b =,所以102a=,103b=,所以21012a b+=,A 项错误;2lg 4lg 3lg12a b +=+=,B 项正确;2lg(29)lg18a b +=⨯=,1811log 102lg18a b ==+,C 项正确;36lg 51lg 21log 5lg 362(lg 2lg 3)22aa b--===++,D 项正确. 11.【答案】ABC【命题意图】本题考查直线与抛物线的位置关系,要求考生掌握抛物线的定义、几何图形、标准方程及简单性质,理解数形结合的思想.【解析】对于A :由题意知(1,0)F ,直线l 的斜率存在且不为0, 设其方程为(1)y k x =-,设11(,)A x y ,22(,)B x y ,00(,)M x y ,联立2(1)4y k x y x =-⎧⎨=⎩,可得22222(2)0k x k x k -++=,216(1)0k ∆=+>,故21222(2)k x x k ++=,121x x =, 则122424x x kAF BF =++=++,1212122244(1)(1)11214x x x x x x k k AF BF =++=+++=+++=+⋅,所以AF BF AF BF +=⋅,故A 项正确.对于B :过点A 作AD x ⊥轴,垂足为D ,因为(1,0)K -,所以11tan 1y AKF x ∠=+, 111cos cos sin 21y y MQF MFQ AFD AF x ⎛⎫∠=-∠=∠== ⎪+⎝⎭,所以tan cos AKF MQF ∠=∠,故B 项正确.对于C :因为1222y y k +=,所以M 点的纵坐标为2k ,故21,N k ⎛⎫- ⎪⎝⎭,212NFk k k==--,1NF AB k k =-⋅,故NF AB ⊥,故//NF MQ ,故C 项正确.对于D :2111212122224()()4()4y x y y y y x x y x ⎧=⇒+-=-⎨=⎩,则121212042y y k x x y y y -===-+,所以MQ 的方程为000()2y y y x x -=--,令0y =,得0000()22yy x x x x -=--⇒=+,所以0(2,0)Q x +,所以00211FQ x x =+-=+,所以1202222AB x x x FQ =++=+=,故D 项错误.12.【答案】ABC【命题意图】本题考查抽象函数的性质,要求考生理解函数的奇偶性与周期性的含义. 【解析】令1x =,可得(1)(3)40f f -+=,所以(3)5f =,A 项正确; 令2x =,可得(0)(4)80f f -+=,因为(0)0f =,所以(4)8f =,B 项正确; 设()()2g x f x x =-,则()g x 为R 上的奇函数,又因为(2)(2)40f x f x x --++=,所以(2)2(2)(2)2(2)f x x f x x ---=+-+,则(2)(2)g x g x -=+,所以()g x 的图象关于直线2x =对称,因为(4)()()g x g x g x +=-=-,(8)(4)()g x g x g x +=-+=,所以()g x 的一个周期为8,因为(2023)(1)(1)1,(2023)(2023)220231g g g g f =-=-==-⨯=,所以(2023)4047f =,C 项正确;因为(2024)(0)0g g ==,则(2024)220240,(2024)4048f f -⨯==,D 项错误.13.【答案】160-【命题意图】本题考查二项式定理,要求考生会用二项式定理解决与二项展开式有关的简单问题.【解析】因为62x ⎛ ⎝的展开式的通项为36662166C (2)(1)C 2rr r r r r r r T x x---+⎛==- ⎝, 所以第四项的系数为3336(1)C 2160-=-.14.【答案】223(3)102x y ⎛⎫-+-= ⎪⎝⎭或223(3)102x y ⎛⎫+++= ⎪⎝⎭【命题意图】本题考查圆的方程,要求考生掌握确定圆的几何要素,掌握圆的标准方程与一般方程. 【解析】设圆心坐标为(,2)a a ,可得2(2)110a +=,解得32a =±,所以圆心坐标为3,32⎛⎫ ⎪⎝⎭或3,32⎛⎫-- ⎪⎝⎭,故圆的标准方程为223(3)102x y ⎛⎫-+-= ⎪⎝⎭或223(3)102x y ⎛⎫+++= ⎪⎝⎭.15.【答案】53【命题意图】本题考查三角函数的图象与性质,要求考生了解函数sin()ωϕy A x =+中各参数对图象的影响.【解析】因为6855ππf f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,结合图象可知725πf ⎛⎫= ⎪⎝⎭,所以72()562Z ωππππk k +=+∈,解得510()217Z ωk k =+∈.由图象可知862555283552ππππωππππωT T ⎧-=<=⎪⎪⎨⎪-=>=⎪⎩,可得512ω<<,所以1k =,53ω=.16.【答案】[0,e]【命题意图】本题考查函数的极值,要求考生能借助函数的图象,了解函数在某点取得极值的必要条件和充分条件,能利用导数求某些函数的极大值、极小值,体会导数与极值的关系.【解析】()(1)(e )x f x x ax '=+-.令()e xg x ax =-,因为函数3211()e 32xf x x ax ax =--有唯一一个极值点,且(0)10g =>,所以()0g x ≥恒成立.当0a =时,符合题意;当0a <时,()e 0xg x a '=->,()g x 在(,)-∞+∞上单调递增,且当x →-∞时,()g x →-∞,不合题意,舍去;当0a >时,由()0g x '=,可得ln x a =,()g x 在(,ln )a -∞上单调递减,在(ln ,)a +∞上单调递增,所以min ()(ln )ln g x g a a a a ==-,由ln 0a a a -≥,解得0e a <≤.综上所述,实数a 的取值范围是[0,e]. 17.【命题意图】本题考查数列的通项公式与前n 项和,要求考生掌握数列的前n 项和的求法,能运用等差数列解决相应问题.【解析】(1)当1n =时,31248a =⨯=,12a =,··························································1分 当2n ≥时,3333221232(1)n a a a a n n ++++=+ ,33332212312(1)n a a a a n n -++++=- ,·······2分 两式相减得323248n a n n n =⨯=,即2n a n =,································································4分 当1n =时,也符合上式,故2n a n =.··········································································5分 (2)因为12211122(1)21n n n b a a n n n n +⎛⎫===- ⎪⨯++⎝⎭,····················································7分 所以11111111122231222n S n n n ⎛⎫=-+-++-=- ⎪++⎝⎭ .················································10分 18.【命题意图】本题考查解三角形,要求考生能够运用余弦定理等知识和方法解决一些与几何计算有关的实际问题. 【解析】(1)因为cos cos 2cos bc A ab C ac B +=,由余弦定理可得2222222222222b c a a b c a c b bc ab acbc ab ac+-+-+-+=,·································2分 整理得2222a c b +=,································································································4分所以2a ,2b ,2c 成等差数列.····················································································5分 (2)因为sin 3sin A C =,所以3a c =.·······································································7分 又因为2222a c b +=,所以22292c c b +=,即b =.·················································9分由余弦定理可得222222955cos 2236a cbc c c B ac c c +-+-===⋅.··············································12分19.【命题意图】本题考查面面平行的性质定理与线面角,要求考生能运用面面平行的性质定理解决问题,能用向量方法解决直线与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.【解析】(1)在1BB 上取点M ,使得11B M =,连接1A M ,延长1CC 至点N ,使得11C N =,连接MN ,1A N ,则平面1A MN 与平面α重合.············································································1分理由如下:因为1//A D BM ,且1A D BM =,所以四边形1A DBM 是平行四边形,1//A M BD ,············2分 同理可得//MN BE ,所以平面1//A MN 平面BDE ,又平面α过点1A ,且平面//α平面BDE ,(3分) 所以平面1A MN 与平面α重合,则F 为MN 与11B C 的交点.又易知11FB M FC N ≅△△,所以11FB FC =,即F 为11B C 的中点,··································4分所以1A F ===.·································································5分(2)因为在直三棱柱111ABC A B C -中,AB BC ⊥,所以BA ,BC ,1BB 两两垂直.分别以BA ,BC ,1BB 的方向为x 轴、y 轴、z则(0,0,0)B ,(2,0,2)E ,(0,2,1)D ,(1,0,3)F ,·········6分所以(2,0,2)BE = ,(0,2,1)BD = ,(1,0,3)BF =,······7分设平面BDE 的法向量为(,,)m x y z =,则0m BE ⋅= ,0m BD ⋅= ,即22020x z y z +=⎧⎨+=⎩,令1y =,得(2,1,2)m =- .···············9分 设直线BF 与平面BDE 所成的角为θ,则sin |cos ,|BF m BF m BF mθ⋅=〈〉===⋅ ,······································11分 所以直线BF 与平面BDE .·······················································12分 20.【命题意图】本题以二氧化碳的排放导致全球气候变暖为情境,要求考生运用所学回归分析与正态分布等必备知识解答相关问题,主要考查数学运算与数据分析的学科素养,突出综合性、应用性的考查要求.【解析】1(1)(141721273239)256x =⨯+++++=,····················································1分 1(0.20.30.50.8 1.0 1.4)0.76y =⨯+++++=,·····························································2分61126.6i i i x y ==∑==66?21.60.9970.7521.66i ix y x yr -∴==≈≈>∑,·································4分 故可以用线性回归模型拟合y 与x 的关系.·····································································5分(2)61621()621.6ˆ0.048450i ii ii x y xybx x ==-===-∑∑,······································································7分 ˆ0.70.048250.5a∴=-⨯=-,·····················································································8分 y ∴关于x 的线性回归方程为ˆ0.0480.5yx =-.·····························································9分 (3)~(5,4)Z N ,1(5252)(7)0.158652P Z P Z --<+∴>==≤,···························11分∴该企业每天的二氧化碳排放量Z 超过7吨的概率为0.15865.···········································12 分 21.【命题意图】本题考查导数的几何意义与方程的根,要求考生通过函数图象直观理解导数的几何意义,能利用导数求某些函数的最大值、最小值,体会导数与最大 (小) 值的关系,掌握函数与方程的数学思想. 【解析】 (1)因为()lnx 1af xx =+-',所以()ln f a a '=,又因为()1f a =-,所以曲线()y f x =在x a =处的切线方程为1()ln y x a a +=-,·············································································2分则1ln ln 1a ab a a -=⎧⎨=--⎩,易知1ln a a -≥,当且仅当1a =时取等号,·······································4分所以1a =,1b =-.·································································································6分 (2)当2a =时,由()f x mx =,可得(2)ln 1x x mx --=,(2)ln 1x x m x--=.令(2)ln 1()x x g x x --=,则22ln 1()x x g x x+-'=.························································8分 设函数()2ln 1h x x x =+-,易知函数()h x 为增函数,(1)0h =,所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,············································································································10分 所以()g x 的最小值为(1)1g =-,故实数m 的取值范围是(1,)-+∞.···································12分 22.【命题意图】本题考查直线与双曲线的位置关系,要求考生了解双曲线的定义、几何图形和标准方程,以及它们的简单几何性质,通过圆雉曲线与方程的学习,进一步体会数形结合的思想.【解析】(1)由已知可得22b a =224a b +=,又0a >,解得1a b ⎧=⎪⎨=⎪⎩, 所以双曲线C 的方程为2213x y -=.·············································································2分当l x ⊥轴时,直线l 的方程为2x =,则122x x ==,1221212()x y x y y y -=-成立; 当直线l 的斜率存在时,AF BF k k =,121222y y x x =--,整理得1221212()x y x y y y -=-.·········4分 综上所述,1221212()x y x y y y -=-成立.······································································5分 (2)设点M 的坐标为(,0)m ,222AMBM AB λ+-=.当l x ⊥轴时,直线l 的方程为2x =,不妨设A ⎛ ⎝⎭,2,B ⎛ ⎝⎭,则2221222(2)2833λm m m ⎡⎤=-+-=-+⎢⎥⎣⎦⎝⎭.当l y ⊥轴时,直线l 的方程为0y =,代入2213x y -=,得x =不妨设(A ,B ,则2222((26λm m m =++-=-. 令222228263m m m -+=-,得53m =,24269m λ=-=-.··········································7分当l 不与坐标轴垂直时,设直线l 的方程为2(x ty t =+≠,代入2213x y -=,得22(2)33ty y +-=,即22(3)410t y ty -++=.设11(,)A x y ,22(,)B x y ,则12122241,33t y y y y t t +=-=--. 对于点5,03M ⎛⎫ ⎪⎝⎭,22222211221255()()133x y x y y y t λ⎛⎫⎛⎫=-++-+--+ ⎪ ⎪⎝⎭⎝⎭ 222221212222222(1)826(1)822(1)()3933(3)93(3)9t t t t t t y y y y t t t ++-=++++=-+=+--- 226222243(3)9399t t -=+=-+=--.·················································································11分 综上所述,存在定点5,03M ⎛⎫ ⎪⎝⎭,使得222AMBM AB +-为定值49-.····························12分。
备战2024高考数学全真模拟卷(新高考专用)第一模拟注意事项:本试卷满分150分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单项选择题(本大题共8小题,每小题5分,共40分)1.(2022·海南·嘉积中学模拟预测)已知全集U =R ,集合{}2,3,4A =,集合{}0,2,4,5B =,则图中的阴影部分表示的集合为()A.{}2,4B.{}0C.{}5D.{}0,5【答案】D【分析】根据给定条件,利用韦恩图表达的集合运算直接计算作答.【详解】依题意,图中的阴影部分表示的集合是()U A B ð,而全集U =R ,{}2,3,4A =,{}0,2,4,5B =,所以(){0,5}U A B ⋂=ð.故选:D2.(2022·天津市第四中学模拟预测)设x ∈R ,则“502x x->-”是“14x -<”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【分析】先求出两个不等式的解集,然后根据充分条件和必要条件的定义判断即可【详解】由502x x->-,得(5)(2)0x x -->,解得25x <<,由14x -<,得414x -<-<,得35x -<<,因为当25x <<时,35x -<<一定成立,而当35x -<<时,25x <<不一定成立,所以“502x x->-”是“14x -<”的充分不必要条件,故选:A3.(2022·海南海口·模拟预测)已知圆柱的侧面积等于上、下底面积之和,圆柱的体积与表面积的数值相同,则该圆柱的高为()A .8B .4C .2D .1【答案】B【分析】根据已知条件及圆柱的侧面积、表面积和体积公式即可求解.【详解】设底面圆的半径为r ,高为h ,则由题意可知,2222π2ππ2π2πrh r r h r rh ⎧=⎨=+⎩,解得4h r ==.所以该圆柱的高为4.故选:B.4.(2022·河北秦皇岛·二模)设ln 2a =,25b =,0.22c =,则()A .a b c >>B .b c a>>C .c b a>>D .c a b>>【答案】B【分析】利用指数函数和对数函数的单调性求解.【详解】因为()ln20,1a =∈,22log 5log 42b =>=,()0.221,2c =∈,所以b c a >>.故选:B5.(2022·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =()A .5-B .7C .13D .26【答案】C【分析】根据题意求得每次收的税金,结合题意得到111111223344556a a a a a ++++=⨯⨯⨯⨯,求得a 的值,代入函数的解析式,即可求解.【详解】由题意知:这个人原来持金为a 斤,第1关收税金为:12a 斤;第2关收税金为111(1)3223a a ⋅-⋅=⋅⨯斤;第3关收税金为1111(1)42634a a ⋅--⋅=⋅⨯斤,以此类推可得的,第4关收税金为145a ⋅⨯斤,第5关收税金为156a ⋅⨯斤,所以111111223344556a a a a a ++++=⨯⨯⨯⨯,即1111111111(1)(112233445566a a -+-+-+-+-⋅=-⋅=,解得65a =,又由()101,115,01x x f x x x +>⎧=⎨-<≤⎩,所以66()1011355f =⨯+=.故选:C.6.(2022·浙江·高三专题练习)已知在OAB 中,2OA OB ==,AB =动点P 位于线段AB 上,当·PA PO取得最小值时,向量PA 与PO的夹角的余弦值为()A .BC .7-D .7【答案】C【解析】由已知得6OAB π∠=,再由向量数量积的定义表示PA PO ⋅,根据二次函数的性质求得其最值,再由向量夹角公式可得选项.【详解】因为在OAB 中,2OA OB ==,AB =6OAB π∠=,所以PA PO PA ⋅=⋅()225+|cos |6PA AO PA PA AO PA PA π=+⋅==23344PA ⎛-≥- ⎝⎭,当且仅当2PA = 时取等号,因此在OAP △中,PO = 所以向量PA 与PO73444722+-=-,故选:C.7.(2020·全国高三专题练习)已知点,,A B C 在半径为2的球面上,满足1AB AC ==,BC =,若S是球面上任意一点,则三棱锥S ABC -体积的最大值为()A .32312+B.36+C.212+D.312+【答案】A 【详解】设ABC 外接圆圆心为O ',三棱锥S ABC -外接球的球心为O ,1AB AC ==,设D 为BC 中点,连AD ,如图,则AD BC ⊥,且O '在AD 上,221()22BC AD AB =-=,设ABC 外接圆半径为r ,222231()()()242BC r AD r r =+-=+-,解得1r =,22||23OO r '∴=-=要使S ABC -体积的最大,需S 到平面ABC 距离最大,即S 为O O '的延长线与球面的交点,最大值为32+,所以三棱锥S ABC -体积的最大值为111132332)32)3332212ABC S ++=⨯+⨯⨯=.故选:A 8.(2022·山东·夏津第一中学高三阶段练习)已知不等式()3e 1xkx k x +<+恰有2个整数解,求实数k 的取值范围()A .32233e 5e k ≤<B .2315e 2ek <≤C .32233e 5e k <≤D .2315e 2ek ≤<【答案】D【分析】原不等式()3e 1xkx k x +<+等价于,()13e x x k x ++<,设()()3g x k x =+,()1e xx f x +=,然后转化为函数的交点结合图象可求.【详解】原不等式()3e 1xkx k x +<+等价于,()13e xx k x ++<,设()()3g x k x =+,()1e x xf x +=,所以()0e xx f x -'==,得0x =.当0x <时,()0f x '>,所以在(),0∞-上单调递增,当0x >时,()0f x '<,所以在()0,∞+上单调递减,又()10f -=,且0x >时,()0f x >,因此()()3g x k x =+与()1e xx f x +=的图象如下,当0k ≤时,显然不满足条件,当0k >时,只需要满足()()()()1122f g f g ⎧>⎪⎨≤⎪⎩,即224e 35e k k⎧>⎪⎪⎨⎪≤⎪⎩,解得2315e 2e k ≤<.故选:D .二.多项选择题(本大题共4小题,每小题5分,共20分.全部选对的得5分,部分选对的得3分,有选错的得0分)9.(2020·广东·高三专题练习)已知不共线的两个单位向量,a b ,若向量2a kb - 与2a kb +的夹角为锐角,则符合上述条件的k 值可以是()A .1-B .1C .2D .3【答案】AB【分析】向量夹角为锐角时,数量积应大于0,从而求得参数.【详解】因为向量2a kb - 与2a kb +的夹角为锐角,所以()()222222440a kb a kb a k b k -⋅+=-=-> 且22a kb a kb -≠+ ,所以22k -<<且0k ≠,即20k -<<或02k <<,观察各选项可知符合条件的k 值可以是1-,1.故选:AB .10.(2022·江苏·南京市第一中学三模)在ABC 中,22cos cos 1A B +=,则下列说法正确的是()A .sin cos A B=B .2A B π+=C .sin sin A B 的最大值为12D .tan tan 1A B =±【答案】ACD【分析】根据已知条件,结合22cos sin 1A A +=得sin cos A B =,22111tan 1tan 1A B +=++,进而得tan tan 1A B =±,可判断AD ;进而得()cos 0A B -=或()cos 0A B +=,故2A B π-=或2A B π+=,再分别讨论sin sin A B 的最大值问题即可判断BC.【详解】解:因为22cos cos 1A B +=,22cos sin 1A A +=,所以22sin cos A B =,222222cos cos 1cos sin cos sin A BA AB B+=++所以sin cos A B =,22111tan 1tan 1A B +=++,故A 选项正确;所以,222222tan 1tan t tan tan an 1tan 1A B B A A B =+++⋅+++,即22tan t 1an B A ⋅=;所以tan tan 1A B =±,故D 选项正确;所以sin sin cos cos A B A B =±,即()cos 0A B -=或()cos 0A B +=,所以2A B π-=或2A B π+=,故B 选项错误;当2A B π-=时,0,2B π⎛⎫∈ ⎪⎝⎭,11sin sin sin sin sin cos sin 2222A B B B B B B π⎛⎫=+==≤ ⎪⎝⎭,当且仅当4B π=时,此时3244A πππ=+=,不满足内角和定理;当2A B π+=时,0,2B π⎛⎫∈ ⎪⎝⎭,11sin sin sin sin sin cos sin 2222A B B B B B B π⎛⎫=-==≤ ⎪⎝⎭,当且仅当4B π=时,此时244A πππ=-=,满足题意.综上,sin sin A B 的最大值为12,故C 选项正确.故选:ACD11.(2022辽宁省六校高三上学期期初联考)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是()A.68a = B.954S =C.135********a a a a a ++++= D.22212201920202019a a a a a +++= 【答案】ACD【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,依次判断四个选项,即可得正确答案.【详解】对于A ,写出数列的前6项为1,1,2,3,5,8,故A 正确;对于B ,911235813+21+3488S =++++++=,故B 错误;对于C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-,可得:13520192426486202020182020a a a a a a a a a a a a a a +++⋅⋅⋅+=+-+-+-++-=L ,故C 正确.对于D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018aa a a a =-,可得22212201920202019201920202019a a a a a a a a+++==L ,故D 正确;故选:ACD.12.(多选)(2022·广东潮州·二模)已如斜率为k 的直线l 经过抛物线24y x =的焦点且与此抛物线交于()11,A x y ,()22,B x y 两点,8AB <,直线l 与抛物线24y x =-交于M ,N 两点,且M ,N 两点在y 轴的两侧,现有下列四个命题,其中为真命题的是().A .12y y 为定值B .12y y +为定值C .k 的取值范围为()(),11,4-∞-⋃D .存在实数k使得MN =【答案】ACD【分析】设l 的方程为()()10y k x k =-≠,联立()241y x y k x ⎧=⎪⎨=-⎪⎩,整理得2440ky y k --=,根据根与系数的关系可判断A 、B 选项.由弦长公式122448AB x x p k =++=+<,得21k >,再联立()214y k x y x ⎧=-⎨=-⎩,M ,N 两点在y 轴的两侧,求得4k <,由此判断C .设()33,M x y ,()44,N x y ,由弦长公式得MN 241613k k -+=,求解即可判断D 选项.【详解】解:由题意可设l 的方程为()()10y k x k =-≠,联立()241y x y k x ⎧=⎪⎨=-⎪⎩,得2440ky y k --=,则1244k y y k -==-为定值,故A 正确.又124y y k+=,故B 不正确.12122422y y x x k k ++=+=,则122448AB x x p k=++=+<,即21k >,联立()214y k x y x ⎧=-⎨=-⎩,得240x kx k -+-=,∵M ,N 两点在y 轴的两侧,∴()22444160k k k k ∆=--=-+>,且40k -<,∴4k <.由21k >及4k <可得1k <-或14k <<,故k 的取值范围为()(),11,4-∞-⋃,故C 正确.设()33,M x y ,()44,N x y ,则34x x k +=,344x x k =-,则MN =假设存在实数k ,则由MN =得241613k k -+=,解得1k =或3,故存在3k =满足题意.D 正确.故选:ACD .三、填空题(本大题共4小题,每小题5分,共20分)13.(2020·山东潍坊市·高一期中)已知偶函数()f x 在[)0,+∞上单调递增,且1是它的一个零点,则不等式()20f x -<的解集为______.【答案】{}13x x <<【详解】因为1是函数()f x 的一个零点,所以()10f =,因为函数()f x 是偶函数,所以()()22f x fx -=-,所以由()20f x -<,可得()2(1)f x f -<,又因为函数()f x 在[)0,+∞上单调递增,所以有21x -<,解得13x <<.故答案为:{}13x x <<14.(2021辽宁省锦州市第二高级中学高三检测)学校要从5名男教师和2名女教师中随机选出3人去支教,设抽取的人中女教师的人数为X ,求________.15.(2020·江西景德镇一中高二期中)已知双曲线2222:1(00)x y C a b a b-=>>,的左、右焦点分别为12F F ,,设过2F 的直线l 与C 的右支相交于A B ,两点,且112AF F F =,222BF AF =,则双曲线C 的离心率是______.【答案】53【详解】如图:设2AF 的中点为M ,连接1F M ,1BF ,因为1122AF F F c ==,M 为2AF 的中点,所以12F M AF ⊥,由122AF F A a =-,得222F A c a =-,所以2212F A M F c a ==-,在12MF F △中,22112cos 2MF c a BF F F F c -∠==,22244BF AF c a ==-,所以12242BF a BF c a =+=-,在12BF F △中,()()()22222212212112241642cos 2224F F BF BF c c a c a BF F F F BF c c a +-+---∠==⨯⨯⨯-()224121616c a ac c c a +-=-,因为2121BF F MF F π∠+∠=,2121cos cos 0BF F MF F ∠+∠=,所以()22412160216c a c a ac c c c a -+-+=-,整理可得:221616120a ac c -+=,即225830a ac c -+=,所以225830a ac c -+=,即()()530a c a c --=,所以53a c =或a c =(舍),所以离心率53c e a ==,故答案为:5316.(2020·山东高二期末)在棱长为6的正方体空盒内,有四个半径为r 的小球在盒底四角,分别与正方体底面处交于某一顶点的三个面相切,另有一个半径为R 的大球放在四个小球之上,与四个小球相切,并与正方体盒盖相切,无论怎样翻转盒子,五球相切不松动,则小球半径r 的最大值为________;大球半径R 的最小值为________.【答案】32158【详解】当四个半径为r 的小球相切时,小球的半径最大,大球的半径最小,如图所示:四个小球的球心和大球的球心构成一个正四棱锥P ABCD -,所以4r =6,解得32r =,其中3329,23,6222PA R AB r OA OP R r R =+====--=-,在Rt PAO 中,222PA OA OP =+,即22239222R R ⎛⎫⎛⎫⎛⎫+=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得158R =,故答案为:(1)32;(2)158.四、解答题(本大题共6小题,共70分)17.(2020·山东师范大学附中高三学业考试)在①121n n S S +=+,②214a =,③112n n S a +=-这三个条件中选择两个,补充在下面问题中,并给出解答.已知数列{}n a 的前n 项和为n S ,满足__________,__________;又知正项等差数列{}nb 满足12b =,且1b ,21b -,3b 成等比数列.(1)求{}n a 和{}n b 的通项公式;(2)若n n n c a b =,求数列{}n c 的前n 项和n T .【答案】(1)答案见解析;(2)5352n nn T +=-.【详解】(1)选择①②:当2n ≥时,由121n n S S +=+得121n n S S -=+,两式相减,得12n n a a +=,即()1122n n a n a +=≥,由①得2121S S =+,即()12121a a a +=+,∴121112122a a =-=-=,得112a =.∴2112a a =,∴{}n a 为112a =,公比为12的等比数列,∴1111222n nn a -⎛⎫⎛⎫=⨯= ⎪ ⎪⎝⎭⎝⎭.选择②③:当2n ≥时,由③112n n S a +=-,得112n n S a -=-,两式相减,得122n n n a a a +=-,∴()1122n n a n a +=≥,又1212S a =-,得112a =,∴2112a a =,∴{}n a 为112a =,公比为12的等比数列,∴111111222n nn n a a q --⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭.选择①③,由于121n n S S +=+和112n n S a +=-等价,故不能选择;设等差数列{}n b 的公差为d ,0d ≥,且1b ,21b -,3b 成等比数列.()21321b b b =-,即()()22221d d +=+,解得3d =,1d =-(舍去),∴()21331n b n n =+-=-.(2)312n n n n n c a b -==,231132131222n nn T ⨯-⨯--=+++ ,2311311321343122222n n n n n T +⨯-⨯---=++++ ,∴21113331533112222222n n n n n n n T ++--=+++-=-- ,∴5352n nn T +=-.18.(2020·山东省淄博实验中学高三月考)已知向量,12x m ⎫=⎪⎭ ,2cos ,cos 22x x n ⎛⎫= ⎪⎝⎭ ,函数1()2f x m n =⋅- .(1)若,36x ππ⎛⎫∈- ⎪⎝⎭,求()f x 的取值范围;(2)在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若()1f B =,5a =,b =ABC 的面积.【答案】(1)1(,22-;(2)2.【详解】(1)向量2,1),(cos ,cos )222x x x m n == ,∴231cos cos (1cos )22222x x x m n x x =+=++ .由此可得函数11()cos sin()226f x m n x x x π=-=+=+ ,又 (,)36x ππ∈-,得(,)663x πππ+∈-1sin()(62x π∴+∈-,即()f x 的取值范围是13(,22-;(2)()sin()6f x x π=+,f ∴(B )sin()16B π=+=,又(66B ππ+∈ ,76π,62B ππ∴+=,可得3B π=.5,a b ==,∴根据正弦定理sin sin a b A B =,可得5sin sin 13sin 2a B A b π⨯===,由a b <得A B <,所以6A π=,因此()2C A B ππ=-+=,可得ABC 是以C 为直角顶点的直角三角形,ABC ∴的面积11522S ab ==⨯⨯.19.(2020·山东宁阳县一中高二期中)如图,在四棱锥P ABCD -中,平面PCD ⊥平面ABCD ,且PCD 是边长为2的等边三角形,四边形ABCD是矩形,BC =M 为BC 的中点.(1)证明:AM PM ⊥;(2)求二面角P AM D --的大小;(3)求点D 到平面APM 的距离.【答案】(1)证明见解析;(2)45 ;(3)263.【详解】(1)取CD 的中点E ,连接PE 、EM 、EA .PCD 为正三角形,PE CD ∴⊥, 平面PCD ⊥平面ABCD ,PE ∴⊥平面ABCD AM PE∴⊥ 四边形ABCD 是矩形ADE ∴V 、ECM 、ABM 均为直角三角形由勾股定理可求得:EM =,AM =,3AE =222EM AM AE ∴+=AM EM∴⊥又PE EM E AM =∴⊥ 平面PEMAM PM∴⊥(2)由(1)可知EM AM ⊥,PM AM⊥PME ∴∠是二面角P AM D --的平面角tan 1PE PME EM ∴∠===45PME ∴∠=︒∴二面角P AM D --为45︒(3)设D 点到平面PAM 的距离为d ,连接DM ,则P ADM D PAM V V --=,∴11··33ADM PAM S PE S d =而1·2ADM S AD CD ==在Rt PEM 中,由勾股定理可求得PM =1·32PAM S AM PM ∴== ,所以:11333d ⨯=⨯⨯d ∴=即点D 到平面PAM 的距离为3.20.(2020·山东师范大学附中高三学业考试)冬天的北方室外温度极低,若轻薄保暖的石墨烯发热膜能用在衣服上,可爱的医务工作者行动会更方便.石墨烯发热膜的制作:从石墨中分离出石墨烯,制成石墨烯发热膜.从石墨分离石墨烯的一种方法是化学气相沉积法,使石墨升华后附着在材料上再结晶.现有A材料、B材料供选择,研究人员对附着在A、B材料上再结晶各做了50次试验,得到如下等高条形图.(1)由上面等高条形图,填写22⨯列联表,判断是否有99%的把握认为试验成功与材料有关?(2)研究人员得到石墨烯后,再制作石墨烯发热膜有三个环节:①透明基底及UV胶层;②石墨烯层;③表面封装层.每个环节生产合格的概率均为23,且各生产环节相互独立.已知生产1吨的石墨烯发热膜的固定成本为1万元,若生产不合格还需进行修复,且生产1吨石塑烯发热膜的每个环节修复费用均为1000元.如何定价,才能实现每生产1吨石墨烯发热膜获利可达1万元以上的目标?附:参考公式:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.()2P K k≥0.1000.0500.0100.0050.001 k 2.706 3.841 6.6357.87910.828【答案】(1)列联表见解析;有99%的把握认为试验成功与材料有关;(2)2.1万元/吨.【详解】(1)根据所给等高条形图,得到22⨯的列联表:A 材料B 材料合计成功453075不成功52025合计50501002K 的观测值()210045205301250507525K ⨯⨯-⨯==⨯⨯⨯,由于12 6.635>,故有99%的把握认为试验成功与材料有关.(2)生产1吨的石墨烯发热膜,所需的修复费用为X 万元.易知X 可得0,0.1,0.2,0.3.()3280327P X ⎛⎫=== ⎪⎝⎭,()21321120.13327P X C ⎛⎫==⨯= ⎪⎝⎭,()2231260.23327P X C ⎛⎫==⨯= ⎪⎝⎭,()2110.3327P X ⎛⎫=== ⎪⎝⎭,则X的分布列为:(分布列也可以不列)X 00.10.20.3P 8271227627127修复费用的期望:()8126100.10.20.30.127272727E X =⨯+⨯+⨯+⨯=.所以石墨烯发热膜的定价至少为0.111 2.1++=万元/吨,才能实现预期的利润目标.21.(2020·五莲县教学研究室高二期中)已知抛物线C :22(0)y px p =>的焦点F 与椭圆22143x y +=的右焦点重合,点M 是抛物线C 的准线上任意一点,直线MA ,MB 分别与抛物线C 相切于点A ,B .(1)求抛物线C 的标准方程;(2)设直线MA ,MB 的斜率分别为1k ,2k ,证明:12k k ⋅为定值;(3)求AB 的最小值.【答案】(1)24y x =;(2)证明见解析;(3)4.【详解】(1)由椭圆方程得,椭圆的右焦点为(1,0)∴抛物线的焦点为(1,0)F ,2p ∴=,所以抛物线的标准方程:24y x =.(2)抛物线C 的准线方程为1x =-.设(1,)M t -,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=.其判别式△1616()k k t =-+,令△0=,得:210k kt +-=.由韦达定理知12k k t +=-,121k k =-,故121k k =-(定值).(3)设1(A x ,1)y ,2(B x ,2)y ,由210k kt +-=,得21k t k -=,故2222214244444440k ky y k t ky y k ky y k y k k k -⎛⎫-++=-++⨯=-+=-= ⎪⎝⎭,所以2y k =,代入抛物线方程得21x k =,所以211(A k ,12k ,221(B k ,22k,||AB=因为121k k =-,12k k t +=-,所以12|||AB k k =-==244t =+,当且仅当0t =时取等号.当且仅时取等号.故||AB 的最小值为4.22.(2020·山东高三期中)设函数()()22ln f x x a x a x =-++,()2ln 4g x a x x b =-+,其中0a >,b R ∈.(1)讨论函数()f x 的单调性;(2)若2a >且方程()()f x g x =在()1,+∞,上有两个不相等的实数根1x ,2x ,求证1202x x f +⎛⎫'> ⎪⎝⎭.【详解】(1)()()()()()221222220a x x x a x a a x x a x x x xf ⎛⎫-- ⎪-++⎝⎭=-++'>==1°若12a <,即02a <<时,令()0f x '>,得02a x <<或1x >,令()0f x '<,得12a x <<.()f x 在0,2a ⎛⎫ ⎪⎝⎭和()1,+∞上单调递增,在,12a ⎛⎫ ⎪⎝⎭上单调递减2°若12a =,即2a =时,()()2210x f x x-'=恒成立,()f x 在()0,∞+上单调递增3°若12a >,即2a >时,令()0f x '>得01x <<或2a x >,令()0f x '<得12a x <<()f x 在()0,1和,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,在1,2a ⎛⎫ ⎪⎝⎭上单调递减综上:02a <<时,()f x 在,02a ⎛⎫⎪⎝⎭上单调递减,0,2a ⎛⎫ ⎪⎝⎭和()1,+∞上单调递增2a =时,()f x 在()0,∞+上单增2a >时,()f x 在1,2a ⎛⎫ ⎪⎝⎭上单减,在()0,1和,2a ⎛⎫+∞ ⎪⎝⎭上单增(2)方程()()f x g x =即()22ln x a x a x b ---=在()1,+∞上有两个不等实根1x 和2x 不妨设121x x <<则()21112ln x a x a x b ---=①()22222ln x a x a x b ---=②①-②得221122112222ln ln +--=+--x x x x a x x x x 因为2a >,由(1)知,()f x 在1,2a ⎛⎫ ⎪⎝⎭上单减,,2a ⎛⎫+∞ ⎪⎝⎭上单增即1,2a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,,2a x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>故若证1202x x f +⎛⎫'> ⎪⎝⎭,只需证1222+>x x a ,即证12a x x <+只需证22112212112222ln ln x x x x x x x x x x +--<++--因为12x x <,所以1122ln ln x x x x +<+即需证:()()22112212112222ln ln x x x x x x x x x x +-->++--整理得:()1212122ln ln x x x x x x --<+即证12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭<+令()120,1x t x =∈,()()21ln 1t h t t t -=-+()()()22101t h t t t -'=>+显然()h t 在()0,1上单增.所以()()10h t h <=故1202x x f +⎛⎫'> ⎪⎝⎭得证。
2023年普通高等学校招生全国统一考试新高考仿真模拟卷数学(一)一、单选题1.已知集合{}24xA x =<,{}1B =≤,则A B =( )A .()0,2B .[)1,2C .[]1,2D .()0,12.已知复数z 满足()()()1i 12i 1z z +=+-,则复数z 的实部与虚部的和为( ) A .1B .1-C .15D .15-3.()()51223x x -+的展开式中,x 的系数为( ) A .154B .162C .176D .1804.已知1tan 5α=,则2cos 2sin sin 2ααα=-( ) A .83-B .83C .38-D .385.何尊是我国西周早期的青铜礼器,其造形浑厚,工艺精美,尊内底铸铭文中的“宅兹中国”为“中国”一词的最早文字记载.何尊的形状可以近似地看作是圆台与圆柱的组合体,高约为40cm ,上口直径约为28cm ,下端圆柱的直径约为18cm .经测量知圆柱的高约为24cm ,则估计该何尊可以装酒(不计何尊的厚度,403π1266≈,1944π6107≈)( )A .312750cmB .312800cmC .312850cmD .312900cm6.已知()f x 是定义域为R 的奇函数,满足()()2f x f x =-,则()2022f =( ) A .2B .1C .1-D .07.在四棱锥P ABCD -中,ABCD 是边长为2的正方形,AP PD ==PAD ⊥平面ABCD ,则四棱锥P ABCD -外接球的表面积为( )A .4πB .8πC .136π9D .68π38.已知抛物线C :24y x =,O 为坐标原点,A ,B 是抛物线C 上两点,记直线OA ,OB 的斜率分别为1k ,2k ,且1212k k =-,直线AB 与x 轴的交点为P ,直线OA 、OB 与抛物线C 的准线分别交于点M ,N ,则△PMN 的面积的最小值为( )A B C D二、多选题9.已知函数()()1cos 02f x x x ωωω=>的图像关于直线6x π=对称,则ω的取值可以为( ) A .2B .4C .6D .810.在菱形ABCD 中,2AB =,60DAB ∠=,点E 为线段CD 的中点,AC 和BD 交于点O ,则( ) A .0AC BD ⋅= B .2AB AD ⋅= C .14OE BA ⋅=-D .52OE AE ⋅=11.一袋中有3个红球,4个白球,这些球除颜色外,其他完全相同,现从袋中任取3个球,事件A “这3个球都是红球”,事件B “这3个球中至少有1个红球”,事件C “这3个球中至多有1个红球”,则下列判断错误的是( )A .事件A 发生的概率为15B .事件B 发生的概率为310C .事件C 发生的概率为335D .1(|)31P A B =12.对于函数()()32,f x x x cx d c d =+++∈R ,下列说法正确的是( )A .若0d =,则函数()f x 为奇函数B .函数()f x 有极值的充要条件是13c <C .若函数f (x )有两个极值点1x ,2x ,则4412281x x +>D .若2c d ==-,则过点()20,作曲线()y f x =的切线有且仅有3条三、填空题13.已知样本数据1-,1-,2,2,3,若该样本的方差为2s ,极差为t ,则2s t=______. 14.已知圆O :221x y +=与直线l :=1x -,写出一个半径为1,且与圆O 及直线都相切的圆的方程:______.15.已知椭圆()222210x y a b a b+=>>的左顶点为A ,左焦点为F ,过F 作x 轴的垂线在x轴上方交椭圆于点B ,若直线AB 的斜率为32,则该椭圆的离心率为______.16.已知f (x )是偶函数,当0x ≥时,()()2log 1f x x =+,则满足()2f x x >的实数x 的取值范围是______.四、解答题17.已知数列{}n a 是等差数列,1324,,a a a a +成等比数列,56a =. (1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求证:()221n n S n +<+.18.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,cos sin cos c B a A b C =-. (1)判断ABC 的形状; (2)若3ab ,D 在BC 边上,2BD CD =,求cos ADB ∠的值.19.如图,在直三棱柱111ABC A B C 中,D 、E 分别是AB 、1BB 的中点,12AA AC CB ==,AB =.(1)求证:1//BC 平面1A CD ;(2)若1BC =,求四棱锥1C A DBE -的体积; (3)求直线1BC 与平面1ACE 所成角的正弦值.20.新高考模式下,数学试卷不分文理卷,学生想得高分比较困难.为了调动学生学习数学的积极性,提高学生的学习成绩,张老师对自己的教学方法进行改革,经过一学期的教学实验,张老师所教的80名学生,参加一次测试,数学学科成绩都在[]50,100内,按区间分组为[)50,60,[)60,70,[)70,80,[)80,90,[]90,100,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.(1)求这80名学生的平均成绩(同一区间的数据用该区间中点值作代表);(2)按优秀与非优秀用分层抽样方法随机抽取10名学生座谈,再在这10名学生中,选3名学生发言,记优秀学生发言的人数为随机变量X ,求X 的分布列和期望.21.已知12,F F 分别为双曲线()222210,0x ya b a b-=>>左、右焦点,(P 在双曲线上,且124PF PF ⋅=. (1)求此双曲线的方程;(2)若双曲线的虚轴端点分别为12,B B (2B 在y 轴正半轴上),点,A B 在双曲线上,且()22B A B B μμ=∈R ,11B A B B ⊥,试求直线AB 的方程.22.已知函数()()211e 12x f x a x a x ax a =---+++,()R a ∈.(1)当1a =时,求f (x )的单调区间;(2)当310,e a ⎛⎫∈ ⎪⎝⎭时,求证:函数f (x )有3个零点.参考答案:1.B【分析】化简集合A 和B ,即可得出A B ⋂的取值范围. 【详解】解:由题意在{}24xA x =<,{}1B =≤中,{}2A x x =<,{}12B x x =≤≤ ∴{}12A B x x ⋂=≤< 故选:B. 2.D【分析】根据复数的运算法则求出复数43i 55z -+=,则得到答案.【详解】(1i)(2i 1)(2i 1)z z +=-+-(2i)2i 1z -=-,2i 1(2i 1)(2i)43i 43i 2i 5555z --+-+====-+-, 故实部与虚部的和为431555-+=-,故选:D. 3.C【分析】根据二项式定理可求得()523x +展开式通项,由此可确定12,T T ,结合多项式乘法运算进行整理即可确定x 的系数. 【详解】()523x +展开式的通项公式为:()55155C 2323C rr r r r r rr T x x --+=⋅⋅=⋅; 当1r =时,412523C 240T x x =⨯=;当0r =时,51232T ==;x ∴的系数为24023224064176-⨯=-=.故选:C. 4.A【分析】利用二倍角公式化简为正、余弦的齐次分式,分式上下同除2cos α,代入1tan 5α=可得答案.【详解】2222cos 2cos sin sin sin 2sin 2sin cos αααααααα-=--22111tan 825123tan 2tan 255ααα--===---, 故选:A. 5.C【分析】根据圆柱和圆台的体积公式计算可得结果. 【详解】下端圆柱的体积为:224π91944π⋅=6107≈3cm ,上端圆台的体积为:()22116π1414993⨯+⨯+16π4033=⨯1612663≈⨯6752=3cm , 所以该何尊的体积估计为61076752+=128593cm . 因为12850最接近12859,所以估计该何尊可以装酒128503cm . 故选:C 6.D【分析】根据函数()f x 是定义域为R 的奇函数,且()()2f x f x =-得出函数()f x 是周期为4的周期函数,进而求解.【详解】因为函数()f x 是定义域为R 的奇函数,且()()2f x f x =-, 所以(2)()()f x f x f x +=-=-,所以(4)()f x f x +=, 即函数()f x 是周期为4的周期函数,因为函数()f x 是定义域为R 的奇函数,所以(0)0f =, 因为()()2f x f x =-,所以(2)(0)0f f ==, 又因为202245052=⨯+,所以(2022)(2)0f f ==, 故选:D . 7.C【分析】将该四棱锥的外接球放在一个长方体内,画出图形,利用已知条件找出球心,建立相应的关系式,求出外接球的半径,利用球体表面积公式计算即可. 【详解】由题意将该四棱锥放在一个长方体的中, 如图∴所示:取AD 的中点H ,连接PH ,连接,AC BD 交于1O ,由AP PD =则在等腰PAD 中有:PH AD ⊥,又平面PAD ⊥平面ABCD ,且平面PAD ⋂平面ABCD=AD , 则PH ⊥平面ABCD , 又112AH AD ==, 所以在Rt PAH △中,3PH ===,由底面为正方形ABCD ,所以它的外接圆的圆心为对角线的交点1O , 连接1O H ,则1PH O H ⊥,PAD 外接圆的圆心为2O ,且在PH 上,过点1O ,2O 分别作平面ABCD 与平面PAD 的垂线,则两垂线必交于点O ,点O 即为四棱锥P ABCD -外接球的球心, 且1OO ⊥平面ABCD ,又PH ⊥平面ABCD ,即2O H ⊥平面ABCD , 所以1OO ∥PH ,所以四边形12OO HO 为矩形. 如图∴连接2AO ,则22AO PO =,在2Rt AO H 中,22223O H PH PO PH AO AO =-=-=-,所以()2222222213AO AH HO AO =+=+-,解得253AO =,所以254333O H =-=,所以1243OO O H ==, 在图∴中连接OB ,由112O B BD =所以在1Rt OO B 中,OB ==即四棱锥P ABCD -外接球的半径为R OB ==, 所以四棱锥P ABCD -外接球的表面积为: 221364πR 4ππ9S ==⨯=⎝⎭,故选:C. 8.D【分析】设出A 、B 的坐标,由1212k k =-解得12y y 的值,再分别求出点M 、点N 的坐标,求得||MN 的式子,研究AB l 恒过x 轴上的定点可得点P 的坐标,进而用方法1基本不等式或方法2函数思想求得三角形面积的最小值.【详解】设211(,)4y A y ,222(,)4y B y ,则114k y =,224k y =, ∴12121612k k y y ==- ∴1232y y =-, ∴设OA l :14y x y =,令=1x -得:14y y =-,∴14(1,)M y --,同理:24(1,)N y -- ∴12121212||44||||4||8y y y y MN y y y y --=-+==, 设AB l :x my t =+,221044x my t y my t y x=+⎧⇒--=⎨=⎩ 20m t ∆=+>,124y y m +=,124y y t ,又∴1232y y =-,∴432t -=-,解得:8t =, ∴AB l :8x my =+恒过点(8,0),∴AB l 与x 轴交点P 的坐标为(8,0),即:(8,0)P , ∴点P 到准线=1x -的距离为8+1=9. 方法1:1211||1321||||888y y MN y y -==+≥⨯=1||y =.∴19||9||22PMN S MN MN =⨯=≥△, ∴∴PMN的面积的最小值为2. 方法2:12||||8y y MN -==∴20m ≥∴||MN ≥m =0时取得最小值.∴19||9||22PMN S MN MN =⨯=≥△, ∴∴PMN故选:D. 9.AD【分析】首先将函数()f x 化成一个三角函数,然后根据对称轴公式求得ω的表达式,对整数k 赋值求得结果.【详解】()()1cos sin 26f x x x x ωωωπ=+=+,因为函数()f x 的图象关于直线6x π=对称,所以662k ωπππ+=+π,k ∈Z ,解得26k ω=+,因为0ω>,所以当0k =时,2ω=;所以当1k =时,8ω=. 故选:AD. 10.ABD【分析】以O 为坐标原点可建立平面直角坐标系,利用平面向量数量积的坐标运算依次验证各个选项即可.【详解】四边形ABCD 为菱形,AC BD ∴⊥,则以O 为坐标原点,,OC OD 正方向为,x y 轴,可建立如图所示平面直角坐标系,2AB AD ==,60DAB ∠=,2BD ∴=,OA OC ===()0,0O ∴,()A ,()0,1B -,()0,1D ,12E ⎫⎪⎪⎝⎭,对于A ,ACBD ,0AC BD ∴⋅=,A 正确;对于B ,()3,1AB =-,()3,1AD =,312AB AD ∴⋅=-=,B 正确;对于C ,3122OE ⎛⎫= ⎪ ⎪⎝⎭,()BA =-,31122OE BA ∴⋅=-+=-,C 错误; 对于D ,3122OE ⎛⎫= ⎪ ⎪⎝⎭,3122AE ⎛⎫= ⎪ ⎪⎝⎭,915442OE AE ∴⋅=+=,D 正确. 故选:ABD. 11.ABC【分析】根据题意求出基本事件总数、满足条件的基本事件数,利用古典概型概率公式及条件概率公式求解即可.【详解】由题意7个球中任取3个球的基本事件总数为:37C 35=这3个球都是红球的基本事件数为:33C 1=,所以事件A 发生的概率为:1()35P A =,故A 错误, 这3个球中至少有1个红球的基本事件数为:1221334343C C C C +C 1812131⋅+⋅=++=,所以事件B 发生的概率为:31()35P B =,故B 错误, 这3个球中至多有1个红球的基本事件数为:123344C C C 18422⋅+=+=,事件C 发生的概率为22()35P C =,故C 错误, 因为1()()35P AB P A ==, 所以由条件概率公式得:1()135(|)31()3135P AB P A B P B ===, 故D 正确, 故选:ABC. 12.BCD【分析】对于A :利用奇偶性的定义直接判断;对于B :利用极值的计算方法直接求解;对于C :先求出13c <,表示出244122161692781c x x c +=-+,即可求出;对于D :设切点()00,x y ,由导数的几何意义得到3200025460x x x --+=.设()322546g x x x x =--+,利用导数判断出函数()g x 有三个零点,即可求解.【详解】对于A :当0d =时,()32f x x x cx =++定义域为R .因为()()()()()3232f x x x c x x x cx f x -=-+-+-=-+-≠-, 所以函数()f x 不是奇函数.故A 错误;对于B :函数()f x 有极值⇔ ()f x 在R 上不单调.由()32f x x x cx d =+++求导得:()232f x x x c =++'.()f x 在R 上不单调⇔()f x '在R 上有正有负⇔4430c ∆=-⨯>⇔13c <.故B 正确.对于C :若函数f (x )有两个极值点1x ,2x ,必满足0∆>,即13c <.此时1x ,2x 为2320x x c ++=的两根,所以1212233x x c x x ⎧+=-⎪⎪⎨⎪=⎪⎩. 所以()22212121242293c x x x x x x +=+-=-.所以()()222244222212121242216162293992781cc c x x x xx x c +=+-=--=-+ 对称轴164272329c -=-=⨯,所以当13c <时,()224412216162116116292781932738181c x x c +=-+>⨯-⨯+=. 即4412281x x +>.故C 正确;对于D :若2c d ==-时,()3222f x x x x =+--.所以()2322f x x x '=+-.设切点()00,x y ,则有:()3200002000002203222y x x x y f x x x x ⎧=+--⎪-⎨=+-=⎪-⎩', 消去0y ,整理得:3200025460x x x --+=不妨设()322546g x x x x =--+,则()26104g x x x '=--.令()0g x '>,解得:2x >或13x <-;令()0g x '<,解得: 123x -<<.所以()g x 在1,3⎛⎫-∞- ⎪⎝⎭,()2,+∞上单调递增,在1,23⎛⎫- ⎪⎝⎭上单调递减.所以()()()()()32111119254660333327g x g =-=-----+=>极大值, ()()322225242660g x g ==⨯-⨯-⨯+=-<极小值.所以作出的图像如图所示:因为函数()g x 有三个零点,所以方程3200025460x x x --+=有三个根,所以过点()20,作曲线()y f x =的切线有且仅有3条.故D 正确. 故选:BCD. 13.710##0.7 【分析】根据极差的定义可得()314t =--=,先求出平均数,再从方差,从而可求2s t.【详解】极差()314t =--=,平均数为()()1122315-+-+++=,故方差()()()()()222222114111*********s ⎡⎤=--+--+-+-+-=⎣⎦. 所以21475410s t ==.故答案为:710. 14.()2221x y +-=(答案不唯一)【分析】根据圆的圆心和半径,结合直线和圆的位置关系及两个圆的位置关系计算即可. 【详解】设圆心C 为()00,x y ,由已知圆C 与直线l :=1x -相切, 圆C 与圆O :221x y +=相切,可得0112x ⎧--=,即得0002x y =⎧⎨=⎩或0002x y =⎧⎨=-⎩或0020x y =-⎧⎨=⎩, 且已知半径为1,所以圆的方程可以为: ()2221x y +-=或()2221x y ++=或2221x y故答案为: ()2221x y +-=(答案不唯一) 15.12##0.5【分析】由题意设(),0A a -,2,b B c a ⎛⎫- ⎪⎝⎭,再由232AB b a k c a -==-+结合222a b c =+,即可得出答案.【详解】由题意可得,(),0A a -,(),0F c -,令椭圆()222210x y a b a b +=>>中x c =-,解得:2b y a=±,所以2,b B c a ⎛⎫- ⎪⎝⎭,而2032AB b a k c a -==-+,则2232a c a c a c a a -+==-+, 解得:12e =. 故答案为:12. 16.()(),01,-∞⋃+∞【分析】利用奇偶性和函数的单调性解不等式.【详解】当0x ≥时,()()2log 1f x x +,函数在[)0,∞+上单调递增,∴()(0)0f x f ≥=,又()f x 是偶函数,所以()f x 的值域为[)0,∞+.当0x ≥时,()()2log 1f x x +,不等式()2f x x >()22log 1x x +>,即()22log 10x x+->,设()22()log 1g x x x =+-,由函数y =()2log 1y x =+,2y x=-在()0,∞+上都是增函数, 得()g x 在()0,∞+上是增函数,由(1)0g =,则()0(1)g x g >=解得1x >; 当0x <时,由函数值域可知()0f x >,此时20x<,所以()2f x x >恒成立;综上可知,满足()2f x x>的实数x 的取值范围是()(),01,-∞⋃+∞.故答案为:()(),01,-∞⋃+∞ 17.(1)1n a n =+ (2)证明见解析【分析】(1)根据等比数列定义和等差数列通项公式可构造方程组求得1,a d ,进而确定n a ; (2)利用裂项相消法可求得n S ,整理即可证得结论. 【详解】(1)设等差数列{}n a 的公差为d ,1324,,a a a a +成等比数列,()23124a a a a ∴=+,即()()2111224a d a a d +=+,又5146a a d =+=,则由()()2111122446a d a a d a d ⎧+=+⎪⎨+=⎪⎩得:121a d =⎧⎨=⎩或163a d =-⎧⎨=⎩, 当16a =-,3d =时,30a =,不满足1324,,a a a a +成等比数列,舍去; 12a ∴=,1d =,()211n a n n ∴=+-=+.(2)由(1)得:()()111111212n n a a n n n n +==-++++, 1111111111233445112n S n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-+-+⋅⋅⋅+-+- ⎪ ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()112222n n n =-=++, ()221n n S n n ∴+=<+.18.(1)直角三角形 (2)0【分析】(1)根据正弦定理的边角互化,即可得到结果;(2)由(1)中结论即可得到cos B ∠,从而得到AD 的值,然后在ABD △中结合余弦定理即可得到结果.【详解】(1)因为cos sin cos c B a A b C =-,由正弦定理可得, 2sin cos sin cos sin C B B C A +=即()2sin sin B C A +=所以()2sin sin ,0,πsin 1A A A A =∈⇒=且()0,πA ∈,所以π2A =即ABC 是直角三角形.(2)在直角ABC 中,有22223b c a b +==,即222c b =,所以c =, 又因为2BD CD =,所以23BD BC ==且cos c B a === 在ABD △中,由余弦定理可得,22222242cos 2b b AD AB BD AD B AB BD +-+-∠===⋅解得AD =, 在ABD △中由余弦定理可得,222222242cos 02b b b AD BD AB ADB AD BD +-+-∠===⋅19.(1)证明见解析 (2)23【分析】(1)连接1AC 交1A C 于点F ,连接EF ,则F 为1AC 的中点,利用中位线的性质可得出1DF //BC ,再利用线面平行的判定定理可证得结论成立;(2)过点C 在平面ABC 内作CM AB ⊥,垂足为点M ,证明出CM ⊥平面11AA B B ,计算出CM 的长以及四边形1A DBE 的面积,利用锥体的体积公式可求得四棱锥1C A DBE -的体积; (3)设1BC =,以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得直线1BC 与平面1A CE 所成角的正弦值. 【详解】(1)证明:连接1AC 交1A C 于点F ,连接EF ,则F 为1AC 的中点, 因为D 、F 分别为AB 、1AC 的中点,则1DF //BC ,因为DF ⊂平面1A CD ,1BC ⊄平面1A CD ,1//BC ∴平面1A CD . (2)解:因为1BC =,则122AA AC CB ===,AB == 222AC BC AB ∴+=,即AC BC ⊥,过点C 在平面ABC 内作CM AB ⊥,垂足为点M , 因为1AA ⊥平面ABC ,CM ⊂平面ABC ,1CM AA ∴⊥,又因为CM AB ⊥,1AB AA A ⋂=,AB 、1AA ⊂平面11AA B B ,CM ∴⊥平面11AA B B ,由等面积法可得AC BC CM AB ⋅==因为1AA ⊥平面ABC ,AB ⊂平面ABC ,1AA AB ∴⊥,又因为11//AA BB 且11AA BB =,故四边形11AA B B 为矩形,所以,1111111212AA D A B E AA B B A DBE S S S S ⎫=--==⎪⎪⎝⎭△△矩形四边形11112333C A DBE A DBE V S CM -∴=⋅==四边形.(3)解:不妨设1BC =,因为AC BC ⊥,1CC ⊥平面ABC ,以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,1,0B 、()0,0,0C 、()10,0,2C 、()12,0,2A 、()0,1,1E , 设平面1A CE 的法向量为(),,n x y z =,()12,0,2CA =,()0,1,1CE =, 则1220n CA x z n CE y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取1x =,可得()1,1,1n =-, 因为()10,1,2BC =-,则111cos ,BC n BC n BC n⋅<>==-=⋅因此,直线1BC 与平面1A CE20.(1)73.5(2)分布列见解析;期望()910E X =【分析】(1)根据频率分布直方图估计平均数的方法直接计算即可;(2)根据频率分布直方图可确定优秀与非优秀学生对应的频率,根据分层抽样原则可确定10名学生中优秀学员的人数,由此可得X 所有可能的取值,根据超几何分布概率公式可求得X 每个取值对应的概率,由此可得分布列;由数学期望计算公式可求得期望. 【详解】(1)80名学生的平均成绩为()550.01650.03750.03850.025950.00510⨯+⨯+⨯+⨯+⨯⨯=73.5.(2)根据频率分布直方图知:优秀学员对应的频率为()0.0250.005100.3+⨯=,则非优秀学员对应的频率为10.30.7-=,∴抽取的10名学生中,有优秀学生100.33⨯=人,非优秀学生100.77⨯=人;则X 所有可能的取值为0,1,2,3,()37310C 3570C 12024P X ====;()1237310C C 63211C 12040P X ====;()2137310C C 2172C 12040P X ====;()33310C 13C 120P X ===;X ∴的分布列为:∴数学期望()721719012324404012010E X =⨯+⨯+⨯+⨯=. 21.(1)22145x y -=(2)y x =+y =【分析】(1)根据平面向量数量积坐标运算和点在双曲线上,可构造方程组求得22,a b 的值,由此可得双曲线方程;(2)由2,,A B B 三点共线可设:AB y kx =+用向量垂直的坐标表示,代入韦达定理结论可解方程求得k 的值,由此可得直线AB 方程. 【详解】(1)设()1,0F c -,()()2,00F c c >,则(1PF c =--,(2PF c =-,212854PF PF c ∴⋅=-+=,解得:3c =,229a b ∴+=;又P 在双曲线上,则22851a b-=,24a ∴=,25b =, ∴双曲线的方程为:22145x y -=.(2)由(1)得:(10,B,(2B ,()22B A B B μμ=∈R ,2,,A B B ∴三点共线,直线AB斜率显然存在,可设:AB y kx =+()11,A x y ,()22,B x y ,由22145y kx x y ⎧=⎪⎨-=⎪⎩得:()2254400k x ---=,()22540Δ801040k k ⎧-≠⎪∴⎨=->⎪⎩,即252k <且254k ≠,12x x ∴+=1224054x x k =--, 11B A B B ⊥,110B A B B ∴⋅=,又(111,B A x y =,(122,B B x y =,()1112121212125B A B B x x y y x x y y y y ∴⋅=+=+++(()1212125x x kx kx k x x =++++()()()222121222401801202005454k k kx xx x k k+=++++=-++=--,解得:k =252k <且254k ≠,∴直线AB方程为:y x =y = 【点睛】关键点点睛:本题考查直线与椭圆的综合应用问题,解题关键是能够利用平面向量垂直关系的坐标表示来构造等量关系,结合韦达定理的结论得到关于所求变量的方程的形式,从而解方程求得变量的值.22.(1)函数()f x 的单调递增区间为(,0)-∞和(1,)+∞,单调递减区间为(0,1). (2)证明过程见详解【分析】(1) 因为1a =,所以函数()()212e 22x f x x x x =--++,对函数求导,利用导函数的正负来判断函数的单调性即可求解;(2)对函数进行求导,求出导函数的零点,根据条件可得:函数()f x 在(,)a -∞和(ln ,)a -+∞上单调递增,在(,ln )a a -上单调递减,然后利用零点存在性定理即可证明.【详解】(1)因为1a =,所以函数()()212e 22x f x x x x =--++,所以()e (2)e 1(1)(e 1)x x x f x x x x '=+--+=--,当1x >或0x <时,()0f x '>,此时函数()f x 单调递增; 当01x <<时,()0f x '<,此时函数()f x 单调递减; 综上:函数()f x 的单调递增区间为(,0)-∞和(1,)+∞, 单调递减区间为(0,1).(2)因为函数()()211e 12x f x a x a x ax a =---+++,所以()e (1)e ()e ()()(e 1)x x x x f x a a x a x a a x a x a x a a '=+---+=---=--,令()0f x '=可得:x a =或ln x a =-,因为310,e a ⎛⎫∈ ⎪⎝⎭,所以ln 3a ->,当x a <或ln x a >-时,()0f x '>,此时函数()f x 单调递增; 当ln a x a <<-时,()0f x '<,此时函数()f x 单调递减;所以函数()f x 在(,)a -∞和(ln ,)a -+∞上单调递增,在(,ln )a a -上单调递减,故当x a =时,函数取极大值()()22e 10102aaf a a a f a =-+++>=->,因为当2x =-时,221(2)(3)10ef a a a -=-+--<;所以0(2,)x a ∃∈-,使得0()0f x =; 当ln x a =-时,函数取极小值,ln 2211(ln )(ln 1)e (ln )ln 1ln ln (ln )22a f a a a a a a a a a a a a --=-----++=---1ln (1ln )02a a a =-++<,(因为ln 3a ->,所以13ln 22a <-,因为3110e 2a <<<,所以312a +<,也即11ln 02a a ++<)所以0(,ln )x a a '∃∈-,使得0()0f x '=;又当x →+∞时,()f x →+∞,所以0(ln ,)x a ''∃∈-+∞,使得0()0f x ''=;故当310,e a ⎛⎫∈ ⎪⎝⎭时,函数()f x 有3个零点.【点睛】函数零点的求解与判断方法:答案第17页,共17页 (1)直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[,]a b 上是连续不断的曲线,且()()0f a f b <,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用导数求出函数的极值点,再利用零点存在性定理进行判断零点的个数.。
2023年高考数学全真模拟卷三(全国卷)理科数学(考试时间:120分钟;试卷满分:150分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合{}31A x x =-<,{B y y ==,则A B = ()A .∅B .[)4,+∞C .()2,+∞D .[)0,2【答案】C【分析】根据一元一次不等式可解得集合A ,再根据函数值域求法可求得集合B ,由交集运算即可得出结果.【详解】由题意可得{}2A x x =>,由函数值域可得{}0B y y =≥,所以{}2A B x x ⋂=>.故选:C 2.某班40人一次外语测试的成绩如下表:其中中位数为()A .78B .80C .79D .78和89【答案】C【分析】根据中位数的概念即可求得.【详解】解:由题意得:所有成绩从小到大排列,第二十位是78,第二十一位是80,则中位数为7880792+=.故选:C 3.若复数z 满足()()1i i 4z -+=,其中i 为虚数单位,则z 的虚部为()A .2B .2-C .1D .1-【答案】C【分析】根据复数的除法运算与减法运算得2i z =+,进而根据复数的概念求解即可.【详解】解:由题意可知()()()41i 4i i 2i 1i 1i 1i z +=-=-=+--+,所以,z 的虚部为1.故选:C.4.双曲线22221(0,0)x y a b a b -=>>,焦点到渐近线的距离为1,则双曲线方程为()A .2214y x -=B .2214x y -=C .22123x y -=D .22132x y -=【答案】B【分析】由离心率可得12b a =,从而可得渐近线方程,根据焦点到渐近线的距离为1可得c ,从而可求a ,故可得双曲线的方程.【详解】由题可知c a =,222514b e a =+=,得12b a =,则渐近线方程为20x y ±=,焦点到渐近线的距离为1,1=,可解得c =,所以2a =,由222c a b =+得1b =.所以双曲线方程为2214x y -=.故选:B.5.“天圆地方”观反映了中国古代科学对宇宙的认识,后来发展成为中国传统文化的重要思想.中国古人将琮、璧、圭、璋、璜、琥六种玉制礼器谓之“六瑞”,玉琮内圆外方,表示天和地,中间的穿孔表示天地之间的沟通,可以说是中国古代世界观很好的象征物.下面是一玉琮图及其三视图,设规格如图所示(单位:cm ),则三视图中A ,B 两点在实物中对应的两点在实物玉璧上的最小距离约为()(3π≈ 1.4≈)A .8.4B .9.8C .10.4D .11.2【答案】A【分析】玉琮的中空部分看成一圆柱,A ,B 两点可看成是圆柱轴截面所对应矩形的对角线的端点,将圆柱侧面展开,线段AB 的长就是沿该圆柱表面由A 到B 的最短距离.【详解】本题考查传统文化与圆柱的侧面展开图.由题意,将玉琮的中空部分看成一圆柱,A ,B 两点可看成是圆柱轴截面所对应矩形的对角线的端点,现沿该圆柱表面由A到B ,如图,将圆柱侧面展开,可知()min 8.4AB =≈.故选:A .6.已知定义在R 上的函数()21x mf x -=-(m 为实数)是偶函数,记0.5log 3a =,()2log 5b f =,()c f m =,则a 、b 、c 的大小关系为()A .a b c <<B .a c b<<C .c<a<bD .c b a<<【答案】B【分析】由偶函数的性质可得m 的值,即可得函数()f x 的解析式,分析函数单调性,结合对数的运算性质比较大小.【详解】()21x mf x -=-(m 为实数)是R 上的偶函数,∴()()f x f x -=,即2121x m x m ----=-,∴--=-x m x m ,即()()22x m x m --=-,∴0mx =,则0m =,此时()21xf x =-,0.5log 30a =<,()2log 540b f ==>,()(0)0c f m f ===,则a c b <<.故选:B7.若某一几何体的三视图如图所示,则该几何体是()A .三棱柱B .四棱柱C .五棱柱D .六棱柱【答案】C【分析】根据三视图还原出立体图形即可得到答案.【详解】根据其三视图还原出其立体图形如下图所示,易得其为五棱柱,故选:C.8.已知,a b ∈R ,则“1ab ≥”是“222a b +≥”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【分析】根据充分条件、必要条件及不等式的性质可得解.【详解】由22||12||||2ab a b a b ≥⇒+≥≥,而222a b +≥不一定能得到1ab ≥,例如,0,2a b ==,所以“1ab ≥”是“222a b +≥”的充分而不必要条件.故选:A 9.已知△ABC 满足22AB BA CA =⋅,则△ABC 的形状为()A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形【答案】D【分析】根据已知得到22cos c bc A =,利用正弦定理可求得sin 2sin cos =C B A ,结合三角形内角和为π以及两角和的正弦公式可求得in 0()s A B -=,即可确定三角形形状.【详解】解:根据22AB BA CA =⋅得到:22cos c bc A =,由正弦定理2sin sin b cR B C==,可得2sin 2sin sin cos C B C A =,又C 为三角形的内角,得到sin 0C ≠,可得sin 2sin cos =C B A ,又[]sin sin ()sin()C A B A B π=-+=+,∴sin()sin cos cos sin 2sin cos A B A B A B B A +=+=,即sin cos cos sin 0A B A B -=,∴in 0()s A B -=,且A 和B 都为三角形的内角,∴A B =,则ABC 的形状为等腰三角形.故选:D .10.在新型冠状病毒肺炎疫情联防联控期间,社区有5名医务人员到某学校的高一、高二、高三3个年级协助防控和宣传工作.若每个年级至少分配1名医务人员,则不同的分配方法有()A .25种B .50种C .300种D .150种【答案】D【分析】首先分析将5个人分为三小组且每小组至少有一人,则可能分法有:(2,2,1),(3,1,1)两种情况,每种情况利用分步计数原理计算情况数,最后相加即可.【详解】当5个人分为2,2,1三小组,分别来自3个年级,共有2213531322C C C A 90A ⋅=种;②当5个人分为3,1,1三小组时,分别来自3个年级,共有3113521322C C C A 60A ⋅=种.综上,选法共有9060150+=.故选:D.11.已知函数()2tan sin tan 1xf x x x =++,则下列结论正确的是()A .()f x 在区间ππ,33⎛⎫- ⎪⎝⎭上单调递减B .()f x 在区间π0,2⎛⎫ ⎪⎝⎭上有极小值C .设()()2g x f x =-在区间ππ,22⎛⎫- ⎪⎝⎭上的最大值为M ,最小值为m ,则4M m +=D .()f x 在区间ππ,22⎛⎫- ⎪⎝⎭内有且只有一个零点【答案】D【分析】由商数关系化简函数,结合导数法可得函数性质及图象,即可逐个判断.【详解】因为()22sin tan cos sin sin tan 1sin 1cos xx x f x x x x x x =+=++⎛⎫+ ⎪⎝⎭πsin sin cos π,2x x x x k k ⎛⎫=+≠+∈ ⎪⎝⎭Z ,所以()()()22cos cos 12cos 1cos 1f x x x x x '=+-=-⋅+.当ππ,22x ⎛⎫∈- ⎪⎝⎭时,令()0f x '=,解得π3x =±,则当x 变化时,()f x ',()f x 的变化情况如下表所示.x ππ,23⎛⎫-- ⎪⎝⎭π3-ππ,33⎛⎫- ⎪⎝⎭π3ππ,32⎛⎫ ⎪⎝⎭()f x '-0+0-所以()f x 在区间ππ,22⎛⎫- ⎪⎝⎭上的图象如图所示.对A ,()f x 在区间ππ,33⎛⎫- ⎪⎝⎭上单调递增,A 错;对B ,()f x 在区间π0,2⎛⎫ ⎪⎝⎭上有极大值,无极小值,B 错;对C ,()()2g x f x =-在区间ππ,22⎛⎫- ⎪⎝⎭上的最大值为24M =-,最小值为24m =--,4M m +=-,C 错;对D ,()f x 在区间ππ,22⎛⎫- ⎪⎝⎭内有且只有一个零点,D 对.故选:D.12.已知函数()f x 的定义域为R ,且满足()()110f x f x -+-=,()()8f x f x +=,()11f =,()31f =-,()()21,021,24x a x f x x b x ⎧-++<≤⎪=⎨+-<≤⎪⎩,给出下列结论:①1a =-,3b =-;②()20231f =;③当[]4,6x ∈-时,()0f x <的解集为()()2,02,4- ;④若函数()f x 的图象与直线y mx m =-在y 轴右侧有3个交点,则实数m 的取值范围是111,16264⎛⎫⎛⎫--⋂- ⎪ ⎪⎝⎭⎝⎭.其中正确结论的个数为()A .4B .3C .2D .1【答案】C【分析】由()11f =,()31f =-解出,a b 的值可判断①;由周期和奇偶函数的性质计算()20231f =-可判断②;作出函数()f x 在[]0,4上的图象,根据图象可判断③;讨论当0m >和0m <,方程()mx m f x -=的解的个数可判断④.【详解】因为()()110f x f x -+-=,所以()()f x f x -=-,所以函数()f x 为奇函数,()00f =.因为()()8f x f x +=,所以()f x 的周期为8.又()()21111f a =-++=,所以10a +=,所以1a =-,()3311f b =+-=-,所以3b =-,故①正确.因为,()()()()202325381111f f f f =⨯-=-=-=-,故②错误.易知()()211,0231,24x x f x x x ⎧--+<≤⎪=⎨--<≤⎪⎩,作出函数()f x 在[]0,4上的图象,根据函数()f x 为奇函数,及其周期为8,得到函数()f x 在R 上的图象,如图所示,由()f x 的图象知,当[]4,6x ∈-时,()0f x <的解集为()()2,02,4- ,故③正确.由题意,知直线()1y mx m m x =-=-恒过点()1,0,与函数()f x 的图象在y 轴右侧有3个交点根据图象可知当0m >时,应有51m m ⨯-<,即14m <,且同时满足()mx m f x -=,[]8,10x ∈无解,即当[]8,10x ∈时,()()()108f x x x =--,()()108x x mx m --=-无解,所以Δ0<,解得1616m -<<+所以1164m -<<.当0m <时,应有31m m ⨯->-,即12m >-,且同时满足()mx m f x -=,[]6,8x ∈无解,即当[]6,8x ∈时,()()()68f x x x =--,()()58x x mx m --=-无解,所以Δ0<,解得1212m --<<-+1122m -<<-+综上,1164m -<或1122m -<<-+.故选:C.第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.函数()12f x x x=+在1x =处切线的倾斜角为_______.【答案】45【分析】求导,求出斜率,进而可得倾斜角.【详解】()212f x x '=-+,则()11211f '=-+=,即函数()12f x x x=+在1x =处切线的斜率为1,则倾斜角为45 故答案为:45 14.已知平面向量(2,)a x =-,b = ,且()a b b -⊥,实数x 的值为_____.【答案】【分析】表示出(3,a b x -=- ,其与b =数量积为0,可算得出x .【详解】解:因为(2,)a x =-,b = ,所以(3,a b x -=-又()a b b -⊥,则()30a b b x -⋅=-= 故x =故答案为:15.设1F 、2F 分别为椭圆()222210x y a b a b+=>>的左右焦点,与直线y b =相切的圆2F 交椭圆于点E ,且E 是直线1EF 与圆2F 相切的切点,则椭圆焦距与长轴长之比为________.【答案】3【分析】根据题意可得12EF EF ⊥,利用椭圆性质可得()()22222a b b c -+=,结合222a b c =+,即可求得22c a .【详解】如图所示,连接2EF ,易得12EF EF ⊥,圆2F 的半径r b =,所以2EF b =,而122EF EF a +=,所以12EF a b =-,122F F c =,所以()()22222a b b c -+=,且有222a b c =+,化简可得23a b =,所以()22249a a c =-,所以2259a c =,可得22c a =.故答案为:16.已知函数()ln f x ax x x =-与函数()e 1xg x =-的图象上恰有两对关于x 轴对称的点,则实数a 的取值范围为__________.【答案】(),1e -∞-【分析】图象恰有两对关于x 轴对称的点,即0x ∃>,使得()()f x g x -=,即ln e 1xax x x -+=-有两解,对等式全分离,构造()ln e 1x x x h x x-+=,求导求单调性,求出值域,对图象进行判断,即可得出a 的取值范围.【详解】因为函数()f x 与()g x 的图象上恰有两对关于x 轴对称的点,所以0x >时()()f x g x -=有两解,即ln e 1x ax x x -+=-有两解,所以ln e 1x x x a x-+=有两解,令()ln e 1x x x h x x -+=,则()()()2e 11x x h x x --'=,所以当()0,1x ∈时,()0h x '>,函数()h x 单调递增;当()1,x ∈+∞时,()0h x '<,函数()h x 单调递减,所以()h x 在1x =处取得极大值,(11e h =-,且()0,1x ∈时,()h x 的值域为(),1e -∞-;()1,x ∈+∞时,()h x 的值域为(),1e -∞-,因此ln e 1x x x a x-+=有两解时,实数a 的取值范围为(),1e -∞-.故答案为:(),1e -∞-三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)(一)必考题:共60分17.已知公差不为0的等差数列{}n a 的前n 项和为n S ,2S 、4S 、55S +成等差数列,且2a 、7a 、22a 成等比数列.(1)求{}n a 的通项公式;(2)若11n n n b a a +=,数列{}n b 的前n 项和为n T ,证明:16n T <.【答案】(1)21n a n =+(2)证明见解析【分析】(1)公式法列方程组解决即可;(2)运用裂项相消解决即可.【详解】(1)由题知,设{}n a 的公差为d ,由题意得42527222250S S S a a a d =++⎧⎪=⎨⎪≠⎩,即11121112(46)(2)(510)5(6)()(21)0a d a d a d a d a d a d d +=++++⎧⎪+=++⎨⎪≠⎩,解得132a d =⎧⎨=⎩,所以1(1)3(1)221n a a n d n n =+-=+-⨯=+,所以{}n a 的通项公式为21n a n =+.(2)证明:由(1)得21n a n =+,所以111111(21)(23)22123n n n b a a n n n n +⎛⎫===- ⎪++++⎝⎭,所以1111111111123557212323236n T n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=-<⎪ ⎪+++⎝⎭⎝⎭.18.为促进新能源汽车的推广,某市逐渐加大充电基础设施的建设,该市统计了近五年新能源汽车充电站的数量(单位:个),得到如下表格:年份编号x 12345年份20162017201820192020新能源汽车充电站数量y /个37104147196226(1)已知可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明;(2)求y 关于x 的线性回归方程,并预测2024年该市新能源汽车充电站的数量.参考数据:51710i i y ==∑,512600i i i x y ==∑,()521149.89i iy y =-=∑ 3.16≈.参考公式:相关系数()()niix x yyr --=∑回归方程ˆˆˆybx a =+中斜率和截距的最小二乘估计公式分别为;()()()121ˆniii nii x x y y b x x ==--=-∑∑,ˆˆay bx =-.【答案】(1)答案见解析;(2)ˆ471yx =+;预测2024年该市新能源汽车充电站的数量为424个.【分析】(1)利用相关系数的计算公式即可得解;(2)先利用已知数据和公式得到y 关于x 的线性回归方程,再将2024年所对应的年份编号代入线性回归方程即可得解.【详解】解:(1)由已知数据得()11234535x =⨯++++=,17101425y =⨯=,()()()2222152101210i i x x=-=-+-+++=∑,()()55115260053142470iii i i i x x yy x y x y ==--=-=-⨯⨯=∑∑,所以4700.993.16149.89r ≈≈⨯.因为y 与x 的相关系数近似为0.9,接近1,说明y 与x 的线性相关程度相当高,从而可以用线性回归模型拟合y 与x 的关系.(2)由(1)得()()()51215470ˆ4710iii ii x x y y bx x ==--===-∑∑,ˆˆ1424731ay bx =-=-⨯=,放所求线性回归方程为ˆ471yx =+.将2024年对应的年份编号9x =代人回归方程得ˆ4791424y=⨯+=,故预测2024年该市新能源汽车充电站的数量为424个.19.如图,在四棱锥P -ABCD 中,AB CD ∥,AB ⊥BC ,122BC CD PA PD AB =====,PC =E 为AB的中点.(1)证明:BD ⊥平面APD ;(2)求平面APD 和平面CEP 的夹角的余弦值.【答案】(1)证明见解析(2)22【分析】(1)已知条件求出AB ,BD ,AD 的长度,勾股定理证得BD AD ⊥,取AD 的中点O ,连接OP ,OC ,有PO AD ⊥,得PO ,勾股定理证得PO OC ⊥,从而PO ⊥平面ABCD ,有BD OP ⊥,所以BD ⊥平面APD .(2)建立空间直角坐标系,求相关点的坐标,求相关向量的坐标,求平面APD 和平面CEP 的一个法向量,利用向量夹角公式求平面APD 和平面CEP 的夹角的余弦值【详解】(1)在直角梯形ABCD 中,易得AB =4,BD =AD =,∴222AD BD AB +=,∴BD ⊥AD .取AD 的中点O ,连接OP ,OC ,易得PO ⊥AD ,PO =,如图所示,在△CDO 中,易得OC ==,又PC =,∴222OC PO PC +=,∴PO ⊥OC ,又PO ⊥AD ,AD OC O = ,,AD OC ⊂平面ABCD ,∴PO ⊥平面ABCD ,BD ⊂平面ABCD ,∴BD ⊥OP ,又BD ⊥AD ,AD OP O ⋂=,,AD OP ⊂平面APD ,∴BD ⊥平面APD .(2)如图,以D 为坐标原点,DA ,DB 所在直线分别为x ,y 轴,过点D 且与PO 平行的直线为z 轴建立空间直角坐标系,则D (0,0,0),()A ,()0,B ,)E,P,()C ,∴(CP =,()CE = ,∵BD ⊥平面APD ,∴平面APD 的一个法向量为()10,1,0n =.设平面CEP 的法向量为()2,,n x y z =u u r,则2200n CP n CE ⎧⋅=⎪⎨⋅=⎪⎩,得00⎧+=⎪⎨=⎪⎩,取y =1,得()20,1,1n = ,∴122cos ,2n n =,∴平面APD 和平面CEP 的夹角的余弦值为22.20.已知抛物线()2:20C x py p =>的焦点为F ,准线为l ,点P 是直线1:2l y x =-上一动点,直线l 与直线1l 交于点Q,QF =(1)求抛物线C 的方程;(2)过点P 作抛物线C 的两条切线,PA PB ,切点为,A B ,且95FA FB -≤⋅≤,求PAB 面积的取值范围.【答案】(1)24x y=(2)⎡⎣【分析】(1)计算2,22p p Q ⎛⎫-- ⎪⎝⎭,0,2p F⎛⎫⎪⎝⎭,根据距离公式计算得到2p =,得到抛物线方程.(2)求导得到导函数,计算切线方程得到AB 的直线方程为()002y y xx +=,联立方程,根据韦达定理得到根与系数的关系,根据向量运算得到034y -≤≤,再计算PAB S =△.【详解】(1)直线1:2l y x =-,当2p y =-时,22p x =-,即2,22p p Q ⎛⎫-- ⎪⎝⎭,0,2p F⎛⎫⎪⎝⎭,则QF ==,解得2p =或25p =-(舍去),故抛物线C 的方程为24x y =.(2)设()11,A x y ,()22,B x y ,()00,P x y ,24x y =,2x y '=,PA 的直线方程为:()1112x y x x y =-+,整理得到()112y y xx +=,同理可得:PB 方程为()222y y xx +=,故()()010*******y y x x y y x x ⎧+=⎪⎨+=⎪⎩,故AB 的直线方程为()002y y xx +=,()00224y y xx x y ⎧+=⎨=⎩,整理得到200240x x x y -+=,12012024 x x x x x y +=⎧⎨=⎩,()()()1122121212,1,11FA FB x y x y x x y y y y ⋅=-⋅-=+-++()02221212221212000216123164x x x x x x x x y x y y +-=+-+=-++=-,09235y -≤-≤,解得034y -≤≤,设P 到AB 的距离为d ,12PABS AB d =⋅=△,034y -≤≤,故[]2044,20y +∈,4,PAB S ⎡∈⎣△21.已知01a <<,函数()1x f x x a -=+,()1log a g x x x =++.(1)若()e e g =,求函数()f x 的极小值;(2)若函数()()y f x g x =-存在唯一的零点,求a 的取值范围.【答案】(1)2(2)1,1e ⎡⎫⎪⎢⎣⎭【分析】(1)由()e e g =可求出1ea =,则()1e xf x x -=+,然后对函数求导,由导数的正负可求出函数的单调区间,从而可求出函数的极小值;(2)令()1log 1x a F x ax -=--(0x >),则()111ln ln x F x xa a x a -⎛⎫'=- ⎪⎝⎭,令()11ln ln x x xaa a ϕ-=-,利用导数可求出其单调区间和最小值,然后分11ln 10ln a a a----≥和10ea <<讨论函数的零点即可.【详解】(1)由()1e e e 1log e e ea g a =⇒++=⇒=,所以()1e x f x x -=+,()11e xf x -'=-,令()01f x x '=⇒=,当1x <时,()0f x '<,当1x >时,()0f x ¢>,所以()f x 在(,1)-∞上递减,在(1,)+∞上递增,所以()f x 的极小值为()12f =;(2)()()1log 1x a f x g x a x --=--,令()1log 1x a F x a x -=--(0x >),()F x 存在唯—的零点,()11111ln ln ln ln x x F x a a xa a x a x a --⎛⎫'=-=- ⎪⎝⎭,令()11ln ln x x xaa a ϕ-=-,()()11ln ln x x a x a a ϕ-'=+,令()10ln x x aϕ'=⇒=-,当10ln x a<<-时,()0x ϕ'<;当1ln x a>-时,()0x ϕ'>,所以()x ϕ在10,ln a ⎛⎫- ⎪⎝⎭上递减,在1,ln a ⎛⎫-+∞ ⎪⎝⎭上递增,所以()11ln min 11ln ln ax a a a ϕϕ--⎛⎫=-=-- ⎪⎝⎭,①若11ln 10ln aa a----≥,即111ln ln ln ln a a a ⎛⎫⎛⎫--≤- ⎪ ⎪⎝⎭⎝⎭,令1ln t a-=,所以()111ln ln 10t t t t t ⎛⎫--≤⇒-+≥ ⎪⎝⎭,所以1t ≥,所以11ln a -≥,即11ea <时,()()min 00x F x ϕ'≥⇒≥,所以()F x 在()0,∞+上递增,注意到()10F =,所以()F x 存在唯一的零点,符合题意②当10e a <<时,()100ln aϕ=->,()min 0x ϕ<,()22213(ln )133ln ln ln a a a a a aϕ-=-=,令22()3(ln )1t a a a =-,10ea <<,则221()3[2(ln )2ln ]6ln (ln 1)t a a a a a a a a a'=+⋅⋅=+,因为10ea <<,所以ln 1a <-,所以()6ln (ln 1)0t a a a a '=+>,所以22()3(ln )1t a a a =-在10,e ⎛⎫⎪⎝⎭上单调递增,所以2221113()3(ln 110e e e e t a t ⎛⎫⎛⎫<=-=-< ⎪ ⎪⎝⎭⎝⎭,所以()22213(ln )133ln 0ln ln a a a a a aϕ-=-=>所以()x ϕ即()F x '在10,ln a ⎛⎫- ⎪⎝⎭和1,ln a ⎛⎫-+∞ ⎪⎝⎭上各有一个零点1x ,2x ,()F x 在()10,x 上递增,()12,x x 上递减,()2,0x 上递增,而()11ln 0ln F a a'=-<,所以121x x <<,()1log 1x a F x a x -=--,当110a x a -<<时,()111log 11(1)0a F a a x a x -------<-=<;当1x a >时,()10log 10a F x a>--=,而()()110F x F >=,()()210F x F <=,所以()F x 在()10,x ,()12,x x 和()2,x +∞上各有一个零点,共3个零点了,舍去.综上,a 的取值范围为1,1e ⎡⎫⎪⎢⎣⎭.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,直线l的参数方程为cos sin x t y t αα⎧=⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线C 的极坐标方程为2853cos 2ρθ=-,直线l 与曲线C 相交于A ,B两点,)M .(1)求曲线C 的直角坐标方程;(2)若2AM MB =,求直线l 的斜率.【答案】(1)2214x y +=(2)【分析】(1)根据极坐标与直角坐标直角的转化222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,运算求解;(2)联立直线l 的参数方程和曲线C 的直角坐标方程,根据参数的几何意义结合韦达定理运算求解.【详解】(1)∵()()222222288453cos 2cos 4sin 5cos sin 3cos sin ρθθθθθθθ===-++--,则2222cos 4sin 4ρθρθ+=,∴2244x y +=,即2214x y +=,故曲线C 的直角坐标方程为2214x y +=.(2)将直线l的参数方程为cos sin x t y t αα⎧=⎪⎨=⎪⎩(t 为参数)代入曲线C 的直角坐标方程为2214x y +=,得)()22cos sin 14t t αα+=,整理得()()222cos 4sin 10t t ααα++-=,设A ,B 两点所对应的参数为12,t t ,则121222221,cos 4sin cos 4sin t t t t ααααα+=-=-++,∵2AM MB =,则122t t =-,联立1212222cos 4sin t t t t ααα=-⎧⎪⎨+=-⎪+⎩,解得122222cos 4sin cos 4sin t t αααααα⎧=-⎪⎪+⎨⎪=⎪+⎩,将12,t t 代入12221cos 4sin t t αα=-+得2222221cos 4sin cos 4sin cos 4sin αααααααα⎛⎫⎛⎫-=- ⎪⎪ ⎪⎪+++⎝⎭⎝⎭,解得2223tan 4k α==,故直线l的斜率为2±.[选修4-5:不等式选讲]23.已知:()1f x x x m =+--,0m >.(1)若2m =,求不等式()2f x >的解集;(2)()()g x f x x m =--,若()g x 的图象与x 轴围成的三角形面积不大于54,求m 的取值范围.【答案】(1)3,2∞⎛⎫+ ⎪⎝⎭;(2)(]0,8.【分析】(1)利用零点分段法求解出绝对值不等式;(2)先求出()21,312,121,1x m x mg x x m x m x m x -++>⎧⎪=+--≤≤⎨⎪--<-⎩,由()0g x =,解得:122121,3m x m x -=+=,则()21444133m x x m ---==+,由函数单调性得到()()max 1g x g m m ==+,根据函数图象与x 轴围成的三角形面积不大于54,列出方程,求出m 的取值范围.【详解】(1)当2m =时,()3,21221,123,1x f x x x x x x >⎧⎪=+--=--≤≤⎨⎪-<-⎩,当2x >时,()32f x =>成立;当12x -≤≤时,()212f x x =->,则322x <≤;当1x <-时,()32f x =-<不合题意,综上,()2f x >的解集为3,2∞⎛⎫+ ⎪⎝⎭;(2)因为0m >,所以()21,12312,121,1x m x m g x x x m x m x m x m x -++>⎧⎪=+--=+--≤≤⎨⎪--<-⎩,由()0g x =,解得:122121,3m x m x -=+=,则()21444133m x x m ---==+,当1x <-时,()g x 单调递增,当1x m -≤≤时,()g x 单调递增,当x >m 时,()g x 单调递减,所以当x m =时,()g x 取得最大值,()()max 1g x g m m ==+,∴图象与x 轴围成的三角形面积为()()221421154233S m m =⨯+=+≤,解得:108m -≤≤,又0m >,则08m <≤,∴m 的取值范围是(]0,8.。
全国卷高考文科数学模拟题及答案解析全国卷高考文科数学模拟题及答案解析本试卷共23小题,满分150分,考试用时120分钟。
参考公式:锥体的体积公式$V=\frac{1}{3}Sh$,其中$S$为锥体的底面积,$h$为高。
一、选择题:本大题共12小题,每小题5分,满分60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知$A=\{(x,y)|x+y=0,x,y\in R\}$,$B=\{(x,y)|x-y-2=0,x,y\in R\}$,则集合$A\cap B$等于()。
A.$\{(x,y)|x=1\}$。
B.$\{(x,y)|y=-1\}$C.$\{1,-1\}$。
D.$\{(1,-1)\}$2.下列函数中,在其定义域内是减函数的是()。
A.$f(x)=-x+x^2+1$。
B.$f(x)=\frac{1}{x}$C.$f(x)=\log x$。
D.$f(x)=\ln 3x$3.已知函数$f(x)=\begin{cases}x(x+1),&x<0\\x(x-1),&x\geq0\end{cases}$,则函数$f(x)$的零点个数为()。
A.1.B.2.C.3.D.44.等差数列$\{a_n\}$中,若$a_2+a_8=15-a_5$,则$a_5$等于()。
A.3.B.4.C.5.D.65.已知$a>0$,$f(x)=x^4-ax+4$,则$f(x)$为()。
A.奇函数。
B.偶函数。
C.非奇非偶函数。
D.奇偶性与$a$有关6.已知向量$\boldsymbol{a}=(1,2)$,$\boldsymbol{b}=(x,4)$,若向量$\boldsymbol{a}$与向量$\boldsymbol{b}$平行,则$x$=()。
A.2.B.$-2$。
C.8.D.$-8$7.设数列$\{a_n\}$是等差数列,且$a_2=-8$,$a_{15}=5$,$S_n$是数列$\{a_n\}$的前$n$项和,则()。
2024年普通高等学校招生全国统一考试数学新高考Ⅰ卷模拟试卷李昌成(乌鲁木齐市第八中学ꎬ新疆乌鲁木齐830002)中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2024)04-0094-10收稿日期:2023-11-05作者简介:李昌成ꎬ中学正高级教师ꎬ从事中学数学教学研究.㊀㊀一㊁单选题:本大题共8小题ꎬ共40.0分.在每小题列出的选项中ꎬ选出符合题目的一项.1.设集合U=RꎬA=x1<x<3{}ꎬB=xx<2{}ꎬ则图1中阴影部分表示的集合为(㊀㊀).㊀A.{x|xȡ2}㊀㊀㊀㊀B.{x|xɤ2}C.x1<xɤ2{}D.{x|2ɤx<3}图1㊀第1题图2.已知复数z满足2z-z=1+3iꎬ则zi=(㊀㊀).A.-1+i㊀B.1-i㊀C.1+i㊀D.-1-i3.正方形ABCD中ꎬMꎬN分别是BCꎬCD的中点ꎬ若ACң=λAMң+μBNңꎬ则λ+μ=(㊀㊀).A.65㊀㊀㊀B.85㊀㊀㊀C.2㊀㊀㊀D.834.已知三棱台ABC-A1B1C1中ꎬ三棱锥A-A1B1C1的体积为4ꎬ三棱锥A1-ABC的体积为8ꎬ则该三棱台的体积为(㊀㊀).A.12+33㊀㊀㊀B.12+42C.12+43D.12+475.从装有3个红球㊁2个白球的袋中任取2个球ꎬ则所取的2个球中至少有1个白球的概率是(㊀㊀).A.110㊀㊀㊀B.310㊀㊀㊀C.710㊀㊀㊀D.356.已知函数f(x)=Asin(ωx+φ)(ω>0ꎬ-π<φ<0)的部分图象如图2所示ꎬ则下列判断错误的是(㊀㊀).A.函数f(x)的最小正周期为2B.函数f(x)的值域为[-4ꎬ4]C.函数f(x)的图象关于点(103ꎬ0)中心对称D.函数f(x)的图象向左平移π3个单位长度后得到y=Asinωx的图象图2㊀第6题图497.若a>b>1ꎬ0<c<1ꎬ则下列结论正确的是(㊀㊀).A.ac<bc㊀㊀㊀㊀B.alogbc<blogacC.abc<bacD.logac<logbc8.某四棱锥的底面为正方形ꎬ顶点在底面的射影为正方形中心ꎬ该四棱锥内有一个半径为1的球ꎬ则该四棱锥的表面积的最小值是(㊀㊀).A.16㊀㊀B.8㊀㊀C.32㊀㊀D.24二㊁多选题:本大题共4小题ꎬ共20.0分.在每小题有多项符合题目要求.9.如图3ꎬ在棱长为1的正方体ABCD-A1B1C1D1中ꎬ点P是线段AD1上的动点ꎬ则下列命题正确的是(㊀㊀).A.异面直线C1P与CB1所成角的大小为定值B.三棱锥D-BPC1的体积是定值C.直线CP和平面ABC1D1所成的角的大小是定值D.若点Q是线段BD上动点ꎬ则直线PQ与A1C不可能平行图3㊀第9题图10.已知函数f(x)=x3-x+1ꎬg(x)=f(x)-ax(aɪR)ꎬ则(㊀㊀).A.f(x)有两个极值点B.f(x)的图象与x轴有三个交点C.点(0ꎬ1)是曲线y=f(x)的对称中心D.若g(x)存在单调递减区间ꎬ则aȡ-111.已知抛物线C:x2=2y的焦点为Fꎬ准线为lꎬAꎬB是C上的两点ꎬO为坐标原点ꎬ则(㊀㊀).A.l的方程为y=-1B.若AF=32ꎬ则әAOF的面积为24C.若OAң OBң=0ꎬ则OA OBȡ8D.若øAFB=120ʎꎬ过AB的中点D作DEʅl于点Eꎬ则ABȡ5DE12.设函数f(x)=xlnxꎬg(x)=12x2ꎬ给定下列命题ꎬ其中正确的是(㊀㊀).A.若方程f(x)=k有两个不同的实数根ꎬ则kɪ(-1eꎬ0)B.若方程kf(x)=x2恰好只有一个实数根ꎬ则k<0㊀C.若x1>x2>0ꎬ总有m[g(x1)-g(x2)]>f(x1)-f(x2)恒成立ꎬ则mȡ1D.若函数F(x)=f(x)-2ag(x)有两个极值点ꎬ则实数aɪ(0ꎬ12)三㊁填空题:本大题共4小题ꎬ共20.0分13.(x2-x+2)5的展开式中x3的系数为.14.已知圆C:x2+y2-4x-2y+1=0ꎬ点P是直线y=4上的动点ꎬ过P作圆的两条切线ꎬ切点分别为AꎬBꎬ则AB的最小值为.15.已知函数f(x)=x3+mxꎬ若f(ex)ȡf(x+1)对xɪR恒成立ꎬ则实数m的取值范围为.16.已知椭圆E:x24+y2=1ꎬ椭圆的左右焦点分别为F1ꎬF2ꎬ点A(mꎬn)为椭圆上一点且m>0ꎬn>0ꎬ过A作椭圆E的切线lꎬ分别交x=2ꎬx=-2于点CꎬD.连接CF1ꎬDF2ꎬCF1与DF2交于点Gꎬ并连接AG.若直线lꎬAG的斜率之和为32ꎬ则点A坐标为.四㊁解答题:本大题共6小题ꎬ共70.0分.解答应写出文字说明ꎬ证明过程或演算步骤.17.已知数列an{}满足a1=1ꎬan+1=an+2ꎬ数列bn{}的前n项和为Snꎬ且Sn=2-bn.(1)求数列an{}ꎬbn{}的通项公式ꎻ59(2)设cn=an+bnꎬ求数列cn{}的前n项和Tn.18.已知әABC中ꎬ角AꎬBꎬC所对的边分别为aꎬbꎬcꎬsinAcosC+cosAsinCc+b-a=sinC+sinAa-bꎬ且a=13.(1)求әABC外接圆的半径ꎻ(2)若c=3ꎬ求әABC的面积.19.如图4ꎬ直三棱柱ABC-A1B1C1中ꎬAA1=AB=AC=1ꎬEꎬF分别是CC1ꎬBC的中点ꎬAEʅA1B1ꎬD为棱A1B1上的点.图4㊀第19题图(1)证明:DFʅAEꎻ(2)是否存在一点Dꎬ使得平面DEF与平面ABC的夹角的余弦值为1414若存在ꎬ说明点D的位置ꎬ若不存在ꎬ说明理由.20.某剧场的座位数量是固定的ꎬ管理人员统计了最近在该剧场举办的五场表演的票价xi(单位:元)和上座率yi(上座人数与总座位数的比值)的数据ꎬ其中i=1ꎬ2ꎬ3ꎬ4ꎬ5ꎬ并根据统计数据得到如图5的散点图:图5㊀第20题图(1)由散点图判断y=bx+a与y=clnx+d哪个模型能更好地对y与x的关系进行拟合(给出判断即可ꎬ不必说明理由)ꎬ并根据你的判断结果求回归方程ꎻ(2)根据(1)所求的回归方程ꎬ预测票价为多少时ꎬ剧场的门票收入最多.参考数据:x=240ꎬy=0.5ꎬð5i=1x2i=365000ꎬð5i=1xiyi=457.5ꎻ设zi=lnxiꎬ则ð5i=1ziʈ27ꎬð5i=1z2iʈ147.4ꎬð5i=1ziyiʈ12.7ꎻe5.2ʈ180ꎬe5.4ʈ220ꎬe6.4ʈ600.参考公式:对于一组数据(u1|v1)ꎬ(u2|v2)ꎬ ꎬ(un|vn)ꎬ其回归直线v︿=α︿+β︿u的斜率和截距的最小二乘估计分别为:β=ðni=1uivi-nuvðni=1u2i-nu=ðni=1(ui-u)(vi-v)ðni=1(ui-u)2ꎬα︿=v-β︿u.21.已知双曲线C:x2a2-y2b2=1(a>0ꎬb>0)经过点P(4ꎬ2)ꎬ双曲线C的右焦点F到其渐近线的距离为2.(1)求双曲线C的方程ꎻ(2)已知Q(0ꎬ-2)ꎬD为PQ的中点ꎬ作PQ的平行线l与双曲线C交于不同的两点AꎬBꎬ直线AQ与双曲线C交于另一点Mꎬ直线BQ与双曲线C交于另一点Nꎬ证明:MꎬNꎬD三点共线.22.已知函数f(x)=aln(x+1)-sinx.(1)若y=f(x)在[π4ꎬπ2]上单调递减ꎬ求a的取值范围ꎻ(2)证明:当a=1时ꎬf(x)在(π2ꎬ+ɕ)上有且仅有一个零点.参考答案1.由Venn图可知ꎬ阴影部分的元素由属于集合A但不属于集合B的元素构成ꎬ所以阴影部分表示的集合为Aɘ(∁UB).因为集合U=RꎬA={x|1<x<3}ꎬB={x|x<2}ꎬ所以∁UB={x|xȡ2}.所以Aɘ(∁UB)={x|2ɤx<3}.所以图中阴影部分表示69的集合为{x|2ɤx<3}.故选D.2.设z=a+bi(aꎬbɪR)ꎬ则2z-z-=2(a+bi)-(a-bi)=a+3bi=1+3i.所以a=1ꎬ3b=3ꎬ{即a=1ꎬb=1.所以z=1+i.所以zi=1+ii=(1+i)(-i)i(-i)=1-i.故选B.3.以ABꎬAD为坐标轴建立平面直角坐标系ꎬ如图6ꎬ设正方形边长为1ꎬMꎬN分别是BCꎬCD的中点ꎬ所以AMң=(1ꎬ12)ꎬBNң=(-12ꎬ1)ꎬACң=(1ꎬ1).图6㊀第3题解析图因为ACң=λAMң+μBNңꎬ所以λ-12μ=1ꎬ12λ+μ=1.ìîíïïïï所以λ=65ꎬμ=25.所以λ+μ=85.故选B.4.设SәABC=S1ꎬSәA1B1C1=S2ꎬ棱台的高为hꎬ由已知ꎬ得VA-A1B1C1=13S2h=4ꎬ得S2=12hꎬVA1-ABC=13S1h=8ꎬ则S1=24h.所以三棱台ABC-A1B1C1的体积V=13h(S1+S2+S1S2)=13h(12h+24h2+12ˑ24h2)=12+42.故选B.5.根据题意ꎬ首先分析从5个球中任取2个球ꎬ设3个红球为a1ꎬa2ꎬa3ꎬꎬ2个白球为b1ꎬb2ꎬ所以样本空间Ω={a1a2ꎬa1a3ꎬa1b1ꎬa1b2ꎬa2a3ꎬa2b1ꎬa2b2ꎬa3b1ꎬa3b2ꎬb1b2}ꎬ共10个等可能的样本点.设事件A= 所取的2个球中至少有1个白球 ꎬ则事件A=所取的2个球中没有白球 ꎬA={a1a2ꎬa1a3ꎬa2a3}ꎬ则P(A)=310ꎬP(A)=1-310=710.则所取的3个球中至少有1个白球的概率是710.故选C.6.根据题意可得ꎬ12T=43-13ꎬ解得T=2ꎬ故函数f(x)的最小正周期为2ꎬA正确.所以ω=2πT=π.又因为函数f(x)=Asin(ωx+φ)(ω>0ꎬ-π<φ<0)的图象过点(13ꎬ0)ꎬ所以Asin(π3+φ)=0ꎬ解得φ=kπ-π3ꎬkɪZ.又因为-π<φ<0ꎬ所以φ=-π3.而函数f(x)=Asin(ωx+φ)的图象过点(0ꎬ-23)ꎬ所以Asin(πˑ0-π3)=-23ꎬ解得A=4ꎬ即f(x)的值域为[-4ꎬ4]ꎬ故B正确.所以f(x)=4sin(πx-π3).令πx-π3=kπꎬ解得x=k+13ꎬkɪZꎬ其中一个对称中心为(103ꎬ0)ꎬC正确.所以f(x)的图象向左移13个单位长度后得到y=4sinπxꎬD错误.故选D.7.因为a>b>1ꎬ0<c<1ꎬ所以ac>bcꎬ故A错误.alogbc=alogcclogcb=alogcbꎬ79blogac=blogcclogca=blogcaꎬalogcb-blogca=logc(aa/bb)logca logcbꎬ因为a>b>1ꎬ0<c<1ꎬ所以aa>ba>bb.即aabb>1.所以logcaabb<0ꎬlogca<0ꎬlogcb<0.所以alogcb<blogca.即alogbc<blogacꎬ故B正确.abcbac=(ab)1-cꎬ因为a>b>1ꎬ0<c<1ꎬ所以ab>1ꎬ1-c>0.㊀所以(ab)1-c>(ab)0=1.所以abcbac>1.即abc>bacꎬ故C错误.因为a>b>1ꎬ0<c<1ꎬ所以logac>logbcꎬ故D错误.故选B.8.因为四棱锥的底面为正方形ꎬ顶点在底面的射影为正方形中心ꎬ所以该四棱锥是正四棱锥ꎬ设正四棱锥P-ABCDꎬ当半径为1的球是正四棱锥P-ABCD的内切球时ꎬ该四棱锥的表面积最小ꎬ设正方形ABCD的边长为2aꎬ设ACɘBD=Oꎬ连接POꎬ则POʅ面ABCDꎬ所以正四棱锥P-ABCD的高为POꎬ设PO=hꎬ正四棱锥P-ABCD的表面积为Sꎬ由V=13 SABCD PO=13(4SәPAB+S四边形ABCD)ˑ1=13Sꎬ即为13ˑ2aˑ2ah=13(4ˑ12ˑ2aˑa2+h2+2aˑ2a)ˑ1ꎬ整理可得:a(h-1)=a2+h2.所以a2(h-1)2=a2+h2ꎬ可得a2=h2h2-2h.所以正四棱锥P-ABCD体积为V=13ˑ4a2h.则S=3V=3ˑ13ˑ4a2ˑh=4a2h=4a3h2-2h=4h2h-2(h>2).设t=h-2>0ꎬ可得h=t+2.所以S=4(t+2)2t=4(t+4t+4)ȡ4(2t4t+4)=32ꎬ当且仅当t=4t即t=2ꎬh=4时ꎬ等号成立.该四棱锥的表面积最小值是32.故选C.9.因为CB1ʅBC1ꎬCB1ʅABꎬBC1ɘAB=Bꎬ所以CB1ʅ平面ABC1D1.又C1P⊂平面ABC1D1ꎬ得CB1ʅC1Pꎬ所以异面直线C1P与CB1垂直ꎬ选项A正确.三棱锥D-BPC1以BDC1为底面ꎬ因为AD1ʊ平面BDC1ꎬ所以点P到平面BDC1的距离为定值ꎬ故三棱锥D-BPC1的体积是定值ꎬ选项B正确.点C在平面ABC1D1的射影是定点(BC1与B1C的交点)ꎬ线段CP长度显然随位置变化而变化ꎬ故直线CP和平面ABC1D1所成的角的正弦在变化ꎬ角的大小不是定值ꎬ选项C错误.以点D为原点ꎬDAꎬDCꎬDD1所在的直线分别为xꎬyꎬz轴ꎬ建立如图7所示空间直角坐标系ꎬ则CA1ң=(1ꎬ-1ꎬ1)ꎬ点P坐标取(23ꎬ0ꎬ13)ꎬ点Q坐标取(13ꎬ13ꎬ0)时ꎬPQң=(-13ꎬ13ꎬ-13)ꎬPQ//A1C成立ꎬ选项D错误.故选AB.图7㊀第9题解析图8910.已知f(x)=x3-x+1ꎬ则fᶄ(x)=3x2-1.由fᶄ(x)>0ꎬ得x<-33或x>33ꎻ由fᶄ(x)<0ꎬ得-33<x<33ꎬ所以函数f(x)在(-ɕꎬ-33)ꎬ(33ꎬ+ɕ)上单调递增ꎬ在(-33ꎬ33)上单调递减.则当x=-33时ꎬ函数f(x)取得极大值ꎬ当x=33时ꎬ函数f(x)取得极小值ꎬ故A项正确.而f(-33)=1+239>0ꎬf(33)=1-239>0ꎬ得函数f(x)的图象与x轴有一个交点ꎬ故B项错误.㊀令fᶄ(x)=3x2-1=h(x)ꎬ得hᶄ(x)=6x=0ꎬ得x=0ꎬ此时f(0)=1ꎬ得曲线y=f(x)的对称中心为(0ꎬ1)ꎬ故C项正确.由g(x)=f(x)-axꎬ得gᶄ(x)=fᶄ(x)-a=3x2-1-aꎬ若g(x)存在单调递减区间ꎬ即gᶄ(x)<0有解ꎬ得a>3x2-1有解ꎬ等价于a>(3x2-1)minꎬ则a>-1ꎬ故D项错误.故选AC.11.A选项:l的方程为y=-12ꎬ错误ꎻB选项:因为|AF|=32ꎬ可得yA=1ꎬ|xA|=2ꎬSәAOF=12|OF| |xA|=24ꎬ正确ꎻC选项:设A(x1ꎬy1)ꎬB(x2ꎬy2)ꎬ则OAң OBң=x1x2+y1y2=0ꎬ即x1x2=-y1y2ꎬ而y1y2=(x1x22)2=-x1x2ꎬ解得x1x2=-4ꎬy1y2=4ꎬ(|OA| |OB|)2=(x21+y21)(x22+y22)=32+x21y22+x22y21ȡ32+2|x1x2| |y1y2|=64ꎬ所以|OA| |OB|ȡ8ꎬ正确ꎻD选项:如图8ꎬ过点A作AA1ʅl于点A1ꎬ过点B作BB1ʅl于点B1ꎬ设|AF|=aꎬ|BF|=bꎬ所以|DE|=12(a+b).因为|AB|2=a2+b2-2ab cosøAFB=a2+b2+ab=(a+b)2-abȡ(a+b)2-(a+b2)2=3 (a+b2)2=3|DE|2ꎬ所以|AB|ȡ3|DE|ꎬ错误.故选BC.图8㊀第11题解析图12.对于Aꎬf(x)的定义域为(0ꎬ+ɕ)ꎬfᶄ(x)=lnx+1ꎬ令fᶄ(x)>0ꎬ得到x>1eꎬ令fᶄ(x)<0ꎬ得到0<x<1e.所以f(x)在(0ꎬ1e)上单调递减ꎬ在(1eꎬ+ɕ)上单调递增.所以[f(x)]min=f(1e)=-1eꎬ且当xң0时ꎬf(x)ң0.又f(1)=0ꎬ从而要使方程f(x)=k有两个不同的实根ꎬ即y=f(x)与y=k有两个不同的交点ꎬ所以kɪ(-1eꎬ0)ꎬ故A正确.对于Bꎬ易知x=1不是该方程的根ꎬ当xʂ1时ꎬf(x)ʂ0ꎬ方程kf(x)=x2有且只有一个实数根ꎬ等价于y=k和y=xlnx只有一个交点ꎬyᶄ=lnx-1(lnx)2ꎬ又x>0且xʂ1ꎬ令yᶄ>0ꎬ有x>eꎬ令yᶄ<0ꎬ有0<x<1或1<x<eꎬ所以函数y=xlnx在(0ꎬ1)和(1ꎬe)单调递减ꎬ在(eꎬ+ɕ)单调递增ꎬx=1是一条渐近线ꎬ极小值为e.由y=xlnx的大致图象(如图9)可知k<990或k=eꎬ故B错.图9㊀第12题解析图对于Cꎬ当x1>x2>0时ꎬm[g(x1)-g(x2)]>f(x1)-f(x2)恒成立ꎬ等价于mg(x1)-f(x1)>mg(x2)-f(x2)恒成立ꎬ即函数y=mg(x)-f(x)在(0ꎬ+ɕ)上单调递增ꎬ所以yᶄ=mgᶄ(x)-fᶄ(x)=mx-lnx-1ȡ0恒成立ꎬ即mȡlnx+1x在(0ꎬ+ɕ)上恒成立.令r(x)=lnx+1xꎬ则rᶄ(x)=-lnxx2.令rᶄ(x)>0得0<x<1ꎬ令rᶄ(x)<0得x>1ꎬ从而r(x)在(0ꎬ1)上单调递增ꎬ在(1ꎬ+ɕ)上单调递减ꎬ则r(x)max=r(1)=1ꎬ于是mȡ1ꎬ故C正确.对于Dꎬ函数F(x)=f(x)-2ag(x)有两个极值点ꎬ即F(x)=xlnx-ax2(x>0)有两个不同极值点ꎬ等价于Fᶄ(x)=lnx+1-2ax=0有两个不同的正根ꎬ即方程2a=lnx+1x有两个不同的正根ꎬ由C可知ꎬ0<2a<1ꎬ即0<a<12ꎬ则D正确.故选ACD.13.式子(x2-x+2)5=[(x2-x)+2]5的展开式的通项公式为Tr+1=Cr5 (x2-x)5-r 2rꎬ对于(x2-x)5-rꎬ它的通项公式为Trᶄ+1=(-1)rᶄ Crᶄ5-rx10-2r-rᶄꎬ其中ꎬ0ɤrᶄɤ5-rꎬ0ɤrɤ5ꎬrꎬrᶄ都是自然数.令10-2r-rᶄ=3ꎬ可得r=2ꎬrᶄ=3{或r=3ꎬrᶄ=1.{故x3项的系数为C2522(-C33)+C3523(-C12)=-200ꎬ故答案为-200.14.圆C:x2+y2-4x-2y+1=0ꎬ即(x-2)2+(y-1)2=4.图10㊀第14题解析图如图10ꎬ由于PAꎬPB分别切圆C于点AꎬBꎬ则PA=PBꎬCAʅPAꎬCBʅPBꎬ所以S四边形APBC=2SәACP=CA PA.因为CA=CB=r=2ꎬ所以S四边形APBC=2PA.又PCʅABꎬ所以S四边形APBC=12AB CP.所以PA=14AB CP.即AB=4PACP=41-4CP2.所以AB最短时ꎬCP最短ꎬ点C到直线y=4的距离即为CP的最小值ꎬ所以CPmin=3.所以AB的最小值为41-49=453.故答案为453.15.令y=ex-(x+1)ꎬ所以yᶄ=ex-1.显然当x>0时ꎬyᶄ>0ꎬ则y在(0ꎬ+ɕ)上单调递增ꎻ当x<0时ꎬyᶄ<0ꎬ则y在(-ɕꎬ0)上单调递减.即x=0时取得最小值ymin=0ꎬ故exȡx+1恒成立.若f(ex)ȡf(x+1)对xɪR恒成立ꎬ则f(x)在R上单调递增ꎬ则fᶄ(x)ȡ0恒成立ꎬfᶄ(x)=3x2+mȡ0ꎬmȡ-3x2ꎬ又(-3x2)max=0ꎬ故mȡ0.故答案为[0ꎬ+ɕ).16.设直线l的方程y=kx+bꎬ由y=kx+bꎬx24+y2=1{得001(1+4k2)x2+8kbx+4b2-4=0.如图11ꎬ因为直线l与椭圆E相切ꎬ所以ә=(8kb)2-4(4k2+1)(4b2-4)=0ꎬ解得4k2=b2-1.因为m=-4kb1+4k2ꎬn=km+bꎬ所以n=b1+4k2.所以mn=-4kꎬ即k=-m4nꎬb=1n.所以直线l的方程为mx4+ny=1.图11㊀第16题解析图分别令x=2和x=-2ꎬ得C(2ꎬ1n(1-m2))ꎬD(-2ꎬ1n(1+m2))ꎬ所以直线DF2方程为y=-(1/n)(1+m/2)2+3(x-3)ꎬ直线CF1方程为y=(1/n)(1-m/2)2+3(x+3).联立得DF2与CF1交点G(32mꎬ(23-3)n).因为kAE=(23-4)n3m/2-m=4nmꎬ所以kAG kl=4nm.(-m4n)=-1.所以由kAG kl=-1ꎬkAG+kl=32ꎬ得kl=-m4n=-12ꎬkAG=2.即m=2n.又m24+n2=1ꎬ则m=2ꎬn=22ꎬ即A(2ꎬ22).17.(1)由题知ꎬa1=1ꎬan+1-an=2ꎬ所以数列{an}是首项为1ꎬ公差为2的等差数列.所以an=1+(n-1)ˑ2=2n-1.当n=1时ꎬb1=S1=2-b1ꎬ所以b1=1.当nȡ2时ꎬSn=2-bnꎬ①Sn-1=2-bn-1.②由①-②ꎬ得bn=-bn+bn-1.即bnbn-1=12(nȡ2).所以数列{bn}是首项为1ꎬ公比为12的等比数列ꎬ故bn=(12)n-1.(2)由(1)知ꎬcn=an+bn=2n-1+(12)n-1.利用分组求和可得ꎬTn=n(1+2n-1)2+1-(1/2)n1-1/2=n2+2-(12)n-1.18.(1)依题意sin(A+C)sinC+sinA=c+b-aa-b.即bc+a=c+b-aa-b=ca-b-1.整理ꎬ得b2+c2-a2=-bc.所以cosA=b2+c2-a22bc=-12.因为0<A<πꎬ所以A=2π3.故所求外接圆半径r=a2sinA=133=393.(2)因为a=13ꎬc=3ꎬA=2π3ꎬ所以由余弦定理ꎬ得13=b2+9-2ˑ3ˑbˑcos2π3.解得b=1或b=-4(舍).则SәABC=12bcsinA=12ˑ1ˑ3ˑ32=334.19.(1)因为AEʅA1B1ꎬA1B1ʊABꎬ101所以AEʅAB.又因为AA1ʅ平面ABCꎬAB⊂平面ABCꎬ所以AA1ʅAB.又AA1ɘAE=AꎬAA1ꎬAE⊂平面A1ACC1ꎬ所以ABʅ平面A1ACC1.图12㊀第19题解析图又因为AC⊂平面A1ACC1ꎬ所以ABʅAC.所以ABꎬACꎬAA1两两垂直.以A为原点建立如图12所示的空间直角坐标系A-xyzꎬ则有A(0ꎬ0ꎬ0)ꎬE(0ꎬ1ꎬ12)ꎬF(12ꎬ12ꎬ0)ꎬA1(0ꎬ0ꎬ1)ꎬB1(1ꎬ0ꎬ1)ꎬ设D(xꎬyꎬz)ꎬA1Dң=λA1B1ңꎬ且λɪ[0ꎬ1]ꎬ即(xꎬyꎬz-1)=λ(1ꎬ0ꎬ0).则D(λꎬ0ꎬ1)ꎬDFң=(12-λꎬ12ꎬ-1).因为AEң=(0ꎬ1ꎬ12)ꎬ所以DFң AEң=0.所以DFʅAE.(2)存在一点D且D为A1B1的中点ꎬ使平面DEF与平面ABC夹角的余弦值为1414.理由如下:由题可知面ABC的法向量m=(0ꎬ0ꎬ1)ꎬ设面DEF的法向量为n=(xꎬyꎬz)ꎬ则n FEң=0ꎬn DFң=0.{则-x+y+z=0ꎬ(1-2λ)x+y-2z=0.{令x=3ꎬ则y=1+2λꎬz=2(1-λ).则n=(3ꎬ1+2λꎬ2(1-λ)).因为平面DEF与平面ABC夹角的余弦值为1414ꎬ所以|cos<mꎬn>|=|m n|m| |n||=1414.即|2(1-λ)|9+(1+2λ)2+4(1-λ)2=1414.解得λ=12或λ=74(舍).所以当D为A1B1中点时满足要求.20.(1)y=clnx+d能更好地对y与x的关系进行拟合.设z=lnxꎬ先求y关于z的线性回归方程.由已知得z=15ð5i=1ziʈ275=5.4ꎬ所以c=ð5i=1ziyi-5zyð5i=1z2i-5z2ʈ12.7-5ˑ5.4ˑ0.5147.4-5ˑ5.42=12.7-13.5147.4-145.8=-0.81.6=-0.5ꎬd=y-cz=0.5-(-0.5)ˑ5.4=3.2ꎬ所以y关于z的线性回归方程为y=-0.5z+3.2.所以y关于x的回归方程为y=-0.5lnx+3.2.(2)设该剧场的总座位数为Mꎬ由题意得门票收入为M(-0.5xlnx+3.2x)ꎬ设函数f(x)=-0.5xlnx+3.2xꎬ则fᶄ(x)=-0.5lnx+2.7ꎬ当fᶄ(x)<0ꎬ即x>e5.4时ꎬ函数单调递减ꎬ当fᶄ(x)>0ꎬ即0<x<e5.4时ꎬ函数单调递增ꎬ所以f(x)在x=e5.4ʈ220处取最大值.故预测票价为220元时ꎬ剧场的门票收入最多.21.(1)因为双曲线C的渐近线方程为y=ʃbaxꎬ所以双曲线C的右焦点F到其渐近线的距离为bca2+b2=b=2.因为双曲线C经过点P(4ꎬ2)ꎬ所以16a2-422=1ꎬ解得a2=8.故双曲线C的方程为x28-y24=1.(2)因为P(4ꎬ2)ꎬQ(0ꎬ-2)ꎬD为PQ的中点ꎬ所以D(2ꎬ0)ꎬkPQ=1.设直线l的方程为y=x+mꎬA(x1ꎬy1)ꎬB(x2ꎬy2)ꎬM(xMꎬyM)ꎬN(xNꎬyN)ꎬ201所以kAQ=y1+2x1ꎬkBQ=y2+2x2.直线AQ的方程为y=y1+2x1x-2ꎬ直线BQ的方程为y=y2+2x2x-2.联立y=y1+2x1x-2ꎬx28-y24=1ꎬìîíïïïï可得[1-2(y1+2)2x21]x2+8(y1+2)x1x-16=0.所以x1+xM=-8(y1+2)/x11-2(y1+2)2/x21=-8x1(y1+2)x12-2(y1+2)2.又因为x218-y214=1ꎬ所以x1+xM=x1+2x1y1.则xM=2x1y1ꎬyM=y1+2x1xM-2=4y1.同理可得xN=2x2y2ꎬyN=4y2.kMN=4/y1-4/y22x1/y1-2x2/y2=2ˑy2-y1x1y2-x2y1=2ˑx2-x1x1(x2+m)-x2(x1+m)=-2mꎬkMD=4/y1-02x1/y1-2=2x1-y1=-2mꎬ所以kMN=kMD.故MꎬNꎬD三点共线.22.(1)由题意得:函数定义域为(-1ꎬ+ɕ).fᶄ(x)=ax+1-cosx.若f(x)在[π4ꎬπ2]上单调递减ꎬ则fᶄ(x)ɤ0在[π4ꎬπ2]上恒成立.所以aɤ(x+1)cosx在[π4ꎬπ2]上恒成立.令g(x)=(x+1)cosxꎬ则gᶄ(x)=cosx-(x+1)sinx.当xɪ[π4ꎬπ2)时ꎬgᶄ(x)=cosx[1-(x+1) tanx].因为当xɪ[π4ꎬπ2)时ꎬcosx>0ꎬx+1>1ꎬtanx>1ꎬ所以gᶄ(x)<0.所以g(x)在[π4ꎬπ2)上单调递减ꎬ所以当xɪ[π4ꎬπ2]时ꎬg(x)ȡg(π2)=(π2+1)cosπ2=0.所以aɤ[g(x)]min=0.即a的取值范围为(-ɕꎬ0].(2)当a=1时ꎬf(x)=ln(x+1)-sinxꎬ则fᶄ(x)=1x+1-cosx.当x>e-1时ꎬln(x+1)>lne=1ȡsinxꎬ所以f(x)>0在(e-1ꎬ+ɕ)上恒成立.所以只需证f(x)在(π2ꎬe-1]上有且仅有一个零点.因为e-1<πꎬ所以当xɪ(π2ꎬe-1]时ꎬcosx<0ꎬ1x+1>0.所以fᶄ(x)>0在(π2ꎬe-1]上恒成立.所以f(x)在(π2ꎬe-1]上单调递增.又f(π2)=ln(π2+1)-sinπ2=ln(π2+1)-1<0ꎬf(e-1)=1-sin(e-1)>0ꎬ所以f(x)在(π2ꎬe-1]上有且仅有一个零点.即f(x)在(π2ꎬ+ɕ)上有且仅有一个零点.[责任编辑:李㊀璟]301。
2023年高考数学全真模拟卷一(全国卷)理科数学(考试时间:120分钟;试卷满分:150分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合{}ln 20A x x x =-=,()(){}130B x x x =+->,则A B = ()A .{}0,3B .{}0,1C .{}1,2D .{}0,1,22.若1i z =-,则2|32i |z +-=()AB .5C .3D .3.2022年卡塔尔世界杯(FIFA World Cup Oatar 2022)是第二十二届国际足联世界杯足球赛,在当地时间2022年11月20日到12月18日间在卡塔尔国内5个城市的8座球场举行,这是世界杯第一次在阿拉伯地区举办,由于夏季炎热,2022年卡塔尔世界杯放在冬季进行,如图是卡塔尔2022年天气情况,下列对1-11月份说法错误的是(A .有5个月平均气温在30℃以上B .有4个月平均降水量为0mm C .7月份平均气温最高D .3月份平均降水量最高4.某高中综合实践兴趣小组做一项关于某水果酿制成醋的课题研究.经大量实验和反复论证得出,某水果可以酿成醋的成功指数M 与该品种水果中氢离子的浓度N 有关,酿醋成功指数M 与浓度N 满足 2.8lg M N =-.已知该兴趣小组同学通过数据分析估计出某水果酿醋成功指数为2.9,则该水果中氢离子的浓度约为( 1.259≈)()A .0.2B .0.4C .0.6D .0.85.数列{}n a 是等比数列,首项为1a ,公比为q ,则()110a q -<是“数列{}n a 递减”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.若双曲线2221y x b-=则该双曲线的离心率为()A .12B .2C .2D 7.岳阳楼与湖北武汉黄鹤楼、江西南昌滕王阁并称为“江南三大名楼”,是“中国十大历史文化名楼”之一,世称“天下第一楼”.因范仲淹作《岳阳楼记》使得岳阳楼著称于世.小李为测量岳阳楼的高度选取了与底部水平的直线AC ,如图,测得30DAC ∠=︒,45DBC ∠=︒14AB =米,则岳阳楼的高度CD 约为()1.414≈ 1.732≈)A .18米B .19米C .20米D .21米8.如图为一个三棱锥的三视图,则该三棱锥的体积为()A .13B .23C .129.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,22cos 2Ba a c =+,则ABC 为()A .钝角三角形B .正三角形C .直角三角形10.高一(1)班有8名身高都不相同的同学去参加红歌合唱,他们站成前后对齐的2排,每排4人,则前排的同学都比后排对应的同学矮的概率为()A .1384B .34C .38D .11611.在三棱锥S ABC -中,2SAC SBC π∠=∠=,23ACB π∠=,1AC BC ==.若三棱锥S ABC -的体积为1,则该三棱锥外接球的表面积为()A .13πB .373πC .49πD .52π12.已知111a =,b =,11ln 10c =.则()A .a b c>>B .b c a >>C .c b a>>D .b a c>>第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.曲线()e e xxf x x =+在1x =处的切线方程为___________.14.已知向量1,,()()1,a m b m ==- ,若(2)a b b -⊥,则b = ________.15.已知直线l 与椭圆22221x y a b+=()0a b >>相切于第一象限的点()00,P x y ,且直线l 与x 轴、y 轴分别交于点,A B ,当AOB (O 为坐标原点)的面积最小时,1260F PF ∠=(12,F F 是椭圆的两个焦点),则该椭圆的离心率是_________.16.已知函数f (x )=cos (ωx +φ)(ω>0,|φ|≤2π),x =-4π为f (x )的零点,x =4π为y =f (x )图象的对称轴,且f (x )在(18π,6π)上单调,则ω的最大值为______.三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)(一)必考题:共60分17.2020年1月至2月由新型冠状病毒引起的肺炎病例陡然增多,为了严控疫情扩散,做好重点人群的预防工作,某地区共统计返乡人员100人,其中50岁及以上的共有40人.这100人中确诊的有10人,其中50岁以下的人占310.(1)试估计50岁及以上的返乡人员因感染新型冠状病毒而引起肺炎的概率;(2)请将下面的列联表补充完整,并依据0.05α=的独立性检验,分析确诊为新冠肺炎与年龄是否有关.确诊为新冠肺炎(单位:人)未确诊为新冠肺炎(单位:人)合计50岁及以上4050岁以下合计10100附表及公式:α0.10.050.010.0050.001x α2.7063.8416.6357.87910.828()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.18.已知等差数列{}n a 的前n 项和为n S ,且59a =,864S =.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()11n n n b n a a *+=∈N ,求数列{}n b 的前n 项和n T .19.如图,在四棱锥P -ABCD 中,平面PCD ⊥平面ABCD PCD 为等边三角形,112AB AD CD ===,90BAD ADC ∠=∠=︒,M 是棱上一点,且2CM MP =.(1)求证:AP ∥平面MBD ;(2)求二面角M -BD -C 的余弦值.20.已知抛物线2:2C y px =(其中6p >-F ,点M 、N 分别为抛物线C 上两个动点,满足以MN 为直径的圆过点F ,设点E 为MN 的中点,当MN EF ⊥时,点E的坐标为()3-.(1)求抛物线C 的方程;(2)直线MF 、NF 与抛物线的另一个交点分别为A 、B ,点P 、Q 分别为AM 、BN 的中点,证明:直线PQ 过定点.21.已知函数()()212ln 11ax xf x x x +=+-+,R a ∈.(1)当2a =时,讨论函数()f x 的单调性;(2)若函数()()()1g x x f x =+在()0,∞+上不单调,求实数a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xoy 中,直线l 的参数方程为{15x ty t =+=+(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为23=2+cos2ρθ.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)求C 的上的动点到l 的距离的取值范围.[选修4-5:不等式选讲]23.已知:()1f x x x m =+--,0m >.(1)若2m =,求不等式()2f x >的解集;(2)()()g x f x x m =--,若()g x 的图象与x 轴围成的三角形面积不大于54,求m 的取值范围.2023年高考数学全真模拟卷一(全国卷)理科数学(考试时间:120分钟;试卷满分:150分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合{}ln 20A x x x =-=,()(){}130B x x x =+->,则A B = ()A .{}0,3B .{}0,1C .{}1,2D .{}0,1,2【答案】B【分析】直接解出{0,1,3}A =,{}13B x x =-<<,根据交集的概念即可得到答案.【详解】由题可得{0A xx ==∣或ln |2|0}{0,1,3}x -==,()(){}{}13013B x x x x x =+-<=-<<,所以{}0,1A B = ,故选:B.2.若1i z =-,则2|32i |z +-=()AB .5C .3D .【答案】B【分析】根据复数运算,复数的模计算即可解决.【详解】由题知,22|32i |12i+i 32i 34i 5z +-=-+-=-=,故选:B3.2022年卡塔尔世界杯(FIFA World Cup Oatar 2022)是第二十二届国际足联世界杯足球赛,在当地时间2022年11月20日到12月18日间在卡塔尔国内5个城市的8座球场举行,这是世界杯第一次在阿拉伯地区举办,由于夏季炎热,2022年卡塔尔世界杯放在冬季进行,如图是卡塔尔2022年天气情况,下列对1-11月份说法错误的是()A .有5个月平均气温在30℃以上B .有4个月平均降水量为0mmC .7月份平均气温最高D .3月份平均降水量最高【答案】D【分析】根据给定的图表,逐项分析判断作答.【详解】观察图表知,5月、6月、7月、8月、9月的5个月平均气温均在30℃以上,A 正确;6月、7月、8月、9月的4个月平均降水量为0mm ,B 正确;7月份平均气温最高,C 正确;2月份平均降水量比3月份平均降水量高,D 错误.故选:D4.某高中综合实践兴趣小组做一项关于某水果酿制成醋的课题研究.经大量实验和反复论证得出,某水果可以酿成醋的成功指数M 与该品种水果中氢离子的浓度N 有关,酿醋成功指数M 与浓度N 满足 2.8lg M N =-.已知该兴趣小组同学通过数据分析估计出某水果酿醋成功指数为2.9,则该水果中氢离子的浓度约为( 1.259≈)()A .0.2B .0.4C .0.6D .0.8【答案】D【分析】直接由题目中关系式解氢离子的浓度即可.【详解】由题意知:2.9 2.8lg N =-,整理得lg 0.1N =-,解得0.110N -=,又0.11100.81.259-=≈≈,故0.8N ≈.故选:D.5.数列{}n a 是等比数列,首项为1a ,公比为q ,则()110a q -<是“数列{}n a 递减”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【分析】由1(1)0a q -<,解得101(0)a q q >⎧⎨<≠⎩或101a q <⎧⎨>⎩,根据等比数列的单调性的判定方法,结合充分、必要条件的判定方法,即可求解得到答案.【详解】由已知1(1)0a q -<,解得101(0)a q q >⎧⎨<≠⎩或101a q <⎧⎨>⎩,11n n a a q -=,此时数列{}n a 不一定是递减数列,所以()110a q -<是“数列{}n a 递减”的非充分条件;若数列{}n a 为递减数列,可得1001a q >⎧⎨<<⎩或101a q <⎧⎨>⎩,所以()110a q -<,所以()110a q -<是“数列{}n a 递减”的必要条件.所以“()110a q -<”是“数列{}n a 为递减数列”的必要不充分条件.故选:B.6.若双曲线2221y x b-=则该双曲线的离心率为()A .12B C .2D 【答案】C【分析】写出双曲线的焦点,渐近线后,列方程求出b ,然后根据离心率定义计算.【详解】依题意得,双曲线的一条渐近线为0bx y -=,一个焦点为),根据点b =,于是2c ==,离心率2ce a==.故选:C 7.岳阳楼与湖北武汉黄鹤楼、江西南昌滕王阁并称为“江南三大名楼”,是“中国十大历史文化名楼”之一,世称“天下第一楼”.因范仲淹作《岳阳楼记》使得岳阳楼著称于世.小李为测量岳阳楼的高度选取了与底部水平的直线AC ,如图,测得30DAC ∠=︒,45DBC ∠=︒,14AB =米,则岳阳楼的高度CD 约为() 1.414≈、1.732≈)A .18米B .19米C .20米D .21米【答案】B【分析】在Rt ADC 中用CD 表示AC ,Rt BDC 中用CD 表示BC ,建立CD 的方程求解即得.【详解】Rt ADC 中,30DAC ︒∠=,则AC =,Rt BDC 中,45DBC ︒∠=,则BC CD =,由AC-BC=AB 147(1)19.124CD CD -=⇒=≈,CD 约为19米.故选:B8.如图为一个三棱锥的三视图,则该三棱锥的体积为()A .13B .23C .12D .43【答案】B【分析】由三视图画出三棱锥原图,利用13V Sh =锥可得结果.【详解】根据三视图可得几何体是有一条侧棱垂直底面的三棱锥,如图所示,DA ⊥平面ABC ,所以11121223323ABC V S DA ⎛⎫=⋅=⨯⨯⨯⨯= ⎪⎝⎭△故选:B.9.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,22cos 2Ba a c =+,则ABC 为()A .钝角三角形B .正三角形C .直角三角形D .等腰直角三角形【答案】C【分析】利用二倍角公式和正弦定理进行化简,结合三角形内角的范围即可得到答案【详解】由22cos2Ba a c =+结合正弦定理可得1cos 2sin sin sin 2B A A C +⋅=+,即sin sin cos sin sin A A B A C +=+,所以()sin cos sin sin sin cos cos sin A B C A B A B A B ==+=+,所以cos sin 0=A B ,因为sin 0B >,所以cos 0A =,因为0πA <<,所以π2A =,故ABC 为直角三角形,故选:C 10.高一(1)班有8名身高都不相同的同学去参加红歌合唱,他们站成前后对齐的2排,每排4人,则前排的同学都比后排对应的同学矮的概率为()A .1384B .34C .38D .116【答案】D【分析】因为8名同学,所以任选两人,身高都不同,只需将抽取的两人安排到一组,高的同学站后即可.【详解】8名身高都不相同的同学站在8个不同的位置有88A 种站法,将8名同学分为4组,每组2人,则有2222864244C C C C A 种分法,4组人有44A 种站法,故所求概率22228642884444C C C C A A 1A 16P ⋅==.故选:D.11.在三棱锥S ABC -中,2SAC SBC π∠=∠=,23ACB π∠=,1AC BC ==.若三棱锥S ABC -的体积为1,则该三棱锥外接球的表面积为()A .13πB .373πC .49πD .52π【答案】D【分析】由条件可知ASC 和BSC 为以SC 为斜边的直角三角形,则SC 的中点O 为外接球的球心.过S 做SH ⊥平面ABC ,垂足为H,由三棱锥的体积可求出高SH =,根据三角形全等可证明H 在ABC ∠的角平分线上,即60HCA ∠=o ,由线面垂直的定理可知AC HA ⊥,从而可计算2CH =,勾股可知SC 的长,从而计算外接球的半径和表面积.【详解】解:因为2SAC SBC π∠=∠=,所以ASC 和BSC 为以SC 为斜边的直角三角形,则SC 的中点O 到各个顶点的距离都相等,则O 为外接球的球心.即SC 为直径.过S 做SH ⊥平面ABC ,垂足为H ,连结HB ,HA ,则1111132S ABC V SH -=⨯⨯⨯⨯,解得:SH = 1AC BC ==,2SAC SBC π∠=∠=,SC SC =,SAC SBC ∴≅V V ,则SA SB=,AH BH 分别为,SA SB 在平面ABC 内的射影,所以有AH BH =,又AC BC =,HC 为公共边,所以AHC BHC ≅V V ,则HCA HCB ∠=∠,所以H 在ABC ∠的角平分线上,60HCA ∠=o ,AC SA ⊥,AC SH ⊥,SA SH S = ,所以有AC ⊥平面SHA ,AH ⊂平面SHA ,则有AC HA ⊥,因为1AC =,60HCA ∠=o,所以2CH =,则SC ==,则R =故外接球的表面积为2452S R ππ==.故选:D.12.已知111a =,b =,11ln 10c =.则()A .a b c >>B .b c a>>C .c b a>>D .b a c>>【答案】B【分析】令()()ln 1f x x x =-+,()()1ln 111g x x x =+-++,利用导数可求得()(),f x g x在()0,1上的单调性,从而确定()ln 1x x >+,()1ln 111x x +>-+,x >,令110x =即可得到大小关系.【详解】令()()ln 1f x x x =-+,01x <<,则()11011xf x x x '=-=>++,()f x \在()0,1上单调递增,()()00f x f ∴>=,即()ln 1x x >+;令()()1ln 111g x x x =+-++,01x <<,则()()()22110111x g x x x x '=-=>+++,()g x ∴在()0,1上单调递增,()()00g x g ∴>=,即()1ln 111x x +>-+;又当01x <<x >,∴当01x <<()1ln 111x x x >>+>-+;则当110x =1111ln 101011>>>,即b c a >>.故选:B.第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.曲线()e e xxf x x =+在1x =处的切线方程为___________.【答案】10x y -+=【分析】求出函数的导函数,即可求出切线的斜率,再用点斜式计算可得;【详解】解:因为()e e x x f x x =+,所以()1e 1112ef ⨯=+=,()()e 11exx f x -'=+,所以()()1e 11111ef -'=+=,所以切线方程为21y x -=-,即10x y -+=;故答案为:10x y -+=14.已知向量1,,()()1,a m b m ==- ,若(2)a b b -⊥,则b = ________.【答案】2【分析】首先求向量2a b -的坐标,再根据向量的数量积为0,求23m =,最后代入公式求模.【详解】2(23,,23)0)(a b m a b b m -=-⋅=-+= ,得23m =,所以2b == .故答案为:2.15.已知直线l 与椭圆22221x y a b+=()0a b >>相切于第一象限的点()00,P x y ,且直线l 与x 轴、y 轴分别交于点,A B ,当AOB (O 为坐标原点)的面积最小时,1260F PF ∠=(12,F F 是椭圆的两个焦点),则该椭圆的离心率是_________.【分析】先根据题意点()00,P x y 处的切线方程为:00221xx yy a b +=,进而得20,0a A x ⎛⎫ ⎪⎝⎭,200,b B y ⎛⎫⎪⎝⎭,故220012AOBa b Sx y =,再结合椭圆方程与基本不等式可得0021x yab≥,故AOBS ab ≥,当且仅当002x y a b ==时,AOB 的面积最小.再结合椭圆定义与余弦定理得22143b PF PF =,进而根据等面积法得12223F PF S bc ==,故2232b c =,进而得e =.【详解】解:根据题意结合椭圆性质得椭圆在点()00,P x y 处的切线方程为:00221xx yya b+=,由于直线与l 与x 轴、y 轴分别交于点,A B ,故20,0a A x ⎛⎫ ⎪⎝⎭,200,b B y ⎛⎫⎪⎝⎭,所以222200001212AOBa b a b x y Sx y =⋅⋅=,由于2200002221x y x y a b ab+=≥,所以0012x y ab ≥,所以222200001122AOBa b a b ab x y x y S⋅=⋅≥=,当且仅当002x y a b ==时,AOB 的面积最小.由于1260F PF ∠=,故在12F PF △中用余弦定理得:()2222212212121214343c PF PF PF PF PF PF PFPF a PF PF =+-=+-=-所以22143b PF PF =,所以12221114sin 60223F PF b SPF PF ==⋅⋅另一方面121201122222F PF S F F y c b bc ==⋅⋅所以232bc =,即:2232b c =,由于222b a c =-,所以2252a c=所以5e =.故答案为:516.已知函数f (x )=cos (ωx +φ)(ω>0,|φ|≤2π),x =-4π为f (x )的零点,x =4π为y =f (x )图象的对称轴,且f (x )在(18π,6π)上单调,则ω的最大值为______.【答案】5【分析】先根据4x π=-是()f x 的零点,4x π=是()y f x =图像的对称轴可转化为周期的关系,从而求得ω的取值范围,又根据所求值为最大值,所以从大到小对ω赋值验证找到适合的最大值即可.【详解】由题意可得4424k T T ππ⎛⎫--=+ ⎪⎝⎭,即21212=244k k T ππω++⋅=⋅,解得()=21,k k N ω++∈,又因为()f x 在186,ππ⎛⎫⎪⎝⎭上单调,所以12·618922T ππππω-=≤=,即9ω≤,因为要求ω的最大值,令=7ω,因为4x π=是()y f x =的对称轴,所以()74k k Z πϕπ+=∈,,又2πϕ≤,解得4πϕ=,所以此时()cos 74f x x π⎛⎫=+ ⎪⎝⎭,()f x 在3,2828ππ⎡⎤-⎢⎥⎣⎦上单调递减,即()f x 在3,1828ππ⎡⎤⎢⎥⎣⎦,上单调递减,在3286ππ⎡⎤⎢⎥⎣⎦,上单调递增,故()f x 在186,ππ⎛⎫⎪⎝⎭不单调,同理,令=5ω,()cos 54f x x π⎛⎫=- ⎪⎝⎭,()f x 在52020,ππ⎡⎤⎢⎥⎣⎦上单调递减,因为51862020ππππ⎛⎫⎡⎤⊆ ⎪⎢⎥⎝⎭⎣⎦,,,所以()f x 在186,ππ⎛⎫⎪⎝⎭单调递减,满足题意,所以ω的最大值为5.三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)(一)必考题:共60分17.2020年1月至2月由新型冠状病毒引起的肺炎病例陡然增多,为了严控疫情扩散,做好重点人群的预防工作,某地区共统计返乡人员100人,其中50岁及以上的共有40人.这100人中确诊的有10人,其中50岁以下的人占310.(1)试估计50岁及以上的返乡人员因感染新型冠状病毒而引起肺炎的概率;(2)请将下面的列联表补充完整,并依据0.05α=的独立性检验,分析确诊为新冠肺炎与年龄是否有关.确诊为新冠肺炎(单位:人)未确诊为新冠肺炎(单位:人)合计50岁及以上4050岁以下合计10100附表及公式:α0.10.050.010.0050.001x α2.7063.8416.6357.87910.828()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.【答案】(1)740(2)列联表见解析,认为确诊为新冠肺炎与年龄有关【分析】(1)根据题意,可知50岁及以上的确诊人数为7人,又50岁以上的人数为40,根据古典概型,即可求出结果;(2)由题中的数据,可以直接得出表中的数据,再利用独立性检验公式,计算出2χ,可参考表中的数据可以直接判断..(1)解:因为100人中确诊的有10人,其中50岁以下的人占310,所以50岁以下的确诊人数为3,所以50岁及以上的确诊人数为7,因为50岁及以上的共有40人,所以50岁及以上的返乡人员因感染新型冠状病毒而引起肺炎的概率估计为740.(2)解:补充列联表如下:确诊为新冠肺炎(单位:人)未确诊为新冠肺炎(单位:人)合计50岁及以上7334050岁以下35760合计1090100零假设为0H :确诊为新冠肺炎与年龄无关.计算可得()220.05100757333254.167 3.841406010906x χ⨯⨯-⨯==≈>=⨯⨯⨯.依据0.05α=的独立性检验,推断0H 不成立,即认为确诊为新冠肺炎与年龄有关.18.已知等差数列{}n a 的前n 项和为n S ,且59a =,864S =.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()11n n n b n a a *+=∈N ,求数列{}nb 的前n 项和nT .【答案】(1)21n a n =-(2)21n n T n =+【分析】(1)利用等差数列通项公式和求和公式可构造方程组求得1,a d ,进而得到n a ;(2)由(1)可得n b ,采用裂项相消法可求得n T .【详解】(1)设等差数列{}n a 的公差为d ,则518149878642a a d S a d =+=⎧⎪⎨⨯=+=⎪⎩,解得:112a d =⎧⎨=⎩,()12121n a n n ∴=+-=-.(2)由(1)得:()()1111212122121n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,111111111111233557212122121n n T n n n n ⎛⎫⎛⎫∴=-+-+-+⋅⋅⋅+-=⨯-= ⎪ ⎪-+++⎝⎭⎝⎭.19.如图,在四棱锥P -ABCD 中,平面PCD ⊥平面ABCD ,PCD 为等边三角形,112AB AD CD ===,90BAD ADC ∠=∠=︒,M 是棱上一点,且2CM MP = .(1)求证:AP ∥平面MBD ;(2)求二面角M -BD -C 的余弦值.【答案】(1)证明见解析【分析】(1)根据空间中的线面关系即可证得;(2)通过建立空间直角坐标,将空间的角度问题转化为空间的坐标运算问题即可得到答案.【详解】(1)连接AC ,记AC 与BD 的交点为H ,连接MH.由90BAD ADC ∠=∠=︒,得AB CD ∥,12AB AH CD HC ==,又12PM MC =,则AH PM HC MC =,∴AP MH ∥,又MH ⊂平面MBD ,PA ⊄平面MBD ,∴AP ∥平面MBD.(2)记O 为CD 的中点,连接PO ,BO.∵PCD 为等边三角形,∴PO CD ⊥,∵平面PCD ⊥平面ABCD ,平面PCD 平面ABCD =CD ,∴PO ⊥平面ABCD.以O 为原点,OB 为x 轴,OC 为y 轴,OP 为x 轴,建立空间直角坐标系,如下图,则()0,1,0D -,(P,10,3M ⎛ ⎝⎭,()1,0,0B ,()0,1,0C,11,3BM ⎛=- ⎝⎭,()1,1,0BD =-- .设平面BDM 的法向量(),,n x y z =,则1030n BM x y z n BD x y ⎧⋅=-+=⎪⎨⎪⋅=--=⎩,取x =1得1,n ⎛=- ⎝⎭,平面BCD 的一个法向量()0,0,1m =.设二面角M -BD -C 的平面角为θ,则cos m n m nθ⋅==⋅ .∴二面角M -BD -C20.已知抛物线2:2C y px =(其中6p >-F ,点M 、N 分别为抛物线C 上两个动点,满足以MN 为直径的圆过点F ,设点E 为MN 的中点,当MN EF ⊥时,点E的坐标为()3-.(1)求抛物线C 的方程;(2)直线MF 、NF 与抛物线的另一个交点分别为A 、B ,点P 、Q 分别为AM 、BN 的中点,证明:直线PQ 过定点.【答案】(1)24y x =(2)证明见解析【分析】(1)分析可知当点E 为MN 的中点时,FMN 为等腰直角三角形,求出点M 的横坐标,分析可得2M px MF +==,结合抛物线的定义可得出关于p 的等式,解出p 的值,即可得出抛物线C 的方程;(2)分析可知,直线MF 、NF 均不与x 轴重合,设直线MF 的方程为()10x my m =+≠,则直线NF 的方程为11x y m=-+,将直线MF 的方程与抛物线C 的方程联立,列出韦达定理,可求得点P 的坐标,同理可得出点Q 的坐标,分21m =、21m ≠两种情况讨论,求出直线PQ 的方程,并化简,即可求得直线PQ 所过定点的坐标.【详解】(1)解:因为以MN 为直径的圆过点F ,则MF NF ⊥,当点E 为MN 的中点时,MN EF ⊥,则MF NF =,此时FMN 为等腰直角三角形,又点E 、F 在x 轴上,则MN x ⊥轴,所以3M E x x ==-,6p >-,32p ∴>-F 在E的右侧,所以32pEF =-+由抛物线的定义知2M p x MF +==,所以,33222p p -=-+,解得2p =,故抛物线C 的方程为24y x =.(2)证明:若直线MF 与x 轴重合,则直线MF 与抛物线C 只有一个交点,不合乎题意,同理可知,直线NF 与x 轴也不重合,设直线MF 的方程为()10x my m =+≠,则直线NF 的方程为11x y m=-+,联立方程214x my y x=+⎧⎨=⎩得2440y my --=,216160m ∆=+>,设()11,M x y 、()22,A x y ,则124y y m +=,124y y =-,所以()221,2P m m +,同理可得2221,Q mm ⎛⎫+- ⎪⎝⎭,当21m ≠时,()2222221211PQm m m k m m m +==-⎛⎫+-+ ⎪⎝⎭,所以直线PQ 的方程为()222121m y x m m m =--+-,化简得()231m y x m =--,当3x =时,0y =,直线PQ 过定点()3,0.当21m =时,直线PQ 的方程为3x =,直线PQ 必过点()3,0,综上所述,所以直线PQ 过定点()3,0.21.已知函数()()212ln 11ax xf x x x +=+-+,R a ∈.(1)当2a =时,讨论函数()f x 的单调性;(2)若函数()()()1g x x f x =+在()0,∞+上不单调,求实数a 的取值范围.【答案】(1)函数()f x 在()10-,上单调递增,在()0,∞+上单调递减(2)()01,【分析】(1)当2a =时,确定函数解析式,求出定义域,利用导数求函数()f x 的单调性;(2)由()g x 的解析式求出导数,无法直接判断导函数的正负,构造新函数再求导,分类讨论()g x 的单调性,求出实数a 的取值范围.【详解】(1)当2a =时,函数()()()2ln 1ln 11x xf x x x x x +=+-=+-+,定义域为()+∞-1,,易知()1111x f x x x -'=-=++,令()0f x ¢>,得10x -<<,令()0f x '<,得0x >,所以函数()f x 在()10-,上单调递增,在()0,∞+上单调递减.(2)由题意知()()()211ln 12g x x x ax x =++--,则()()ln 1g x x ax '=+-,令()()ln 1x x h ax =+-,0x ≥,则()11h x a x '=-+.①当0a ≤时,()0h x '>,则()g x '在()0,∞+上单调递增,所以当0x >时,()()00g x g ''>=,所以()g x 在()0,∞+上单调递增,不符合题意.②当1a ≥时,()1101h x a a x '=-<-≤+,则()g x '在()0,∞+上单调递减,所以当0x >时,()()00g x g ''<=,所以()g x 在()0,∞+上单调递减,不符合题意.③当01a <<时,由()101h x a x '=-=+,得110x a=->,当10,1x a ⎛⎫∈- ⎪⎝⎭时,()0h x '>,()h x 在10,1a ⎛⎫- ⎪⎝⎭上单调递增,当11,x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0h x '<,()h x 在11,a ⎛⎫-+∞ ⎪⎝⎭上单调递减.易知ln 1≤-x x ,当且仅当x =1时取等号,则当0x >时,1≤,即)ln 21x ≤.所以当x >0时,()()212h x ax a x <--<-+-.取241t a =-,则11t a >-,且()20h t <-=.又()1100h h a ⎛⎫->= ⎪⎝⎭,所以存在011,x t a ⎛⎫∈- ⎪⎝⎭,使得()00h x =,所以当()00x x ∈,时,()0h x >,即()0g x '>,当()0,x x ∈+∞时,()0h x <,即()0g x '<,所以()g x 在()00x ,上单调递增,在()0,x +∞上单调递减,故函数()g x 在区间()0,∞+上不单调,符合题意.综上,实数a 的取值范围为()0,1.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xoy 中,直线l 的参数方程为{15x ty t =+=+(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为23=2+cos2ρθ.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)求C 的上的动点到l 的距离的取值范围.【答案】(1)40x y -+=,22+=13yx(2)【分析】(1)对于直线l ,消去参数t 即可求解,对于曲线C ,根据222,cos ,sin x y x y ρρθρθ=+==即可求解;(2)先将曲线C 化为参数方程,再根据点到直线的距离公式即可求解.【详解】(1) 直线l 的参数方程为{15x ty t =+=+(t 为参数),消去参数t 得直线l 的普通方程为40x y -+=,曲线C 的极坐标方程为23=2+cos2ρθ,即222+cos2=3ρρθ,即22222+(cos sin )=3ρρθθ-,222222+cos sin =3ρρθρθ-,又222,cos ,sin x y x y ρρθρθ=+== ,∴曲线C 的直角坐标方程22222(+)+=3x y x y -,即22+=13y x .(2) 曲线C 的直角坐标方程为:22+=13yx ∴曲线C的参数方程为{x y αα=(α为参数),设曲线C上的动点(cos )M αα,则曲线C 上的动点M 到直线l的距离d[]2sin )2,26πα-∈- (,∴曲线C 上的动点到直线l=,故曲线C 上的动点到直线l距离取值范围为:.[选修4-5:不等式选讲]23.已知:()1f x x x m =+--,0m >.(1)若2m =,求不等式()2f x >的解集;(2)()()g x f x x m =--,若()g x 的图象与x 轴围成的三角形面积不大于54,求m 的取值范围.【答案】(1)3,2∞⎛⎫+ ⎪⎝⎭;(2)(]0,8.【分析】(1)利用零点分段法求解出绝对值不等式;(2)先求出()21,312,121,1x m x mg x x m x m x m x -++>⎧⎪=+--≤≤⎨⎪--<-⎩,由()0g x =,解得:122121,3m x m x -=+=,则()21444133m x x m ---==+,由函数单调性得到()()max 1g x g m m ==+,根据函数图象与x 轴围成的三角形面积不大于54,列出方程,求出m 的取值范围.【详解】(1)当2m =时,()3,21221,123,1x f x x x x x x >⎧⎪=+--=--≤≤⎨⎪-<-⎩,当2x >时,()32f x =>成立;当12x -≤≤时,()212f x x =->,则322x <≤;试卷第17页,共17页当1x <-时,()32f x =-<不合题意,综上,()2f x >的解集为3,2∞⎛⎫+ ⎪⎝⎭;(2)因为0m >,所以()21,12312,121,1x m x m g x x x m x m x m x m x -++>⎧⎪=+--=+--≤≤⎨⎪--<-⎩,由()0g x =,解得:122121,3m x m x -=+=,则()21444133m x x m ---==+,当1x <-时,()g x 单调递增,当1x m -≤≤时,()g x 单调递增,当x >m 时,()g x 单调递减,所以当x m =时,()g x 取得最大值,()()max 1g x g m m ==+,∴图象与x 轴围成的三角形面积为()()221421154233S m m =⨯+=+≤,解得:108m -≤≤,又0m >,则08m <≤,∴m 的取值范围是(]0,8.。
2023年全国高考数学模拟试卷一、单选题1.设全集U={1 2 3 4 5 6 7 8} 集合S={1 3 5} T={3 6} 则∁U (S∁T )等于( ) A .∁B .{2 4 7 8}C .{1 3 5 6}D .{2 4 6 8}2.在四边形ABCD 中= +则四边形ABCD 一定是( )A .矩形B .菱形C .正方形D .平行四边形3.已知复数 z =(2+i)(a +2i 3) 在复平面对应的点在第四象限 则实数 a 的取值范围是( ) A .(−∞,−1)B .(4,+∞)C .(−1,4)D .[-1,4]4.在直三棱柱 ABC −A ′B ′C ′ 中 侧棱长为2 底面是边长为2的正三角形 则异面直线 AB ′ 与BC ′ 所成角的余弦值为( ) A .12B .√33C .14D .√555.一个袋子中有5个大小相同的球 其中有3个黑球与2个红球 如果从中任取两个球 则恰好取到两个同色球的概率是( ) A .15B .310C .25D .126.已知 f(x)=√3sin2020x +cos2020x 的最大值为A 若存在实数 x 1 x 2 使得对任意的实数x 总有 f(x 1)≤f(x)≤f(x 2) 成立 则 A|x 1−x 2| 的最小值为( )A .π2020B .π1010C .π505D .π40407.已知函数f(x)是定义在R 上的奇函数 其最小正周期为3 且x∁(-320)时 f(x)=log 2(-3x+1)则f(2011)=( ) A .4B .2C .-2D .log 278.已知函数f(x)={1−x ,0≤x ≤1lnx ,x >1 若f(a)=f(b) 且a ≠b 则bf(a)+af(b)的最大值为( ) A .0 B .(3−ln2)⋅ln2 C .1D .e二、多选题9.下列命题中正确的命题的是()A.已知随机变量服从二项分布B(n,p)若E(x)=30D(x)=20则p=23;B.将一组数据中的每个数据都加上同一个常数后方差恒不变;C.设随机变量ξ服从正态分布N(0,1)若P(ξ>1)=p则P(−1<ξ≤0)=12−P;D.某人在10次射击中击中目标的次数为X X~B(10,0.8)则当x=8时概率最大.10.已知抛物线C:x2=4y的焦点为F准线为l P是抛物线C上第一象限的点|PF|=5直线PF 与抛物线C的另一个交点为Q 则下列选项正确的是()A.点P的坐标为(4 4)B.|QF|=54C.S△OPQ=103D.过点M(x0,−1)作抛物线C的两条切线MA,MB其中A,B为切点则直线AB的方程为:x0x−2y+2=011.已知函数f(x)=e x g(x)=ln x2+12的图象与直线y=m分别交于A、B两点则()A.|AB|的最小值为2+ln2B.∃m使得曲线f(x)在A处的切线平行于曲线g(x)在B处的切线C.函数f(x)−g(x)+m至少存在一个零点D.∃m使得曲线f(x)在点A处的切线也是曲线g(x)的切线12.已知正n边形的边长为a 内切圆的半径为r 外接圆的半径为R 则()A.当n=4时R=√2a B.当n=6时r=√32aC.R=a2sinπ2n D.R+r=a2tanπ2n三、填空题13.某学校有教师300人男学生1500人女学生1200人现用分层抽样的方法从所有师生中抽取一个容量为150人的样本进行某项调查则应抽取的女学生人数为.14.在(2x2﹣√x)6的展开式中含x7的项的系数是.15.函数f(x)=|2x−1|−2lnx的最小值为.16.定义max{a,b}={a,a≥bb,a<b已知函数f(x)=max{(12)x,12x−34}则f(x)最小值为不等式f(x)<2的解集为.四、解答题17.记S n为数列{a n}的前n项和.已知a n>06S n=a n2+3a n−4.(1)求{a n}的通项公式;(2)设b n=a n2+a n+12a n a n+1求数列{b n}的前n项和T n.18.已知数列{a n}的前n项和为S n a1=2n(a n+1−2a n)=4a n−a n+1.(1)证明:{a nn+1}为等比数列;(2)求S n.19.记△ABC的内角A B C的对边分别为a b c﹐已知sinCsin(A−B)=sinBsin(C−A).(1)若A=2B求C;(2)证明:2a2=b2+c2.20.受突如其来的新冠疫情的影响全国各地学校都推迟2020年的春季开学某学校“停课不停学” 利用云课平台提供免费线上课程该学校为了解学生对线上课程的满意程度随机抽取了100名学生对该线上课程评分、其频率分布直方图如图.(1)求图中a的值;(2)求评分的中位数;(3)以频率当作概率若采用分层抽样的方法从样本评分在[60,70)和[90,100]内的学生中共抽取5人进行测试来检验他们的网课学习效果再从中选取2人进行跟踪分析求这2人中至少一人评分在[60,70)内的概率.21.已知椭圆与双曲线x 22−y2=1有相同的焦点坐标且点(√3,12)在椭圆上.(1)求椭圆的标准方程;(2)设A、B分别是椭圆的左、右顶点动点M满足MB⊥AB垂足为B连接AM交椭圆于点P(异于A)则是否存在定点T使得以线段MP为直径的圆恒过直线BP与MT的交点Q若存在求出点T的坐标;若不存在请说明理由.22.已知函数f(x)=e x(x−2),g(x)=x−lnx.(1)求函数y=f(x)+g(x)的最小值;(2)设函数ℎ(x)=f(x)−ag(x)(a≠0)讨论函数ℎ(x)的零点个数.答案解析部分1.【答案】B 2.【答案】D 3.【答案】C 4.【答案】C 5.【答案】C 6.【答案】B 7.【答案】C 8.【答案】D 9.【答案】B,C,D 10.【答案】A,B,D 11.【答案】A,B,D 12.【答案】B,D 13.【答案】60 14.【答案】240 15.【答案】116.【答案】14;(−1,112)17.【答案】(1)解:当 n =1 时 6S 1=a 12+3a 1−4 所以 a 1=4 或 −1 (不合 舍去). 因为 6S n =a n 2+3a n −4① 所以当 n ⩾2 时 6S n−1=a n−12+3a n−1−4② 由①-②得 6a n =a n 2+3a n −a n−12−3a n−1所以 (a n +a n−1)(a n −a n−1−3)=0 . 又 a n >0 所以 a n −a n−1=3 .因此 {a n } 是首项为4 公差为3的等差数列. 故 a n =4+3(n −1)=3n +1 .(2)解:由(1)得 b n =(3n+1)2+(3n+4)2(3n+1)(3n+4)=2+33n+1−33n+4所以 T n =2+34−37+2+37−310+⋯+2+33n+1−33n+4=2n +(34−37+37−310+⋯+33n +1−33n +4)=2n +9n4(3n +4)18.【答案】(1)证明:∵n(a n+1−2a n )=4a n −a n+1∴na n+1−2na n =4a n −a n+1 即(n +1)a n+1=2⋅a n (n +2)∴a n+1n+2=2⋅a nn+1 故{a nn+1}为等比数列. (2)解:由(1)知 a nn+1=1×2n−1⇒a n =(n +1)⋅2n−1 S n =2×20+3×2+4×22⋅⋅⋅+(n +1)⋅2n−1 2S n =2×21+3×22+4×23⋅⋅⋅+(n +1)⋅2n∴−S n =2+2+22+⋯+2n−1−(n +1)⋅2n=2+2−2n−1×21−2−(n +1)⋅2n=−n ⋅2n∴S n =n ⋅2n19.【答案】(1)解:∵sinCsin(A −B)=sinBsin(C −A)且 A =2B∴sinCsinB =sinBsin(C −A) ∵sinB >0∴sinC =sin(C −A)∴C=C-A (舍)或C+(C-A )=π 即:2C-A=π又∵A+B+C=π A=2B ∴C= 5π8(2)证明:由 sinCsin(A −B)=sinBsin(C −A) 可得sinC(sinAcosB −cosAsinB)=sinB(sinCcosA −cosCsinA) 再由正弦定理可得 accosB −bccosA =bccosA −abcosC 然后根据余弦定理可知12(a 2+c 2−b 2)−12(b 2+c 2−a 2)=12(b 2+c 2−a 2)−12(a 2+b 2−c 2) 化简得: 2a 2=b 2+c 2 故原等式成立.20.【答案】(1)解:由题意 (0.005+0.010+0.030+a +0.015)×10=1所以 a =0.040 ;(2)解:由频率分布直方图可得评分的中位数在 [80,90) 内 设评分的中位数为x则 (0.005+0.010+0.030)×10+0.040×(x −80)=0.5 解得 x =81.25 所以评分的中位数为81.25;(3)解:由题知评分在 [60,70) 和 [90,100] 内的频率分别为0.1和0.15 则抽取的5人中 评分在 [60,70) 内的为2人 评分在 [90,100] 的有3人记评分在 [90,100] 内的3位学生为a b c 评分在 [60,70) 内的2位学生为D E 则从5人中任选2人的所有可能结果为:(a,b) (a,c) (a,D) (a,E) (b,c) (b,D) (b,E) (c,D) (c,E) (D,E) 共10种;其中 这2人中至少一人评分在 [60,70) 内可能结果为:(a,D) (a,E) (b,D) (b,E) (c,D) (c,E) (D,E) 共7种;所以这2人中至少一人评分在 [60,70) 的概率 P =710.21.【答案】(1)解:因为双曲线 x 22−y 2=1 的焦点坐标为 (±√3,0)所以设所求的椭圆的方程为 x 2a 2+y 2b2=1 ( a >b >0 )则 {a 2=b 2+33a 2+14b 2=1 解得 a 2=4,b 2=1 所以椭圆的标准方程是 x 24+y 2=1(2)解:设直线AP 的方程是 y =k(x +2) ( k ≠0 )将其与 x 24+y 2=1 联立 消去y 得 (4k 2+1)x 2+16k 2x +16k 2−4=0 设 P(x 1,y 1)则 −2⋅x 1=16k 2−44k 2+1所以 x 1=2−8k 24k 2+1,y 1=4k 4k 2+1 所以 P(2−8k 24k 2+1,4k4k 2+1) 易知 M(2,4k)设存在点 T(x 0,y 0) 使得以MP 为直径的圆恒过直线BP 、MT 的交点Q ⇔MT ⊥BP ⇔4k−y 02−x 0⋅4k−16k2=−1 对于任意 k ≠0 成立 即 4k(1−x 0)+y 0=0 对于任意 k ≠0 成立 x 0=1,y 0=0 所以存在 T(1,0) 符合题意.22.【答案】(1)解:令 φ(x)=f(x)+g(x)φ′(x)=e x(x−1)+(1−1x)=(x−1)(e x+1x)令φ′(x)=0,x=1φ′(x)>0,x>1,φ′(x)<0,0<x<1所以φ(x)的单调递增区间是(1,+∞)单调递减区间是(0,1)所以x=1时φ(x)取得极小值也是最小值所以φ(x)min=φ(1)=1−e(2)解:g′(x)=1−1x=x−1x令g′(x)=0,x=1g′(x)<0,0<x<1,g′(x)>0,x>1 g(x)的递减区间是(0,1)递增区间是(1,+∞)所以g(x)的极小值为g(1)也是最小值g(x)≥g(1)=1>0.所以ℎ(x)=0⇔a=e x(x−2)x−lnx=s(x)因为s′(x)=e x(x−1)(x−lnx−1+2x)(x−lnx)2令k(x)=x−lnx−1+2x⇒k′(x)=(x+1)(x−2)x2令k′(x)=0,x=2k′(x)<0,0<x<2,k′(x)>0,x>2k(x)的递减区间是(0,2)递增区间是(2,+∞)所以k(x)的极小值为k(2)也是最小值所以k(x)≥k(2)=2−ln2>0所以s(x)的递减区间是(0,1)递增区间是(1,+∞)又因为x→0+,s(x)→0,x→+∞,s(x)→+∞且s(1)=−e 所以当a<−e时ℎ(x)有0个零点;当a=−e或a>0时ℎ(x)有1个零点;当−e<a<0时ℎ(x)有2个零点.。
绝密★启用前2021年普通高等学校招生模拟考试(3)数学(适用新高考地区)总分:150分 考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:选出每小题答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸、答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。
4、考试结束后,将本试卷和答题卡一并上交。
第I 卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i 是虚数单位,复数3i1i+=-( )A.12i +B.24i +C.12i --D.2i -2.设常数a ∈R ,集合{|(1)()0}A x x x a =--≥,{|1}B x x a =≥-,若A B =R ,则a 的取值范围为( )A.(,2)-∞B.(,2]-∞C.(2,)+∞D.[2,)+∞3.已知函数()f x 为奇函数,且当0x >时,21()f x x x=+,则(1)f -=( )A.2B.1C.0D.2-4.设向量=a (1,cos )θ与b (1,2cos )θ=-垂直,则cos2θ等于( )A.2 B.12C.0D.1-5.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则“1k =”是“OAB 的面积为12”的( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件6.设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( )A.2πa B.27π3a C.211π3a D.25πa7.已知命题122121:,,(()())()0p x x f x f x x x ∀∈--≥R ,则p ⌝是( ) A.122121,,(()())()0x x f x f x x x ∃∈--≤R B.122121,,(()())()0x x f x f x x x ∀∈--≤R C.122121,,(()())()0x x f x f x x x ∃∈--<RD.122121,,(()())()0x x f x f x x x ∀∈--<R8.函数()2ln f x x =的图像与函数2()45g x x x =-+的图像的交点个数为( ) A.3B.2C.1D.0二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.现行普通高中学生在高一升高二时面临着选文理科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图.根据这两幅图中的信息,下列统计结论中正确的有( )A.样本中的女生数量等于男生数量B.样本中有理科意愿的学生数量多于有文科意愿的学生数量C.样本中的男生偏爱理科D.样本中的女生偏爱文科10.已知两定点(1,0)A -,(1,0)B ,若直线l 上存在点M ,使得||||3MA MB +=,则称直线l 为“M 型直线”.则下列给出的直线中,是“M 型直线”的有( )A.2x =B.3y x =+C.21y x =--D.23y x =+11.如图,在正方体1111-ABCD A B C D 中,M ,N 分别是1BC ,1CD 的中点,则下列判断正确的为( )A.MN 与1CC 垂直B.MN 与AC 垂直C.MN 与BD 平行D.MN 与11A B 平行12.下列结论中正确的有( ) A.命题:”(0,2)x ∀∈,33x x >“的否定是“(0,2)x ∃∈,33x x ≤” B.若直线l 上有无数个点不在平面α内,则l αC.若随机变量ξ服从正态分布2(1,)N σ,且(2)0.8P ξ<=,则(01)0.2P ξ<<=D.等差数列{}n a 的前n 项和为n S ,若43a =,则721S =第Ⅱ卷本卷包括填空题和解答题两部分,共90分. 三、填空题:本题共4小题,每小题5分。
2023年全国新高考仿真模拟卷(二)数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设集合{}2|log 1A x x =<,{}2|20B x x x =--<,则B A =ð()A .(﹣∞,2)B .(﹣1,0]C .(﹣1,2)D .(﹣1,0)2.已知复数11i z =+,22i z a =+,若12z z ⋅为纯虚数,则实数a 的值为()A .1-B .1C .2-D .23.函数()f x 为R 上的奇函数,当0x >时,()lg f x x x =-,则()100f -=()A .98B .98-C .90D .90-4.小陈和小李是某公司的两名员工,在每个工作日小陈和小李加班的概率分别为13和14,且两人同时加班的概率为16,则某个工作日,在小李加班的条件下,小陈也加班的概率为()A .112B .12C .23D .345.若22cos 1sin 26παα⎛⎫-=+ ⎪⎝⎭,则tan 2α的值为()A .B C .2D .2+6.如图所示,在ABC 中,2B A =,点D 在线段AB 上,且满足23AD BD =,ACD BCD ∠=∠,则cos A 等于()A .23B .34C .35D .457.已知等比数列{}n a 的前n 项和为n S ,若1220a a +=,398S =,且2n a S a ≤≤+,则实数a 的取值范围是()A .1,02⎡⎤-⎢⎥⎣⎦B .13,24⎡⎤-⎢⎥⎣⎦C .33,42⎡⎤⎢⎥⎣⎦D .30,2⎡⎤⎢⎥⎣⎦8.已知x ∈R ,符号[]x 表示不超过x 的最大整数,若函数()[]()0x f x a x x=-≠有且仅有2个零点,则实数a 的取值范围是()A .23,34⎛⎤ ⎥⎝⎦B .3,22⎡⎫⎪⎢⎣⎭C .2,23⎛⎫ ⎪⎝⎭D .233,2342⎛⎤⎡⎫ ⎪⎢⎝⎦⎣⎭二、多选题9.体育王老师记录了16名小学生某周课外体育运动的时长(单位:h ),记录如下表.运动时长456789运动人数122452则这16名小学生该周课外体育运动时长的()A .众数为8B .中位数为6.5C .平均数为7D .标准差为210.已知,αβ是空间两个不同的平面,,m n 是空间两条不同的直线,则给出的下列说法中正确的是()A .//m α,//n β,且//m n ,则//αβB .//m α,//n β,且m n ⊥,则αβ⊥C .m α⊥,n β⊥,且//m n ,则//αβD .m α⊥,n β⊥,且m n ⊥,则αβ⊥11.设1F ,2F 分别为椭圆221259x y+=的左、右焦点,P 为椭圆上第一象限内任意一点,1PF k ,2PF k 表示直线1PF ,2PF 的斜率,则下列说法正确的是()A .存在点P ,使得17PF =成立B .存在点P ,使得1290F PF ∠=︒成立C .存在点P ,使得217PF PF k k =成立D .存在点P ,使得127PF PF ⋅=成立12.设函数()sin 2sin cos xf x x x=+,则()A .()f x 的一个周期为πB .()f x 在ππ,44⎛⎫- ⎪⎝⎭上单调递增C .()f x 在π3π,44⎛⎫- ⎪⎝⎭D .()f x 图象的一条对称轴为直线π4x =三、填空题13.在平行四边形OACB 中,E 是AC 的中点,F 是BC 边上的点,且3BC BF =,若OC mOE nOF =+,其中m ,n ∈R ,则m n +的值为______.14.请写出与曲线()sin f x x =在()0,0处具有相同切线的另一个函数:______.15.Rt ABC △中,其边长分别为3,4,5,分别以它的边所在直线为旋转轴,旋转一周所形成的几何体的体积之和为______.16.已知1F ,2F 分别为双曲线22221x ya b-=(0a >,0b >)的左、右焦点,P 为双曲线右支上任意一点,若212PF PF 的最小值为2c,c ,则该双曲线的离心率是______.四、解答题17.设数列{}n a 的首项为1,前n 项和为n S ,且对*n ∀∈N ,kn n a S b n c +=⋅+恒成立,其中b ,k ,c 均为常数.(1)当0b =时,求数列{}n a 的通项公式;(2)当1k =时,若数列{}n a 为等差数列,求b ,c 的值.18.已知ABC 的内角,,A B C 的对边分别为,,a b c ,B 为钝角.若ABC 的面积为S ,且()2224bS a b c a =+-.(1)证明:2B A π=+;(2)求sin sin A C +的最大值.19.某校团委针对“学生性别和喜欢课外阅读”是否有关做了一次不记名调查,其中被调查的全体学生中,女生人数占总人数的13.调查结果显示,男生中有16的人喜欢课外阅读,女生中有23的人喜欢课外阅读.(1)以频率视为概率,若从该校全体学生中随机抽取2名男生和2名女生,求其中恰有2人喜欢课外阅读的概率;(2)若有95%的把握认为喜欢课外阅读和性别有关,求被调查的男生至少有多少人?附:()20P k χ≥0.0500.0100k 3.8416.635()()()()()22n ad bc a b c d a c b d χ-=++++,n a b c d =+++.20.如图,在多面体ABCDE 中,已知ABC ,ACD ,BCE 均为等边三角形,平面ACD ⊥平面ABC ,平面BCE ⊥平面ABC ,H 为AB 的中点.(1)判断DE 与平面ABC 的位置关系,并加以证明;(2)求直线DH 与平面ACE 所成角的正弦值.21.已知点M 是抛物线()2:20C x py p =>的对称轴与准线的交点,过M 作抛物线的一条切线,切点为P ,且满足2PM =.(1)求抛物线C 的方程;(2)过()1,1A -作斜率为2的直线与抛物线C 相交于点B ,点()0,T t ()0t >,直线AT 与BT 分别交抛物线C 于点E ,F ,设直线EF 的斜率为k ,是否存在常数λ,使得t k λ=?若存在,求出λ值;若不存在,请说明理由.22.已知函数()()22ln xf x x a a x=--∈R .(1)求函数()f x 的极值;(2)当11a <时,若函数()f x 有两个零点()1212,x x x x >.①证明:12ln ln x x -<②证明:1201x x <<.参考答案:1.B【分析】解对数不等式化简集合A ,解一元二次不等式化简集合B ,根据补集运算可得结果.【详解】∵集合{}{}2|log 1|02A x x x x =<=<<,{}{}2|20|12B x x x x x =--<=-<<,∴{}|10B A x x =-<≤ð,故选:B.【点睛】本题主要考查了对数与二次不等式的求解以及集合的补集运算.属于基础题.2.D【分析】求出12z z ⋅的代数形式,然后根据其实部为零,虚部不为零列式计算即可.【详解】 复数11i z =+,22i z a =+,∴()()()121i 2i 22i z z a a a ⋅=++=-++,12z z ⋅为纯虚数,20a ∴-=且20a +≠,2a ∴=.故选:D.3.A【分析】直接利用函数奇偶性及0x >时的解析式计算即可.【详解】因为函数()f x 为R 上的奇函数,所以()()100100f f -=-,又当0x >时,()lg f x x x =-,所以()()()100100lg10010098f f -=-=--=.故选:A.4.C【分析】根据题意结合条件概率公式运算求解.【详解】记“小李加班”为事件A ,“小陈加班”为事件B ,则()()()111,,436P A P B P AB ===,故在小李加班的条件下,小陈也加班的概率为()()()2|3P AB P B A P A ==.故选:C.5.D【分析】先利用倍角公式降次,再利用两角和的公式展开后转化为用tan 2α表示的等式,然后解方程即可.【详解】22cos 1sin 26παα⎛⎫-=+ ⎪⎝⎭ 1cos 21sin 23παα⎛⎫∴+-=+ ⎪⎝⎭,1cos 22sin 222ααα∴+=,又cos 20α≠,则12tan 22αα=,解得tan 22α=.故选:D.6.B【分析】根据三角形的边角关系,结合角平分线定理、二倍角公式、正弦定理即可求得cos A 的值.【详解】在ABC 中,角,,A B C 对应的边分别为,,a b c ,又点D 在线段AB 上,且满足23AD BD =,所以332,555AD AB c BD c ===,又ACD BCD ∠=∠,由角平分线定理可得AC BC AD BD =,所以3255b ac c =,则32b a =,又2B A =,所以sin sin 22sin cos B A A A ==,则sin cos 2sin BA A=,由正弦定理得3sin 32cos 2sin 224aB b A A a a ====.故选:B.7.B【分析】设等比数列{}n a 的公比为q ,由1220a a +=,398S =,列方程求出1,a q ,进而可求出n S ,结合指数函数的性质求出n S 的最大、小值,列不等式组即可求出a 的取值范围【详解】解:设等比数列{}n a 的公比为q ,因为1220a a +=,398S =,所以121(12)09(1)8a q a q q +=⎧⎪⎨++=⎪⎩,解得131,22a q ==-,所以31111,2221112111,22nnn n nn S n ⎡⎤⎧⎛⎫⎛⎫--⎢⎥+ ⎪⎪ ⎪⎝⎭⎢⎥⎪⎝⎭⎛⎫⎣⎦==--=⎨ ⎪⎛⎫⎝⎭⎛⎫⎪-- ⎪- ⎪⎪⎝⎭⎝⎭⎩为奇数为偶数,当x 为正整数且奇数时,函数1()12xy =+单调递减,当x 为正整数且偶数时,函数1()12xy =-+单调递增,所以1n =时,n S 取得最大值32,当2n =时,n S 取得最小值34,所以34322a a ⎧≤⎪⎪⎨⎪+≥⎪⎩,解得1324a -≤≤.故选:B.8.D【分析】设()[]x g x x=,根据已知作出()g x 的草图,分析已知函数()[]()0x fx ax x=-≠有且仅有2个零点,则[]x a x=有且仅有2个解,即可得出答案.【详解】函数()[]()0x f x a x x=-≠有且仅有2个零点,则[]x a x=有且仅有2个解,设()[],1,00,01nx n x n n g x xxx ⎧≤<+≠⎪==⎨⎪≤<⎩,根据符号[]x 作出()g x的草图如下:则2334a <≤或322a ≤<,故选:D.9.AC【分析】根据表格数据计算得到众数,中位数,平均数和标准差即可判断结果【详解】由题意,这组运动时长数据中8出现了5次,其余数出现次数小于5次,故众数为8,A 正确;将16小学生的运动时长从小到大排列为:4,5,5,6,6,7,7,7,7,8,8,8,8,8,9,9,则中位数为7772+=,故B 错误;计算平均数为142526475829716⨯+⨯+⨯+⨯+⨯+⨯=,故C 正确;方差为()()()()()()2222222147257267477587297216s ⎡⎤=-+⨯-+⨯-+⨯-+⨯-+⨯-=⎣⎦,所以标准差为s ==D 错误.故选:AC 10.CD【分析】利用空间线面、面面平行、垂直的性质定理和判定定理分别分析四个命题,即可得到正确答案.【详解】A 选项,若//m α,//n β,且//m n ,则,αβ可能相交或平行,故A 错误;B 选项,若//m α,//n β,且m n ⊥,则,αβ可能相交,也可能平行,故B 错误;C 选项,若m α⊥,//m n ,则n α⊥,又n β⊥,则//αβ;即C 正确;D 选项,若m α⊥,m n ⊥,则//n α或n ⊂α;又n β⊥,根据面面垂直的判定定理可得:αβ⊥,即D 正确.故选:CD.11.ABD【分析】根据椭圆的性质逐项进行分析即可判断.【详解】由椭圆方程221259x y +=可得:5,3a b ==,4c ==,对于A ,由椭圆的性质可得:129a c PF a c =-≤≤+=,又因为点P 在第一象限内,所以159a PF a c =<<+=,所以存在点P ,使得17PF =成立,故选项A 正确;对于B ,设点00(,)P x y ,因为12(4,0),(4,0)F F -,所以100(4,)PF x y =--- ,200(4,)PF x y =--,则2222212000009161616972525PF PF x y x x x ⋅=-+=-+-=- ,因为005x <<,所以20025x ≤≤,所以2120167(7,9)25PF PF x ⋅=-∈- ,所以存在点P ,使得120PF PF ⋅=,则1290F PF ∠=︒成立,故选项B 正确;对于C ,因为1004PF y k x =+,2004PF y k x =-,若217PF PF k k =,则00(316)0x y +=,因为点00(,)P x y 在第一象限内,所以000,0y x >>,则00(316)0x y +=可化为:03160x +=,解得:01603x =-<不成立,所以不存在点P ,使得217PF PF k k =成立,故选项C 错误;对于D ,由选项B 的分析可知:2120167(7,9)25PF PF x ⋅=-∈- ,所以存在点P ,使得127PF PF ⋅=成立,故选项D 正确,故选:ABD.12.BD【分析】利用诱导公式化简可得()()πf x f x +=-,可判断选项A ;利用换元法和函数的单调性,可判断选项B 和C ;利用诱导公式化简可得()π2f x f x ⎛⎫-= ⎪⎝⎭,可判断选项D .【详解】对A :()()()()()()sin 2πsin 22πsin 2πsin πcos πsin cos sin cos x x xf x f x x x x xx x+++===-=-+++--+,故π不是()f x 的周期,A 错误;对B :令πsin cos 4t x x x ⎛⎫=+=+ ⎪⎝⎭,则2sin 22sin cos 1x x x t ==-,则211t y t t t-==-,∵ππ,44x ⎛⎫∈- ⎪⎝⎭,则()πππ0,,sin 0,1424x x ⎛⎫⎛⎫+∈+∈ ⎪ ⎪⎝⎭⎝⎭,∴π4t x ⎛⎫=+ ⎪⎝⎭在π0,2⎛⎫ ⎪⎝⎭上单调递增,且(π0,4t x ⎛⎫=+∈ ⎪⎝⎭,又∵1y t t =-在()0,∞+上单调递增,故()f x 在ππ,44⎛⎫- ⎪⎝⎭上单调递增,B 正确;对C :∵π3π,44⎛⎫- ⎪⎝⎭,则()π0,π4x +∈,∴(]πsin 0,14x ⎛⎫+∈ ⎪⎝⎭,则(π0,4t x ⎛⎫=+∈ ⎪⎝⎭,又∵1y tt =-在(上单调递增,且|2x y ,∴1y t t =-在(上最大值为2,即()f x 在π3π,44⎛⎫- ⎝⎭,C 错误;对D :()()πsin 2sin π2πsin 22ππ2cos sin sin cos sin cos 22x x x f x f x x x x xx x ⎛⎫- ⎪-⎛⎫⎝⎭-=== ⎪++⎛⎫⎛⎫⎝⎭-+- ⎪ ⎪⎝⎭⎝⎭,故()f x 图象的一条对称轴为直线π4x =,D 正确.故选:BD.【点睛】结论点睛:若()()f m x f n x +=-,则()f x 关于直线2m nx +=对称,特别地()()2f x f a x =-,则()f x 关于直线x a =对称;若()()2f m x f n x b ++-=,则()f x 关于点,2m n b +⎛⎫⎪⎝⎭对称,特别地()()20f x f a x +-=,则()f x 关于点(),0a 对称.13.75##1.4【分析】先以{},OA OB 为基底向量求,OE OF uu u r uuu r,联立求解可得6362,5555OA OE OB OF OE =-=-uu r uu u r uuu r uu u r uuu r uu u r ,再结合OC OA OB =+,代入运算即可得答案.【详解】由题意可得:11,23OE OA AE OA OB OF OB BF OB OA =+=+=+=+uu u r uu r uu u r uu r uu u r uuu r uu u r uu u r uu u r uu r,联立1213OE OA OB OF OB OA ⎧=+⎪⎪⎨⎪=+⎪⎩,解得63556255OA OE OB OF OE ⎧=-⎪⎪⎨⎪=-⎪⎩ ,∵636243555555OC OA OB OE OF OF OE OE OF ⎛⎫⎛⎫=+=-+-=+ ⎪ ⎪⎝⎭⎝⎭uuu r uu r uu u r uu u r uuu r uuu r uu u r uu u r uuu r ,则43,55m n ==,故75m n +=.故答案为:75.14.3y x x =+(答案不唯一)【分析】利用导数的几何意义可求得在()0,0处的切线斜率,由此可得切线方程;若两曲线在原点处具有相同切线,只需满足过点()0,0且在0x =处的导数值1y '=即可,由此可得曲线方程.【详解】sin y x = 的导函数为cos y x '=,又sin y x =过原点,sin y x ∴=在原点()0,0处的切线斜率cos 01k ==,sin y x ∴=在原点()0,0处的切线方程为y x =;所求曲线只需满足过点()0,0且在0x =处的导数值1y '=即可,如3y x x =+,231y x '=+ ,又3y x x =+过原点,3y x x ∴=+在原点处的切线斜率1k =,3y x x ∴=+在原点()0,0处的切线方程为y x =.故答案为:3y x x =+(答案不唯一).15.188π5【分析】分类讨论旋转轴所在的直线,结合锥体的体积公式运算求解.【详解】由题意不妨设:3,4,5AB AC BC ===,边BC 上的高为h ,则1122AB AC BC h ⨯=⨯,可得125AB AC h BC ⨯==,若以边AB 所在直线为旋转轴,则所形成的几何体为圆锥,其底面半径14r =,高为3AB =,故此时圆锥的体积为2113π416π3V =⨯⨯⨯=;若以边AC 所在直线为旋转轴,则所形成的几何体为圆锥,其底面半径23r =,高为4AC =,故此时圆锥的体积为2214π312π3V =⨯⨯⨯=;若以边BC 所在直线为旋转轴,则所形成的几何体为两个共底面的圆锥,其底面半径3125r h ==,高为12,h h ,且125h h BC +==,故所得几何体的体积为()22223132312311111248πππ5ππ333355V h r h r h h r ⎛⎫=⨯⨯+⨯⨯=+⨯⨯=⨯⨯⨯= ⎪⎝⎭;故体积之和为4818816π12πππ55++=.故答案为:188π5.16.22+【分析】设2PF m =,则m c a ≥-,根据双曲线的定义12PF m a =+,故221244PF a m a PF m=++,分2a c a ≥-与2a c a <-讨论,结合“对勾”函数的性质可求出离心率.【详解】设2PF m =,则m c a ≥-,由双曲线的定义知122PF PF a -=,∴12PF m a =+,()22212244PF m a a m a PF mm+==++,当2a c a ≥-,即13a c ≥时,221244PF a m a PF m =++84823a a c c ≥=>>,不符合题意;当2a c a <-,即3ce a=>时,244a y m a m=++在[),m c a ∈-+∞上单调递增,所以当m c a =-时212PF PF 取得最小值,故2442a c a a c c a-++=-,化简得2240c ac a --=,即2410e e --=,解得2e =(舍)或2e =3e >.综上所述,该双曲线的离心率是2故答案为:2.17.(1)1*1,2n n a n -⎛⎫=∈ ⎪⎝⎭N (2)1b =,1c =【分析】(1)根据1n n n a S S -=-,结合已知等式得出112n n a a -=,即可得出数列{}n a 是以首项为1,公比为12的等比数列,即可得出数列{}n a 的通项公式;(2)利用关系式得出1a 、2a 、3a ,再根据等差中项列式,即可得出答案.【详解】(1)令1n =,则11a S b c +=+,即12a b c =+,11a = ,0b =,2c ∴=,则2nn a S +=,即2n n S a =-,当2n ≥时,()1122n n n n n a S S a a --=-=---,化简得112n n a a -=,而11a =,则数列{}n a 是以首项为1,公比为12的等比数列,则数列{}n a 的通项公式1*1,2n n a n -⎛⎫=∈ ⎪⎝⎭N ,(2)当1k =时,n n a S nb c +=+,令1n =,则11a S b c +=+,则12a b c =+,11a = ,2b c ∴+=,令2n =,则222a S b c +=+,则2122a b c a =+-,2b c += ,11a =,221a b ∴=+,令3n =,则333a S b c +=+,则31223a b c a a =+--,2b c += ,11a =,212b a +=,33144b a ∴=+, 数列{}n a 为等差数列,2132a a a ∴=+,即311144b b +=++,解得1b =,则21c b =-=.18.(1)证明见解析(2)98【分析】(1)利用余弦定理及面积公式将条件变形得cos sin A B =,再利用诱导公式及三角函数的性质可证明结论;(2)利用(1)的结论及三角公式,将sin sin A C +转化为关于cos B 的二次函数,然后配方可以求最值.【详解】(1)由余弦定理222cos 2b c a A bc+-=得2222cos bc A b c a =+-,4412cos sin 2bS b bc A ac B a a ∴==⨯,cos sin A B ∴=,cos cos 2πA B ⎛⎫∴=- ⎪⎝⎭,B 为钝角,则,2πA B -均为锐角,2B A π∴-=,即2B A π=+;(2)2ππsin sin sin sin cos cos 22cos cos 122A C B B B B B B B ⎛⎫⎛⎫+=-++-=--=--+ ⎪ ⎪⎝⎭⎝⎭,令cos B t =,B 为钝角,则()1,0t ∈-,2219sin sin 21248A C t t t ⎛⎫∴+=--+=-++ ⎪⎝⎭,当14t =-,即1cos 4B =-时,sin sin A C +取最大值,且为98.19.(1)47108;(2)12.【分析】(1)由相互独立事件同时发生的概率,可得结论;(2)设出男生人数,列出22⨯列联表,根据2 3.841χ≥及,,236x x x均为整数即可求解.【详解】(1)从该校全体学生中随机抽取2名男生和2名女生,记其中恰有2人喜欢课外阅读为事件A ,则()222211221152151247C C 63636633108P A ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.(2)设被调查的男生人数为x ,则被调查的女生人数为2x,则22⨯列联表为:喜欢课外阅读不喜欢课外阅读合计男生6x56x x 女生3x 6x 2x 合计2x x32x若有95%的把握认为喜欢课外阅读和性别有关,则2 3.841χ≥,即223526663 3.84122x x x x x x xx x χ⎛⎫⋅-⋅ ⎪⎝⎭≥≥⋅⋅⋅,则 3.841810.2433x ⨯≥≈,因为,,236x x x均为整数,所以被调查的男生至少有12人.20.(1)DE ∥平面ABC ,证明见解析;5【分析】(1)分别取,AC BC 的中点,O P ,连接,,DO EP OP ,EP DO ∥且EP DO =,再利用线面平行的判定定理,即可得到答案;(2)连接BO ,则易知BO ⊥平面ACD ,以O 为坐标原点,分别以,,OD OA OB 的方向为,,x y z 轴的正方向,建立如图所示的空间直角坐标系O xyz -,求出向量1,22DH ⎛= ⎝⎭uuu r 及平面ACE 的法向量()1,0,2m =-,代入夹角公式,即可得到答案;【详解】(1)DE ∥平面ABC ,理由如下:分别取,AC BC 的中点,O P ,连接,,DO EP OP ,因为AD CD =,所以DO AC ⊥,又平面ACD ⊥平面ABC ,平面ACD 平面ABC AC =,DO ⊂平面ACD ,所以DO ⊥平面ABC ,同理EP ⊥平面ABC ,所以EP DO ∥,又因为,ACD BCE 是全等的正三角形,所以EP DO =,所以四边形DOPE 是平行四边形,所以DE OP ∥,因为ED ⊄平面ABC ,OP ⊂平面ABC ,所以ED ∥平面ABC ;(2)连接BO ,则易知BO ⊥平面ACD ,以O 为坐标原点,分别以,,OD OA OB的方向为,,x y z轴的正方向,建立如图所示的空间直角坐标系O xyz -,令2AC =.则()()())110,0,0,0,1,0,0,1,0,,0,,0,22O A C D H P ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,1,2DE OP E ⎫=∴-⎪⎪⎭所以()310,2,0,,2222AC AE DH ⎫⎛⎫=-=-=⎪ ⎪⎪ ⎪⎭⎝⎭,设平面ACE 的法向量为(),,m x y z =,所以·0·0m AC m AE ⎧=⎪⎨=⎪⎩,所以203022y y -=⎧⎪-+=则0y =,取2z =,1x ∴=-,则()1,0,2m =-,所以cos ,DH m DH m DH m ===设直线DH 与平面ACE 所成的角为θ,则sin cos ,DH m θ==21.(1)2x y =(2)存在,32λ=【分析】(1)利用导数求得切线方程2002x x y x p p =-,根据切线方程过点0,2p M ⎛⎫-⎪⎝⎭求得220x p =,再结合两点间距离公式运算求解;(2)根据题意联立方程求点B 的坐标,再分别求直线,AT BT 的方程和,E F 的坐标,代入斜率公式运算求解即可.【详解】(1)∵抛物线()2:20C x py p =>,则20,,22p x M y p ⎛⎫-= ⎪⎝⎭,∴x y p'=,设20,2x P x p ⎛⎫ ⎪⎝⎭,则在点P 处的切线斜率0x k p =,故在点P 处的切线方程为()20002x x y x x p p -=-,即2002x x y x p p =-,∵切线过点0,2p M ⎛⎫- ⎪⎝⎭,则2022x p p -=-,解得220x p =,则2PM ===,解得12p =,故抛物线C 的方程为2x y =.(2)存在,32λ=,理由如下:由题意可得:直线AB 的方程为()121y x -=+,即23y x =+,联立方程223y x x y=+⎧⎨=⎩,解得11x y =-⎧⎨=⎩或39x y =⎧⎨=⎩,即直线AB 与抛物线的交点坐标为()()1,1,3,9A B -,∵直线AT 的斜率1k t =-,故其方程为()1y t x t =-+,联立方程()21y t x t x y⎧=-+⎨=⎩,解得11x y =-⎧⎨=⎩或2x ty t =⎧⎨=⎩,即点()2,E t t,又∵直线BT 的斜率93tk -=,故其方程为93t y x t -=+,联立方程293t y x t x y -⎧=+⎪⎨⎪=⎩,解得11x y =-⎧⎨=⎩或239t x t y ⎧=-⎪⎪⎨⎪=⎪⎩,即点2,39t t F ⎛⎫- ⎪⎝⎭,故直线EF 的斜率为222933t t k t t t λ-===+,则32λ=.【点睛】存在性问题求解的思路及策略(1)思路:先假设存在,推证满足条件的结论,若结论正确则存在;若结论不正确则不存在.(2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件;③当条件和结论都不知,按常规法解题很难时,可先由特殊情况探究,再推广到一般情况.22.(1)()f x 有极小值()11f a =-,无极大值(2)①证明见详解;②证明见详解【分析】(1)求导,利用导数判断原函数的单调性,进而可求极值;(2)对①:根据分析可得12ln ln x x -<12ln 0t t t-->,构建()12ln g x x x x =--,利用导数证明;对②:令11m x =,整理可得()112ln f m m m m m m ⎛⎫⎛⎫=+-- ⎪⎪⎝⎭⎝⎭,结合()g x 的单调性证明()0f m <,再结合()f x 的单调性即可证明.【详解】(1)由题意可得:()()()3222ln 121ln 2x x x f x x x x +='--=-,∵()3ln 1F x x x =+-在()0,∞+上单调递增,且()10F =,∴当01x <<时,()0F x <,当1x >时,()0F x >,即当01x <<时,()0f x '<,当1x >时,()0f x ¢>,故()f x 在()0,1上单调递减,在()1,+∞上单调递增,可得()f x 有极小值()11f a =-,无极大值.(2)若函数()f x 有两个零点()1212,x x x x >,则()110f a =-<,解得1a >,当111a <<时,则()()2422424e e 4e 0,e e 0ef a f a --=-+>=-->,结合()f x 的单调性可知:()f x 在()0,1,()1,+∞内均只有一个零点,则2101x x <<<,构建()12ln g x x x x =--,则()()22212110x g x x x x-'=-+=≥当0x >时恒成立,故()g x 在()0,∞+上单调递增,①令1t =>,则12ln ln x x -<1121ln x x x x -,等价于221ln t t t-<,等价于12ln 0t t t-->,∵()g x 在()1,+∞上单调递增,则()()10g t g >=,即12ln 0t t t-->,故12ln ln x x -<②若函数()f x 有两个零点()1212,x x x x >,令()110,1m x =∈,即11x m=,则()21212ln1112ln 01m f x f a a m m m m m m⎛⎫⎛⎫==--=-+= ⎪ ⎪⎝⎭⎝⎭,可得212ln a m m m =+,故()2222ln 12ln 112ln 2ln m mf m m a m m m m m m m m m m m ⎛⎫⎛⎫⎛⎫=--=--+=+-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,由()0,1m ∈,则10m m+>,∵()g x 在()0,1上单调递增,则()()10g m g <=,即12ln 0m m m--<,∴()112ln 0f m m m m m m ⎛⎫⎛⎫=+--< ⎪⎪⎝⎭⎝⎭当()0,1m ∈时恒成立,又∵()f x 在()0,1上单调递减,且()()20f m f x <=,∴2m x >,即211x x >,故1201x x <<.【点睛】方法点睛:利用导数证明不等式的基本步骤(1)作差或变形.(2)构造新的函数h (x ).(3)利用导数研究h (x )的单调性或最值.(4)根据单调性及最值,得到所证不等式.特别地:当作差或变形构造的新函数不能利用导数求解时,一般转化为分别求左、右两端两个函数的最值问题.。
全国高考数学模拟试卷(4套)一、选择题(共30题,每题2分,共60分)1. 已知函数 $ f(x) = x^2 4x + 3 $,则下列哪个选项是正确的?A. $ f(x) $ 在 $ x = 2 $ 处取得最小值B. $ f(x) $ 在 $ x = 2 $ 处取得最大值C. $ f(x) $ 在 $ x = 2 $ 处取得极值D. $ f(x) $ 在 $ x = 2 $ 处无极值2. 若 $ \log_2 8 = x $,则 $ x $ 的值为多少?A. 3B. 4C. 5D. 63. 已知等差数列 $ \{a_n\} $,若 $ a_1 = 3 $,$ a_3 = 9 $,则 $ a_5 $ 的值为多少?A. 12B. 15C. 18D. 214. 若 $ \sin^2 x + \cos^2 x = 1 $,则下列哪个选项是正确的?A. $ \sin x $ 和 $ \cos x $ 必须同时为正B. $ \sin x $ 和 $ \cos x $ 必须同时为负C. $ \sin x $ 和 $ \cos x $ 一正一负D. $ \sin x $ 和 $ \cos x $ 可以同时为零5. 若 $ \frac{a}{b} = \frac{c}{d} $,则下列哪个选项是正确的?A. $ a + c = b + d $B. $ ad = bc $C. $ a c = b d $D. $ \frac{a}{c} = \frac{b}{d} $6. 已知 $ a $、$ b $、$ c $ 是等边三角形的三边长,则下列哪个选项是正确的?A. $ a^2 + b^2 = c^2 $B. $ a^2 + c^2 = b^2 $C. $ b^2 + c^2 = a^2 $D. $ a = b = c $7. 若 $ \frac{x^2}{a^2} \frac{y^2}{b^2} = 1 $,则下列哪个选项是正确的?A. 该方程表示椭圆B. 该方程表示双曲线C. 该方程表示抛物线D. 该方程表示圆8. 已知 $ \sqrt{3} $ 是方程 $ x^2 2x + 1 = 0 $ 的根,则该方程的另一根为多少?A. $ 1 \sqrt{3} $B. $ 1 + \sqrt{3} $C. $ 2 \sqrt{3} $D. $ 2 + \sqrt{3} $9. 若 $ a $、$ b $、$ c $ 是三角形的三边长,且 $ a^2 +b^2 = c^2 $,则下列哪个选项是正确的?A. 该三角形是等腰三角形B. 该三角形是等边三角形C. 该三角形是直角三角形D. 该三角形是钝角三角形10. 若 $ \frac{1}{x} + \frac{1}{y} = \frac{1}{z} $,则下列哪个选项是正确的?A. $ x + y = z $B. $ xy = z $C. $ \frac{1}{x} + \frac{1}{y} = z $D. $ x + y + z = 0 $二、填空题(共10题,每题2分,共20分)11. 已知 $ f(x) = 2x + 1 $,若 $ f(3) = 7 $,则 $ f(1)$ 的值为______。
2022年普通高等学校招生全国统一考试模拟测试(新高考)数学试题1. 已知集合M,N是全集U的两个非空子集,且,则( )A. B. C. D.2. 若,则实数x,y满足( )A. B. C. D.3. 若某圆台的上底面半径为2,下底面半径为4,高为3,则该圆台的体积为( )A. B. C. D.4. 已知,则( )A. B. C. D. 65. 在1859年的时候,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想.在此之前,著名数学家欧拉也曾研究过这个问题,并得到小于数字x的素数个数可以表示为的结论.若根据欧拉得出的结论,估计以内的素数的个数为素数即质数,,计算结果取整数( )A. 2172B. 4343C. 869D. 86866. 若的展开式中常数项为,则实数( )A. B. C. D. 27. 已知、分别为椭圆的左、右焦点,P是椭圆C上的一点,直线l:,且,垂足为Q点.若四边形为平行四边形,则椭圆C的离心率的取值范围是( )A. B. C. D.8. 已知函数,直线是曲线的一条切线,则的取值范围是( )A. B.C. D.9. 为了庆祝中国共产党成立100周年,讴歌中华民族实现伟大复兴的奋斗历程,增进全体党员干部职工对党史的了解,某单位组织开展党史知识竞赛活动,将本单位全体党员党史知识竞赛的成绩均位于之内整理,得到如图所示的频率分布直方图.根据此频率分布直方图,下列结论正确的是( )A. 本次成绩不低于80分的人数的占比为B. 本次成绩低于70分的人数的占比为C. 估计本次成绩的平均分不高于85分D. 本次成绩位于的人数是其他人数的3倍10. 如图所示,四棱锥的底面为正方形,底面ABCD,,则下列选项中两异面直线所成夹角大于的是( )A. BC与SDB. AB与SCC. SB与ADD. AC与SB11. 已知函数,若函数的部分图象如图所示,函数,则下列结论不正确的是( )A. 函数的图象关于直线对称B. 函数的图象关于点对称C. 将函数的图象向左平移个单位长度可得到函数的图象D. 函数在区间上的单调递减区间为12. 阿基米德公元前287年-公元前212年是古希腊伟大的物理学家、数学家、天文学家,不仅在物理学方面贡献巨大,还享有“数学之神”的称号.抛物线上任意两点A、B处的切线交于点P,称为“阿基米德三角形”.已知抛物线C:的焦点为F,过A、B两点的直线的方程为,关于“阿基米德三角形”,下列结论正确的是( )A. B.C. 点P的坐标为D.13. 在正项等比数列中,若,则_____.14. 写出一个同时满足下列条件①②的向量_____.①;②向量与的夹角15. 已知在正四面体中,,记以PA为直径的球为球O,则平面ABC截球O所得截面的面积为__________.16. 若对任意恒成立,则实数a的取值范围为_____.17. 如图,在梯形ABCD中,,点E在边CD上,,,求BE,CE;若,求18. 《中共中央国务院关于实现巩固拓展脱贫攻坚成果同乡村振兴有效衔接的意见》明确提出,支持脱贫地区乡村特色产业发展壮大,加快脱贫地区农产品和食品仓储保鲜,冷链物流设施建设,支持农产品流通企业、电商、批发市场与区域特色产业精准对接.当前,脱贫地区相关设施建设情况如何?怎样实现精准对接?未来如何进一步补齐发展短板?针对上述问题,假定有A、B、C三个解决方案,通过调查发现有的受调查者赞成方案A,有的受调查者赞成方案B,有的受调查者赞成方案C,现有甲、乙、丙三人独立参加投票以频率作为概率求甲、乙两人投票方案不同的概率;若某人选择方案A或方案B,则对应方案可获得2票,选择方案C,则方案C获得1票,设X是甲、乙、丙三人投票后三个方案获得票数之和,求X的分布列和数学期望.19. 已知数列满足求数列的通项公式;对任意的,令,求数列的前n项和20. 在如图所示的多面体AFDCBE中,平面BCE,,,,,在线段BC上是否存在一点G,使得平面AFC?如果存在,请指出G点位置并证明;如果不存在,请说明理由.当三棱锥的体积为8时,求二面角的余弦值.21. 已知双曲线C:的渐近线方程为,过双曲线C的右焦点的直线与双曲线C分别交于左、右两支上的A、B两点.求双曲线C的方程.过原点O作直线,使得,且与双曲线C分别交于左、右两支上的点M、是否存在定值,使得?若存在,请求出的值;若不存在,请说明理由.22. 已知函数讨论函数的单调性;若存在,满足,且,,求实数a的取值范围.答案和解析1.【答案】A【解析】【分析】本题考查了全集、补集和子集的定义与应用问题,是基础题.根据全集、补集和子集的定义,即可得出M、N之间的关系,从而作出正确的判断.【解答】解:M,N是全集U的非空子集,且,所以,故选2.【答案】B【解析】【分析】本题考查复数相等的充要条件,要求考生会进行复数的平方运算以及理解两个复数相等的充要条件,属于基础题.利用复数相等的概念即可求解.【解答】解:因为,所以,则,即实数x,y满足故选:3.【答案】C【解析】【分析】本题考查圆台的体积,考查直观想象与数学运算的数学素养,属于基础题.根据圆台的体积公式计算即可.【解答】解:由题意,得圆台的体积为4.【答案】B【解析】【分析】本题考查了同角三角函数的基本关系,二倍角公式,属于较易题.先化简,再分子分母同时除以,转化为正切计算即可.【解答】解:由,则,故选5.【答案】D【解析】【分析】本题主要考查获取信息、运用所学知识解决实际问题的能力,体现了数学运算的学科素养,突出了基础性、应用性的考查,要求考生运用所学对数的运算公式解答相关问题,属于基础题.由对数的运算得,再结合题意可得【解答】解:由题意可知:,由对数的性质可得:,即故选6.【答案】A【解析】【分析】本题考查二项展开式的特定项与特定项的系数,关键是利用展开式的通项公式,属于基础题.的展开式的通项为,令,得,故,解得a值.【解答】解:的展开式的通项为,令,得故,即,解得7.【答案】B【解析】【分析】本题考查椭圆的标准方程及简单几何性质,属于基础题.设,由四边形为平行四边形,得到,最后根据椭圆的范围,即可求出离心率的范围.【解答】解:设,四边形为平行四边形,,,即,,即得,解得故离心率的范围为8.【答案】B【解析】【分析】本题考查导数的几何意义和利用导数求最值,属于中档题.设切点为,利用导数的几何意义求出切线方程,得,构造,利用导数即可求解.【解答】解:设切点为,,曲线在切点处的切线的斜率为,切线方程为,整理得,所以令,则,当时,,单调递减,当时,,单调递增,故,则的取值范围9.【答案】ABC【解析】【分析】本题考查频率分布直方图,考查获取信息解决实际问题,考查数据分析,属中档题.根据频率分布直方图解得a,逐项分析即可.【解答】解:本次成绩不低于80分的人数占比为,故A正确;因为,所以,即本次成绩低于70分的人数的占比为,故B正确;因为有的党员的成绩位于之间,这部分党员的平均成绩为85分,另有的党员的成绩位于之间,这部分党员的平均成绩为95分,剩余党员的平均成绩小于75分,所以估计本次成绩的平均分不高于85分,故C正确;成绩位于的频率为,因为,故D错误.10.【答案】ACD【解析】【分析】本题主要考查了异面直线的夹角,通过平移的方法求异面直线的夹角及利用判定定理证明异面直线垂直的应用.根据已知及线面垂直的判定,异面直线所成角的计算即可求得答案.【解答】解:对于A,因为底面ABCD,平面ABCD,所以,则BC与SD所成角的大小为,故A正确,对于B,因为底面ABCD是正方形,所以,则AB与SC所成的角为,故B错误,对于C,因为,所以SB与AD所成的角为,由题知,所以,故C正确,对于D,因为底面ABCD,平面ABCD,所以,因为ABCD是正方形,所以因为,平面SBD,平面SBD,所以平面SBD,所以,则AC与SB所成角的大小为,故D正确.11.【答案】ABD【解析】【分析】本题考查三角函数的图象与性质,要求考生了解函数图象的变换,了解函数中各参数对图象的影响,根据正弦函数与余弦函数的单调性与对称性逐一判断即可.【解答】解:根据函数的图象可知,当时,满足,则,即,因为,所以,对于A项,当时,,故函数的图象不关于直线对称,A项错误;对于B项,当时,,故函数的图象不关于点对称,B项错误;对于C项,因为,将其图象向左平移个单位长度可得函数的图象,故C项正确;对于D项,因为,所以,所以当,即时,单调递减,D项错误.12.【答案】ABD【解析】【分析】本题考查直线与抛物线的位置关系,要求考生了解抛物线的定义,几何图形和标准方程,知道它的简单几何性质.联立抛物线与直线方程利用根与系数的关系可求得的值可判断A;求得直线PA和PB的斜率可得到直线PA和PB的方程可判断B;联立两直线方程可得到点P的坐标可判断C;由点P 和点F坐标可得到直线PF的斜率,由点A和点B坐标可得到直线AB的斜率,可判断【解答】解:设,,联立,可得,解得或,不妨设,,则,,故,,,A项正确;又因为,所以,故直线PA的斜率为,直线PA的方程为,即,同理可得直线PB的方程为,,所以,B项正确;联立可得,故点P的坐标为,C项错误;易知点F的坐标为,,所以,D项正确.13.【答案】2【解析】【分析】本题考查等比数列性质的应用,注意对数运算法则的灵活运用,属于基础题.由等比数列的性质可得,由对数的运算可得要求的式子,代入计算对数的值即可.【解答】解:由题意可得故答案为14.【答案】【解析】【分析】本题考查向量的夹角,向量的坐标运算,属于基础题.设,得到,令,求解即可.【解答】解:设,得到,令,联立,解得,或,取答案不唯一15.【答案】【解析】【分析】本题考查平面与球的截面问题,要求考生了解正四面体与球的特征,会根据空间中的垂直关系求出截面圆的直径.根据题目条件得到截面为圆,并得到直径AE的大小即可求解.【解答】解:如图,取BC的中点D,连接AD,过点P作平面ABC于点E,由正四面体的特征可知,点E为AD上靠近点D的三等分点.因为PA为球O的直径,平面ABC,,所以平面ABC截球O所得截面的直径为因为,所以,故平面ABC截以PA为直径的球所得截面面积为16.【答案】【解析】【分析】本题考查根据不等式恒成立求参数范围,利用导数研究函数最值,数形结合的思想解决问题,属于较难题.将不等不等式进行转化为,利用导数法可证,再进行放缩,,可得答案.【解答】解:由可得,因为,所以令,则,当时,,当时,,所以在上单调递减,在上单调递增,,即当且仅当时取等号,故,当且仅当时取等号.在同一坐标标系中画出与的图象,如图所示,可知两函数在之间有一个交点,故存在,使得成立,故,故,即实数a的取值范围为故答案为17.【答案】解:在中,由正弦定理可得,,,由余弦定理可得,解得,,,又因为,,在中,由余弦定理可得,所以,因为,又因为,所以【解析】本题考查正弦定理和余弦定理.属于中档题.在中,由正弦定理可解得BE,再根据余弦定理解得CE;根据可得,在中,用余弦定理解得EA,再根据余弦定理可解得,根据,得出的结果.18.【答案】解:因为甲、乙两人投票方案相同的概率为所以甲、乙两人投票方案不相同的概率为的所有可能取值为3,4,5,6,因为,,所以X的分布列如下:X3456P所以【解析】本题以脱贫攻坚与乡村振兴为情境.要求考生运用所学独立事件的概率与离散型随机变量及其分布等必备知识解答相关问题.主要考查获取信息.运用所学知识解决实际问题的能力,体现了数学运算与数据分析的学科素养,突出基础性、应用性的考查要求.先计算出甲乙投票方案相同的概率,即可求出不相同的概率;得到X所有可能的取值,算出概率后列出分布列,即可求出数学期望.19.【答案】解:当时,当时,可得,所以,,当时,也符合,故;由知,当n为偶数时,当n为奇数时,所以【解析】本题考查数列的通项与分组求和,要求考生掌握求常见数列的通项的方法,能根据数列特征选取恰当的方法求和,属于常考题.分和两种情况求解即可;分类讨论n为偶数与奇数,分组求和即可.20.【答案】解:存在,且取线段AB的中点H,BC的中点为G,连接EH、HG、,,四边形AHEF是平行四边形,又平面AFC,平面AFC,平面、G分别为AB、BC的中点,是的中位线,,平面AFC,平面AFC,平面又,HG、平面EHG,平面平面平面EHG,平面AFC;设,由,可得,以E为坐标原点,EB、EC、EF所在直线分别为x、y、z轴,建立如图所示的空间直角坐标系.由题可知,,,,,,设平面AFC的法向量为,则令,得,,所以平面AFC的一个法向量为,设平面AFD的法向量为,则令,得,所以平面AFD的一个法向量为,由图可知二面角为锐角,故二面角的余弦值为【解析】本题考查线面平行的证明,考查利用空间向量求二面角的方法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,属于中档题.取线段AB的中点H,BC的中点为G,连接EH、HG、EG,由平面AFC,平面AFC,可得平面平面AFC,又平面EHG,则平面AFC;建立空间直角坐标系,利用法向量所成角的余弦值,即可得.21.【答案】解:由题意得,解得,所以双曲线C的方程为存在定值,使得,与同向,,,易知的斜率不为0,设:,由消去x整理得:,设,,由交双曲线C左右两支于A、B两点,有,即,则,,由于,可设:,由消去x整理得:,设,,,由此,,故存在定值,使得【解析】考查双曲线的标准方程及圆锥曲线中的探索性问题,属于较难题利用双曲线性质列出关于a和b的方程组,解该方程组,直接写出双曲线的方程;若存在定值,使得,则,设出的方程,分别与双曲线联立,用设而不求法表示出和,求出22.【答案】解:函数的定义域为,当时,,在上单调递减;当时,令,得,令,得,所以函数在上单调递减,在上单调递增,综上所述:当时,在上单调递减;当时,函数在上单调递减,在上单调递增.,又,则令,即方程在上有解.令,,则,,则,当时,,在上单调递减,又,则在上恒成立,不合题意;当时,,令,可知该方程有两个正根,因为方程两根之积为1且,所以当时,当时,则时,,而令,则,令,,则在上单调递减,,则在上单调递减,,即,故存在,使得,故满足题意.综上所述,实数a的取值范围是【解析】本题考查利用导数研究函数的单调性,导数中存在性问题以及参数的取值范围问题,分类讨论思想,考查逻辑推理能力,属于较难题.求导,通过分类讨论,解关于导函数的不等式即可求得单调区间;根据题意,化简变形已知,构造新函数,利用导数求解即可.。
2023年高考数学全真模拟卷二(全国卷)文科数学(考试时间:120分钟;试卷满分:150分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合{}3A x N x =∈<,{}21B x x =-<≤,则A B = ()A .[]0,2B .{}1,0,1-C .{}0,1,2D .{}0,1【答案】D【分析】利用集合的交集运算求解.【详解】解:因为集合{}3A x N x =∈<,{}21B x x =-<≤,所以A B = {}0,1,故选:D2.已知复数z 在复平面内对应的点的坐标为()3,4-,则43izz +=+()A .5i +B .5i -C .35i -D .4【答案】B【分析】由题意得34i z =-,再代入式子计算即可得到答案.【详解】由复数z 在复平面内对应的点的坐标为()3,4-得34iz =-5z ∴==()()()()34i 43i 34i555i 43i 43i 43i 43i z z ---∴+=+=+=-+++-故选:B.3.机器人是一种能够半自主或全自主工作的智能机器.它可以辅助甚至替代人类完成某些工作,提高工作效率,服务人类生活,扩大或延伸人的活动及能力范畴.某公司为了研究某机器人的销售情况,统计了2022年2月至7月M ,N 两店每月该机器人的营业额(单位:万元),得到如图所示的折线图,则下列说法中不正确的是()A .N 店营业额的平均值是29B .M 店营业额的中位数在[]30,35内C .M 店营业额的极差比N 店营业额的极差小D .M 店营业额的方差大于N 店营业额的方差【答案】D【分析】对A ,计算N 店营业额的平均值即可判断,对B 首先M 店的营业额从小到大排序,即可计算出其中位数,对C ,计算相关数据极差即可判断,对D 首先计算出M 店营业额的平均值,再计算M 店和N 店营业额的方差即可判断.【详解】对于A ,N 店营业额的平均值是()12816355063296⨯+++++=,所以A 正确;对于B ,将M 店的营业额/万元,从小到大排列得14,20,26,36,45,64,故其中位数为]236363152[30,+=∈,故B 正确;对于C ,M 店营业额极差为641450-=,N 店的极差为6326150-=>,故C 正确;所以B 正确;对于D ,M 店营业额的平均值是11(142026456436)3466⨯+++++=,所以M 店营业额的方差为2222222052052052052052051420264564366666666⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭10109292803636==N 店营业额的方差为()()()()()()2222222292029262945296429362929391.5280636-+-+-+-+-+-=>,故D 错误,故选:D .4.设x ,y 满足约束条件260303x y x y y +-≤⎧⎪+-≥⎨⎪≤⎩,则3z x y =-的最大值为()A .3B .152-C .0D .9【答案】A【分析】画出可行域,根据目标函数的几何意义即可求解.【详解】根据约束条件画出可行域(如图),把3z x y =-变形为33x z y =-,得到斜率为13,在y 轴上的截距为3z-,随z 变化的一族平行直线.由图可知,当直线33x z y =-过点(3,0)A 时,截距3z-最小,即z 最大,所以3z x y =-的最大值为3.故选:A .5.在ABC 中,AB AC =,AD 是BC 边上的中线,且4BC =,3AD =,则⋅=AB AC ()A .5-B .5C .8-D .8【答案】B【分析】由题意,根据三角形的性质,结合向量的加法几何意义以及数量积的运算律,可得答案.【详解】由题意如图所示:由AD BC ⊥,所以0,0AD DC AD DB ⋅=⋅= 又AB AC =,所以D 为BC 的中点,所以122BD DC BC ===,所以()()22945AB AC AD DB AD DC AD DC ⋅=+⋅+=-=-= ,故选:B .6.已知ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且656cos a c b C =+,则cos B =()A .78B .56C .34D .23【答案】B【分析】根据题意,利用正弦定理边化角,由三角形内角和定理,展开化简得cos B .【详解】由656cos a c b C =+,边化角得6sin 5sin 6sin cos A C B C =+,又()sin sin A B C =+,所以()6sin 5sin 6sin cos B C C B C +=+,展开得6sin cos 6cos sin 5sin 6sin cos B C B C C B C +=+,所以6cos sin 5sin B C C =,因为sin 0C >,所以5cos 6B =.故选:B .7.一个正三棱台的上、下底面边长分别为3和6,侧棱长为2,则其高为()A .12B .1C D 【答案】B【分析】将正三棱台补全为正三棱锥再做高,结合勾股定理求解即可【详解】如图,延长正三棱台的三条棱,,AA BB CC ''',交于点P ,因为6AB BC AC ===,3A B B C A C ''''''===,则24PA PB PC AA '====,作PO ⊥底面ABC 于O ,连接BO ,则BO ==,故2PO ==,故正三棱台ABC A B C '''-的高为12PO=故选:B 8.已知F 为双曲线C :()222210,0x y a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为5,则C 的离心率为()A .4B .5C .6D .7【答案】A【分析】求出A 点,B 点坐标,利用斜率等于5结合222b c a =-得到22540c ac a -+=,方程两边同除以2a 得到关于离心率的方程,求出答案.【详解】由题意得:(),0F c ,(),0A a ,当x c =时,22221c y a b -=,解得2by a=±,因为AB 的斜率为5,所以B 点位于第一象限,则2,b B c a ⎛⎫⎪⎝⎭,故25ABb a kc a==-,整理得:2255b ac a =-,因为222b c a =-,即22540c ac a -+=,方程两边同除以2a 得:2540e e -+=,解得:4e =或1(舍去)故选:A9.()()cos 0f x x x ωωω=>在ππ,1212⎡⎤-⎢⎥⎣⎦上是单调函数,则ω的最大值是()A .2B .3C .4D .6【答案】C【分析】根据两角和的余弦公式可得()()π2cos 03f x x ωω⎛⎫=+> ⎪⎝⎭,可得其单调区间为π2π,33ωω⎡⎤-⎢⎥⎣⎦,根据题意即可求解.【详解】()()πcos 2cos 03f x x x x ωωωω⎛⎫=-=+> ⎪⎝⎭,令()ππππ3k x k k ω≤+≤+∈Z ()π2ππ33k x k ω-+≤≤∈Z .令0k =,可得π2π33x ωω-≤≤.故函数()f x 在π2π,33ωω⎡⎤-⎢⎥⎣⎦上是单调函数,所以πππ2π312123ωω-≤-<≤,解得04ω<≤.所以ω的最大值是4.故选:C.10.已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9.动圆M 在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程是()A .2216448x y -=B .2214864x y +=C .2214864x y -=D .2216448x y +=【答案】D【分析】由两圆外切和内切,得出圆心距与两圆的半径和差的关系,设出动圆的半径r ,消去r ,再由圆锥曲线的定义,可得动圆的圆心M 的轨迹,进一步求出其方程.【详解】设动圆的圆心(),M x y ,半径为r圆M 与圆1C :()224169x y -+=内切,与C2:()2249x y ++=外切.所以1213,3MC r MC r =-=+.1212+168MC MC C C =>=由椭圆的定义,M 的轨迹是以12,C C 为焦点,长轴为16的椭圆.则8,4a c ==,所以2228448b =-=动圆的圆心M 的轨迹方程为:2216448x y +=故选:D11.如图,在平面四边形ABCD 中,,,30AD CD AC BC DAC BAC ︒⊥⊥∠=∠=,现将ACD沿AC 折起,并连接BD ,使得平面ACD ⊥平面ABC ,若所得三棱锥D ABC -的外接球的表面积为4π,则三棱锥D ABC -的体积为()A .14B .4C .8D .6【答案】C【分析】利用面面垂直的性质定理,线面垂直的判定定理可以证得ADB ∠为直角,又ACB ∠为直角,进而利用直角三角形的性质得到外接球的球心为斜边AB 的中点,然后根据球的面积公式求得球的半径,进而计算求得三棱锥D ABC -的体积.【详解】∵平面ACD ⊥平面ABC ,平面ABC∩平面BCD=AC ,AC ⊥BC ,BC ⊂平面ABC ,∴BC ⊥平面ACD ,又∵AD ⊂平面ACD ,∴AD ⊥BC ,又∵AD ⊥DC ,BC∩DC=C ,BC ⊂平面BCD ,DC ⊂平面BCD ,∴AD ⊥平面BCD ,又∵BD ⊂平面BCD ,∴AD ⊥BD ,即ADB ∠为直角,又∵ACB ∠为直角,∴取AB 的中点O ,连接OC ,OD ,由直角三角形的斜边上的中线性质OA=OB=OC=OD ,可得O 为三棱锥D ABC -外接球的球心,由三棱锥D ABC -外接球的表面积为4π,可得外接球的半径1r =,∴32,1,,22AB BC AC AD =====,∵BC ⊥平面ACD ,ADB ∠为直角,∴三棱锥D ABC -的体积为111313322ACD BC S ⨯=⨯⨯⨯=故选:C12.已知函数()ln k f x x x =+,k R ∈,1e()2g x x-=+,若对任意,()0x ∈+∞,不等式()()f x g x ≥恒成立,则实数k 的取值范围是()A .1k >B .1k ≥C .3k >D .3k ≥【答案】B【分析】将不等式()()f x g x ≥恒成立进行转化,利用参数分离法求函数的最值,即可求实数k 的取值范围.【详解】由()()f x g x ≥恒成立,得对一切()0,x ∈+∞,都有1eln 2k x x x-+>+,即21e ln k x x x ≥+--,记()21e ln p x x x x =+--,则()()2ln 11ln p x x x +='=--,令()0p x '=,得e x =,因为当()0,e x ∈时,()0p x '>;函数()p x 在()0,e 上递增;当()e,x ∈+∞时,()0p x '<;函数()p x 在()e,+∞上递减,所以()()max e 1k p x p ≥==,故选:B.第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.在()()5611x x ++-展开式中,含4x 的项的系数是__________.【答案】20【分析】根据二项展开式的通项公式可求出结果.【详解】()51x +的展开式中4x 的系数为45C 5=,()61x -的展开式中4x 的系数为46C 15=,故在()()5611x x ++-展开式中,含4x 的项的系数为20.故答案为:2014.经过椭圆C :22195x y +=的左焦点1F ,作不垂直于x 轴的直线AB ,交椭圆于A 、B两点,2F 是椭圆的右焦点,则2AF B 的周长为_________.【答案】12【分析】通过椭圆中的212BF BF a +=,212AF AF a +=,并通过2AF B 的周长为221122AB AF BF AF BF AF BF ++=+++从而求出周长的值.【详解】因为椭圆C :22195x y +=的左焦点1F 为()2,0-,且作不垂直于x 轴的直线AB交椭圆于A 、B 两点,2F 是椭圆的右焦点()2,0所以2126BF BF a +==,2126AF AF a +==而2AF B 的周长为221122412AB AF BF AF BF AF BF a ++=+++==故答案为:12.15.已知直线l :20kx y k +-+=,则圆2242110x x y y -+--=截直线l 所得的弦长的取值范围是______.【答案】⎡⎤⎣⎦【分析】求出直线l 所过的定点、圆心及半径,根据垂径定理可求弦长的最小值,最大值为直径的长度.【详解】直线l 的方程即()()120k x y ++-=,故直线l 恒过定点()1,2M -.圆的标准方程为()()222116x y -+-=,圆心为()2,1,半径为4,因为()()2212211016--+-=<,所以()1,2M -在圆内,直线l 恒与圆相交.圆心()2,1到点()1,2M -=则圆截直线l 所得的弦长的最小值为=248⨯=.所以圆截直线l 所得的弦长的取值范围是⎡⎤⎣⎦.故答案为:⎡⎤⎣⎦.16.①530.3log 5>,②22,③23e 2>,④1112ln sin cos 884⎛⎫+< ⎝⎭,上述不等式正确的有______(填序号)【答案】②④【分析】由指数对数的运算法则和不等式的性质比较大小.【详解】对于①:500.30.31<=,33log 5log 31>=,∴530.3log 5<,不等式①错误;对于②:ln 2ln e <=,∴ln 222<22<,不等式②正确对于③:22e 2.87.848<=<,∴()11233e8<,即23e 2<,不等式③错误;对于④:211111112ln sin cos ln sin cos ln 12sin cos ln 1sin 8888884⎛⎫⎛⎫⎛⎫⎛⎫+==+⋅=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,令()()sin ,0,1f x x x x =-∈,则()1cos 0f x x '=->在()0,1x ∈上恒成立,()f x 在()0,1上单调递增,∴111sin (0)0444f f ⎛⎫=->= ⎪⎝⎭,11sin 44<,得115ln 1sin ln 1ln 444⎛⎫⎛⎫+<+= ⎪ ⎪⎝⎭⎝⎭,45ln5544ln ln ln e=11444⎛⎫==< ⎪⎝⎭,∴51ln 44<,∴11512ln sin cos ln 8844⎛⎫+<< ⎪⎝⎭,不等式④正确.故答案为:②④三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)(一)必考题:共60分17.为调查学生住宿情况,某教育主管部门从甲、乙两所学校各抽取200名学生参与调查,调查结果分为“住校”与“走读”两类,结果统计如下表:住校人数走读人数合计甲校80120200乙校60140200合计140260400参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.附表:()20P K k α= 0.10.050.010.0050.0010k 2.706 3.841 6.6357.87910.828(1)分别估计甲,乙两所学校学生住校的概率;(2)能否有95%的把握认为住校人数与不同的学校有关?【答案】(1)甲:0.4,乙:0.3(2)有【分析】(1)根据表格进行数据分析,直接求出两所学校学生住校的概率;(2)计算2K 的观测值,对照参数下结论.(1)由表格数据得,甲校学生住校的概率估计值是800.4200=,乙校学生住校的概率估计值是600.3200=.(2)由题意可得2K 的观测值为()24008014060120400 4.396 3.84114026020020091⨯⨯-⨯=≈>⨯⨯⨯所以有95%的把握认为住校人数与不同的学校有关.18.在公比大于0的等比数列{}n a 中,已知354a a a =,且2a ,43a ,3a 成等差数列.(1)求{}n a 的通项公式;(2)已知12n n S a a a = ,试问当n 为何值时,n S 取得最大值,并求n S 的最大值.【答案】(1)42nn a -=;(2)当3n =或4时,n S 取得最大值,()max 64n S =.【分析】(1)设{}n a 的公比为q ,由354a a a =,得41a =,再根据2a ,43a ,3a 成等差数列,求得公比即可.(2)根据(1)得到(7)321(4)21222n n n n n S a a a -++++-=== ,再利用二次函数的性质求解.【详解】(1)设{}n a 的公比为q ,由354a a a =,即244a a =得41a =或40a =(舍).因为2a ,43a ,3a 成等差数列,所以2346a a a +=,即231116a q a q a q +=则2610q q --=,解得12q =或13q =-(舍),又3411a a q ==,故18a =.所以141822n n n a --⎛⎫=⨯= ⎪⎝⎭.(2)(7)321(4)21222n nn n n S a a a -++++-=== ,又()2717222n ny n n -==-+,该二次函数对称轴为72,又n N +∈,故当3n =或4时,二次函数取得最大值6,故当3n =或4时,n S 取得最大值6264=,即()max 64n S =.19.如图,在直棱柱1111ABCD A B C D -中,底面四边形ABCD 14AA AC ==,E 为AB 的中点,F 为1CC 的中点.(1)证明://EF 平面1ACD ;(2)若点P 为线段EF 上的动点,求点P 到平面1ACD 的距离.【答案】(1)证明见详解;(2)17.【分析】(1)取BC 的中点G ,连接FG ,EG ,1BC ,证明平面EFG ∥平面1ACD ,原题即得证;(2)连接BD 与AC 相交于点O ,利用11E ACD D ACE V V --=求解.【详解】(1)证明:如图,取BC 的中点G ,连接FG ,EG ,1BC .∵G 为BC 的中点,E 为AB 的中点,∴EG AC ∥,因为AC ⊂平面1ACD ,EG ⊄平面1ACD ,所以//EG 平面1ACD .∵G 为BC 的中点,F 为1CC 的中点,∴1FG BC ∥.∵直棱柱1111ABCD A B C D -,∴11AD BC ∥,∴1//AD FG ,因为1AD ⊂平面1ACD ,FG ⊄平面1ACD ,所以//FG 平面1ACD .∵EG FG G = ,,EG FG ⊂平面EFG ,∴平面EFG ∥平面1ACD .又∵EF ⊂平面EFG ,∴//EF 平面1ACD .(2)解:如图,连接BD 与AC 相交于点O ,在1Rt ADD △中,1AD ===,同理1CD 由菱形ABCD 可知AC BD ⊥,2OA OC ==,在Rt OAB 中,1OB =.设点P 到平面1ACD 的距离为d ,由//EF 平面1ACD ,可知点E 到平面1ACD 的距离也为d ,由1OD ==可得1ACD △的面积为142⨯ACE△的面积为11212⨯⨯=.有1144133D ACE V -=⨯⨯=,1133E ACD V d d -=⨯=,由11E ACD D ACE V V --=43=,可得d =故点P 到平面1ACD20.已知抛物线C 的顶点为坐标原点,焦点在y 轴上,点()2,1Q -关于x 轴的对称点P 在抛物线C 上.(1)求抛物线C 的方程;(2)A 、B 是抛物线C 上异于点P 的两个动点,记直线PA 和直线PB 的斜率分别为1k 、()2120k k k ≠,若12112k k +=,求证:直线AB 过定点.【答案】(1)24x y=(2)证明见解析【分析】(1)由题意,设抛物线C 的方程为2x ay =,将点P 的坐标代入抛物线C 的方程,求出a 的值,由此可求得抛物线C 的方程;(2)分析可知直线AB 的斜率存在,设直线AB 的方程为=+y kx b ,设点()11,A x y 、()22,B x y ,将直线AB 的方程与抛物线C 的方程联立,列出韦达定理,利用斜率公式以及韦达定理可求得b 的值,即可求得直线AB 所过定点的坐标.【详解】(1)解:由题意可知,设抛物线C 的方程为2x ay =,易知点()2,1P ,由题意可得224a ==,所以,抛物线C 的方程为24x y =.(2)解:设点()11,A x y 、()22,B x y ,则21111111124224x y x k x x --+===--,同理2214x k +=,若直线AB 的斜率不存在,此时直线AB 与抛物线C 只有一个交点,不合乎题意.所以,直线AB 的斜率存在,设直线AB 的方程为=+y kx b ,联立2=4=+x yy kx b⎧⎨⎩可得2440x kx b --=,216160k b ∆=+>,由韦达定理可得124x x k +=,124x x b =-,()()121212121244114422224x x k k x x x x x x +++=+==+++++,可得124440x x b -=--=,解得1b =-,即直线AB 的方程为1y kx =-,所以,直线AB 过定点()0,1-.21.已知函数()2f x ax =,()lng x x x =.(1)若()()f x g x ≥恒成立,求实数a 的取值范围;(2)若=1a ,()()()1G x f x g x =--,且1mn >,证明:()()0G m G n +>.【答案】(1)1a ≥e(2)证明见解析【分析】(1)由()()f x g x ≥分离参数得ln xa x≥,构造函数,求函数的最值,即可得a 的取值范围;(2)由1mn >,可知m 与n 至少有一个大于1,假设1n >,则1m n>,求导,可得函数()G x 单调递增,所以()()()1G m G n G n G n ⎛⎫+>+ ⎪⎝⎭,证明()10G n G n ⎛⎫+> ⎪⎝⎭即可.(1)由()()f x g x ≥,即2ln ax x x ≥,0x >,所以ln xa x≥,设()ln x h x x =,则()21ln xh x x -'=,令()0h x '=,解得=e x ,所以当0e x <<时,()0h x '>,()h x 单调递增,当e x >时,()0h x '<,()h x 单调递减,所以当=e x 时,()h x 取最大值为()1e eh =,所以1a ≥e ;(2)由1mn >,可知m 与n 至少有一个大于1,假设1n >,则1m n>,又()()()21ln 1G x f x g x x x x =--=--,则()2ln 1G x x x '=--,()1212x G x x x-''=-=,令()0G x ''=,得1=2x ,当102x <<时,()0G x ''<,()G x '单调递减,当12x >时,()0G x ''>,()G x '单调递增,所以()1ln 202G x G ⎛⎫''≥=> ⎪⎝⎭,所以()G x 在()0,+∞上单调递增,所以()1G m G n ⎛⎫> ⎪⎝⎭,则()()()221111ln 11G m G n G n G n n n n n n n ⎛⎫+>+=--+-- ⎪⎝⎭11ln n n n n n ⎛⎫⎛⎫=--- ⎪⎪⎝⎭⎝⎭,又1n n -在1n >时单调递增,所以当1n >时,10n n->,设()1ln F x x x x =--,1x >,则()22222131112410x x x F x x x x x ⎛⎫-+ ⎪-+⎝⎭'=+-==>恒成立,所以()F x 在()1,+∞上单调递增,则()()10F x F >=,所以当1n >时,1ln 0n n n-->,所以11ln 0n n n n n ⎛⎫⎛⎫---> ⎪⎪⎝⎭⎝⎭,即()()0G m G n +>.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.已知圆C 的圆心坐标为()1,0,圆的半径为1.以直角坐标系原点为极点,x 轴正半轴为极轴建立极坐标系且取相同单位长度.(1)写出圆C 的极坐标方程,(2)将射线l ;0,02πθααρ⎛⎫=-<<> ⎪⎝⎭绕极点逆时针旋转3π得射线m ,设m ,l 与圆C 的交点分别为A ,B .求三角形AOB 的面积的最大值.【答案】(1)2cos ρθ=;(2)最大值为334.【分析】(1)方法一:先求圆的直角坐标方程,再互为极坐标方程;方法二:直接利用极坐标方程的意义求解即可.(2)射线m 的方程为0,032ππθααρ⎛⎫=+-<<> ⎪⎝⎭,进而根据极坐标的意义结合三角形的面积公式得12cos 2cos sin 233AOBS ππαα∆⎛⎫=⨯⨯+⨯ ⎪⎝⎭,再化简求值即可.【详解】解:(1)法一:以原点为极点,以x 轴的正半轴为极轴建立极坐标系,则圆C 的普通方程为()2211x y -+=,令cos x ρθ=,sin y ρθ=得C 的极坐标方程为2cos ρθ=.法二:如图.设(),P ρθ为圆上任一点﹐在直角三角形 OPB 中,2cos OP θ=,∴2cos ρθ=.(2)由题意得射线m 的方程为0,032ππθααρ⎛⎫=+-<<> ⎪⎝⎭,∴()2cos ,B αα,2cos ,33A ππαα⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,0,02παρ⎛⎫-<<> ⎪⎝⎭,12cos 2cos sin233AOB S ππαα∆⎛⎫=⨯⨯+⨯ ⎪⎝⎭1cos cos 3223πααααα⎛⎫⎛⎫+=- ⎪ ⎪ ⎪⎝⎭⎝⎭231cos 231cos sin sin 22222ααααα+-=-⨯23πα⎛⎫=+ ⎪⎝⎭.∵02πα-<<,∴22333πππα-<+<.∴当203πα+=,即6πα=-时,AOB S ∆的最大值为334.[选修4-5:不等式选讲]23.已知函数()222f x x x =+--.(1)解不等式()6f x ≥.(2)已知0a >,0b >,()()1g x f x x =-+的最大值m ,11m a b+=,求22a b +的最小值.【答案】(1){10x x ≤-或}2x ≥;(2)最小值为89.【分析】(1)分2x >,12x -≤≤和1x <-三种情况解不等式;(2)先利用绝对值三角不等式求出()g x 的最大值为3m =,从而得113a b+=,所以()222221119a b a b a b ⎛⎫+=+⋅+ ⎪⎝⎭,化简后利用基本不等式求解即可【详解】解:(1)函数()4,22223,124,1x x f x x x x x x x +>⎧⎪=+--=-≤≤⎨⎪--<-⎩,当2x >时,不等式()6f x ≥即为46+≥x ,解得2x ≥,所以2x >;当12x -≤≤时,不等式()6f x ≥即为36x ≥,解得2x ≥,所以2x =;当1x <-时,不等式()6f x ≥即为46x --≥,解得10x ≤-,所以10x ≤-.综上所述,不等式()6f x ≥的解集为{10x x ≤-或}2x ≥;(2)()()()()112123=-+=+--≤+--=g x f x x x x x x ,所以()g x 的最大值为3m =,则113a b+=,故()222222222111122299⎛⎫⎛⎫+=+⋅+=++++ ⎪ ⎪⎝⎭⎝⎭b a a b a b a b a b a b ba 18299⎛⎫≥++= ⎪ ⎪⎝⎭,当且仅当2222a b b a=且22a b b a =,即23a b ==时取等号,故22a b +的最小值为89.。
2023年普通高等学校招生全国统一考试模拟测试(新高考)数学试题及答案一、单选题(20分)请从每题的选项中选择一个最符合题意的答案,并在答题卡上将相应的字母涂黑。
1.若函数f(x)在区间[-1,3]上连续,则其必定是 A. 递减函数 B. 倒U型函数 C. 奇函数 D. 偶函数2.已知三角形ABC,AB=AC,角A=40°,则角B的度数等于 A. 40° B. 70° C. 80° D. 100°3.设a,b都是正数,且logₐ1/3=log₃b/2,则a/b的值等于 A. 1/4 B. 1/3 C. 1/2 D. 24.若a,b>0,且a+b=1,则a²+b²的最小值是 A. 1/2 B.1/√2 C. 1/4 D. 15.若直线y=mx+2与曲线y=4x²-3x-1有两个公共点,则m的取值范围是 A. (-∞,1/8) B. (-∞,0)∪(0,1/8) C. (-∞,1/8]∪[0,+∞) D. (-∞,0)二、多选题(20分)请从每题的选项中选择一个或多个最符合题意的答案,并在答题卡上将相应的字母涂黑。
6.设实数x满足条件|x-3| < 2,下列等式成立的是 A.x > 5 B. x < 1 C. x ≠ 3 D. x > 17.在直角坐标系中,下列函数中具有对称中心为(2,-1)的是 A. y=x-1 B. y=-(x-2)²-1 C. y=√(x²-4x+4) D. y=1/x-38.设集合A={a, a², a³},则以下命题成立的是 A. 若a>1,则a>1/a² B. 若a<0,则a³<0 C. 若a=1, 则A={1} D. 若a=0,则A={0}9.已知函数f(x)=x³+ax²+bx+c,若它与y=x+3有恰有一个交点,并且这个交点横纵坐标都是正数,则以下命题成立的是 A. a+b = -1 B. a+c = -3 C. a+c > 0 D. a+b+c > 010.设集合A={x | x=x²-2x-3, x∈R},B={x | x²+x-6=0,x∈R},则以下命题成立的是A. A⊂B B. A∩B=∅ C. B⊆A D.B∪A=∅三、填空题(20分)请根据题目要求填写空缺,并在答题卡上写出完整的答案。
2023年普通高等学校招生全国统一考试·仿真模拟卷数学(二)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合{}2A x x x=≤,(){}2log1B x y x ==-,则A B ⋃=()A.[)1,+∞B.[)0,∞+C.(0,1)D.[]0,1【答案】B 【解析】【分析】分别化简集合,A B ,根据并集的定义求解.【详解】{}2A x x x=≤ ∴不等式2x x ≤的解集是集合A又因为(){}21001,01x x x x x A x x ≤⇒-≤⇒≤≤∴=≤≤又(){}2log 1x y x =- ,所以满足函数()2log 1y x =-中x 的范围就是集合B所以{}1011x x B x x ->⇒>∴=>所以{}{}{}[)01100,A B x x x x x x ∞⋃=≤≤⋃>=≥=+故选:B2.已知复数()()2i 1i z a =+-为纯虚数,则实数=a ()A.12-B.23-C.2D.2-【答案】D 【解析】【分析】根据复数乘法计算方法化简复数,结合纯虚数的概念求值即可.【详解】()()()2i 22i 1i i 2i 2i 2a a a a z a ==-++++---=,因为复数z 为纯虚数,所以2020a a -≠⎧⎨+=⎩,即2a =-.故选:D3.在正方形ABCD 中,M 是BC 的中点.若AC m = ,AM n = ,则BD =()A.43m n -B.43m n+ C.34m n -D.34m n+【答案】C 【解析】【分析】作图,根据图像和向量的关系,得到2()22BC AC AM m n =-=-和AB AC BC =- 222m m n n m =-+=-,进而利用BD BC CD BC AB =+=- ,可得答案.【详解】如图,AC m =,AM n =,且在正方形ABCD 中,AB DC=12AC AM MC BC -==,2()22BC AC AM m n ∴=-=- , AC AB BC =+,AB AC BC ∴=- 222m m n n m =-+=- ,∴BD BC CD BC AB =+=-= 22234m n n m m n--+=- 故选:C4.已知40.5=a ,5log 0.4b =,0.5log 0.4c =,则a ,b ,c 的大小关系是()A.b a c >>B.a c b >>C.c a b >>D.a b c>>【答案】C 【解析】【分析】利用指数函数,对数函数单调性,找出中间值0,1,使其和,,a b c 比较即可.【详解】根据指数函数单调性和值域,0.5x y =在R 上递减,结合指数函数的值域可知,()()400,0.50,10.5a ∈==;根据对数函数的单调性,5log y x =在(0,)+∞上递增,则55log 0.4log 10b =<=,0.5log y x =在(0,)+∞上递减,故0.50.5log 0.4log 0.51c =>=,即10c a b >>>>,C 选项正确.故选:C5.端午佳节,人们有包粽子和吃粽子的习俗.四川流行四角状的粽子,其形状可以看成一个正四面体.广东流行粽子里放蛋黄,现需要在四角状粽子内部放入一个蛋黄,蛋黄的形状近似地看成球,当这个蛋黄的表面积是9π时,则该正四面体的高的最小值为()A.4 B.6C.8D.10【答案】B 【解析】【分析】根据题意分析可知,当该正四面体的内切球的半径为32时,该正四面体的高最小,再根据该正四面体积列式可求出结果.【详解】由球的表面积为9π,可知球的半径为32,依题意可知,当该正四面体的内切球的半径为32时,该正四面体的高最小,设该正四面体的棱长为a 3a =,根据该正四面体积的可得2163334a a ⨯⨯=21334324a ⨯⨯⨯,解得a =.所以该正四面体的高的最小值为66633a =⨯=.故选:B6.现有一组数据0,l ,2,3,4,5,6,7,若将这组数据随机删去两个数,则剩下数据的平均数大于4的概率为()A.514 B.314C.27D.17【答案】D 【解析】【分析】先得到删去的两个数之和为4时,此时剩下的数据的平均数为4,从而得到要想这组数据随机删去两个数,剩下数据的平均数大于4,则删去的两个数之和要小于4,利用列举法得到其情况,结合组合知识求出这组数据随机删去两个数总共的情况,求出概率.【详解】0,l ,2,3,4,5,6,7删去的两个数之和为4时,此时剩下的数据的平均数为284482-=-,所以要想这组数据随机删去两个数,剩下数据的平均数大于4,则删去的两个数之和要小于4,有()()()()0,1,0,2,0,3,1,2四种情况符合要求,将这组数据随机删去两个数,共有28C 28=种情况所以将这组数据随机删去两个数,剩下数据的平均数大于4的概率为41287=.故选:D7.在棱长为3的正方体1111ABCD A B C D -中,O 为AC 与BD 的交点,P 为11AD 上一点,且112A P PD =,则过A ,P ,O 三点的平面截正方体所得截面的周长为()A. B.C.+D.+【答案】D 【解析】【分析】根据正方体的性质结合条件作出过A ,P ,O 三点的平面截正方体所得截面,再求周长即得.【详解】因为112A P PD =,即11113D P A D = ,取11113D H D C =uuuu r uuuu r,连接11,,PH HC A C ,则11//HP AC ,又11//AC AC ,所以//HP AC ,所以,,,,A O C H P 共面,即过A ,P ,O 三点的正方体的截面为ACHP ,由题可知APCH ===,PH =,11A C =,所以过A ,P ,O 三点的平面截正方体所得截面的周长为+.故选:D.8.不等式15e ln 1-≥+x a xx x对任意(1,)x ∈+∞恒成立,则实数a 的取值范围是()A.(,1e]-∞- B.(2,2e⎤-∞-⎦C.(,4]-∞- D.(,3]-∞-【答案】C 【解析】【分析】分离参数,将15e ln 1-≥+x a x x x 变为41e ,1ln x x xa x x---≤>,然后构造函数,即将不等式恒成立问题转化为求函数的最值问题,利用导数判断函数的单调性,求最值即可.【详解】由不等式15e ln 1-≥+x a xx x 对任意(1,)x ∈+∞恒成立,此时ln 0x >,可得41e ,1ln x x xa x x---≤>恒成立,令41e ,1ln x x x y x x ---=>,从而问题变为求函数41e ,1ln x x x y x x---=>的最小值或范围问题;令1()e x g x x -=-,则1()e 1x g x -'=-,当1x <时,1()e 10x g x -'=-<,当1x >时,1()e 10x g x -'=->,故1()e (1)0x g x x g -=-≥=,即1e x x -≥,所以4411ln 4ln 1e e e e 4ln x x x x x x x x ------=⋅=≥-,()*,当且仅当4ln 1x x -=时取等号,令()4ln 1h x x x =--,则44()1x h x x x-'=-=,当4x <时,()0h x '<,当>4x 时,()0h x '>,故min ()(4)34ln 40h x h ==-<,且当x →+∞时,()4ln 1h x x x =--也会取到正值,即4ln 1x x -=在1x >时有根,即()*等号成立,所以41e 4ln 4ln x x x x x x x---≥--=-,则41e 4ln x x xx---≥-,故4a ≤-,故选:C【点睛】本题考查了不等式的恒成立问题,解法一般是分离参数,构造函数,将恒成立问题转化为求函数最值或范围问题,解答的关键是在于将不等式或函数式进行合理的变式,这里需要根据式子的具体特点进行有针对性的变形,需要一定的技巧.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.在平面直角坐标系中,圆C 的方程为22210x y y +--=,若直线1y x =-上存在一点M ,使过点M 所作的圆的两条切线相互垂直,则点M 的纵坐标为()A.1B.C.1- D.【答案】AC 【解析】【分析】首先可根据圆的方程得出圆心与半径,然后根据题意得出点M 、圆心以及两个切点构成正方形,最后根据2MC =以及两点间距离公式即可得出结果.【详解】22210x y y +--=化为标准方程为:()2212x y +-=,圆心()0,1C ,,因为过点M 所作的圆的两条切线相互垂直,所以点M 、圆心以及两个切点构成正方形,2MC =,因为M 在直线1y x =-上,所以可设(),1M a a -,则()22224MCa a =+-=,解得:2a =或0a =,所以()2,1M 或()0,1M -,故点M 的纵坐标为1或1-.故选:AC.10.已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示,若将()f x 的图象向右平移()0m m >个单位长度后得到函数()()sin 2g x A x ωϕ=-的图象,则m 的值可以是()A.π4B.π3C.4π3D.9π4【答案】AD 【解析】【分析】根据函数图象可确定A 和最小正周期T ,由此可得ω,结合π26f ⎛⎫= ⎪⎝⎭可求得ϕ,从而得到()(),f x g x 的解析式,根据()()f x m g x -=可构造方程求得()ππ4m k k =-∈Z ,由此可得m 可能的取值.【详解】由图象可知:2A =,最小正周期5ππ4π126T ⎛⎫=⨯-=⎪⎝⎭,2π2T ω∴==,ππ2sin 263f ϕ⎛⎫⎛⎫∴=+= ⎪ ⎪⎝⎭⎝⎭,()ππ2π32k k ϕ∴+=+∈Z ,解得:()π2π6k k ϕ=+∈Z ,又π2ϕ<,π6ϕ∴=,()π2sin 26f x x ⎛⎫∴=+ ⎪⎝⎭,()π2sin 23g x x ⎛⎫=- ⎪⎝⎭,()()π2sin 226f x m x m g x ⎛⎫-=-+= ⎪⎝⎭ ,()ππ22π63m k k ∴-+=-+∈Z ,解得:()ππ4m k k =-∈Z ,当0k =时,π4m =;当2k =-时,9π4m =.故选:AD.11.大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,数列中的每一项都代表太极衍生过程.已知大衍数列{}n a 满足10a =,11,,,n n na n n a a n n +++⎧=⎨+⎩为奇数为偶数,则()A.34a =B.221n n a a n +=++C.221,,2,2n n n a n n ⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数D.数列(){}1nn a -的前2n 项和的最小值为2【答案】ACD 【解析】【分析】当2n k =时,2122k k a a k +=+,当21n k =-时,2212k k a a k -=+,联立可得21214k k a a k +--=,利用累加法可得22122k a k k +=+,从而可求得221,2,2n n n a n n ⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数,在逐项判断即可.【详解】令k *∈N 且1k ≥,当2n k =时,2122k k a a k +=+①;当21n k =-时,221212112k k k a a k a k --=+-+=+②,由①②联立得21214k k a a k +--=.所以315321214,8,,4k k a a a a a a k +--=-=-= ,累加可得()22112114844222k k k k a a a k k k+++-==+++=⨯=+ .令21k n +=(3n ≥且为奇数),得212n n a -=.当1n =时10a =满足上式,所以当n 为奇数时,212n n a -=.当n 为奇数时,()21112n nn aa n ++=++=,所以22n n a =,其中n 为偶数.所以221,2,2n n n a n n ⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数,故C 正确.所以233142a -==,故A 正确.当n 为偶数时,()22222222n nn n aa n ++-=-=+,故B 错误.因为()()222212211222n n n n a a n ----=-=,所以(){}1nna -的前2n 项和21234212nn nSa a a a a a -=-+-++-+()()121222212n n n nn +=⨯+⨯++⨯=⨯=+ ,令()1n c n n =+,因为数列{}n c 是递增数列,所以{}n c 的最小项为1122c =⨯=,故数列(){}1nna -的前2n 项和的最小值为2,故D 正确.故选:ACD.【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和.(2)错位相减:用于等差数列与等比数列的积数列的求和.(3)分组求和:用于若干个等差或等比数列的和或差数列的求和.12.已知抛物线()220y px p =>的准线为:2l x =-,焦点为F ,点(),P P P x y 是抛物线上的动点,直线1l 的方程为220x y -+=,过点P 分别作PA l ⊥,垂足为A ,1PB l ⊥,垂足为B ,则()A.点F 到直线1l 的距离为655B.2p x +=C.221p px y ++的最小值为1 D.PA PB +的最小值为655【答案】ABD 【解析】【分析】对于A ,用点到直线的距离公式即可判断;对于B ,利用抛物线的定义即可判断;对于C ,利用基本不等式即可判断;对于D ,利用抛物线的定义可得到PA PB PF PB BF +=+≥,接着求出BF 的最小值即可【详解】由抛物线()220y px p =>的准线为:2l x =-可得抛物线方程为28y x =,焦点为()2,0F ,对于A ,点F 到直线1l的距离为655d ==,故A 正确;对于B ,因为(),P P P x y 在抛物线上,所以利用抛物线的定义可得2P PF x =+,即2p x +=,故B 正确;对于C ,因为(),P P P x y 在抛物线上,所以28,0p p p y x x =≥,所以211221144111818888p p p pp p p p x x x x y x x x +=+=+=+++++1788≥=,当且仅当38p x =时,取等号,故C 错误;对于D ,由抛物线的定义可得PA PF =,故PA PB PF PB BF +=+≥,当且仅当,,P B F 三点共线时,取等号,此时1BF l ⊥,由选项A 可得点F 到直线1l的距离为5d =,故PA PB +的最小值为655,故D正确,故选:ABD三、填空题:本题共4小题,每小题5分,共20分.13.已知sin 3cos 0αα+=,则tan 2α=______.【答案】34##0.75【解析】【分析】利用已知等式可求得tan α,由二倍角正切公式可求得结果.【详解】由sin 3cos 0αα+=得:sin 3cos αα=-,sin tan 3cos ααα∴==-,22tan 63tan 21tan 194ααα-∴===--.故答案为:34.14.函数()()ln 211f x x x =++-的图象在点()()0,0f 处的切线方程是______.【答案】310x y --=【解析】【分析】求导函数,可得切线斜率,求出切点坐标,运用点斜式方程,即可求出函数()f x 的图象在点()()0,0f 处的切线方程.【详解】()()ln 211f x x x =++-,∴2()121f x x '=++,则(0)213f '=+=,又()ln 201(0)011f =⨯++-=-Q ,∴切点为()0,1-,∴函数()()ln 211f x x x =++-的图象在点()0,1-处的切线方程是()130,y x +=-即310x y --=.故答案为:310x y --=.15.2名老师带着8名学生去参加数学建模比赛,先要选4人站成一排拍照,且2名老师同时参加拍照时两人不能相邻.则2名老师至少有1人参加拍照的排列方法有______种.(用数字作答)【答案】3024【解析】【分析】分两种情况讨论:①若只有1名老师参与拍照;②若2名老师都拍照.利用计数原理、插空法结合分类加法计数原理可求得结果.【详解】分以下两种情况讨论:①若只有1名老师参与拍照,则只选3名学生拍照,此时共有134284C C A 2688=种排列方法;②若2名老师都拍照,则只选2名学生拍照,先将学生排序,然后将2名老师插入2名学生所形成的空位中,此时,共有222823C A A 336=种排列方法.综上所述,共有26883363024+=种排列方法.故答案为:3024.16.已知A ,B 是双曲线22:124x y C -=上的两个动点,动点P 满足0AP AB += ,O 为坐标原点,直线OA 与直线OB 斜率之积为2,若平面内存在两定点1F 、2F ,使得12PF PF -为定值,则该定值为______.【答案】【解析】【分析】设()()1122(,),,,,P x y A x y B x y ,根据0AP AB += 得到122x x x =-,122y y y =-,根据点A ,B 在双曲线22124x y -=上则22212212416,248y x y x -=-=,代入计算得22220x y -=,根据双曲线定义即可得到12PF PF -为定值.【详解】设()()1122(,),,,,P x y A x y B x y ,则由0AP AB += ,得()()()112121,,0,0x x y y x x y y --+--=,则122x x x =-,122y y y =-,点A ,B 在双曲线22124x y -=上,222211221,12424x y x y ∴-=-=,则22212212416,248y x y x -=-=()()222212122222x y x x y y ∴-=---()()()2222121212121212828442042x x x x y y y y x x y y =+--+-=--,设,OA OB k k 分别为直线OA ,OB 的斜率,根据题意,可知2OA OBk k ⋅=,即12122y y x x ⋅=,121220y y x x ∴-=22220x y ∴-=,即2211020x y -=P ∴在双曲线2211020x y -=上,设该双曲线的左、右焦点分别为12,F F ,由双曲线定义可知||12||||PF PF -为定值,该定值为.故答案为:.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在ABC 中,角,,A B C 的对边分别是,,a b c ,()()()0a c a c b b a -++-=.(1)求C ;(2)若c =ABC 的面积是2,求ABC 的周长.【答案】(1)π3.(2).【解析】【分析】(1)将()()()0a c a c b b a -++-=化为222a b c ab +-=,由余弦定理即可求得角C .(2)根据三角形面积求得2ab =,再利用余弦定理求得3a b +=,即可求得答案.【小问1详解】由题意在ABC 中,()()()0a c a c b b a -++-=,即222a b c ab +-=,故2221cos 22a b c C ab +-==,由于(0,π)C ∈,所以π3C =.【小问2详解】由题意ABC 的面积是32,π3C =,即133sin ,2242ABC S ab C ab ab ===∴= ,由c =2222cos c a b ab C =+-得2223()6,3a b ab a b a b =+-=+-∴+=,故ABC 的周长为a b c ++=.18.已知数列{}n a 满足,()*1232311112222n n a a a a n n +++⋅⋅⋅+=∈N .(1)求数列{}n a 的通项公式;(2)若()21n n b n a =-,记n S 为数列{}n b 的前n 项和,求n S ,并证明:当2n ≥时,6n S >.【答案】(1)2nn a =(2)()12326n n S n +=-+【解析】【分析】(1)利用递推式相减得出2n n a =,并验证首项符合通项,最后得出答案;(2)错位相减法求前n 项和【小问1详解】1232311112222n n a a a a n ++++= ,①则()12312311111122222n n a a a a n n --++++=-≥ ,②①-②得11(2)2n n a n =≥,则2(2)n n a n =≥,当n =1时,由①得1112a =,∴1122a ==,∴2n n a =.【小问2详解】易得()212nn b n =-,()123123512222n n S n =⋅+⋅+∴+-⋅+ ,①()21341232522212n n S n +=⋅+⋅+⋅+∴+- ,②②-①得()()34112122222n n n S n ++=--++++- ()()21228212n n n +++=----()12326n n +=-+,故()12326n n S n +=-+,当2n ≥时,()12320n n +->6n S ∴>19.如图,四棱锥P ABCD -中,平面APD ⊥平面ABCD ,APD △为正三角形,底面ABCD 为等腰梯形,AB //CD ,224AB CD BC ===.(1)求证:BD ⊥平面APD ;(2)若点F 为线段PB 上靠近点P 的三等分点,求二面角F AD P --的大小.【答案】(1)证明见解析;(2)π4【解析】【分析】(1)先用几何关系证明π3A ∠=,然后根据余弦定理求出BD ,结合勾股定理可得BD AD ⊥,最后利用面面垂直的性质定理证明;(2)过P 作PG AD ⊥,垂足为G ,结合面面垂直的性质先说明可以在G 处为原点建系,然后利用空间向量求二面角的大小.【小问1详解】取AB 中点E ,连接CE ,根据梯形性质和2AB CD =可知,CD //AE ,且CD AE =,于是四边形ADCE 为平行四边形,故2CE AD BE CB ====,则CEB 为等边三角形,故π3A CEB ∠=∠=,在ABD △中,由余弦定理,222π2cos 1648123BD AB AD AB AD =+-⨯⨯=+-=,故BD =,注意到22212416BD AD AB +=+==,由勾股定理,π2ADB ∠=,即BD AD ⊥,由平面APD ⊥平面ABCD ,平面APD 平面ABCD AD =,BD ⊂平面ABCD ,根据面面垂直的性质定理可得,BD ⊥平面APD .【小问2详解】过P 作PG AD ⊥,垂足为G ,连接EG ,由平面APD ⊥平面ABCD ,平面APD 平面ABCD AD =,PG ⊂平面PAD ,根据面面垂直的性质定理,PG ⊥平面ABCD ,APD △为正三角形,PG AD ⊥,故AG GD =(三线合一),由AE EB =和中位线性质,GE //BD ,由(1)知,BD ⊥平面APD ,故GE ⊥平面APD ,于是,,GA GE GP 两两垂直,故以G 为原点,,,GA GE GP 所在直线分别为,,x y z 轴,建立如图所示的空间直角坐标系.由(1)知,BD ⊥平面APD ,又BD //y 轴,故可取(0,1,0)m =为平面APD的法向量,又P,(B -,根据题意,2BF FP = ,设(,,)F x y z,则()()1,2,,x y z x y z +-=--,解得12323,,333F ⎛- ⎝⎭,又(1,0,0)A ,(1,0,0)D -,(2,0,0)DA = ,42323,,333FA ⎛=-- ⎝⎭ ,设平面FAD 的法向量(,,)n a b c = ,由00n DA n FA ⎧⋅=⎪⎨⋅=⎪⎩ ,即0423230333a a =⎧⎪⎨--=⎪⎩,于是(0,1,1)n =- 为平面FAD 的法向量,故2cos ,2m n m n m n⋅=== ,二面角大小的范围是[]0,π,结合图形可知是锐二面角,故二面角F AD P --的大小为π420.为落实体育总局和教育部发布的《关于深化体教融合,促进青少年健康发展的意见》,某校组织学生参加100米短跑训练.在某次短跑测试中,抽取100名女生作为样本,统计她们的成绩(单位:秒),整理得到如图所示的频率分布直方图(每组区间包含左端点,不包含右端点).(1)估计样本中女生短跑成绩的平均数;(同一组的数据用该组区间的中点值为代表)(2)由频率分布直方图,可以认为该校女生的短跑成绩X 服从正态分布()2,N μσ,其中μ近似为女生短跑平均成绩x ,2σ近似为样本方差2s ,经计算得,2 6.92s =,若从该校女生中随机抽取10人,记其中短跑成绩在[]12.14,22.66以外的人数为Y ,求()1P Y ≥.2.63≈,随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<≤+=,()220.9545P X μσμσ-<<+=,()330.9974P X μσμσ-<<+=,100.68270.0220≈,100.95450.6277≈,100.99740.9743≈.【答案】(1)17.4(2)0.3723【解析】【分析】(1)结合频率分布直方图中求平均数公式,即可求解.(2)根据已知条件,可知,217.4, 6.92μσ==,即可求出212.14,222.66μσμσ-=+=,结合正态分布的对称性以及二项分布的概率公式,即可求解.【小问1详解】估计样本中女生短跑成绩的平均数为:()120.02140.06160.14180.18200.05220.03240.02217.4⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯=;【小问2详解】该校女生短跑成绩X 服从正态分布()17.4,6.92N ,由题可知217.4, 6.92μσ==, 2.63σ=≈,则212.14,222.66μσμσ-=+=,故该校女生短跑成绩在[]12.14,22.66以外的概率为:1(12.1422.66)10.95450.0455P X -≤≤=-=,由题意可得,~(10,0.0455)Y B ,10(1)1(0)10.954510.62770.3723P Y P Y ≥=-==-≈-=.21.已知椭圆()2222:10x y C a b a b +=>>的左焦点为F ,右顶点为A ,离心率为22,B 为椭圆C 上一动点,FAB 面积的最大值为212+.(1)求椭圆C 的方程;(2)经过F 且不垂直于坐标轴的直线l 与C 交于M ,N 两点,x 轴上点P 满足PM PN =,若MN FP λ=,求λ的值.【答案】(1)2212x y +=;(2)λ=.【解析】【分析】(1)由题意可得22c e a ==,121()22a c b ++=,再结合222a b c =+可求出,a b ,从而可求出椭圆的方程;(2)由题意设直线MN 为1x ty =-(0t ≠),1122(,),(,)M x y N x y ,设0(,0)P x ,将直线方程代入椭圆方程中化简利用根与系数的关系,然后由PM PN =可得0212x t =-+,再根据MN FP λ=可求得结果.【小问1详解】因为椭圆的离心率为2,所以2c e a ==,因为FAB面积的最大值为12+,所以121()22a cb ++=,因为222a bc =+,所以解得1a b c ===,所以椭圆C 的方程为2212x y +=;【小问2详解】(1,0)F -,设直线MN 为1x ty =-(0t ≠),1122(,),(,)M x y N x y ,不妨设12y y >,设0(,0)P x ,由22112x ty x y =-⎧⎪⎨+=⎪⎩,得22(2)210t y ty +--=,则12122221,22t y y y y t t -+==++,所以12y y -==,因为PM PN =,所以2222101202()()x x y x x y -+=-+,所以222212102012220x x x x x x y y --++-=,所以12120121212()()2()()()0x x x x x x x y y y y +---+-+=,所以12120121212(11)()2()()()0ty ty ty ty x ty ty y y y y -+----+-+=,因为120y y -≠,所以12012(2)2()0t ty ty x t y y +--++=,所以20222222022t t t x t t t ⎛⎫--+= ⎪++⎝⎭,所以20222222022t x t t --+=++,解得0212x t =-+,因为MN FP λ=,所以222MN FP λ=,0λ>,所以222212120()()(1)x x y y x λ-+-=+,222212120()()(1)ty ty y y x λ-+-=+2222120(1)()(1)t y y x λ+-=+,所以22222222288(1)(1)(2)(2)t t t t t λ+++=++,化简得28λ=,解得λ=±,因为0λ>,所以λ=22.已知函数()()1ln R 1x f x x m m x -=-⋅∈+.(1)当1m =时,判断函数()f x 的单调性;(2)当1x >时,()0f x >恒成立,求实数m 的取值范围.【答案】(1)()f x 在()0,∞+上是单调递增的(2)2m ≤【解析】【分析】(1)对()f x 求导,从而确实()f x '为正及()f x 的单调性;(2)令()()()1(m )ln 1R x x x m x g =+--∈,然后分2m ≤和m>2两种情况讨论()g x 的单调性及最值,即可得答案.【小问1详解】当1m =时,()1ln 1x f x x x -=-+,定义域为()0,∞+()()()()()2222212111121x x x f x x x x x x x +-+'=-==+++,所以()0f x ¢>,所以()f x 在()0,∞+上是单调递增的.【小问2详解】当1x >时,()()1ln R 1x f x x m m x -=-⋅∈+,()0f x >等价于()()()()1ln 1g m x x x m x R =+--∈,则()0g x >,1g ()ln 1x x m x '=++-,令()1ln 1m h x x x =++-,则22111()x h x x x x-'=-=,当1x >时,()0h x '>,则()g x '在()1,+∞上是单调递增的,则()(1)2g x g m ''>=-①当2m ≤时,()0g x '>,()g x 在()1,+∞上是单调递增的,所以()(1)0g x g >=,满足题意.②当m>2时,(1)20g m '=-<,(e )e 1e 10m m m g m m --'=++-=+>,所以0(1,e )mx ∃∈,使00()g x '=,因为()g x '在()1,+∞上是单调递增的所以当0(1,)x x ∈时,()0g x '<,所以()g x 在0(1,)x 上是单调递减的,又(1)0g =,即得当0(1,)x x ∈时,()(1)0g x g <=,不满足题意.综上①②可知:实数m 的取值范围2m ≤.。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1} B.{2} C.{0,1} D.{1,2}2.=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i3.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.454.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种 D.36种5.设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0 B.1 C.2 D.36.设向量,满足|+|=,|﹣|=,则•=()A.1 B.2 C.3 D.57.正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为()A.3 B.C.1 D.8.设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是()A.[﹣1,1] B.[﹣,] C.[﹣,] D.[﹣,]二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.下列命题中,是真命题的是( )A .函数()()22231m m f x m m x --=--是幂函数的充分必要条件是2m =B .若:(0,),1ln p x x x ∀∈+∞->,则000:(0,),1ln p x x x ⌝∃∈+∞-≤C .若()()()()62601263222x a a x a x a x +=+++++++,则315a = D .若随机变量ξ服从正态分布()21,N σ,(4)0.79P ξ≤=,则(2)0.21P ξ≤-=10.已知点()()()1,2,5,2,,4A B C k ,若ABC 为直角三角形,则k 的可能取值为( )A .1B .2C .3D .511.已知直线l :20kx y k -+=和圆O :222x y r +=,则( )A .存在k 使得直线l 与直线0l :220x y 垂直B .直线l 恒过定点()2,0C .若4r >,则直线l 与圆O 相交D .若4r =,则直线l 被圆O 截得的弦长的取值范围为(⎤⎦12.已知圆22:(5)(5)16C x y -+-=与直线:240l mx y +-=,下列选项正确的是( )A .直线l 与圆C 不一定相交B .当1615m ≥时,圆C 上至少有两个不同的点到直线l 的距离为1 C .当2m =-时,圆C 关于直线l 对称的圆的方程是22(3)(3)16x y +++=D .当1m =时,若直线l 与x 轴,y 轴分别交于A ,B 两点,P 为圆C 上任意一点,当||PB =PBA ∠最大或最小二、填空题:本题共4小题,每小题5分,共20分.13.(x+a )10的展开式中,x 7的系数为15,则a=14.(5分)函数f (x )=sin (x+φ)﹣2sin φcosx 的最大值为 .15.(5分)偶函数y=f (x )的图象关于直线x=2对称,f (3)=3,则f (﹣1)= . 16.(5分)数列{a n }满足a n+1=,a 8=2,则a 1= .四、解答题(本题共6小题,共70分,其中第16题10分,其它每题12分,解答应写出文字说明、证明过程或演算步骤。
高考数学全国卷
考生注意:
1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
第I 卷 选择题部分
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A I B =3|2x x ⎧
⎫<
⎨⎬⎩
⎭
B .A I B =∅
C .A U B 3|2x x ⎧
⎫=<
⎨⎬⎩⎭
D .A U B=R
2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值
D .x 1,x 2,…,x n 的中位数
3.下列各式的运算结果为纯虚数的是 A .i(1+i)2
B .i 2(1-i)
C .(1+i)2
D .i(1+i)
4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是
A .
1
4
B .
π8
C .
12
D .π 4
5.已知F 是双曲线C :x 2
-2
3
y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF
的面积为 A .13
B .1 2
C .2 3
D .3 2
6.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是
7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪
-≥⎨⎪≥⎩
则z =x +y 的最大值为
A .0
B .1
C .2
D .3
8..函数sin21cos x
y x
=
-的部分图像大致为
9.已知函数()ln ln(2)f x x x =+-,则
A .()f x 在(0,2)单调递增
B .()f x 在(0,2)单调递减
C .y =()f x 的图像关于直线x =1对称
D .y =()f x 的图像关于点(1,0)对称
10.如图是为了求出满足321000n n ->的最小偶数n ,学|科网那么在和
两个空白框中,可以分
别填入
A .A >1000和n =n +1
B .A >1000和n =n +2
C .A ≤1000和n =n +1
D .A ≤1000和n =n +2
11.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。
已知sin sin (sin cos )0B A C C +-=,a =2,c ,
则C = A .
π12
B .
π6
C .
π4
D .
π3
12.设A 、B 是椭圆C :22
13x y m
+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°
,则m 的取值范围是
A .(0,1][9,)+∞U
B .[9,)+∞U
C .(0,1][4,)+∞U
D .[4,)+∞U
第II 卷 非选择题部分
二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量a =(–1,2),b =(m ,1).若向量a +b 与a 垂直,则m =______________. 14.曲线2
1
y x x
=+
在点(1,2)处的切线方程为_________________________. 15.已知π(0)2
a ∈,,tan α=2,则π
cos ()4α-=__________。
16.已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径。
若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________。
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:60分。
17.(本题满分12分)
记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6. (1)求{}n a 的通项公式;
(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列。
18.(本题满分12分)
如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o
(1)证明:平面PAB ⊥平面PAD ;
(2)若PA =PD =AB =DC ,90APD ∠=o ,且四棱锥P-ABCD 的体积为8
3
,求该四棱锥的侧面积. 19.(本题满分12分)
为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:
经计算得16119.9716i i x x ===∑,0.212s ==≈,18.439≈,16
1
()(8.5) 2.78i i x x i =--=-∑,
其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.
(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).
(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)从这一天抽检的结果看,学
.科网是否需对当天的生产过程进行检查?
(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)
附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()
n
i
i
x x y y r --=
∑0.09≈.
20.(本题满分12分)
设A ,B 为曲线C :y =2
4
x 上两点,A 与B 的横坐标之和为4.
(1)求直线AB 的斜率;
(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程. 21.(本题满分12分)
已知函数()f x =e x (e x ﹣a )﹣a 2x . (1)讨论()f x 的单调性;
(2)若()0f x ≥,求a 的取值范围.
(二)选考题:共10分。
请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.[选修4―4:坐标系与参数方程](本题满分10分)
在直角坐标系xOy 中,曲线C 的参数方程为3cos ,
sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为
4,
1,x a t t y t =+⎧⎨
=-⎩
(为参数). (1)若a =−1,求C 与l 的交点坐标;
(2)若C 上的点到l a . 23.[选修4—5:不等式选讲](本题满分10分)
已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集;
(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.。